1
|
Dronse J, Ohndorf A, Richter N, Bischof GN, Fassbender R, Behfar Q, Gramespacher H, Dillen K, Jacobs HIL, Kukolja J, Fink GR, Onur OA. Serum cortisol is negatively related to hippocampal volume, brain structure, and memory performance in healthy aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1154112. [PMID: 37251803 PMCID: PMC10213232 DOI: 10.3389/fnagi.2023.1154112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Elevated cortisol levels have been frequently reported in Alzheimer's disease (AD) and linked to brain atrophy, especially of the hippocampus. Besides, high cortisol levels have been shown to impair memory performance and increase the risk of developing AD in healthy individuals. We investigated the associations between serum cortisol levels, hippocampal volume, gray matter volume and memory performance in healthy aging and AD. Methods In our cross-sectional study, we analyzed the relationships between morning serum cortisol levels, verbal memory performance, hippocampal volume, and whole-brain voxel-wise gray matter volume in an independent sample of 29 healthy seniors (HS) and 29 patients along the spectrum of biomarker-based AD. Results Cortisol levels were significantly elevated in patients with AD as compared to HS, and higher cortisol levels were correlated with worse memory performance in AD. Furthermore, higher cortisol levels were significantly associated with smaller left hippocampal volumes in HS and indirectly negatively correlated to memory function through hippocampal volume. Higher cortisol levels were further related to lower gray matter volume in the hippocampus and temporal and parietal areas in the left hemisphere in both groups. The strength of this association was similar in HS and AD. Conclusion In AD, cortisol levels are elevated and associated with worse memory performance. Furthermore, in healthy seniors, higher cortisol levels show a detrimental relationship with brain regions typically affected by AD. Thus, increased cortisol levels seem to be indirectly linked to worse memory function even in otherwise healthy individuals. Cortisol may therefore not only serve as a biomarker of increased risk for AD, but maybe even more importantly, as an early target for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Ohndorf
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ronja Fassbender
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Behfar
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Palliative Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heidi I. L. Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health Witten/Herdecke University, Witten, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Harris BN, Roberts BR, DiMarco GM, Maldonado KA, Okwunwanne Z, Savonenko AV, Soto PL. Hypothalamic-pituitary-adrenal (HPA) axis activity and anxiety-like behavior during aging: A test of the glucocorticoid cascade hypothesis in amyloidogenic APPswe/PS1dE9 mice. Gen Comp Endocrinol 2023; 330:114126. [PMID: 36122793 PMCID: PMC10250074 DOI: 10.1016/j.ygcen.2022.114126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive, dementing, whole-body disorder that presents with decline in cognitive, behavioral, and emotional functions, as well as endocrine dysregulation. The etiology of AD is not fully understood but stress- and anxiety-related hormones may play a role in its development and trajectory. The glucocorticoid cascade hypothesis posits that levels of glucocorticoids increase with age, leading to dysregulated negative feedback, further elevated glucocorticoids, and resulting neuropathology. We examined the impact of age (from 2 to 10 months) and stressor exposure (predator odor) on hormone levels (corticosterone and ghrelin), anxiety-like behavior (open field and light dark tests), and memory-related behavior (novel object recognition; NOR), and whether these various measures correlated with neuropathology (hippocampus and cortex amyloid beta, Aβ) in male and female APPswe/PS1dE9 transgenic and non-transgenic mice. Additionally, we performed exploratory analyses to probe if the open field and light dark test as commonly used tasks to assess anxiety levels were correlated. Consistent with the glucocorticoid cascade hypothesis, baseline corticosterone increased with age. Predator odor exposure elevated corticosterone at each age, but in contrast to the glucocorticoid cascade hypothesis, the magnitude of stressor-induced elevations in corticosterone levels did not increase with age. Overall, transgenic mice had higher post-stressor, but not baseline, corticosterone than non-transgenic mice, and across both genotypes, females consistently had higher (baseline and post-stressor) corticosterone than males. Behavior in the open field test primarily showed decreased locomotion with age, and this was pronounced in transgenic females. Anxiety-like behaviors in the light dark test were exacerbated following predator odor, and female transgenic mice were the most impacted. Compared to transgenic males, transgenic females had higher Aβ concentrations and showed more anxiety-like behavior. Performance on the NOR did not differ significantly between genotypes. Lastly, we did not find robust, statistically significant correlations among corticosterone, ghrelin, recognition memory, anxiety-like behaviors, or Aβ, suggesting outcomes are not strongly related on the individual level. Our data suggest that despite Aβ accumulation in the hippocampus and cortex, male and female APPswePS1dE9 transgenic mice do not differ robustly from their non-transgenic littermates in physiological, endocrine, and behavioral measures at the range of ages studied here.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| | - Breanna R Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Giuliana M DiMarco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States; Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | | | - Zenobia Okwunwanne
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
3
|
Saelzler UG, Verhaeghen P, Panizzon MS, Moffat SD. Intact circadian rhythm despite cortisol hypersecretion in Alzheimer's disease: A meta-analysis. Psychoneuroendocrinology 2021; 132:105367. [PMID: 34340133 DOI: 10.1016/j.psyneuen.2021.105367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Hypersecretion of the glucocorticoid steroid hormone cortisol by individuals with Alzheimer's disease (AD) has been suspected for several decades, during which time dozens of examinations of this phenomenon have been conducted and published. The goals of this investigation were to summarize this sizeable body of literature, test whether participant and methodological characteristics modify the magnitude of the AD-associated basal cortisol hypersecretion, and examine whether cortisol circadian rhythmicity is maintained among individuals with AD. To this end, the present meta-analysis and systematic review examined over 300 comparisons of indices of basal HPA-axis functioning between individuals with AD and cognitively normal older adults. AD was associated with basal cortisol elevations (g = 0.45) but the magnitude of the effect was not systematically impacted by any of the participant characteristics considered or the time-of-day of the cortisol sampling. Further, there was no evidence of group differences among direct indices of circadian rhythmicity such as the cortisol awakening response or the diurnal cortisol slope. These results suggest that basal hypersecretion of cortisol, but not circadian dysrhythmia, is characteristic of individuals with AD. Mechanistically, the observed hypersecretion is consistent with the theorized AD-driven deterioration of the hippocampus and subsequent reduction in hypothalamic-pituitary-adrenal axis inhibition. Further investigation is warranted to elucidate the role and timing of cortisol elevations in the progression of AD.
Collapse
Affiliation(s)
- Ursula G Saelzler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA 92093, USA.
| | - Paul Verhaeghen
- Department of Psychology, Georgia Institute of Technology, 648 Cherry St. NW, Atlanta GA 30313, USA.
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA 92093, USA.
| | - Scott D Moffat
- Department of Psychology, Georgia Institute of Technology, 648 Cherry St. NW, Atlanta GA 30313, USA.
| |
Collapse
|
4
|
Revisiting the Stress Concept: Implications for Affective Disorders. J Neurosci 2020; 40:12-21. [PMID: 31896560 DOI: 10.1523/jneurosci.0733-19.2019] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.
Collapse
|
5
|
Affiliation(s)
- S Yeap
- Neuroscience Center, St. Vincent's Hospital, Richmond Road, Dublin 3, Ireland
| | | |
Collapse
|
6
|
Udeh-Momoh CT, Su B, Evans S, Zheng B, Sindi S, Tzoulaki I, Perneczky R, Middleton LT. Cortisol, Amyloid-β, and Reserve Predicts Alzheimer’s Disease Progression for Cognitively Normal Older Adults. J Alzheimers Dis 2019; 70:553-562. [DOI: 10.3233/jad-181030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chinedu T. Udeh-Momoh
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bowen Su
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Stephanie Evans
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Bang Zheng
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Shireen Sindi
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Robert Perneczky
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
- German Center for Neurodegenerative Disorders (DZNE), Munich, Germany
| | - Lefkos T. Middleton
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | | |
Collapse
|
7
|
Drogos LL, Wynne-Edwards K, Zhou R, Hall SE, Tyndall AV, Longman RS, Eskes G, Poulin MJ. Aerobic exercise increases cortisol awakening response in older adults. Psychoneuroendocrinology 2019; 103:241-248. [PMID: 30721838 DOI: 10.1016/j.psyneuen.2019.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/26/2022]
Abstract
Evidence from both preclinical and clinical studies suggests aerobic exercise may dampen age-related decline in cognitive performance. Alterations in hypothalamic-pituitary-adrenal (HPA) axis function and reactivity may be a mechanism by which aerobic exercise benefits cognitive performance, and reduces perceived stress. This investigation was completed as an ancillary investigation of the Brain in Motion (BIM) study, a 6-month supervised aerobic exercise intervention. Participants were generally healthy and screened for inclusion/exclusion criteria for the parent study. Thirty-eight participants were recruited (Mean age = 65.0 [SD = 5.1]; 60% female) and the final longitudinal sample was 32 participants. Participants provided a passive drool sample at: waking, 15, 30, and 45 min post-waking to assess the cortisol awakening response (CAR) and 3, 6, 9, and 12 h post-waking to assess daily area under the curve for cortisol. Salivary cortisol was quantified by liquid chromatography coupled to tandem mass spectrometry. The exercise intervention increased CAR but no differences were observed in daily AUC. In addition, larger increases in CAR were positively associated with greater decreases in subjective stress. Thus, aerobic exercise improved the CAR in otherwise healthy, but sedentary older adults and greater improvements in CAR were associated with greater reductions in perceived stress.
