1
|
Wolfes J, Sörgel R, Ellermann C, Frommeyer G, Eckardt L. Mechanisms underlying the spontaneous termination of torsades de pointes in an experimental model of long QT syndrome. Heart Rhythm 2024:S1547-5271(24)03423-4. [PMID: 39389521 DOI: 10.1016/j.hrthm.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Torsades de pointes (TdP) represent a complex polymorphic ventricular tachycardia. While the triggering mechanisms of early afterdepolarization and increased dispersion of repolarization are well investigated, the sudden self-limiting termination remains poorly understood. OBJECTIVE The purpose of this study was to perform analysis of TdP to investigate factors causing spontaneous termination. METHODS We used a large data set from Langendorff experiments in isolated rabbit hearts in which drug-induced QT prolongation, bradycardia, and hypokalemia provoke TdP. We included 427 episodes with typical TdP characteristics of polymorphic self-terminating beats and twisting QRS complexes occurring in the presence of abnormal QT prolongation due to various different QT-prolonging drugs. The use of 8 monophasic action potential catheters allowed the characterization of action potential duration, configuration, and dispersion of repolarization beyond the capabilities of the surface electrocardiogram. To identify possible mechanisms of arrhythmia termination, the initial, midpoint, and terminal 3 ventricular complexes were analyzed for each episode. RESULTS An abrupt decrease in spatial dispersion over the course of a TdP episode was identified as a precursor for termination of TdP. Within the last 3 beats, a sudden significant decrease in the dispersion of repolarization was observed as a predictor of termination. In parallel, there was a decrease in action potential duration (action potential duration at 90% repolarization) before termination. Also, a change in action potential configuration (action potential duration at 90% repolarization/action potential duration at 50% repolarization ratio) in terms of the loss of action potential dome with a restitution of action potential triangulation was observed. CONCLUSION In >400 TdP episodes, homogenization of myocardial repolarization with the recovery of an action potential configuration determines the termination of TdP episodes.
Collapse
Affiliation(s)
- Julian Wolfes
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany.
| | - Rebekka Sörgel
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| | - Christian Ellermann
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| | - Gerrit Frommeyer
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| | - Lars Eckardt
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Munster, Germany
| |
Collapse
|
2
|
Morales-Tenorio M, Lasala F, Garcia-Rubia A, Aledavood E, Heung M, Olal C, Escudero-Pérez B, Alonso C, Martínez A, Muñoz-Fontela C, Delgado R, Gil C. Discovery of Thiophene Derivatives as Potent, Orally Bioavailable, and Blood-Brain Barrier-Permeable Ebola Virus Entry Inhibitors. J Med Chem 2024; 67:16381-16402. [PMID: 39248591 PMCID: PMC11440591 DOI: 10.1021/acs.jmedchem.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The endemic nature of the Ebola virus disease in Africa underscores the need for prophylactic and therapeutic drugs that are affordable and easy to administer. Through a phenotypic screening employing viral pseudotypes and our in-house chemical library, we identified a promising hit featuring a thiophene scaffold, exhibiting antiviral activity in the micromolar range. Following up on this thiophene hit, a new series of compounds that retain the five-membered heterocyclic scaffold while modifying several substituents was synthesized. Initial screening using a pseudotype viral system and validation assays employing authentic Ebola virus demonstrated the potential of this new chemical class as viral entry inhibitors. Subsequent investigations elucidated the mechanism of action through site-directed mutagenesis. Furthermore, we conducted studies to assess the pharmacokinetic profile of selected compounds to confirm its pharmacological and therapeutic potential.
Collapse
Affiliation(s)
| | - Fátima Lasala
- Instituto
de Investigación Hospital 12 de Octubre,, Madrid 28041, Spain
| | - Alfonso Garcia-Rubia
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
| | - Elnaz Aledavood
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
| | - Michelle Heung
- Bernhard
Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Catherine Olal
- Bernhard
Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | | | - Covadonga Alonso
- Dpt.
Biotechnology, Instituto Nacional de Investigación
y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid 28040, Spain
| | - Ana Martínez
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
- CIBERNED, Instituto Salud Carlos III, Madrid 28029, Spain
| | | | - Rafael Delgado
- Instituto
de Investigación Hospital 12 de Octubre,, Madrid 28041, Spain
- CIBERINFEC, Instituto Salud Carlos III, Madrid 28029, Spain
- School
of Medicine, Universidad Complutense de
Madrid, Madrid 28040, Spain
| | - Carmen Gil
- Centro
de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid 28040, Spain
- CIBERNED, Instituto Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
3
|
Zhu W, Bian X, Lv J. From genes to clinical management: A comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2 2024; 5:573-586. [PMID: 39263612 PMCID: PMC11385408 DOI: 10.1016/j.hroo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background Long QT syndrome (LQTS) is a rare cardiac disorder characterized by prolonged ventricular repolarization and increased risk of ventricular arrhythmias. This review summarizes current knowledge of LQTS pathogenesis and treatment strategies. Objectives The purpose of this study was to provide an in-depth understanding of LQTS genetic and molecular mechanisms, discuss clinical presentation and diagnosis, evaluate treatment options, and highlight future research directions. Methods A systematic search of PubMed, Embase, and Cochrane Library databases was conducted to identify relevant studies published up to April 2024. Results LQTS involves mutations in ion channel-related genes encoding cardiac ion channels, regulatory proteins, and other associated factors, leading to altered cellular electrophysiology. Acquired causes can also contribute. Diagnosis relies on clinical history, electrocardiographic findings, and genetic testing. Treatment strategies include lifestyle modifications, β-blockers, potassium channel openers, device therapy, and surgical interventions. Conclusion Advances in understanding LQTS have improved diagnosis and personalized treatment approaches. Challenges remain in risk stratification and management of certain patient subgroups. Future research should focus on developing novel pharmacological agents, refining device technologies, and conducting large-scale clinical trials. Increased awareness and education are crucial for early detection and appropriate management of LQTS.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueyan Bian
- Department of Pediatrics, Lixia District People's Hospital, Jinan, Shandong, China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Lenarczyk R, Zeppenfeld K, Tfelt-Hansen J, Heinzel FR, Deneke T, Ene E, Meyer C, Wilde A, Arbelo E, Jędrzejczyk-Patej E, Sabbag A, Stühlinger M, di Biase L, Vaseghi M, Ziv O, Bautista-Vargas WF, Kumar S, Namboodiri N, Henz BD, Montero-Cabezas J, Dagres N. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 2024; 26:euae049. [PMID: 38584423 PMCID: PMC10999775 DOI: 10.1093/europace/euae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.
Collapse
Affiliation(s)
- Radosław Lenarczyk
- Medical University of Silesia, Division of Medical Sciences, Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases, Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank R Heinzel
- Cardiology, Angiology, Intensive Care, Städtisches Klinikum Dresden Campus Friedrichstadt, Dresden, Germany
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
- Clinic for Electrophysiology, Klinikum Nuernberg, University Hospital of the Paracelsus Medical University, Nuernberg, Germany
| | - Elena Ene
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Düsseldorf, Germany
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ewa Jędrzejczyk-Patej
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Markus Stühlinger
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luigi di Biase
- Albert Einstein College of Medicine at Montefiore Hospital, New York, NY, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Ohad Ziv
- Case Western Reserve University, Cleveland, OH, USA
- The MetroHealth System Campus, Cleveland, OH, USA
| | | | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Sydney, Australia
| | | | - Benhur Davi Henz
- Instituto Brasilia de Arritmias-Hospital do Coração do Brasil-Rede Dor São Luiz, Brasilia, Brazil
| | - Jose Montero-Cabezas
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Marchand M, Erickson AC, Gillman L, Haywood R, Morrison J, Jaworsky D, Drouin O, Laksman Z, Krahn AD, Arbour L. The Impact of Chronic Disease on the Corrected QT (QTc) Value in Women in a British Columbia First Nations Population. Can J Cardiol 2024; 40:89-97. [PMID: 37852605 DOI: 10.1016/j.cjca.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Indigenous women have higher rates of chronic disease than Indigenous men and non-Indigenous women. Long QT syndrome (LQTS) can be inherited or acquired; the latter may occur with chronic disease. A prolonged corrected QT value (QTc) is an independent risk factor for ventricular arrhythmias and sudden death, but few studies have quantified the impact of chronic disease on the QTc. We assessed the association between chronic disease and QTc prolongation in a population of First Nations women previously ascertained to study a high rate of inherited LQTS due to a unique genetic (founder) variant in their community. METHODS This substudy focusing on women expands on the original research where patients with clinical features of LQTS and their relatives were assessed for genetic variants discovered to affect the QTc. Medical records were retrospectively reviewed and chronic diseases documented. Using multivariate linear regression, adjusting for the effect of genetic variants, age, and QTc-prolonging medications, we evaluated the association between chronic disease and the QTc. RESULTS In total, 275 women were included. After adjustments, a prolonged QTc was associated with coronary artery disease (26.5 ms, 95% confidence interval [CI] 9.0-44.1 ms; P = 0.003), conduction system disease (26.8 ms, 95% CI 2.2-51.4 ms; P = 0.033), rheumatoid arthritis (28.9 ms, 95% CI 12.7-45.1 ms; P = 0.001), and type 2 diabetes mellitus (17.9 ms, 95% CI 3.6-32.3 ms; P = 0.015). CONCLUSIONS This quantification of the association between chronic disease and QTc prolongation in an Indigenous cohort provides insight into the nongenetic determinants of QTc prolongation. Corroboration in other populations will provide evidence for generalisability of these results.