Collapse
Affiliation(s)
- Lauren L Drogos
- University of Calgary, Department of Physiology & Pharmacology, Canada; University of Calgary Hotchkiss Brain Institute, Canada
| | | | - Ruokun Zhou
- University of Calgary, Faculty of Veterinary Medicine, Canada
| | - Samantha E Hall
- University of Calgary, Department of Physiology & Pharmacology, Canada; University of Calgary Hotchkiss Brain Institute, Canada
| | - Amanda V Tyndall
- University of Calgary, Department of Physiology & Pharmacology, Canada; University of Calgary Hotchkiss Brain Institute, Canada
| | - R Stewart Longman
- University of Calgary Hotchkiss Brain Institute, Canada; University of Calgary, Department of Clinical Neurosciences, Canada; University of Calgary, Department of Psychology, Canada; Alberta Health Services, Foothills Medical Centre, Canada
| | - Gail Eskes
- Dalhousie University, Departments of Psychiatry, Psychology & Neuroscience, Canada
| | - Marc J Poulin
- University of Calgary, Department of Physiology & Pharmacology, Canada; University of Calgary Hotchkiss Brain Institute, Canada; University of Calgary, Department of Clinical Neurosciences, Canada; University of Calgary Libin Cardiovascular Institute of Alberta, Canada; University of Calgary, Department of Faculty of Kinesiology, Canada.
| |
Collapse
|
8
|
Wang Q, Zhou W, Zhang J. Levels of Cortisol in CSF Are Associated With SNAP-25 and Tau Pathology but Not Amyloid-β. Front Aging Neurosci 2018; 10:383. [PMID: 30524269 PMCID: PMC6256241 DOI: 10.3389/fnagi.2018.00383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/01/2018] [Indexed: 01/28/2023] Open
Abstract
Objective: Preclinical studies have found both hyperactivity of hypothalamic- pituitary- adrenal (HPA) axis and synaptic degeneration are involved in the pathogenesis of Alzheimer's disease (AD). However, the data on the relationship of activity of HPA axis and synaptic degeneration in humans are limited. Methods: We compared CSF cortisol levels in 310 subjects, including 92 cognitively normal older people, 149 patients with mild cognitive impairment (MCI), and 69 patients with mild AD. Several linear and logistic regression models were conducted to investigate associations between CSF cortisol and synaptosomal-associated protein 25 (SNAP-25, reflecting synaptic degeneration) and other AD-related biomarkers. Results: We found that levels of cortisol in CSF were associated with SNAP-25 levels and tau pathologies but not amyloid-β protein. However, there were no significant differences in CSF cortisol levels among the three diagnostic groups. Conclusion: The HPA axis may play a crucial role in synaptic degeneration in AD pathogenesis.
Collapse
Affiliation(s)
- Qing Wang
- Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Wenjun Zhou
- Department of Pathology, Hangzhou Normal University, Hangzhou, China
| | - Jie Zhang
- Independent Researcher, Hangzhou, China
| | | |
Collapse
|
9
|
Maldonado JR. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry 2018; 33:1428-1457. [PMID: 29278283 DOI: 10.1002/gps.4823] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Delirium is the most common neuropsychiatric syndrome encountered by clinicians dealing with older adults and the medically ill and is best characterized by 5 core domains: cognitive deficits, attentional deficits, circadian rhythm dysregulation, emotional dysregulation, and alteration in psychomotor functioning. DESIGN An extensive literature review and consolidation of published data into a novel interpretation of known pathophysiological causes of delirium. RESULTS Available data suggest that numerous pathological factors may serve as precipitants for delirium, each having differential effects depending on patient-specific patient physiological characteristics (substrate). On the basis of an extensive literature search, a newly proposed theory, the systems integration failure hypothesis, was developed to bring together the most salient previously described theories, by describing the various contributions from each into a complex web of pathways-highlighting areas of intersection and commonalities and explaining how the variable contribution of these may lead to the development of various cognitive and behavioral dysfunctions characteristic of delirium. The specific cognitive and behavioral manifestations of the specific delirium picture result from a combination of neurotransmitter function and availability, variability in integration and processing of sensory information, motor responses to both external and internal cues, and the degree of breakdown in neuronal network connectivity, hence the term acute brain failure. CONCLUSIONS The systems integration failure hypothesis attempts to explain how the various proposed delirium pathophysiologic theories interact with each other, causing various clinically observed delirium phenotypes. A better understanding of the underlying pathophysiology of delirium may eventually assist in designing better prevention and management approaches.
Collapse
|
10
|
Wang Y, Shen X. Postoperative delirium in the elderly: the potential neuropathogenesis. Aging Clin Exp Res 2018; 30:1287-1295. [PMID: 30051417 DOI: 10.1007/s40520-018-1008-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
Postoperative delirium (POD) is a neurobehavioral syndrome caused by dysfunction of neural activity mainly in elderly people. POD is not uncommon, but under-recognized, and often serious. Multifactorial causes including aging, acetylcholine deficiency, sleep deprivation and intraoperative hypoxia have been proposed attempting to explain the processes leading to the development of POD. To date, however, no specific pathophysiologic mechanism has been identified. Here, we summarize the five most prominent theories (neuronal aging, neuroinflammation, neurotransmitter imbalance, neuroendocrine activation, and network connectivity change) to explain the development of delirium. Understanding of the neuropathogenesis of delirium will help focus future research, and assist in developing prophylactic and treatment strategies.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai Medical College of Fudan University, 83 Fenyang Road, 200031, Shanghai, China
| | - Xia Shen
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai Medical College of Fudan University, 83 Fenyang Road, 200031, Shanghai, China.
| |
Collapse
|
11
|
Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, Jellinger KA, Engelborghs S, Ramirez A, Parnetti L, Jack CR, Teunissen CE, Hampel H, Lleó A, Jessen F, Glodzik L, de Leon MJ, Fagan AM, Molinuevo JL, Jansen WJ, Winblad B, Shaw LM, Andreasson U, Otto M, Mollenhauer B, Wiltfang J, Turner MR, Zerr I, Handels R, Thompson AG, Johansson G, Ermann N, Trojanowski JQ, Karaca I, Wagner H, Oeckl P, van Waalwijk van Doorn L, Bjerke M, Kapogiannis D, Kuiperij HB, Farotti L, Li Y, Gordon BA, Epelbaum S, Vos SJB, Klijn CJM, Van Nostrand WE, Minguillon C, Schmitz M, Gallo C, Mato AL, Thibaut F, Lista S, Alcolea D, Zetterberg H, Blennow K, Kornhuber J, Riederer P, Gallo C, Kapogiannis D, Mato AL, Thibaut F. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 2018; 19:244-328. [PMID: 29076399 PMCID: PMC5916324 DOI: 10.1080/15622975.2017.1375556] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Sid E. O’Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Alzheimer Centre, Amsterdam Neuroscience VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Lucilla Parnetti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte E. Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
| | - Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Mony J. de Leon
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Anne M. Fagan
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - José Luis Molinuevo
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry & Psychotherapy, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Ron Handels
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | | | - Gunilla Johansson
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Holger Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Linda van Waalwijk van Doorn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD, USA
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Lucia Farotti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | - Yi Li
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Brian A. Gordon
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | | | - Carolina Minguillon
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Matthias Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Carla Gallo
- Departamento de Ciencias Celulares y Moleculares/Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea Lopez Mato
- Chair of Psychoneuroimmunoendocrinology, Maimonides University, Buenos Aires, Argentina
| | - Florence Thibaut
- Department of Psychiatry, University Hospital Cochin-Site Tarnier 89 rue d’Assas, INSERM 894, Faculty of Medicine Paris Descartes, Paris, France
| | - Simone Lista
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
McEwen BS. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front Neuroendocrinol 2018; 49:8-30. [PMID: 29132949 DOI: 10.1016/j.yfrne.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. This article is both an account of an emerging field elucidating brain-body interactions at multiple levels, from molecules to social organization, as well as a personal account of my laboratory's role and, most importantly, the roles of trainees and colleagues, along with my involvement in interdisciplinary groups working on this topic.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA. http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| |
Collapse
|
13
|
Fu Q, Wu Y. RCAN1 in the inverse association between Alzheimer's disease and cancer. Oncotarget 2017; 9:54-66. [PMID: 29416595 PMCID: PMC5787488 DOI: 10.18632/oncotarget.23094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The inverse association between Alzheimer’s disease (AD) and cancer has been reported in several population-based studies although both of them are age-related disorders. However, molecular mechanisms of the inverse association remain elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the pathogenesis of AD, while it suppresses cancer growth and progression in many types of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various types of cancer. It suggests that RCAN1 may play a key role in the inverse association between AD and cancer. In this article, we aim to review the role of RCAN1 in the inverse association and discuss underlying mechanisms, providing an insight into developing a novel approach to treat AD and cancer.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
14
|
Protective effects of S-allyl cysteine on behavioral, morphological and biochemical alterations in rats subjected to chronic restraint stress: Antioxidant and anxiolytic effects. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Poulin SP, Bergeron D, Dickerson BC. Risk Factors, Neuroanatomical Correlates, and Outcome of Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2017; 60:483-493. [PMID: 28869463 PMCID: PMC5963953 DOI: 10.3233/jad-160767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND An integrative model of neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) is lacking. OBJECTIVE In this study, we investigated the risk factors, anatomy, biology, and outcomes of NPS in AD. METHODS 181 subjects were included from the Alzheimer's Disease Neuroimaging Study (ADNI). NPS were assessed with the Neuropsychiatric Inventory Questionnaire at baseline and 6 months. NPI >3 was used as a threshold for NPS positivity. Three NPS courses were characterized: 1) minimal/absent (negative at 0 and 6 months, n = 77); 2) fluctuating (positive only at one time point, n = 53); 3) persistent (positive at both time points, n = 51). We examined the association between NPS course and family history of dementia, personal history of psychiatric disorders, cerebrospinal fluid biomarkers, atrophy patterns, as well as longitudinal cognitive and functional measures at 12 and 24 months (MMSE, CDR-SOB, FAQ). RESULTS AD subjects with absent, fluctuating, or persistent NPS had similar CSF amyloid-β and tau levels. AD subjects with minimal/absent NPS had less personal history of psychiatric disorders (35%) than those with fluctuating (57%; p = 0.015) or persistent NPS (47%, not significant). At 24 months, AD subjects with persistent NPS had worse cognitive (MMSE; p = 0.05) and functional (CDR-SOB; p = 0.016) outcomes. Dorsolateral prefrontal atrophy was seen in persistent NPS, but not in fluctuating NPS. CONCLUSIONS Our results suggest that individuals with personal history of psychiatric disorders might be more vulnerable to develop NPS throughout the course of AD. The worst cognitive and functional outcomes associated with NPS in AD underscores the importance of monitoring NPS early in the disease course.