Collapse
Affiliation(s)
- Miles Marchand
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Syilx Okanagan Nation, British Columbia, Canada
| | - Anders C Erickson
- Population and Public Health Division, British Columbia Ministry of Health, Victoria, British Columbia, Canada(‡)
| | - Lawrence Gillman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Community Genetics Research Program, University of British Columbia, Island Medical Program, Victoria, British Columbia, Canada
| | - Rachel Haywood
- Community Genetics Research Program, University of British Columbia, Island Medical Program, Victoria, British Columbia, Canada
| | - Julie Morrison
- Community Member, Gitxsan Nation, British Columbia, Canada
| | - Denise Jaworsky
- Northern Health Authority, Terrace, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivier Drouin
- Northern Health Authority, Terrace, British Columbia, Canada
| | - Zachary Laksman
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Community Genetics Research Program, University of British Columbia, Island Medical Program, Victoria, British Columbia, Canada.
| |
Collapse
|
6
|
Barashi R, Milwidsky A, Viskin D, Giladi M, Hochstadt A, Morgan S, Rosso R, Chorin E, Viskin S. Teleological reasoning for QT prolongation caused by severe bradycardia: Correlation between QT interval and brain natriuretic peptide levels during atrioventricular block. Heart Rhythm 2024; 21:106-112. [PMID: 37757960 DOI: 10.1016/j.hrthm.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Rami Barashi
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assi Milwidsky
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Internal Medicine D, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aviram Hochstadt
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Samuel Morgan
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raphael Rosso
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Chorin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sami Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Genge CE, Muralidharan P, Kemp J, Hull CM, Yip M, Simpson K, Hunter DV, Claydon TW. Zebrafish cardiac repolarization does not functionally depend on the expression of the hERG1b-like transcript. Pflugers Arch 2024; 476:87-99. [PMID: 37934265 DOI: 10.1007/s00424-023-02875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Zebrafish provide a translational model of human cardiac function. Their similar cardiac electrophysiology enables screening of human cardiac repolarization disorders, drug arrhythmogenicity, and novel antiarrhythmic therapeutics. However, while zebrafish cardiac repolarization is driven by delayed rectifier potassium channel current (IKr), the relative role of alternate channel transcripts is uncertain. While human ether-a-go-go-related-gene-1a (hERG1a) is the dominant transcript in humans, expression of the functionally distinct alternate transcript, hERG1b, modifies the electrophysiological and pharmacologic IKr phenotype. Studies of zebrafish IKr are frequently translated without consideration for the presence and impact of hERG1b in humans. Here, we performed phylogenetic analyses of all available KCNH genes from Actinopterygii (ray-finned fishes). Our findings confirmed zebrafish cardiac zkcnh6a as the paralog of human hERG1a (hKCNH2a), but also revealed evidence of a hERG1b (hKCNH2b)-like N-terminally truncated gene, zkcnh6b, in zebrafish. zkcnh6b is a teleost-specific variant that resulted from the 3R genome duplication. qRT-PCR showed dominant expression of zkcnh6a in zebrafish atrial and ventricular tissue, with low levels of zkcnh6b. Functional evaluation of zkcnh6b in a heterologous system showed no discernable function under the conditions tested, and no influence on zkcnh6a function during the zebrafish ventricular action potential. Our findings provide the first descriptions of the zkcnh6b gene, and show that, unlike in humans, zebrafish cardiac repolarization does not rely upon co-assembly of zERG1a/zERG1b. Given that hERG1b modifies IKr function and drug binding in humans, our findings highlight the need for consideration when translating hERG variant effects and toxicological screens in zebrafish, which lack a functional hERG1b-equivalent gene.
Collapse
Affiliation(s)
- Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Padmapriya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Jake Kemp
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Mandy Yip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Kyle Simpson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada.
| |
Collapse
|
8
|
Milani G, Budriesi R, Tavazzani E, Cavalluzzi MM, Mattioli LB, Miniero DV, Delre P, Belviso BD, Denegri M, Cuocci C, Rotondo NP, De Palma A, Gualdani R, Caliandro R, Mangiatordi GF, Kumawat A, Camilloni C, Priori S, Lentini G. hERG stereoselective modulation by mexiletine-derived ureas: Molecular docking study, synthesis, and biological evaluation. Arch Pharm (Weinheim) 2023; 356:e2300116. [PMID: 37460390 DOI: 10.1002/ardp.202300116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 10/06/2023]
Abstract
Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity. In addition, functional studies on guinea pig isolated left atria, aorta, and ileum demonstrated that 8 does not present any cardiac or intestinal liability in our ex vivo studies. Due to its overall profile, (R,S)-8 paves the way for the design and development of a new series of compounds potentially useful in the treatment of both congenital and drug-induced forms of LQTS.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | | | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies, and Environment, University Aldo Moro of Bari, Bari, Italy
| | - Pietro Delre
- Chemistry Department, University of Bari Aldo Moro, Bari, Italy
- CNR-Institute of Crystallography, Bari, Italy
| | | | | | | | - Natalie Paola Rotondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Environment, University Aldo Moro of Bari, Bari, Italy
| | - Roberta Gualdani
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Amit Kumawat
- Department of Biosciences, University of Milan, Milano, Italy
| | - Carlo Camilloni
- Department of Biosciences, University of Milan, Milano, Italy
| | - Silvia Priori
- ICS-Maugeri IRCCS, Pavia, Italy
- Molecular Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Van Den Abeele R, Hendrickx S, Van Nieuwenhuyse E, Dunnink A, Panfilov AV, Vos MA, Wülfers EM, Vandersickel N. Directed graph mapping shows rotors maintain non-terminating and focal sources maintain self-terminating Torsade de Pointes in canine model. Front Physiol 2023; 14:1201260. [PMID: 37565147 PMCID: PMC10411729 DOI: 10.3389/fphys.2023.1201260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Torsade de Pointes is a polymorphic ventricular tachycardia which is as yet incompletely understood. While the onset of a TdP episode is generally accepted to be caused by triggered activity, the mechanisms for the perpetuation is still under debate. In this study, we analysed data from 54 TdP episodes divided over 5 dogs (4 female, 1 male) with chronic atrioventricular block. Previous research on this dataset showed both reentry and triggered activity to perpetuate the arrhythmia. 13 of those TdP episodes showed reentry as part of the driving mechanism of perpetuating the episode. The remaining 41 episodes were purely ectopic. Reentry was the main mechanism in long-lasting episodes (>14 beats), while focal sources were responsible for maintaining shorter episodes. Building on these results, we re-analysed the data using directed graph mapping This program uses principles from network theory and a combination of positional data and local activation times to identify reentry loops and focal sources within the data. The results of this study are twofold. First, concerning reentry loops, we found that on average non-terminating (NT) episodes (≥10 s) show significantly more simultaneous reentry loops than self-terminating (ST) TdP (<10 s). Non-terminating episodes have on average 2.72 ± 1.48 simultaneous loops, compared to an average of 1.33 ± 0.66 for self-terminating episodes. In addition, each NT episode showed a presence of (bi-)ventricular loops between 10.10% and 69.62% of their total reentry duration. Compared to the ST episodes, only 1 in 4 episodes (25%) showed (bi-)ventricular reentry, lasting only 7.12% of its total reentry duration. This suggests that while focal beats trigger TdP, macro-reentry and multiple simultaneous localized reentries are the major drivers of long-lasting episodes. Second, using heatmaps, we found focal sources to occur in preferred locations, instead of being distributed randomly. This may have implications on treatment if such focal origins can be disabled reliably.