Collapse
Affiliation(s)
- Stéphane P. Poulin
- Clinique Interdisciplinaire de la Mémoire, Centre Hositalier Universitaire de Québec, Quebec City, QC, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec (CRISUMQ), QC, Canada
| | - David Bergeron
- Clinique Interdisciplinaire de la Mémoire, Centre Hositalier Universitaire de Québec, Quebec City, QC, Canada
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Frontotemporal Dementia Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
16
|
Zimmerman ME, Ezzati A, Katz MJ, Lipton ML, Brickman AM, Sliwinski MJ, Lipton RB. Perceived Stress Is Differentially Related to Hippocampal Subfield Volumes among Older Adults. PLoS One 2016; 11:e0154530. [PMID: 27144832 PMCID: PMC4856349 DOI: 10.1371/journal.pone.0154530] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/14/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Chronic exposure to stress has been shown to impact a wide range of health-related outcomes in older adults. Despite extensive animal literature revealing deleterious effects of biological markers of stress on the dentate gyrus subfield of the hippocampus, links between hippocampal subfields and psychological stress have not been studied in humans. This study examined the relationship between perceived stress and hippocampal subfield volumes among racially/ethnically diverse older adults. METHODS AND MATERIALS Between July 2011 and March 2014, 116 nondemented participants were consecutively drawn from the Einstein Aging Study, an ongoing community-based sample of individuals over the age of 70 residing in Bronx, New York. All participants completed the Perceived Stress Scale, Geriatric Depression Scale, and underwent 3.0 T MRI. FreeSurfer was used to derive total hippocampal volume, hippocampal subfield volumes (CA1, CA2/CA3, CA4/Dentate Gyrus (CA4/DG), and subiculum), entorhinal cortex volume, whole brain volume, and total intracranial volume. RESULTS Linear regression analyses revealed that higher levels of perceived stress were associated with smaller total hippocampal volume (β = -0.20, t = -2.40, p = 0.02), smaller CA2/CA3 volumes (β = -0.18, t = -2.24, p = 0.03) and smaller CA4/DG volumes (β = -0.19, t = -2.28, p = 0.03) after controlling for total intracranial volume, age, gender, and race. These findings remained unchanged after removal of individuals with clinically significant symptoms of depression. DISCUSSION Our findings provide evidence of a relationship between a direct indicator of psychological stress and specific hippocampal subfield volumes in elderly individuals. These results highlight the importance of clinical screening for chronic stress in otherwise healthy older adults.
Collapse
Affiliation(s)
- Molly E. Zimmerman
- Department of Psychology, Fordham University, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Ali Ezzati
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mindy J. Katz
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael L. Lipton
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Martin J. Sliwinski
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Richard B. Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
17
|
Kim H, Kim C, Seo SW, Na DL, Kim HJ, Kang M, Shin HY, Cho SK, Park SE, Lee J, Hwang JW, Jeon S, Lee JM, Kim GH, Cho H, Ye BS, Noh Y, Yoon CW, Guallar E. Association between body mass index and cortical thickness: among elderly cognitively normal men and women. Int Psychogeriatr 2015; 27:121-30. [PMID: 25263181 DOI: 10.1017/s1041610214001744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND There is increasing evidence of a relationship between underweight or obesity and dementia risk. Several studies have investigated the relationship between body weight and brain atrophy, a pathological change preceding dementia, but their results are inconsistent. Therefore, we aimed to evaluate the relationship between body mass index (BMI) and cortical atrophy among cognitively normal participants. METHODS We recruited cognitively normal participants (n = 1,111) who underwent medical checkups and detailed neurologic screening, including magnetic resonance imaging (MRI) in the health screening visits between September 2008 and December 2011. The main outcome was cortical thickness measured using MRI. The number of subjects with five BMI groups in men/women was 9/9, 148/258, 185/128, 149/111, and 64/50 in underweight, normal, overweight, mild obesity, and moderate to severe obesity, respectively. Linear and non-linear relationships between BMI and cortical thickness were examined using multiple linear regression analysis and generalized additive models after adjustment for potential confounders. RESULTS Among men, underweight participants showed significant cortical thinning in the frontal and temporal regions compared to normal weight participants, while overweight and mildly obese participants had greater cortical thicknesses in the frontal region and the frontal, temporal, and occipital regions, respectively. However, cortical thickness in each brain region was not significantly different in normal weight and moderate to severe obesity groups. Among women, the association between BMI and cortical thickness was not statistically significant. CONCLUSIONS Our findings suggested that underweight might be an important risk factor for pathological changes in the brain, while overweight or mild obesity may be inversely associated with cortical atrophy in cognitively normal elderly males.
Collapse
Affiliation(s)
- Hojeong Kim
- Samsung Advanced Institute for Health Sciences and Technology,Sungkyunkwan University,Seoul,South Korea
| | - Changsoo Kim
- Department of Preventive Medicine,Yonsei University College of Medicine,Seoul,South Korea
| | - Sang Won Seo
- Department of Neurology,Samsung Medical Center,School of Medicine,Sungkyunkwan University,Seoul,South Korea
| | - Duk L Na
- Department of Neurology,Samsung Medical Center,School of Medicine,Sungkyunkwan University,Seoul,South Korea
| | - Hee Jin Kim
- Department of Neurology,Samsung Medical Center,School of Medicine,Sungkyunkwan University,Seoul,South Korea
| | - Mira Kang
- Center for Health Promotion,Samsung Medical Center,Seoul,South Korea
| | - Hee-Young Shin
- Center for Health Promotion,Samsung Medical Center,Seoul,South Korea
| | - Seong Kyung Cho
- Center for Health Promotion,Samsung Medical Center,Seoul,South Korea
| | - Sang Eon Park
- Samsung Advanced Institute for Health Sciences and Technology,Sungkyunkwan University,Seoul,South Korea
| | - Jeongmin Lee
- Samsung Advanced Institute for Health Sciences and Technology,Sungkyunkwan University,Seoul,South Korea
| | - Jung Won Hwang
- Samsung Advanced Institute for Health Sciences and Technology,Sungkyunkwan University,Seoul,South Korea
| | - Seun Jeon
- Department of Biomedical Engineering,Hanyang University,Seoul,South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering,Hanyang University,Seoul,South Korea
| | - Geon Ha Kim
- Department of Neurology,Samsung Medical Center,School of Medicine,Sungkyunkwan University,Seoul,South Korea
| | - Hanna Cho
- Department of Neurology,Samsung Medical Center,School of Medicine,Sungkyunkwan University,Seoul,South Korea
| | - Byoung Seok Ye
- Department of Neurology,Samsung Medical Center,School of Medicine,Sungkyunkwan University,Seoul,South Korea
| | - Young Noh
- Department of Neurology,Gachon University Gil Medical Center,Incheon,South Korea
| | - Cindy W Yoon
- Department of Neurology,College of Medicine,Inha University,Incheon,South Korea
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine and Welch Center for Prevention,Epidemiology,and Clinical Research,Johns Hopkins University Bloomberg School of Public Health,Baltimore,Maryland,USA
| |
Collapse
|
18
|
Khalili-Mahani N, Niesters M, van Osch MJ, Oitzl M, Veer I, de Rooij M, van Gerven J, van Buchem MA, Beckmann CF, Rombouts SARB, Dahan A. Ketamine interactions with biomarkers of stress: a randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage 2014; 108:396-409. [PMID: 25554429 DOI: 10.1016/j.neuroimage.2014.12.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022] Open
Abstract
Ketamine, an NMDA receptor antagonist, is increasingly used to study the link between glutamatergic signaling dysregulation and mood and chronic pain disorders. Glutamatergic neurotransmission and stress corticosteroids (cortisol in human) are critical for Ca(2+) mediated neuroplasticity and behavioral adaptation. The mechanisms of action of glutamatergic neurotransmission and stress corticosteroids on the NMDA-receptors of the hippocampus have been long investigated in animals, but given little attention in human studies. In this randomized single-blinded placebo-controlled crossover study (12 healthy young men), five sets of resting-state fMRI (RSFMRI), pseudocontinuous arterial spin labeling (PCASL), and corresponding salivary cortisol samples were acquired over 4h, at given intervals under pharmacokinetically-controlled infusion of subanesthetic ketamine (20 & 40mg/70kg/h). An identical procedure was repeated under a sham placebo condition. Differences in the profile of ketamine versus placebo effect over time were examined. Compared to placebo, ketamine mimicked a stress-like response (increased cortisol, reduced calmness and alertness, and impaired working memory). Ketamine effects on the brain included a transient prefrontal hyperperfusion and a dose-related reduction of relative hippocampal perfusion, plus emerging hyperconnectivity between the hippocampus and the occipital, cingulate, precuneal, cerebellar and basal ganglia regions. The spatiotemporal profiles of ketamine effects on different hippocampal subnetworks suggest a topographically dissociable change in corticohippocampal functional connectivity. We discuss our findings in the context of the negative feedback inhibition theory of the hippocampal stress-control. This pilot study provides a methodological framework for multimodal functional neuroimaging under resting-state conditions, which may be generalized for translational studies of glutamatergic- or stress-related etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J van Osch
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Melly Oitzl
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilya Veer
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Charité Universitätsmedizin Berlin, Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Mark de Rooij
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Joop van Gerven
- Department of Neurology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour; Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Serge A R B Rombouts
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Beber BC, Kochhann R, da Silva BM, Chaves MLF. Logopenic aphasia or Alzheimer's disease: Different phases of the same disease? Dement Neuropsychol 2014; 8:302-307. [PMID: 29213918 PMCID: PMC5619409 DOI: 10.1590/s1980-57642014dn83000016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The logopenic variant of Primary Progressive Aphasia, or logopenic aphasia, is a
the most recently described variant of Primary Progressive Aphasia and also the
least well defined. This variant can present clinical findings that are also
common to Alzheimer's disease, given they both share the same cytopathologic
findings. This article reports the clinical case of a patient for whom it proved
difficult to define a clinical diagnosis, being split between the logopenic
variant and Alzheimer's disease at different phases of the disease. Using this
case as an example and drawing on the latest evidence from the literature on the
logopenic variant, we postulate the hypothesis that this variant may present as
an initial symptom of Alzheimer's disease in some atypical cases.