Collapse
Affiliation(s)
- Robin Van Den Abeele
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Sander Hendrickx
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Enid Van Nieuwenhuyse
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Albert Dunnink
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexander V. Panfilov
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Yekaterinburg, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Marc A. Vos
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eike M. Wülfers
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Nele Vandersickel
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Mann H, Kusayev J, Pandey S, Aryal B, Solaimanzadeh I. A Rare Presentation of Levetiracetam-Induced Torsades De Pointes. Cureus 2023; 15:e40866. [PMID: 37492848 PMCID: PMC10365144 DOI: 10.7759/cureus.40866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Torsades de pointes occurs in the presence of a prolonged QTc interval, which has many congenital and acquired causes. Levetiracetam is a widely used anti-epileptic medication secondary to its favorable safety profile. We present a rare case of a 59-year-old male who developed torsades de pointes and cardiac arrest after levetiracetam administration. To our knowledge, there is only one other case report documenting torsades de pointes after levetiracetam administration, and our case report will be the first documenting cardiac arrest after levetiracetam administration.
Collapse
Affiliation(s)
- Henry Mann
- Internal Medicine, One Brooklyn Health System Interfaith Medical Center, Brooklyn, USA
| | | | - Sagar Pandey
- Internal Medicine, One Brooklyn Health System Interfaith Medical Center, Brooklyn, USA
| | - Binit Aryal
- Internal Medicine, One Brooklyn Health System Interfaith Medical Center, Brooklyn, USA
| | - Isaac Solaimanzadeh
- Internal Medicine, One Brooklyn Health System Interfaith Medical Center, Brooklyn, USA
| |
Collapse
|
11
|
Wang H, Zhu G, Izu LT, Chen-Izu Y, Ono N, Altaf-Ul-Amin MD, Kanaya S, Huang M. On QSAR-based cardiotoxicity modeling with the expressiveness-enhanced graph learning model and dual-threshold scheme. Front Physiol 2023; 14:1156286. [PMID: 37228825 PMCID: PMC10203956 DOI: 10.3389/fphys.2023.1156286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Given the direct association with malignant ventricular arrhythmias, cardiotoxicity is a major concern in drug design. In the past decades, computational models based on the quantitative structure-activity relationship have been proposed to screen out cardiotoxic compounds and have shown promising results. The combination of molecular fingerprint and the machine learning model shows stable performance for a wide spectrum of problems; however, not long after the advent of the graph neural network (GNN) deep learning model and its variant (e.g., graph transformer), it has become the principal way of quantitative structure-activity relationship-based modeling for its high flexibility in feature extraction and decision rule generation. Despite all these progresses, the expressiveness (the ability of a program to identify non-isomorphic graph structures) of the GNN model is bounded by the WL isomorphism test, and a suitable thresholding scheme that relates directly to the sensitivity and credibility of a model is still an open question. Methods: In this research, we further improved the expressiveness of the GNN model by introducing the substructure-aware bias by the graph subgraph transformer network model. Moreover, to propose the most appropriate thresholding scheme, a comprehensive comparison of the thresholding schemes was conducted. Results: Based on these improvements, the best model attains performance with 90.4% precision, 90.4% recall, and 90.5% F1-score with a dual-threshold scheme (active: < 1 μ M ; non-active: > 30 μ M ). The improved pipeline (graph subgraph transformer network model and thresholding scheme) also shows its advantages in terms of the activity cliff problem and model interpretability.
Collapse
Affiliation(s)
- Huijia Wang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Guangxian Zhu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Leighton T. Izu
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Ye Chen-Izu
- Department of Biomedical Engineering, University of California, Davis, CA, United States
| | - Naoaki Ono
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
| | - MD Altaf-Ul-Amin
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shigehiko Kanaya
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ming Huang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
12
|
Sahin O, Akturk G, Cilaker Micili S, Gursoy Doruk O, Karapinar F, Hocaoglu N, Ergur BU, Akan P, Tuncok Y, Kalkan S. Effect of the selective mitochondrial KATP channel opener nicorandil on the QT prolongation and myocardial damage induced by amitriptyline in rats. J Pharm Pharmacol 2023; 75:415-426. [PMID: 36527252 DOI: 10.1093/jpp/rgac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the protective effect of nicorandil, a selective mitochondrial KATP channel opener, on QT prolongation and myocardial damage induced by amitriptyline. METHODS The dose of amitriptyline (intraperitoneal, i.p.) that prolong the QT interval was found 75 mg/kg. Rats were randomized into five groups the control group, amitriptyline group, nicorandil (selective mitochondrial KATP channel opener, 3 mg/kg i.p.) + amitriptyline group, 5-hdyroxydecanoate (5-HD, selective mitochondrial KATP channel blocker, 10 mg/kg i.p.) + amitriptyline group and 5-HD + nicorandil + amitriptyline group. Cardiac parameters, biochemical and histomorphological/immunohistochemical examinations were evaluated. p < 0.05 was accepted as statistically significant. KEY FINDINGS Amitriptyline caused statistically significant prolongation of QRS duration, QT interval and QTc interval (p < 0.05). It also caused changes in tissue oxidant (increase in malondialdehyde)/anti-oxidant (decrease in glutathione peroxidase) parameters (p < 0.05), myocardial damage and apoptosis (p < 0.01 and p < 0.001). While nicorandil administration prevented amitriptyline-induced QRS, QT, QTc prolongation (p < 0.05), myocardial damage and apoptosis (p < 0.05), it did not affect the changes in oxidative parameters (p > 0.05). CONCLUSIONS Our results suggest that nicorandil, a selective mitochondrial KATP channel opener, plays a protective role in amitriptyline-induced QT prolongation and myocardial damage. Mitochondrial KATP channel opening and anti-apoptotic effects may play a role in the cardioprotective effect of nicorandil.
Collapse
Affiliation(s)
- Orhan Sahin
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Gozde Akturk
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey.,Mustafa Kemal University, School of Medicine, Department of Medical Pharmacology, Hatay, Turkey
| | - Serap Cilaker Micili
- Dokuz Eylul University, School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ozlem Gursoy Doruk
- Dokuz Eylul University, School of Medicine, Department of Medical Biochemistry, Izmir, Turkey
| | - Fazilet Karapinar
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Nil Hocaoglu
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Bekir Ugur Ergur
- Dokuz Eylul University, School of Medicine, Department of Histology and Embryology, Izmir, Turkey.,Kyrenia University, School of Medicine, Department of Histology and Embryology, Kyrenia, Cyprus
| | - Pinar Akan
- Dokuz Eylul University, School of Medicine, Department of Medical Biochemistry, Izmir, Turkey
| | - Yesim Tuncok
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Sule Kalkan
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| |
Collapse
|
13
|
Yuan N, Oesterle A, Botting P, Chugh S, Albert C, Ebinger J, Ouyang D. High-Throughput Assessment of Real-World Medication Effects on QT Interval Prolongation: Observational Study. JMIR Cardio 2023; 7:e41055. [PMID: 36662566 PMCID: PMC9898836 DOI: 10.2196/41055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Drug-induced prolongation of the corrected QT interval (QTc) increases the risk for Torsades de Pointes (TdP) and sudden cardiac death. Medication effects on the QTc have been studied in controlled settings but may not be well evaluated in real-world settings where medication effects may be modulated by patient demographics and comorbidities as well as the usage of other concomitant medications. OBJECTIVE We demonstrate a new, high-throughput method leveraging electronic health records (EHRs) and the Surescripts pharmacy database to monitor real-world QTc-prolonging medication and potential interacting effects from demographics and comorbidities. METHODS We included all outpatient electrocardiograms (ECGs) from September 2008 to December 2019 at a large academic medical system, which were in sinus rhythm with a heart rate of 40-100 beats per minute, QRS duration of <120 milliseconds, and QTc of 300-700 milliseconds, determined using the Bazett formula. We used prescription information from the Surescripts pharmacy database and EHR medication lists to classify whether a patient was on a medication during an ECG. Negative control ECGs were obtained from patients not currently on the medication but who had been or would be on that medication within 1 year. We calculated the difference in mean QTc between ECGs of patients who are on and those who are off a medication and made comparisons to known medication TdP risks per the CredibleMeds.org database. Using linear regression analysis, we studied the interaction of patient-level demographics or comorbidities on medication-related QTc prolongation. RESULTS We analyzed the effects of 272 medications on 310,335 ECGs from 159,397 individuals. Medications associated with the greatest QTc prolongation were dofetilide (mean QTc difference 21.52, 95% CI 10.58-32.70 milliseconds), mexiletine (mean QTc difference 18.56, 95% CI 7.70-29.27 milliseconds), amiodarone (mean QTc difference 14.96, 95% CI 13.52-16.33 milliseconds), rifaximin (mean QTc difference 14.50, 95% CI 12.12-17.13 milliseconds), and sotalol (mean QTc difference 10.73, 95% CI 7.09-14.37 milliseconds). Several top QT prolonging medications such as rifaximin, lactulose, cinacalcet, and lenalidomide were not previously known but have plausible mechanistic explanations. Significant interactions were observed between demographics or comorbidities and QTc prolongation with many medications, such as coronary disease and amiodarone. CONCLUSIONS We demonstrate a new, high-throughput technique for monitoring real-world effects of QTc-prolonging medications from readily accessible clinical data. Using this approach, we confirmed known medications for QTc prolongation and identified potential new associations and demographic or comorbidity interactions that could supplement findings in curated databases. Our single-center results would benefit from additional verification in future multisite studies that incorporate larger numbers of patients and ECGs along with more precise medication adherence and comorbidity data.
Collapse
Affiliation(s)
- Neal Yuan
- Division of Cardiology, Department of Medicine, San Francisco Veteran Affairs Medical Center, San Francisco, CA, United States
| | - Adam Oesterle
- Division of Cardiology, Department of Medicine, San Francisco Veteran Affairs Medical Center, San Francisco, CA, United States
| | - Patrick Botting
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sumeet Chugh
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Christine Albert
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joseph Ebinger
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - David Ouyang
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
14
|
Abstract
Cardiac memory is the term used to describe an interesting electrocardiographic phenomenon. Whenever a QRS complex is wide and abnormal, such as during ventricular pacing, the T waves will also be abnormal and will point to the opposite direction of the wide QRS. If the QRS then normalizes, such as after cessation of ventricular pacing, the T waves will normalize as well, but at a later stage. The period of cardiac memory is the phase between the sudden normalization of the QRS and the eventual and gradual return of the T waves to their baseline morphology. Cardiac memory is assumed to be an innocent electrocardiographic curiosity. However, during cardiac memory, reduction of repolarizing potassium currents increases left ventricular repolarization gradients. Therefore, when cardiac memory occurs in patients who already have a prolonged QT interval (for whatever reason), it can lead to a frank long QT syndrome with QT-related ventricular arrhythmias (torsades de pointes). These arrhythmogenic effects of cardiac memory are not generally appreciated and are reviewed here for the first time.
Collapse
Affiliation(s)
- Sami Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel (S.V., E.C., A.L.S., R.R.)
| | - Ehud Chorin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel (S.V., E.C., A.L.S., R.R.)
| | - Arie Lorin Schwartz
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel (S.V., E.C., A.L.S., R.R.)
| | - Piotr Kukla
- Department of Internal Medicine and Cardiology, Specialistic Hospital, Gorlice, Poland (P.K.)
| | - Raphael Rosso
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel (S.V., E.C., A.L.S., R.R.)
| |
Collapse
|
15
|
New Insights into Ion Channels: Predicting hERG-Drug Interactions. Int J Mol Sci 2022; 23:ijms231810732. [PMID: 36142644 PMCID: PMC9503154 DOI: 10.3390/ijms231810732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-induced long QT syndrome can be a very dangerous side effect of existing and developmental drugs. In this work, a model proposed two decades ago addressing the ion specificity of potassium channels is extended to the human ether-à-gogo gene (hERG). hERG encodes the protein that assembles into the potassium channel responsible for the delayed rectifier current in ventricular cardiac myocytes that is often targeted by drugs associated with QT prolongation. The predictive value of this model can guide a rational drug design decision early in the drug development process and enhance NCE (New Chemical Entity) retention. Small molecule drugs containing a nitrogen that can be protonated to afford a formal +1 charge can interact with hERG to prevent the repolarization of outward rectifier currents. Low-level ab initio calculations are employed to generate electronic features of the drug molecules that are known to interact with hERG. These calculations were employed to generate structure–activity relationships (SAR) that predict whether a small molecule drug containing a protonated nitrogen has the potential to interact with and inhibit the activity of the hERG potassium channels of the heart. The model of the mechanism underlying the ion specificity of potassium channels offers predictive value toward optimizing drug design and, therefore, minimizes the effort and expense invested in compounds with the potential for life-threatening inhibitory activity of the hERG potassium channel.
Collapse
|
16
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
17
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
18
|
Ticagrelor-Induced Torsades de Pointes following Myocardial Infarction. Case Rep Cardiol 2022; 2022:4505964. [PMID: 35911863 PMCID: PMC9334073 DOI: 10.1155/2022/4505964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
We report a case of excessive QT prolongation and subsequent torsades de pointes (TdP) following the administration of ticagrelor in a 58-year-old male patient. The patient had no suspected cause of QT prolongation. After cessation of ticagrelor, QT interval was normalized and no further TdP was observed.
Collapse
|
19
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
20
|
Shi H, Xu J, Lang X, Wu HE, Xiu MH, Zhang XY. Comparison of Efficacy and Safety Between Low-Dose Ziprasidone in Combination With Sertraline and Ziprasidone Monotherapy for Treatment-Resistant Patients With Acute Exacerbation Schizophrenia: A Randomized Controlled Trial. Front Pharmacol 2022; 13:863588. [PMID: 35559243 PMCID: PMC9086512 DOI: 10.3389/fphar.2022.863588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is a prevalent clinical problem with heterogeneous presentations. However, the clinical trial designs for new treatments are still lacking. This study aimed to assess the efficacy of ziprasidone plus sertraline in TRS patients as compared to ziprasidone monotherapy. We conducted a 24 weeks, randomized, controlled, double-blinded clinical research trial. 62 treatment-resistant patients with acute exacerbation SZ were randomly allocated to receive a usual dose of ziprasidone (120-160 mg/d) monotherapy (Control group) and 53 TRS inpatients were to receive a low dose of ziprasidone (60-80 mg/d) in combination with sertraline (ZS group). Treatment outcomes were measured by the Positive and Negative Syndrome Scale (PANSS), the Hamilton Depression Rating Scale (HAMD), CGI-Severity (CGI-S) and Personal and Social Performance Scale (PSP) at baseline, week 4, 8, 12, and 24. Relative to control group, the patients in ZS group showed greater reductions in the following: PANSS positive symptom, negative symptom, total score, and HAMD total score. Additionally, the patients in ZS group had a greater increase in PSP total score. Notably, the reduction in HAMD was positively correlated with the reduction in PANSS total score. The reduction in CGI-S was a predictor for the improvement of psychosocial functioning in patients. Furthermore, the ZS group had a lower rate of side effects compared to the control group. Our findings suggest that a low dose of ziprasidone in combination with sertraline is an effective therapy for the clinical symptoms as compared to a usual dose of ziprasidone in the treatment-resistant patients with acute exacerbation SZ. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT04076371.
Collapse
Affiliation(s)
- Hui Shi
- Department of Psychiatry, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Xu
- Qingdao Mental Health Center, Qingdao Medical University, Qingdao, China
| | - Xiaoe Lang
- Department of Psychiatry, Shanxii Medical University, Taiyuan, China
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Draelos RL, Ezekian JE, Zhuang F, Moya-Mendez ME, Zhang Z, Rosamilia MB, Manivannan PKR, Henao R, Landstrom AP. GENESIS: Gene-Specific Machine Learning Models for Variants of Uncertain Significance Found in Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome-Associated Genes. Circ Arrhythm Electrophysiol 2022; 15:e010326. [PMID: 35357185 PMCID: PMC9018586 DOI: 10.1161/circep.121.010326] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cardiac channelopathies such as catecholaminergic polymorphic tachycardia and long QT syndrome predispose patients to fatal arrhythmias and sudden cardiac death. As genetic testing has become common in clinical practice, variants of uncertain significance (VUS) in genes associated with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome are frequently found. The objective of this study was to predict pathogenicity of catecholaminergic polymorphic ventricular tachycardia-associated RYR2 VUS and long QT syndrome-associated VUS in KCNQ1, KCNH2, and SCN5A by developing gene-specific machine learning models and assessing them using cross-validation, cellular electrophysiological data, and clinical correlation. METHODS The GENe-specific EnSemble grId Search framework was developed to identify high-performing machine learning models for RYR2, KCNQ1, KCNH2, and SCN5A using variant- and protein-specific inputs. Final models were applied to datasets of VUS identified from ClinVar and exome sequencing. Whole cell patch clamp and clinical correlation of selected VUS was performed. RESULTS The GENe-specific EnSemble grId Search models outperformed alternative methods, with area under the receiver operating characteristics up to 0.87, average precisions up to 0.83, and calibration slopes as close to 1.0 (perfect) as 1.04. Blinded voltage-clamp analysis of HEK293T cells expressing 2 predicted pathogenic variants in KCNQ1 each revealed an ≈80% reduction of peak Kv7.1 current compared with WT. Normal Kv7.1 function was observed in KCNQ1-V241I HEK cells as predicted. Though predicted benign, loss of Kv7.1 function was observed for KCNQ1-V106D HEK cells. Clinical correlation of 9/10 variants supported model predictions. CONCLUSIONS Gene-specific machine learning models may have a role in post-genetic testing diagnostic analyses by providing high performance prediction of variant pathogenicity.