Collapse
Affiliation(s)
- Bárbara Costa Beber
- MSc, Dementia Clinic, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), RS, Brazil.,PhD, Post-graduate Program in Medicine: Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre (UFRGS), RS, Brazil.,CAPES Doctoral scholarship
| | - Renata Kochhann
- MSc, Dementia Clinic, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), RS, Brazil.,Post-graduate Program in Psychology of the School of Psychology of the Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), RS, Brazil.,CAPES Post-doctoral scholarship
| | - Bruna Matias da Silva
- MSc, Dementia Clinic, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), RS, Brazil
| | - Marcia L F Chaves
- MSc, Dementia Clinic, Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), RS, Brazil.,PhD, Post-graduate Program in Medicine: Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre (UFRGS), RS, Brazil.,Department of Internal Medicine, School of Medicine, UFRGS, RS, Brazil
| |
Collapse
|
20
|
Wu Y, Ly PTT, Song W. Aberrant expression of RCAN1 in Alzheimer's pathogenesis: a new molecular mechanism and a novel drug target. Mol Neurobiol 2014; 50:1085-97. [PMID: 24752590 DOI: 10.1007/s12035-014-8704-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/31/2014] [Indexed: 01/08/2023]
Abstract
AD, a devastating neurodegenerative disorder, is the most common cause of dementia in the elderly. Patients with AD are characterized by three hallmarks of neuropathology including neuritic plaque deposition, neurofibrillary tangle formation, and neuronal loss. Growing evidences indicate that dysregulation of regulator of calcineurin 1 (RCAN1) plays an important role in the pathogenesis of AD. Aberrant RCAN1 expression facilitates neuronal apoptosis and Tau hyperphosphorylation, leading to neuronal loss and neurofibrillary tangle formation. This review aims to describe the recent advances of the regulation of RCAN1 expression and its physiological functions. Moreover, the AD risk factors-induced RCAN1 dysregulation and its role in promoting neuronal loss, synaptic impairments and neurofibrillary tangle formation are summarized. Furthermore, we provide an outlook into the effects of RCAN1 dysregulation on APP processing, Aβ generation and neuritic plaque formation, and the possible underlying mechanisms, as well as the potential of targeting RCAN1 as a new therapeutic approach.
Collapse
Affiliation(s)
- Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
21
|
Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol 2014; 127:109-35. [PMID: 24318124 PMCID: PMC3889685 DOI: 10.1007/s00401-013-1223-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerful corticosteroid hormones that target the nervous system, relatively little is known about when, and how, the effects of stress shift from being beneficial and protective to becoming deleterious. Decades of stress research have provided valuable insights into whether stress can directly induce dysfunction and/or pathological alterations, which elements of stress exposure are responsible, and which structural substrates are involved. Using a broad definition of pathology, we here review the "neuropathology of stress" and focus on structural consequences of stress exposure for different regions of the rodent, primate and human brain. We discuss cytoarchitectural, neuropathological and structural plasticity measures as well as more recent neuroimaging techniques that allow direct monitoring of the spatiotemporal effects of stress and the role of different CNS structures in the regulation of the hypothalamic-pituitary-adrenal axis in human brain. We focus on the hypothalamus, hippocampus, amygdala, nucleus accumbens, prefrontal and orbitofrontal cortex, key brain regions that not only modulate emotions and cognition but also the response to stress itself, and discuss disorders like depression, post-traumatic stress disorder, Cushing syndrome and dementia.
Collapse
Affiliation(s)
- Paul J. Lucassen
- SILS-Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jens Pruessner
- Department of Psychiatry, Douglas Institute, McGill University, Montreal, QC Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Anne Marie Van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, Neuroendocrinology Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
22
|
Randall C, Mosconi L, de Leon M, Glodzik L. Cerebrospinal fluid biomarkers of Alzheimer's disease in healthy elderly. FRONT BIOSCI-LANDMRK 2013; 18:1150-73. [PMID: 23747874 PMCID: PMC3904672 DOI: 10.2741/4170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numerous studies have shown that Alzheimer's Disease (AD) pathology begins before the onset of clinical symptoms. Because therapies are likely to be more effective if they are implemented early in the disease progression, it is necessary to identify reliable biomarkers to detect AD pathology in the early stages of the disease, ideally in presymptomatic individuals. Recent research has identified three candidate cerebrospinal fluid (CSF) biomarkers that reflect AD pathology: amyloid beta, total tau protein (t-tau), and tau protein phosphorylated at AD-specific epitopes (p-tau). They are useful in supporting the AD diagnosis and have predictive value for AD when patients are in the stage of mild cognitive impairment (MCI). However, their predictive utility in cognitively healthy subjects is still being evaluated. We conducted a review of studies published between 1993 and 2011 and summarized their findings on the role of CSF biomarkers for AD in healthy elderly.