Collapse
Affiliation(s)
- Rachel L Draelos
- Department of Computer Science, Trinity College of Arts and Sciences (R.L.D., F.Z.), Duke University.,Medical Scientist Training Program (R.L.D.), Duke University School of Medicine, Durham, NC
| | - Jordan E Ezekian
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Farica Zhuang
- Department of Computer Science, Trinity College of Arts and Sciences (R.L.D., F.Z.), Duke University
| | - Mary E Moya-Mendez
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Zhushan Zhang
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Michael B Rosamilia
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Perathu K R Manivannan
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Ricardo Henao
- Department of Electrical and Computer Engineering, Pratt School of Engineering (R.H.), Duke University.,Department of Biostatistics and Bioinformatics (R.H.), Duke University School of Medicine, Durham, NC
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC.,Department of Cell Biology (A.P.L.), Duke University School of Medicine, Durham, NC
| |
Collapse
|
22
|
Bedwetting from the heart: Time for a paradigm shift in the minimal diagnostic evaluation of enuresis. Heart Rhythm 2022; 19:862-865. [DOI: 10.1016/j.hrthm.2022.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/08/2023]
|
23
|
Zhu C, Guan X, Wang Y, Liu J, Kosten TR, Xiu M, Wu F, Zhang X. Low-Dose Ziprasidone in Combination with Sertraline for First-Episode Drug-Naïve Patients with Schizophrenia: a Randomized Controlled Trial. Neurotherapeutics 2022; 19:1037-1046. [PMID: 35467271 PMCID: PMC9294111 DOI: 10.1007/s13311-022-01242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
Many patients with schizophrenia (SCZ) discontinue antipsychotics, frequently due to dose-related multiple and severe adverse effects. We hypothesized that a low-dose ziprasidone plus sertraline would reduce serious side effects without affecting treatment efficacy. Therefore, this clinical trial was designed to investigate the efficacy, safety, and tolerability of adding sertraline to ziprasidone in order to substantially reduce ziprasidone dose and potential side effects in first-episode and drug-naive (FEDN) patients with SCZ. This 24-week randomized, double-blinded, controlled clinical trial randomly allocated 452 FEDN SCZ patients to receive a usual dose of ziprasidone (control group) or half the dose of ziprasidone in combination with sertraline (ZS group). Treatment outcome included the Positive and Negative Syndrome Scale (PANSS), the Hamilton Depression Rating Scale (HAMD), CGI-Severity (CGI-S) and the Personal and Social Performance Scale (PSP) at baseline and weeks 2, 4, 8, 12, and 24. Repeated measures ANCOVA showed significant treatment by time interactions on the PANSS general psychopathology and total scores, as well as CGI-S, HAMD, and PSP scores (all p < 0.05). Furthermore, the ZS group had greater reductions in PANSS general psychopathology, total scores, HAMD, and CGI-S (all p < 0.05) and greater increases in the PSP total score (p < 0.01) than the control group. Importantly, adverse effects were lower in the ZS than control group. The reduction in PANSS, CGI-S, or HAMD scores was not correlated with the increase in PSP. Sex and duration of disease predicted PSP improvement from baseline to week 24 in the ZS group. Our FEDN patients with SCZ were effectively treated for their psychotic and depressive symptoms while experiencing significantly fewer adverse effects using half the usual ziprasidone dose when combined with sertraline. ClinicalTrials.gov, NCT04076371.
Collapse
Affiliation(s)
- Cheng Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yuechan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Jiahong Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Thomas R Kosten
- Department of Psychology, University of Houston, Houston, TX, USA
- Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
- Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China.
| |
Collapse
|
24
|
Lee B, Lee WF, Lim BL. Rare case of Torsades de Pointes in severe hypothyroidism: literature review and challenges in management. Int J Emerg Med 2022; 15:11. [PMID: 35287568 PMCID: PMC8922778 DOI: 10.1186/s12245-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypothyroidism can manifest as several important cardiac abnormalities. There are few reports of ventricular dysrhythmias (VDs) in hypothyroidism. We described a rare case of VDs in severe hypothyroidism and reviewed the literature behind its management.
Case presentation
A 67-year-old gentleman, with poor compliance to treatment for Hashimoto’s thyroiditis, presented with palpitations to the Emergency Department. He had runs of non-sustained ventricular tachycardia (NSVT). He was treated with intravenous (IV) amiodarone and admitted to the intensive care unit for observation. He then developed recurrent Torsades de Pointes (Tdp) despite treatment with several anti-arhythmics. He required electrical cardioversion and eventual transvenous overdrive pacing (OP). VT recurred while he was on OP. VT resolved and he was weaned off OP only after adequate thyroid hormone replacement.
Conclusions
VDs, including NSVT, Tdp, and VT, are rare and potentially lethal in hypothyroidism. Our case demonstrates important challenges in the management of severe hypothyroidism. Here, VDs are often refractory to treatment with drugs and electrical means. The choice(s) of anti-arrhthymics requires careful consideration and can be difficult before thyroid function tests are known. Amiodarone use should be cautioned as it is associated with thyroid dysfunction and QT interval prolongation.
There is no literature to guide thyroid hormone replacement in this disease. Aggressive replacement is associated with adverse cardiovascular effects. Our case showed a fine balance between the risk of rapid thyroid hormone replacement and the urgency to terminate VDs. Its administration should be carefully monitored amidst bridging strategies like electrical cardioversion and OP to manage life-threatening VDs.
Collapse
|
25
|
Wilde AAM, Amin AS, Postema PG. Diagnosis, management and therapeutic strategies for congenital long QT syndrome. Heart 2022; 108:332-338. [PMID: 34039680 PMCID: PMC8862104 DOI: 10.1136/heartjnl-2020-318259] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Congenital long QT syndrome (LQTS) is characterised by heart rate corrected QT interval prolongation and life-threatening arrhythmias, leading to syncope and sudden death. Variations in genes encoding for cardiac ion channels, accessory ion channel subunits or proteins modulating the function of the ion channel have been identified as disease-causing mutations in up to 75% of all LQTS cases. Based on the underlying genetic defect, LQTS has been subdivided into different subtypes. Growing insights into the genetic background and pathophysiology of LQTS has led to the identification of genotype-phenotype relationships for the most common genetic subtypes, the recognition of genetic and non-genetic modifiers of phenotype, optimisation of risk stratification algorithms and the discovery of gene-specific therapies in LQTS. Nevertheless, despite these great advancements in the LQTS field, large gaps in knowledge still exist. For example, up to 25% of LQTS cases still remain genotype elusive, which hampers proper identification of family members at risk, and it is still largely unknown what determines the large variability in disease severity, where even within one family an identical mutation causes malignant arrhythmias in some carriers, while in other carriers, the disease is clinically silent. In this review, we summarise the current evidence available on the diagnosis, clinical management and therapeutic strategies in LQTS. We also discuss new scientific developments and areas of research, which are expected to increase our understanding of the complex genetic architecture in genotype-negative patients, lead to improved risk stratification in asymptomatic mutation carriers and more targeted (gene-specific and even mutation-specific) therapies.
Collapse
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Ahmad S Amin
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Pieter G Postema
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Luo C, Duan Z, Jiang Y, Liu P, Yan Y, Han D. Prevalence and Risk Factors of QTc Prolongation During Pregnancy. Front Cardiovasc Med 2022; 8:819901. [PMID: 35141298 PMCID: PMC8818739 DOI: 10.3389/fcvm.2021.819901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Prolonged QT intervals have been observed in pregnant women, which predispose them to a higher risk of potentially lethal ventricular arrhythmias. This study was designed to evaluate the prevalence of QTc prolongation in Chinese hospitalized parturient women with single and twin pregnancies, and to explore potential risk factors associated with QTc prolongation. Methods This retrospective study included 1,218 patients from a large Chinese population between January 2014 and October 2020. Data from parturient women with single and twin pregnancies without pre-pregnancy cardiac diseases were collected. QTc was corrected by the Fridericia formula [QTc = QT/RR(1/3)], and QTc ≥ 460 ms for females was defined as prolonged QTc, QTc ≥ 500 ms was defined as severely prolonged QTc. The prevalence and common risk factors of QTc prolongation during pregnancy were analyzed in this cohort. Uni- and multivariable logistic regression analysis were performed to identify clinical parameters associated with QTc prolongation in this population. Results The prevalence of QTc prolongation was 48.19% among this population, 10.56% in single pregnancy, 89.44% in twin pregnancies. The prevalence of severely prolonged QTc was 23.48% among the total cohort, 0.49% in single pregnancy, and 46.47% in twin pregnancies. The mean QTc interval was significantly longer in twin pregnancies than in single pregnancy (498.65 ± 38.24 vs. 424.96 ± 27.67 ms, P < 0.001). Systolic blood pressure, diastolic blood pressure, total cholesterol, serum uric acid, gestational hypertension and twin pregnancies were associated with QTc prolongation in parturient women. Conclusion This is the first study to assess the prevalence and risk factors of QTc prolongation between single and twin pregnancies. QTc prolongation is more prevalent, and QTc intervals are significantly longer in twin pregnancies as compared to single pregnancy.