Collapse
Affiliation(s)
- Catherine Randall
- Center for Brain Health, 145 East 32nd Street, 5th floor. New York, NY 10016
| | - Lisa Mosconi
- Center for Brain Health, 145 East 32nd Street, 5th floor. New York, NY 10016
| | - Mony de Leon
- Center for Brain Health, 145 East 32nd Street, 5th floor. New York, NY 10016
| | - Lidia Glodzik
- Center for Brain Health, 145 East 32nd Street, 5th floor. New York, NY 10016
| |
Collapse
|
23
|
Cunningham C, Maclullich AMJ. At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behaviour response. Brain Behav Immun 2013; 28:1-13. [PMID: 22884900 PMCID: PMC4157329 DOI: 10.1016/j.bbi.2012.07.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 01/11/2023] Open
Abstract
Delirium is a common and severe neuropsychiatric syndrome characterised by acute deterioration and fluctuations in mental status. It is precipitated mainly by acute illness, trauma, surgery, or drugs. Delirium affects around one in eight hospital inpatients and is associated with multiple adverse consequences, including new institutionalisation, worsening of existing dementia, and death. Patients with delirium show attentional and other cognitive deficits, altered alertness (mostly reduced, but some patients develop agitation and hyperactivity), altered sleep-wake cycle and psychoses. The pathways from the various aetiologies to the heterogeneous clinical presentations are hardly studied and are poorly understood. One of the key questions, which research is only now beginning to address, is how the factors determining susceptibility interact with the stimuli that trigger delirium. Inflammatory signals arising during systemic infection evoke sickness behaviour, a coordinated set of adaptive changes initiated by the host to respond to, and to counteract, infection. It is now clear that the same systemic inflammatory signals can have severe deleterious effects on brain function when occuring in old age or in the presence of neurodegenerative disease. Multiple animal studies now show that even mild acute systemic inflammation can induce exaggerated sickness behaviour responses and cognitive dysfunction in aged animals or those with prior degenerative pathology when compared to young and/or healthy controls. These findings appear highly promising in understanding aspects of delirium. In this review our aim is to describe and assess the parallels between exaggerated sickness behaviour in vulnerable animals and delirium in older humans. We discuss inflammatory and stress-related triggers of delirium in the context of new animal models that allow us to dissect some aspects of the mechanisms underpinning these episodes. We discuss some differences between the sickness behaviour syndrome model and delirium in the context of the complexity in the latter due to other factors such as prior pathology, psychological stress and drug effects. We conclude that, with appropriate caveats, the study of sickness behaviour in the vulnerable brain offers a promising route to uncover the mechanisms of this common and serious unmet medical need.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | | |
Collapse
|
24
|
Sugama S, Takenouchi T, Fujita M, Kitani H, Conti B, Hashimoto M. Corticosteroids limit microglial activation occurring during acute stress. Neuroscience 2012; 232:13-20. [PMID: 23262242 DOI: 10.1016/j.neuroscience.2012.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/08/2012] [Accepted: 12/07/2012] [Indexed: 01/07/2023]
Abstract
Our previous studies demonstrated that exposure of animals to acute stress immediately induced morphological microglial activation in the brain. Here we investigated the effects of adrenal corticoids on microglial activation following acute stress. We compared microglial activation in vivo in adrenalectomized (ADX), Sham-operated (SHM), and adrenalectomy plus corticosterone (CORT) administered rats exposed to a 2-h period of acute water restraint stress. We found that: (1) acute stress induced microglial activation in SHM rats; (2) acute stress robustly enhanced microglial activation in ADX rats; (3) CORT treatment significantly reduced the effects of adrenalectomy. Thus, while acute stress has the ability to activate microglia, the magnitude of activation is negatively regulated by CORT. Glucocorticoids may serve as an important endogenous suppressive signal limiting neuroinflammation that might otherwise occur during stress.
Collapse
Affiliation(s)
- S Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - T Takenouchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - M Fujita
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| | - H Kitani
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - B Conti
- Department of Chemical Physiology, The Scripps Research Institute, 1055 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - M Hashimoto
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-0057, Japan
| |
Collapse
|
25
|
Yau JLW, Seckl JR. Local amplification of glucocorticoids in the aging brain and impaired spatial memory. Front Aging Neurosci 2012; 4:24. [PMID: 22952463 PMCID: PMC3430012 DOI: 10.3389/fnagi.2012.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022] Open
Abstract
The hippocampus is a prime target for glucocorticoids (GCs) and a brain structure particularly vulnerable to aging. Prolonged exposure to excess GCs compromises hippocampal electrophysiology, structure, and function. Blood GC levels tend to increase with aging and correlate with impaired spatial memory in aging rodents and humans. The magnitude of GC action within tissues depends not only on levels of steroid hormone that enter the cells from the periphery and the density of intracellular receptors but also on the local metabolism of GCs by 11β-hydroxysteroid dehydrogenases (11β-HSD). The predominant isozyme in the adult brain, 11β-HSD1, locally regenerates active GCs from inert 11-keto forms thus amplifying GC levels within specific target cells including in the hippocampus and cortex. Aging associates with elevated hippocampal and neocortical 11β-HSD1 and impaired spatial learning while deficiency of 11β-HSD1 in knockout (KO) mice prevents the emergence of cognitive decline with age. Furthermore, short-term pharmacological inhibition of 11β-HSD1 in already aged mice reverses spatial memory impairments. Here, we review research findings that support a key role for GCs with special emphasis on their intracellular regulation by 11β-HSD1 in the emergence of spatial memory deficits with aging, and discuss the use of 11β-HSD1 inhibitors as a promising novel treatment in ameliorating/improving age-related memory impairments.
Collapse
Affiliation(s)
- Joyce L W Yau
- Centre for Cognitive Ageing and Cognitive Epidemiology and Endocrinology Unit, Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh Edinburgh, UK
| | | |
Collapse
|
26
|
Strachan MWJ, Reynolds RM, Marioni RE, Price JF. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 2011; 7:108-14. [PMID: 21263438 DOI: 10.1038/nrendo.2010.228] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing numbers of people are developing type 2 diabetes mellitus, but interventions to prevent and treat the classic microvascular and macrovascular complications have improved, so that people are living longer with the condition. This trend means that novel complications of type 2 diabetes mellitus, which are not targeted by current management strategies, could start to emerge. Cognitive impairment and dementia could come into this category. Type 2 diabetes mellitus is associated with a 1.5-2.5-fold increased risk of dementia. The etiology of dementia and cognitive impairment in people with type 2 diabetes mellitus is probably multifactorial. Chronic hyperglycemia is implicated, perhaps by promoting the development of cerebral microvascular disease. Data suggest that the brains of older people with type 2 diabetes mellitus might be vulnerable to the effects of recurrent, severe hypoglycemia. Other possible moderators of cognitive function include inflammatory mediators, rheological factors and dysregulation of the hypothalamic-pituitary-adrenal axis. Cognitive function should now be included as a standard end point in randomized trials of therapeutic interventions in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mark W J Strachan
- Metabolic Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | |
Collapse
|
27
|
Decreased interactions in protein kinase A-Glucocorticoid receptor signaling in the hippocampus after selective removal of the basal forebrain cholinergic input. Hippocampus 2011; 22:455-65. [DOI: 10.1002/hipo.20912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2010] [Indexed: 01/05/2023]
|
28
|
Wang D, Xiang YK. β-adrenergic receptor, amyloid β-peptide, and Alzheimer's disease. CURRENT TOPICS IN MEMBRANES 2011; 67:205-28. [PMID: 21771492 DOI: 10.1016/b978-0-12-384921-2.00010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dayong Wang
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
29
|
Osmanovic J, Plaschke K, Salkovic-Petrisic M, Grünblatt E, Riederer P, Hoyer S. Chronic exogenous corticosterone administration generates an insulin-resistant brain state in rats. Stress 2010; 13:123-31. [PMID: 19929311 DOI: 10.3109/10253890903080379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether long-term administration of exogenous corticosterone (CST) or vehicle as daily treatment induces changes in rat behavior and in gene expression of the rat brain insulin signaling pathway and the formation of tau protein. Two groups of male adult rats received daily subcutaneous injections of 26.8 mg/kg CST (CST stress group) or vehicle-sesame oil (injection stress group) for 60 days while the third group was taken as untreated controls (n = 8 each). Body weight and plasma CST were measured and psychometric investigations were conducted using a rat holeboard test system before and after the treatment. Gene expression analyzes were performed by RT-PCR in cerebral cortical tissue for insulin genes 1 and 2, insulin receptor (IR), insulin degrading enzyme (IDE), and tau protein. Daily injections of CST for 60 days induced a significant, 2-fold increase in rat plasma CST concentrations in comparison to untreated controls. Significantly reduced behavioral abilities in CST-treated rats were associated with reduced gene expression of insulin 1 ( - 20%), IDE ( - 23%), and IR ( - 26%), indicating an insulin-resistant brain state, followed by increased tau protein (+28%) gene expression. In summary, chronic CST administration affects gene expression in the brain IR signaling cascade and increases tau gene expression, which is associated with reductions in cognition capacity in rats.
Collapse
Affiliation(s)
- Jelena Osmanovic
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
30
|
Pearson A, de Vries A, Middleton SD, Gillies F, White TO, Armstrong IR, Andrew R, Seckl JR, MacLullich AM. Cerebrospinal fluid cortisol levels are higher in patients with delirium versus controls. BMC Res Notes 2010; 3:33. [PMID: 20181121 PMCID: PMC2829583 DOI: 10.1186/1756-0500-3-33] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 02/08/2010] [Indexed: 08/18/2023] Open
Abstract
Background High plasma cortisol levels can cause acute cognitive and neuropsychiatric dysfunction, and have been linked with delirium. CSF cortisol levels more closely reflect brain exposure to cortisol, but there are no studies of CSF cortisol levels in delirium. In this pilot study we acquired CSF specimens at the onset of spinal anaesthesia in patients undergoing hip fracture surgery, and compared CSF and plasma cortisol levels in delirium cases versus controls. Findings Delirium assessments were performed the evening before or on the morning of operation with a standard battery comprising cognitive tests, mental status assessments and the Confusion Assessment Method. CSF and plasma samples were obtained at the onset of the operation and cortisol levels measured. Twenty patients (15 female, 5 male) aged 62 - 93 years were studied. Seven patients were diagnosed with delirium. The mean ages of cases (81.4 (SD 7.2)) and controls (80.5 (SD 8.7)) were not significantly different (p = 0.88). The median (interquartile range) CSF cortisol levels were significantly higher in cases (63.9 (40.4-102.1) nmol/L) than controls (31.4 (21.7-43.3) nmol/L; Mann-Whitney U, p = 0.029). The median (interquartile range) of plasma cortisol was also significantly higher in cases (968.8 (886.2-1394.4) nmol/L, than controls (809.4 (544.0-986.4) nmol/L; Mann Whitney U, p = 0.036). Conclusions These findings support an association between higher CSF cortisol levels and delirium. This extends previous findings linking higher plasma cortisol and delirium, and suggests that more definitive studies of the relationship between cortisol levels and delirium are now required.
Collapse
Affiliation(s)
- Andrew Pearson
- Geriatric Medicine, University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Impact of the Hypothalamic–pituitary–adrenal/gonadal Axes on Trajectory of Age-Related Cognitive Decline. PROGRESS IN BRAIN RESEARCH 2010; 182:31-76. [DOI: 10.1016/s0079-6123(10)82002-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Mistur R, Mosconi L, Santi SD, Guzman M, Li Y, Tsui W, de Leon MJ. Current Challenges for the Early Detection of Alzheimer's Disease: Brain Imaging and CSF Studies. J Clin Neurol 2009; 5:153-66. [PMID: 20076796 PMCID: PMC2806537 DOI: 10.3988/jcn.2009.5.4.153] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 12/24/2022] Open
Abstract
The development of prevention therapies for Alzheimer's disease (AD) would greatly benefit from biomarkers that are sensitive to the subtle brain changes that occur in the preclinical stage of the disease. Reductions in the cerebral metabolic rate of glucose (CMRglc), a measure of neuronal function, have proven to be a promising tool in the early diagnosis of AD. In vivo brain 2-[18F]fluoro-2-Deoxy-D-glucose-positron emission tomography (FDG-PET) imaging demonstrates consistent and progressive CMRglc reductions in AD patients, the extent and topography of which correlate with symptom severity. There is increasing evidence that hypometabolism appears during the preclinical stages of AD and can predict decline years before the onset of symptoms. This review will give an overview of FDG-PET results in individuals at risk for developing dementia, including: presymptomatic individuals carrying mutations responsible for early-onset familial AD; patients with Mild Cognitive Impairment (MCI), often a prodrome to late-onset sporadic AD; non-demented carriers of the Apolipoprotein E (ApoE) ε4 allele, a strong genetic risk factor for late-onset AD; cognitively normal subjects with a family history of AD; subjects with subjective memory complaints; and normal elderly followed longitudinally until they expressed the clinical symptoms and received post-mortem confirmation of AD. Finally, we will discuss the potential to combine different PET tracers and CSF markers of pathology to improve the early detection of AD.
Collapse
Affiliation(s)
- Rachel Mistur
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Strachan MWJ, Reynolds RM, Frier BM, Mitchell RJ, Price JF. The role of metabolic derangements and glucocorticoid excess in the aetiology of cognitive impairment in type 2 diabetes. Implications for future therapeutic strategies. Diabetes Obes Metab 2009; 11:407-14. [PMID: 19422401 DOI: 10.1111/j.1463-1326.2008.00963.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dementia is becoming increasingly common in western societies and carries with it a substantial clinical, social and economic burden. It is now well established that type 2 diabetes is a risk factor for dementia and it is likely that this association has a multifactorial aetiology. There is a relative paucity of data on interventions to improve cognitive function in people with type 2 diabetes. Two small randomized controlled trials have suggested that better glycaemic control, over a relatively short time period, can improve or prevent decline in cognitive function. There is also increasing interest in the link between intracerebral insulin and cognitive impairment. Several studies have suggested that relative and/or absolute deficiency of insulin may occur in Alzheimer's dementia and, although one small randomized trial was essentially negative, randomized trials are currently underway to investigate the impact of thiazolidinediones on cognitive function in dementia. The hypothalamic-pituitary-adrenal axis is also activated in people with type 2 diabetes and there are data linking increased cortisol concentrations with cognitive impairment. Inhibition of the 11 beta-hydroxysteroid dehydrogenase type 1 enzyme, which generates cortisol from inactive cortisone in many tissues including the brain, is an attractive therapeutic target to enhance cognition. Large-scale epidemiological and intervention studies are now underway, which should enhance our understanding and management of cognitive impairment in type 2 diabetes.
Collapse
|
34
|
Abstract
Delirium is a severe, acute neuropsychiatric syndrome that is highly prevalent in acute hospital populations. Delirium has noticeable effects on length of hospitalization, cost of care, mortality and morbidity. In addition to these well-established adverse consequences, there is increasing evidence linking delirium and a higher risk of long-term cognitive impairment (LTCI), including dementia. A prior review (Jackson, Gordon, Hart, Hopkins, & Ely, 2004), in which nine studies (total N = 1,885, years 1989-2003) were considered, concluded that there was evidence for an association between delirium and LTCI. Here we provide a review of studies published since Jackson's review. We included nine reports, with a total of 2,025 patients. The studies show diverse sample sizes, methodologies, designs and patient populations. However, taken together, the results of these new studies broadly confirm that there is a link between delirium and LTCI. We go on to discuss putative mechanisms and explanations. These include (1) delirium as a marker of chronic progressive pathology, but unrelated to any progression, (2) delirium as a consequence of acute brain damage which is also responsible for a 'single hit' or triggering of active processes causing LTCI, (3) delirium itself as a cause of LTCI, and (4) drug treatment of delirium or other conditions as a cause of LTCI. We conclude with suggestions for future research.
Collapse
Affiliation(s)
- Alasdair M J MacLullich
- Department of Geriatric Medicine, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
35
|
Mistur R, Mosconi L, De Santi S, Li Y, Tsui W, de Leon M. Positron emission tomography in Alzheimer’s disease: early prediction and differentiation. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of biomarkers for the preclinical detection of neurodegenerative diseases such as Alzheimer’s disease (AD) is a vital step in developing prevention therapies. One consistent feature of AD is a reduction in the cerebral metabolic rate of glucose (CMRglc), a measure of neuronal function. In vivo brain 2-[18F]fluoro-2-deoxy-D-glucose-PET imaging demonstrates consistent and progressive CMRglc reductions in AD patients, the extent and topography of which correlate with symptom severity. There is increasing evidence that CMRglc reductions occur at the preclinical stages of AD and predict decline years in advance of clinical symptoms. This review will give an overview of FDG-PET results in individuals at risk for developing dementia, including: presymptomatic individuals carrying mutations responsible for early-onset familial AD; patients with mild cognitive impairment, often a prodrome to late-onset sporadic AD; nondemented carriers of the ApoE ε4 allele, a strong genetic risk factor for late-onset AD; cognitively normal subjects with a family history of AD; subjects with subjective memory complaints; and normal elderly who were followed longitudinally until they expressed the clinical symptoms and later received postmortem confirmation of AD. We will then review the most recent studies using FDG-PET as an early differential diagnostic tool in AD.
Collapse
Affiliation(s)
- Rachel Mistur
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Lisa Mosconi
- Department of Psychiatry, NYU School of Medicine, 560 First Avenue, New York, NY 10016, USA
| | - Susan De Santi
- Department of Psychiatry, New York University School of Medicine, NY 10016, USA
| | - Yi Li
- Department of Psychiatry, New York University School of Medicine, NY 10016, USA
| | - Wai Tsui
- Department of Psychiatry, New York University School of Medicine, NY 10016, USA and, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Mony de Leon
- Department of Psychiatry, New York University School of Medicine, NY 10016, USA and, Nathan Kline Institute, Orangeburg, NY 10962, USA
| |
Collapse
|
36
|
Jokinen J, Nordström P. HPA axis hyperactivity as suicide predictor in elderly mood disorder inpatients. Psychoneuroendocrinology 2008; 33:1387-93. [PMID: 18805641 DOI: 10.1016/j.psyneuen.2008.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 12/12/2022]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis function is associated with suicidal behaviour and age-associated alterations in HPA axis functioning may render elderly individuals more susceptible to HPA dysregulation related to mood disorders. Research on HPA axis function in suicide prediction in elderly mood disorder patients is sparse. The study sample consisted of 99 depressed elderly inpatients 65 years of age or older admitted to the department of Psychiatry at the Karolinska University Hospital between 1980 and 2000. The hypothesis was that elderly mood disorder inpatients who fail to suppress cortisol in the dexamethasone suppression test (DST) are at higher risk of suicide. The DST non-suppression distinguished between suicides and survivors in elderly depressed inpatients and the suicide attempt at the index episode was a strong predictor for suicide. Additionally, the DST non-suppression showed higher specificity and predictive value in the suicide attempter group. Due to age-associated alterations in HPA axis functioning, the optimal cut-off for DST non-suppression in suicide prediction may be higher in elderly mood disorder inpatients. These data demonstrate the importance of attempted suicide and DST non-suppression as predictors of suicide risk in late-life depression and suggest the use for neuroendocrine testing of HPA axis functioning as a complementary tool in suicide prevention.
Collapse
Affiliation(s)
- Jussi Jokinen
- Department of Clinical Neuroscience/Psychiatry, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
37
|
Maclullich AMJ, Ferguson KJ, Miller T, de Rooij SEJA, Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res 2008; 65:229-38. [PMID: 18707945 PMCID: PMC4311661 DOI: 10.1016/j.jpsychores.2008.05.019] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 01/01/2023]
Abstract
Delirium is a common and serious acute neuropsychiatric syndrome with core features of inattention and cognitive impairment, and associated features including changes in arousal, altered sleep-wake cycle, and other changes in mental status. The main risk factors are old age, cognitive impairment, and other comorbidities. Though delirium has consistent core clinical features, it has a very wide range of precipitating factors, including acute illness, surgery, trauma, and drugs. The molecular mechanisms by which these precipitating factors lead to delirium are largely obscure. In this article, we attempt to narrow down some specific causal pathways. We propose a basic classification for the etiological factors: (a) direct brain insults and (b) aberrant stress responses. Direct brain insults are largely indiscriminate and include general and regional energy deprivation (e.g., hypoxia, hypoglycaemia, stroke), metabolic abnormalities (e.g., hyponatraemia, hypercalcaemia), and the effects of drugs. Aberrant stress responses are conceptually and mechanistically distinct in that they constitute adverse effects of stress-response pathways, which, in health, are adaptive. Ageing and central nervous system disease, two major predisposing factors for delirium, are associated with alterations in the magnitude or duration of stress and sickness behavior responses and increased vulnerability to the effects of these responses. We discuss in detail two stress response systems that are likely to be involved in the pathophysiology of delirium: inflammation and the sickness behavior response, and activity of the limbic-hypothalamic-pituitary-adrenal axis. We conclude by discussing the implications for future research and the development of new therapies for delirium.