Collapse
Affiliation(s)
- Chaodi Luo
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenzhen Duan
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Liu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Yang Yan
| | - Dan Han
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Dan Han
| |
Collapse
|
27
|
Abstract
Proper management of patients affected by genetic disorders causing life-threatening arrhythmias is important for several reasons, including even societal ones, given the predominantly young age of those affected. Incorrect management often has dire consequences, ranging from unnecessary psychologic damage for the patients whose life becomes too limited by the fear of sudden death to equally avoidable tragedies when the entire armamentarium of effective therapies is not fully utilized. In this review, we focus primarily on long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) and deal specifically with the clinical impact of the most commonly used cardiac sympathetic denervation (CSD), namely left cardiac sympathetic denervation (LCSD). The two of us have used LCSD in the management of our patients with either LQTS or CPVT for a very long time and have been involved in ∼500 such interventions. It is on the basis of this personal and direct experience that we wish to share our views with clinical cardiologists and electrophysiologists, adult and paediatric, and with genetic cardiologists. We will begin by reviewing the history and rationale underlying sympathetic denervation therapy and will continue with a disease-specific intensification of therapy, and then with a discussion on how the impressive efficacy of LCSD should translate into guideline-directed therapy in both current and future guidelines, in order to upgrade the quality of care in the era of precision medicine.
Collapse
Affiliation(s)
- Peter J. Schwartz
- Corresponding authors. Tel: +39 02619113408, Fax: +39 02619113411, Emails: , (P.J.S.); Tel: +1 507 284 0101, , Twitter: @MJAckermanMDPhD (M.J.A.)
| | - Michael J. Ackerman
- Corresponding authors. Tel: +39 02619113408, Fax: +39 02619113411, Emails: , (P.J.S.); Tel: +1 507 284 0101, , Twitter: @MJAckermanMDPhD (M.J.A.)
| |
Collapse
|
28
|
Chu AF, Rajagopal G, Sarkar S. The missing link: Unlocking the power of cardiac rhythm monitoring device based QT interval detection. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 45:401-409. [PMID: 34964507 PMCID: PMC9414343 DOI: 10.1111/pace.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022]
Abstract
Background The QT interval is of high clinical value as QT prolongation can lead to Torsades de Pointes (TdP) and sudden cardiac death. Insertable cardiac monitors (ICMs) have the capability of detecting both absolute and relative changes in QT interval. In order to determine feasibility for long‐term ICM based QT detection, we developed and validated an algorithm for continuous long‐term QT monitoring in patients with ICM. Methods The QT detection algorithm, intended for use in ICMs, is designed to detect T‐waves and determine the beat‐to‐beat QT and QTc intervals. The algorithm was developed and validated using real‐world ICM data. The performance of the algorithm was evaluated by comparing the algorithm detected QT interval with the manually annotated QT interval using Pearson's correlation coefficient and Bland Altman plot. Results The QT detection algorithm was developed using 144 ICM ECG episodes from 46 patients and obtained a Pearson's coefficient of 0.89. The validation data set consisted of 136 ICM recorded ECG segments from 76 patients with unexplained syncope and 104 ICM recorded nightly ECG segments from 10 patients with diabetes and Long QT syndrome. The QT estimated by the algorithm was highly correlated with the truth data with a Pearson's coefficient of 0.93 (p < .001), with the mean difference between annotated and algorithm computed QT intervals of −7 ms. Conclusions Long‐term monitoring of QT intervals using ICM is feasible. Proof of concept development and validation of an ICM QT algorithm reveals a high degree of accuracy between algorithm and manually derived QT intervals.
Collapse
Affiliation(s)
- Antony F Chu
- Warren Alpert School of Medicine, Brown University, Rhode Island Hospital, 593 Eddy St, APC Building, Division of Cardiology, Providence, RI, 02903, USA
| | - Gautham Rajagopal
- Medtronic Inc, 8200 Coral Sea St. Mounds View, Mounds View, MN, 55112, USA
| | - Shantanu Sarkar
- Medtronic Inc, 8200 Coral Sea St. Mounds View, Mounds View, MN, 55112, USA
| |
Collapse
|
29
|
Lazzerini PE, Cantara S, Bertolozzi I, Accioli R, Salvini V, Cartocci A, D'Errico A, Sestini F, Bisogno S, Cevenini G, Capecchi M, Laghi-Pasini F, Castagna MG, Acampa M, Boutjdir M, Capecchi PL. Transient Hypogonadism Is Associated With Heart Rate-Corrected QT Prolongation and Torsades de Pointes Risk During Active Systemic Inflammation in Men. J Am Heart Assoc 2021; 11:e023371. [PMID: 34935398 PMCID: PMC9075210 DOI: 10.1161/jaha.121.023371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Systemic inflammation and male hypogonadism are 2 increasingly recognized “nonconventional” risk factors for long‐QT syndrome and torsades de pointes (TdP). Specifically, inflammatory cytokines prolong, while testosterone shortens the heart rate–corrected QT interval (QTc) via direct electrophysiological effects on cardiomyocytes. Moreover, several studies demonstrated important interplays between inflammation and reduced gonad function in men. We hypothesized that, during inflammatory activation in men, testosterone levels decrease and that this enhances TdP risk by contributing to the overall prolonging effect of inflammation on QTc. Methods and Results We investigated (1) the levels of sex hormones and their relationship with inflammatory markers and QTc in male patients with different types of inflammatory diseases, during active phase and recovery; and (2) the association between inflammatory markers and sex hormones in a cohort of male patients who developed extreme QTc prolongation and TdP, consecutively collected over 10 years. In men with active inflammatory diseases, testosterone levels were significantly reduced, but promptly normalized in association with the decrease in C‐reactive protein and interleukin‐6 levels. Reduction of testosterone levels, which also inversely correlated with 17‐β estradiol over time, significantly contributed to inflammation‐induced QTc prolongation. In men with TdP, both active systemic inflammation and hypogonadism were frequently present, with significant correlations between C‐reactive protein, testosterone, and 17‐β estradiol levels; in these patients, increased C‐reactive protein and reduced testosterone were associated with a worse short‐term outcome of the arrhythmia. Conclusions During systemic inflammatory activation, interleukin‐6 elevation is associated with reduced testosterone levels in males, possibly deriving from an enhanced androgen‐to‐estrogen conversion. While transient, inflammatory hypotestosteronemia is significantly associated with an increased long‐QT syndrome/TdP risk in men.
Collapse
Affiliation(s)
| | - Silvia Cantara
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Iacopo Bertolozzi
- Cardiology Intensive Therapy Unit Department of Internal Medicine Nuovo Ospedale San Giovanni di Dio Florence Italy
| | - Riccardo Accioli
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Viola Salvini
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | | | - Antonio D'Errico
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Fausta Sestini
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Stefania Bisogno
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | | | - Matteo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences University of Siena Italy
| | | | | | - Mohamed Boutjdir
- VA New York Harbor Healthcare SystemSUNY Downstate Health Sciences University New York NY.,NYU School of Medicine New York NY
| | | |
Collapse
|
30
|
Abstract
The use of artificial intelligence methods in drug safety began in the early 2000s with applications such as predicting bacterial mutagenicity and hERG inhibition. The field has been endlessly expanding ever since and the models have become more complex. These approaches are now integrated into molecule risk assessment processes along with in vitro and in vivo methods. Today, artificial intelligence can be used in every phase of drug discovery and development, from profiling chemical libraries in early discovery, to predicting off-target effects in the mid-discovery phase, to assessing potential mutagenic impurities in development and degradants as part of life cycle management. This chapter provides an overview of artificial intelligence in drug safety and describes its application throughout the entire discovery and development process.