Collapse
Affiliation(s)
- Alasdair M J Maclullich
- Geriatric Medicine/MRC Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | |
Collapse
|
38
|
Wolf OT, Kudielka BM. Stress, health and ageing: a focus on postmenopausal women. ACTA ACUST UNITED AC 2008; 14:129-33. [DOI: 10.1258/mi.2008.008021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stress influences health and disease and this might be of special relevance for ageing. The present review starts with the description of age-associated changes of the hypothalamic-pituitary-adrenal axis. In this context, the possible modulatory role of estradiol is discussed. Later, the influence of rising stress hormone levels for the ageing brain is illustrated and a few intervention strategies are outlined. At the end, the concept of allostatic load (AL) is described, which aims at a broader assessment of the impact of stress on the individual. The strengths and also the current limitations of the AL concept are highlighted.
Collapse
Affiliation(s)
- Oliver T Wolf
- Cognitive Psychology, Ruhr University, Bochum, Germany
| | - Brigitte M Kudielka
- Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University, Bremen, Germany
| |
Collapse
|
39
|
Sabayan B, Foroughinia F, Mowla A, Borhanihaghighi A. Role of insulin metabolism disturbances in the development of Alzheimer disease: mini review. Am J Alzheimers Dis Other Demen 2008; 23:192-9. [PMID: 18198237 PMCID: PMC10846104 DOI: 10.1177/1533317507312623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer disease (AD) is the most common form of dementia. Different pathogenic processes have been studied that underlie characteristic changes of AD, including A beta protein aggregation, tau phosphorylation, neurovascular dysfunction, and inflammatory processes. Insulin exerts pleiotropic effects in neurons, such as the regulation of neural proliferation, apoptosis, and synaptic transmission. In this setting, any disturbance in the metabolism of insulin in the central nervous system (CNS) may put unfavorable effects on CNS function. It seems that disturbances in insulin metabolism, especially insulin resistance, play a role in most pathogenic processes that promote the development of AD. In this article, the relationships of disturbances in the metabolism of insulin in CNS with A beta peptides aggregation, tau protein phosphorylation, inflammatory markers, neuron apoptosis, neurovascular dysfunction, and neurotransmitter modulation are discussed, and future research directions are provided.
Collapse
Affiliation(s)
- Behnam Sabayan
- Student Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | | | | | | |
Collapse
|
40
|
Lind K, Edman A, Nordlund A, Olsson T, Wallin A. Increased saliva cortisol awakening response in patients with mild cognitive impairment. Dement Geriatr Cogn Disord 2008; 24:389-95. [PMID: 17943022 DOI: 10.1159/000109938] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is unknown whether HPA-axis dysfunction is present in patients with mild cognitive impairment (MCI). The aim of the present study was to investigate whether cortisol levels are elevated among patients with MCI and/or whether the individuals have adequate feedback control of their HPA axis. MATERIAL AND METHODS 27 patients with MCI and 15 healthy controls were included in the study. Saliva samplings were performed 5 times a day before intake of 0.5 mg dexamethasone, and 5 times a day after intake of dexamethasone, respectively. RESULTS Significantly higher cortisol levels were found 15 min after awakening among patients with MCI in comparison with the controls, both before and after dexamethasone administration (p<0.05). Also, the ratio between cortisol at awakening time and 15 min after awakening was lower in the patient group after dexamethasone administration (p<0.05). There were no significant differences in basal cortisol levels before or after dexamethasone between groups. CONCLUSION The results indicate that there is an HPA-axis disturbance, with normal basal cortisol levels and increased awakening response among patients with MCI. The dissociation between basal values and the awakening response may be of pathophysiological importance for the cognitive impairment.
Collapse
Affiliation(s)
- Karin Lind
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Wright SL, Persad C. Distinguishing between depression and dementia in older persons: neuropsychological and neuropathological correlates. J Geriatr Psychiatry Neurol 2007; 20:189-98. [PMID: 18004006 DOI: 10.1177/0891988707308801] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dementia and depression are frequently comorbid among older adult patients. Depression is related to cognitive decrement and can even represent the first signs of a neurodegenerative process. It can be difficult to distinguish depressed patients exhibiting the first signs of dementia from those whose cognition will improve with treatment. In this article, studies from the neuropsychological literature are reviewed that aid in accurate diagnosis and prognosis. Furthermore, the relationship between depression and dementia is explored by examining potential neurobiological mechanisms that may potentiate both syndromes in the context of the ongoing debate on depression as a prodrome and/or a risk factor for dementia. This article is concluded with suggestions for clinicians when deciding who to refer for neuropsychological assessment and with ideas for further research that might promote a better understanding of the complex association between depression and dementia during old age.
Collapse
Affiliation(s)
- Sara L Wright
- Department of Psychiatry, University of Michigan Medical Center, Veterans Affairs Medical Center, GRECC, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
42
|
Abstract
Metabolic syndrome which includes visceral obesity, elevated triglycerides, elevated fasting blood sugar, high blood pressure and a decrease in high-density lipoprotein cholesterol levels comprises the most common chronic physical illnesses in modern society. Components of the metabolic syndrome play a role in the pathogenesis of a plethora of medical illnesses. Evidence has emerged highlighting the detrimental effects of metabolic syndrome and its constituent features on the cognitive aspects of neurological function. The precise mechanisms underlying this association are not known but a combination of neuroanatomical changes and neuroendocrine consequences of somatic dysregulation may be relevant. As the population ages and the prevalence of metabolic syndrome increases, it is important that this clinically relevant association be recognized.
Collapse
Affiliation(s)
- V H Taylor
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
43
|
Bao AM, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. ACTA ACUST UNITED AC 2007; 57:531-53. [PMID: 17524488 DOI: 10.1016/j.brainresrev.2007.04.005] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/19/2007] [Accepted: 04/21/2007] [Indexed: 11/28/2022]
Abstract
The stress response is mediated by the hypothalamo-pituitary-adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH) release from the pituitary, which subsequently causes cortisol release from the adrenal cortex. The CRH neurons co-express vasopressin (AVP) which potentiates the CRH effects. CRH neurons project not only to the median eminence but also into brain areas where they, e.g., regulate the adrenal innervation of the autonomic system and affect mood. The hypothalamo-neurohypophysial system is also involved in stress response. It releases AVP from the PVN and the supraoptic nucleus (SON) and oxytocin (OXT) from the PVN via the neurohypophysis into the bloodstream. The suprachiasmatic nucleus (SCN), the hypothalamic clock, is responsible for the rhythmic changes of the stress system. Both centrally released CRH and increased levels of cortisol contribute to the signs and symptoms of depression. Symptoms of depression can be induced in experimental animals by intracerebroventricular injection of CRH. Depression is also a frequent side effect of glucocorticoid treatment and of the symptoms of Cushing's syndrome. The AVP neurons in the hypothalamic PVN and SON are also activated in depression, which contributes to the increased release of ACTH from the pituitary. Increased levels of circulating AVP are also associated with the risk for suicide. The prevalence, incidence and morbidity risk for depression are higher in females than in males and fluctuations in sex hormone levels are considered to be involved in the etiology. About 40% of the activated CRH neurons in mood disorders co-express nuclear estrogen receptor (ER)-alpha in the PVN, while estrogen-responsive elements have been found in the CRH gene promoter region, and estrogens stimulate CRH production. An androgen-responsive element in the CRH gene promoter region initiates a suppressing effect on CRH expression. The decreased activity of the SCN is the basis for the disturbances of circadian and circannual fluctuations in mood, sleep and hormonal rhythms found in depression. Neuronal loss was also reported in the hippocampus of stressed or corticosteroid-treated rodents and primates. Because of the inhibitory control of the hippocampus on the HPA-axis, damage to this structure was expected to disinhibit the HPA-axis, and to cause a positive feedforward cascade of increasing glucocorticoid levels over time. This 'glucocorticoid cascade hypothesis' of stress and hippocampal damage was proposed to be causally involved in age-related accumulation of hippocampal damage in disorders like Alzheimer's disease and depression. However, in postmortem studies we could not find the presumed hippocampal damage of steroid overexposure in either depressed patients or in patients treated with synthetic steroids.