Collapse
|
31
|
Rosso R, Hochstadt A, Viskin D, Chorin E, Schwartz AL, Tovia-Brodie O, Laish-Farkash A, Havakuk O, Gepstein L, Banai S, Viskin S. Polymorphic ventricular tachycardia, ischaemic ventricular fibrillation, and torsade de pointes: importance of the QT and the coupling interval in the differential diagnosis. Eur Heart J 2021; 42:3965-3975. [PMID: 33693589 DOI: 10.1093/eurheartj/ehab138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS Distinctive types of polymorphic ventricular tachycardia (VT) respond differently to different forms of therapy. We therefore performed the present study to define the electrocardiographic characteristics of different forms of polymorphic VT. METHODS AND RESULTS We studied 190 patients for whom the onset of 305 polymorphic VT events was available. The study group included 87 patients with coronary artery disease who had spontaneous polymorphic VT triggered by short-coupled extrasystoles in the absence of myocardial ischaemia. This group included 32 patients who had a long QT interval but nevertheless had their polymorphic VT triggered by ectopic beats with short coupling interval, a subcategory termed 'pseudo-torsade de pointes] (TdP). For comparison, we included 50 patients who had ventricular fibrillation (VF) during acute myocardial infarction ('ischaemic VF' group) and 53 patients with drug-induced TdP ('true TdP' group). The QT of patients with pseudo-TdP was (by definition) longer than that of patients with polymorphic VT and normal QT (QTc 491.4 ± 25.2 ms vs. 447.3 ± 55.6 ms, P < 0.001). However, their QT was significantly shorter than that of patients with true TdP (QTc 564.6 ± 75.6 ms, P < 0.001). Importantly, the coupling interval of the ectopic beat triggering the arrhythmia was just as short during pseudo-TdP as during polymorphic VT with normal QT (359.1 ± 38.1 ms vs. 356.6 ± 39.4 ms, P = 0.467) but was much shorter than during true TdP (581.2 ± 95.3 ms, P < 0.001). CONCLUSIONS The coupling interval helps discriminate between polymorphic VT that occurs despite a long QT interval (pseudo-TdP) and polymorphic arrhythmias striking because of a long QT (true TdP).
Collapse
Affiliation(s)
- Raphael Rosso
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Aviram Hochstadt
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Dana Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Ehud Chorin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Arie Lorin Schwartz
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Oholi Tovia-Brodie
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Avishag Laish-Farkash
- Department of Cardiology, Assuta Ashdod University Hospital, Ha-Refu'a St 7, Ashdod 7747629, Israel
| | - Ofer Havakuk
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Lior Gepstein
- Department of Cardiology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion-Israel institute of Technology, HaAliya HaShniya St 8, Haifa 3109601, Israel
| | - Shmuel Banai
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| | - Sami Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Weizmann St 6, Tel Aviv-Yafo 6423906, Israel
| |
Collapse
|
32
|
Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Anti-Ro/SSA Antibodies and the Autoimmune Long-QT Syndrome. Front Med (Lausanne) 2021; 8:730161. [PMID: 34552948 PMCID: PMC8450397 DOI: 10.3389/fmed.2021.730161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Autoimmunity is increasingly recognized as a novel pathogenic mechanism for cardiac arrhythmias. Several arrhythmogenic autoantibodies have been identified, cross-reacting with different types of surface proteins critically involved in the cardiomyocyte electrophysiology, primarily ion channels (autoimmune cardiac channelopathies). Specifically, some of these autoantibodies can prolong the action potential duration leading to acquired long-QT syndrome (LQTS), a condition known to increase the risk of life-threatening ventricular arrhythmias, particularly Torsades de Pointes (TdP). The most investigated form of autoimmune LQTS is associated with the presence of circulating anti-Ro/SSA-antibodies, frequently found in patients with autoimmune diseases (AD), but also in a significant proportion of apparently healthy subjects of the general population. Accumulating evidence indicates that anti-Ro/SSA-antibodies can markedly delay the ventricular repolarization via a direct inhibitory cross-reaction with the extracellular pore region of the human-ether-a-go-go-related (hERG) potassium channel, resulting in a higher propensity for anti-Ro/SSA-positive subjects to develop LQTS and ventricular arrhythmias/TdP. Recent population data demonstrate that the risk of LQTS in subjects with circulating anti-Ro/SSA antibodies is significantly increased independent of a history of overt AD, intriguingly suggesting that these autoantibodies may silently contribute to a number of cases of ventricular arrhythmias and cardiac arrest in the general population. In this review, we highlight the current knowledge in this topic providing complementary basic, clinical and population health perspectives.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Veterans Affairs New York Harbor Healthcare System, State University of New York Downstate Medical Center, New York, NY, United States.,New York University School of Medicine, New York, NY, United States
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Sacilotto L, Olivetti NQS, Pisani CF, Wu TC, Hajjar LA, Melo SLD, Bueno SCP, Rivarola EWR, Chokr MO, Hardy CA, Hachul DT, Darrieux FCDC, Scanavacca MI. Peculiar Aspects of Patients with Inherited Arrhythmias during the COVID-19 Pandemic. Arq Bras Cardiol 2021; 117:394-403. [PMID: 34495239 PMCID: PMC8395786 DOI: 10.36660/abc.20200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022] Open
Abstract
Desde dezembro de 2019, observamos o rápido avanço da síndrome respiratória aguda grave causada pelo coronavírus 2019 (SARS-CoV-2). O impacto da evolução clínica de uma infecção respiratória é pouco conhecido em pacientes portadores de arritmias hereditárias, devido à baixa prevalência dessas doenças. Os pacientes que apresentam quadros infecciosos podem exacerbar arritmias primárias ocultas ou bem controladas, por diversos fatores, tais como febre, distúrbios eletrolíticos, interações medicamentosas, estresse adrenérgico e, eventualmente, o próprio dano miocárdico do paciente séptico. O objetivo desta revisão é destacar os principais desafios que podemos encontrar durante a pandemia pela Covid 19, especificamente nos pacientes com arritmias hereditárias, com destaque para a síndrome do QT longo congênito (SQTL), a síndrome de Brugada (SBr), a taquicardia ventricular polimórfica catecolaminérgica (TVPC) e a cardiomiopatia arritmogênica do ventrículo direito.
Collapse
Affiliation(s)
- Luciana Sacilotto
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | | | - Cristiano Faria Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Tan Chen Wu
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Ludhmila Abrahão Hajjar
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Sissy Lara de Melo
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Sávia Christina Pereira Bueno
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | | | - Muhieddine Omar Chokr
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Carina Abigail Hardy
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Denise Tessariol Hachul
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | | | - Mauricio Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| |
Collapse
|
34
|
Viskin S, Chorin E, Viskin D, Hochstadt A, Schwartz AL, Rosso R. Polymorphic Ventricular Tachycardia: Terminology, Mechanism, Diagnosis, and Emergency Therapy. Circulation 2021; 144:823-839. [PMID: 34491774 DOI: 10.1161/circulationaha.121.055783] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymorphic ventricular tachyarrhythmias are highly lethal arrhythmias. Several types of polymorphic ventricular tachycardia have similar electrocardiographic characteristics but have different modes of therapy. In fact, medications considered the treatment of choice for one form of polymorphic ventricular tachycardia, are contraindicated for the other. Yet confusion about terminology, and thus diagnosis and therapy, continues. We present an in-depth review of the different forms of polymorphic ventricular tachycardia and propose a practical step-by-step approach for distinguishing these malignant arrhythmias.
Collapse
Affiliation(s)
- Sami Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Ehud Chorin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Dana Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Aviram Hochstadt
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Arie Lorin Schwartz
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Raphael Rosso
- Department of Cardiology, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
35
|
van der Werf C, Lambiase PD. Initiation and management of polymorphic ventricular tachycardia: history gone full circle. Eur Heart J 2021; 42:3976-3978. [PMID: 34378024 DOI: 10.1093/eurheartj/ehab428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christian van der Werf
- Amsterdam UMC, University of Amsterdam, Heart Centre; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Pier D Lambiase
- Institute of Cardiovascular Science & Barts Heart Centre, University College London, London, UK
| |
Collapse
|
36
|
Maury P, Delasnerie H, Beneyto M, Rollin A. Autonomic cardiac innervation: impact on the evolution of arrhythmias in inherited cardiac arrhythmia syndromes. Herzschrittmacherther Elektrophysiol 2021; 32:308-314. [PMID: 34185133 DOI: 10.1007/s00399-021-00774-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
The autonomic nervous system (ANS) is an essential component of arrhythmogenicity, especially in the absence of structural heart disease and channelopathy. In this article, the authors review the role and characteristics of ANS in various channelopathies. Some of these, such as most long QT syndromes and catecholaminergic polymorphic ventricular tachycardia, are highly dependent on sympathetic activation, while parasympathetic tone is an important factor for arrhythmias in other channelopathies such as Brugada syndrome or early repolarisation syndrome. Recent advances highlighting the subtle role of ANS in channelopathies are presented here, demonstrating that all is far from being so simple and straightforward and revealing some paradoxical behaviours of channelopathies in relation to discrete ANS imbalance.