Collapse
Affiliation(s)
- A-M Bao
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| | | | | |
Collapse
|
44
|
Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, Morris JC. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry 2007. [PMID: 17151169 DOI: 10.1176/appi.ajp.163.12.2164] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Studies of subjects with dementia of the Alzheimer type have reported correlations between increases in activity of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal degeneration. In this study, the authors sought to determine whether increases in plasma cortisol, a marker of HPA activity, were associated with clinical and cognitive measures of the rate of disease progression in subjects with Alzheimer-type dementia. METHOD Thirty-three subjects with very mild and mild Alzheimer-type dementia and 21 subjects without dementia were assessed annually for up to 4 years with the Clinical Dementia Rating scale and a battery of neuropsychological tests. Plasma was obtained at 8 a.m. on a single day and assayed for cortisol. Rates of change over time in the clinical and cognitive measures were derived from growth curve models. RESULTS In the subjects with dementia, but not in those without dementia, higher plasma cortisol levels were associated with more rapidly increasing symptoms of dementia and more rapidly decreasing performance on neuropsychological tests associated with temporal lobe function. No associations were observed between plasma cortisol levels and clinical and cognitive assessments obtained at the single assessment closest in time to the plasma collection. CONCLUSIONS Higher HPA activity, as reflected by increased plasma cortisol levels, is associated with more rapid disease progression in subjects with Alzheimer-type dementia.
Collapse
Affiliation(s)
- John G Csernansky
- Alzheimer's Disease Research Center and the Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, Morris JC. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry 2006; 163:2164-9. [PMID: 17151169 PMCID: PMC1780275 DOI: 10.1176/ajp.2006.163.12.2164] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Studies of subjects with dementia of the Alzheimer type have reported correlations between increases in activity of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal degeneration. In this study, the authors sought to determine whether increases in plasma cortisol, a marker of HPA activity, were associated with clinical and cognitive measures of the rate of disease progression in subjects with Alzheimer-type dementia. METHOD Thirty-three subjects with very mild and mild Alzheimer-type dementia and 21 subjects without dementia were assessed annually for up to 4 years with the Clinical Dementia Rating scale and a battery of neuropsychological tests. Plasma was obtained at 8 a.m. on a single day and assayed for cortisol. Rates of change over time in the clinical and cognitive measures were derived from growth curve models. RESULTS In the subjects with dementia, but not in those without dementia, higher plasma cortisol levels were associated with more rapidly increasing symptoms of dementia and more rapidly decreasing performance on neuropsychological tests associated with temporal lobe function. No associations were observed between plasma cortisol levels and clinical and cognitive assessments obtained at the single assessment closest in time to the plasma collection. CONCLUSIONS Higher HPA activity, as reflected by increased plasma cortisol levels, is associated with more rapid disease progression in subjects with Alzheimer-type dementia.
Collapse
Affiliation(s)
- John G Csernansky
- Alzheimer's Disease Research Center and the Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Alzheimer's disease is the most common cause of dementia. Research advances have enabled detailed understanding of the molecular pathogenesis of the hallmarks of the disease--ie, plaques, composed of amyloid beta (Abeta), and tangles, composed of hyperphosphorylated tau. However, as our knowledge increases so does our appreciation for the pathogenic complexity of the disorder. Familial Alzheimer's disease is a very rare autosomal dominant disease with early onset, caused by mutations in the amyloid precursor protein and presenilin genes, both linked to Abeta metabolism. By contrast with familial disease, sporadic Alzheimer's disease is very common with more than 15 million people affected worldwide. The cause of the sporadic form of the disease is unknown, probably because the disease is heterogeneous, caused by ageing in concert with a complex interaction of both genetic and environmental risk factors. This seminar reviews the key aspects of the disease, including epidemiology, genetics, pathogenesis, diagnosis, and treatment, as well as recent developments and controversies.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgren's University Hospital, Mölndal, Sweden.
| | | | | |
Collapse
|
47
|
Yau J, MacLullich A, Seckl J. Targeting 11β-hydroxysteroid dehydrogenase type 1 in brain: therapy for cognitive aging? Expert Rev Endocrinol Metab 2006; 1:527-536. [PMID: 30290458 DOI: 10.1586/17446651.1.4.527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dementia care costs exceed those of cardiovascular diseases and cancer combined. Milder forms of functionally significant cognitive decline add further to the staggering human, societal and economic costs. However, the underlying mechanisms are poorly understood and few treatments are available. Cumulative exposure to high glucocorticoid levels is a major hypothesis of decline in cognitive function with aging. Current manipulations to maintain low circulating glucocorticoid levels throughout life (adrenalectomy with low-dose corticosterone replacement and neonatal handling), although effective in preventing the emergence of memory deficits with age in rodent models, are not clinically applicable. By contrast, recent data in cells, mice and humans suggest that inhibition of the tissue-selective glucocorticoid-amplifying enzyme, 11β-hydroxysteroid dehydrogenase type 1, may be an effective novel approach.
Collapse
Affiliation(s)
- Joyce Yau
- a Alzheimer's Research Trust Carter Fellow and RCUK Academic Fellow, Endocrinology Unit, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Alasdair MacLullich
- b MRC Clinician Scientist Fellow Honorary Consultant in Geriatric Medicine, Endocrinology Unit, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jonathan Seckl
- c Jonathan Seckl, PhD, FRCPE, FMedSci, FRSE Moncrieff-Arnott Professor of Molecular Medicine, Endocrinology Unit, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
48
|
Abrahám IM, Meerlo P, Luiten PGM. Concentration dependent actions of glucocorticoids on neuronal viability and survival. Dose Response 2006; 4:38-54. [PMID: 18648635 DOI: 10.2203/dose-response.004.01.004.abraham] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A growing body of evidence based on experimental data demonstrates that glucocorticoids (GCs) can play a potent role in the survival and death of neurons. However, these observations reflect paradoxical features of GCs, since these adrenal stress hormones are heavily involved in both neurodegenerative and neuroprotective processes. The actual level of GCs appears to have an essential impact in this bimodal action. In the present short review we aim to show the importance of concentration dependent action of GCs on neuronal cell viability and cell survival in the brain. Additionally, we will summarize the possible GC-induced cellular mechanisms at different GC concentrations providing a background for their effect on the fate of nerve cells in conditions that are a challenge to their survival.
Collapse
Affiliation(s)
- István M Abrahám
- Neurobiology Research Group, Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | |
Collapse
|
49
|
Conrad CD. What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? BEHAVIORAL AND COGNITIVE NEUROSCIENCE REVIEWS 2006; 5:41-60. [PMID: 16816092 PMCID: PMC1512384 DOI: 10.1177/1534582306289043] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic stress produces consistent and reversible changes within the dendritic arbors of CA3 hippocampal neurons, characterized by decreased dendritic length and reduced branch number. This chronic stress-induced dendritic retraction has traditionally corresponded to hippocampus-dependent spatial memory deficits. However, anomalous findings have raised doubts as to whether a CA3 dendritic retraction is sufficient to compromise hippocampal function. The purpose of this review is to outline the mechanism underlying chronic stress-induced CA3 dendritic retraction and to explain why CA3 dendritic retraction has been thought to mediate spatial memory. The anomalous findings provide support for a modified hypothesis, in which chronic stress is proposed to induce CA3 dendritic retraction, which then disrupts hypothalamic-pituitary-adrenal axis activity, leading to dysregulated glucocorticoid release. The combination of hippocampal CA3 dendritic retraction and elevated glucocorticoid release contributes to impaired spatial memory. These findings are presented in the context of clinical conditions associated with elevated glucocorticoids.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Deparment of Psychology, Arizona State University, Box 1104, Tempe, 85287-1104, USA.
| |
Collapse
|
50
|
Goursaud APS, Mendoza SP, Capitanio JP. Do neonatal bilateral ibotenic acid lesions of the hippocampal formation or of the amygdala impair HPA axis responsiveness and regulation in infant rhesus macaques (Macaca mulatta)? Brain Res 2006; 1071:97-104. [PMID: 16412391 DOI: 10.1016/j.brainres.2005.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 10/28/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
In response to stressful events, the HPA axis is activated triggering the successive release of CRF, ACTH, and glucocorticoids. The glucocorticoids in turn provide a negative feedback signal to terminate the stress response. The amygdala and the hippocampus are involved in the regulation of the HPA axis. In rodents, their respective roles have been identified; the amygdala exerts a stimulatory effect, whereas the hippocampus provides negative feedback control. In primates, however, their regulatory roles are still not well defined. The present study compared HPA axis responsiveness and regulation in 3- to 5-month-old rhesus macaques that received neonatal (15 +/- 3 days old) bilateral ibotenic acid lesions of the hippocampus or amygdala, or sham lesions. Group differences in plasma cortisol response to separation from the mother and relocation in a novel environment were assessed as well as response to dexamethasone suppression and ACTH challenge. Results revealed that the initial cortisol levels after separation/relocation did not differ between groups. Subjects with hippocampus lesions did not show a suppression of cortisol in response to dexamethasone, suggesting a loss of negative feedback control of HPA regulation. Subjects with amygdala and sham lesions did not differ in response to dexamethasone. Indeed, bilateral neonatal lesions of the amygdala have little impact on HPA axis responsiveness and regulation in contrast to lesions in adult monkeys. Finally, females displayed higher cortisol levels than males, independently of their lesion, indicating that the development of sex differences in the regulation of the HPA axis does not involve the amygdala or hippocampus.
Collapse
Affiliation(s)
- Anne-Pierre S Goursaud
- California National Primate Research Center, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|