Collapse
Affiliation(s)
- Philippe Maury
- Department of Cardiology, University Hospital Rangueil, Toulouse, France. .,I2MC, INSERM UMR 1297, Toulouse, France.
| | - Hubert Delasnerie
- Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Maxime Beneyto
- Department of Cardiology, University Hospital Rangueil, Toulouse, France
| | - Anne Rollin
- Department of Cardiology, University Hospital Rangueil, Toulouse, France
| |
Collapse
|
37
|
Tieu A, Akar FG. 'Social distancing' of the neuronal nitric oxide synthase from its adaptor protein causes arrhythmogenic trigger-substrate interactions in long QT syndrome. Cardiovasc Res 2021; 117:338-340. [PMID: 32589704 DOI: 10.1093/cvr/cvaa179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrew Tieu
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fadi G Akar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale New Haven Hospital, New Haven, CT, USA.,Section of Cardiovascular Medicine, Cardiovascular Research Center (Y-CVRC), Yale University, New Haven, CT, USA
| |
Collapse
|
38
|
Arvidsson McShane S, Ahlberg E, Noeske T, Spjuth O. Machine Learning Strategies When Transitioning between Biological Assays. J Chem Inf Model 2021; 61:3722-3733. [PMID: 34152755 PMCID: PMC8317157 DOI: 10.1021/acs.jcim.1c00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Machine learning is widely used in drug development to predict activity in biological assays based on chemical structure. However, the process of transitioning from one experimental setup to another for the same biological endpoint has not been extensively studied. In a retrospective study, we here explore different modeling strategies of how to combine data from the old and new assays when training conformal prediction models using data from hERG and NaV assays. We suggest to continuously monitor the validity and efficiency of models as more data is accumulated from the new assay and select a modeling strategy based on these metrics. In order to maximize the utility of data from the old assay, we propose a strategy that augments the proper training set of an inductive conformal predictor by adding data from the old assay but only having data from the new assay in the calibration set, which results in valid (well-calibrated) models with improved efficiency compared to other strategies. We study the results for varying sizes of new and old assays, allowing for discussion of different practical scenarios. We also conclude that our proposed assay transition strategy is more beneficial, and the value of data from the new assay is higher, for the harder case of regression compared to classification problems.
Collapse
Affiliation(s)
- Staffan Arvidsson McShane
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden
| | - Ernst Ahlberg
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden.,Stena Line Scandinavia AB, AI & Data, 405 19 Gothenburg, Sweden.,Predictive Compound ADME & Safety, Drug Safety & Metabolism, AstraZeneca IMED Biotech Unit, 431 50 Gothenburg, Sweden
| | - Tobias Noeske
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
39
|
Zhan G, Wang F, Ding YQ, Li XH, Li YX, Zhao ZR, Li JX, Liu Y, Zhao X, Yan CC, Li BX. Rutaecarpine targets hERG channels and participates in regulating electrophysiological properties leading to ventricular arrhythmia. J Cell Mol Med 2021; 25:4938-4949. [PMID: 33939251 PMCID: PMC8178274 DOI: 10.1111/jcmm.16292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/11/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023] Open
Abstract
Drug-mediated or medical condition-mediated disruption of hERG function accounts for the main cause of acquired long-QT syndrome (acLQTs), which predisposes affected individuals to ventricular arrhythmias (VA) and sudden death. Many Chinese herbal medicines, especially alkaloids, have risks of arrhythmia in clinical application. The characterized mechanisms behind this adverse effect are frequently associated with inhibition of cardiac hERG channels. The present study aimed to assess the potent effect of Rutaecarpine (Rut) on hERG channels. hERG-HEK293 cell was applied for evaluating the effect of Rut on hERG channels and the underlying mechanism. hERG current (IhERG ) was measured by patch-clamp technique. Protein levels were analysed by Western blot, and the phosphorylation of Sp1 was determined by immunoprecipitation. Optical mapping and programmed electrical stimulation were used to evaluate cardiac electrophysiological activities, such as APD, QT/QTc, occurrence of arrhythmia, phase singularities (PSs), and dominant frequency (DF). Our results demonstrated that Rut reduced the IhERG by binding to F656 and Y652 amino acid residues of hERG channel instantaneously, subsequently accelerating the channel inactivation, and being trapped in the channel. The level of hERG channels was reduced by incubating with Rut for 24 hours, and Sp1 in nucleus was inhibited simultaneously. Mechanismly, Rut reduced threonine (Thr)/ tyrosine (Tyr) phosphorylation of Sp1 through PI3K/Akt pathway to regulate hERG channels expression. Cell-based model unables to fully reveal the pathological process of arrhythmia. In vivo study, we found that Rut prolonged QT/QTc intervals and increased induction rate of ventricular fibrillation (VF) in guinea pig heart after being dosed Rut for 2 weeks. The critical reasons led to increased incidence of arrhythmias eventually were prolonged APD90 and APD50 and the increase of DF, numbers of PSs, incidence of early after-depolarizations (EADs). Collectively, the results of this study suggest that Rut could reduce the IhERG by binding to hERG channels through F656 and Y652 instantaneously. While, the PI3K/Akt/Sp1 axis may play an essential role in the regulation of hERG channels, from the perspective of the long-term effects of Rut (incubating for 24 hours). Importantly, the changes of electrophysiological properties by Rut were the main cause of VA.
Collapse
Affiliation(s)
- Ge Zhan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yun-Qi Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiang-Hua Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yue-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zheng-Rong Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Cai-Chuan Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bao-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Affiliation(s)
- Gregory Burkman
- Penn State Milton S. Hershey Medical Center, Heart and Vascular Institute, Hershey, Pennsylvania
| | - Michelle Saltsburg
- Penn State Milton S. Hershey Medical Center, Heart and Vascular Institute, Hershey, Pennsylvania
| | - Melvin Buck
- Penn State Milton S. Hershey Medical Center, Heart and Vascular Institute, Hershey, Pennsylvania
| | - Soraya Samii
- Penn State Milton S. Hershey Medical Center, Heart and Vascular Institute, Hershey, Pennsylvania
| |
Collapse
|
41
|
McCoy MD, Hamre J, Klimov DK, Jafri MS. Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations. Biophys J 2020; 120:189-204. [PMID: 33333034 DOI: 10.1016/j.bpj.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.
Collapse
Affiliation(s)
- Matthew D McCoy
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington DC; School of Systems Biology, George Mason University, Manassas, Virginia.
| | - John Hamre
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - M Saleet Jafri
- School of Systems Biology, George Mason University, Manassas, Virginia; Krasnow Institute for Advanced Study, Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, Virginia.
| |
Collapse
|
42
|
Wan H, Selvaggio G, Pearlstein RA. Toward in vivo-relevant hERG safety assessment and mitigation strategies based on relationships between non-equilibrium blocker binding, three-dimensional channel-blocker interactions, dynamic occupancy, dynamic exposure, and cellular arrhythmia. PLoS One 2020; 15:e0234946. [PMID: 33147278 PMCID: PMC7641409 DOI: 10.1371/journal.pone.0234946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022] Open
Abstract
The human ether-a-go-go-related voltage-gated cardiac ion channel (commonly known as hERG) conducts the rapid outward repolarizing potassium current in cardiomyocytes (IKr). Inadvertent blockade of this channel by drug-like molecules represents a key challenge in pharmaceutical R&D due to frequent overlap between the structure-activity relationships of hERG and many primary targets. Building on our previous work, together with recent cryo-EM structures of hERG, we set about to better understand the energetic and structural basis of promiscuous blocker-hERG binding in the context of Biodynamics theory. We propose a two-step blocker binding process consisting of: The initial capture step: diffusion of a single fully solvated blocker copy into a large cavity lined by the intra-cellular cyclic nucleotide binding homology domain (CNBHD). Occupation of this cavity is a necessary but insufficient condition for ion current disruption.The IKr disruption step: translocation of the captured blocker along the channel axis, such that: The head group, consisting of a quasi-rod-shaped moiety, projects into the open pore, accompanied by partial de-solvation of the binding interface.One tail moiety packs along a kink between the S6 helix and proximal C-linker helix adjacent to the intra-cellular entrance of the pore, likewise accompanied by mutual de-solvation of the binding interface (noting that the association barrier is comprised largely of the total head + tail group de-solvation cost).Blockers containing a highly planar moiety that projects into a putative constriction zone within the closed channel become trapped upon closing, as do blockers terminating prior to this region.A single captured blocker copy may conceivably associate and dissociate to/from the pore many times before exiting the CNBHD cavity. Lastly, we highlight possible flaws in the current hERG safety index (SI), and propose an alternate in vivo-relevant strategy factoring in: Benefit/risk.The predicted arrhythmogenic fractional hERG occupancy (based on action potential (AP) simulations of the undiseased human ventricular cardiomyocyte).Alteration of the safety threshold due to underlying disease.Risk of exposure escalation toward the predicted arrhythmic limit due to patient-to-patient pharmacokinetic (PK) variability, drug-drug interactions, overdose, and use for off-label indications in which the hERG safety parameters may differ from their on-label counterparts.
Collapse
Affiliation(s)
- Hongbin Wan
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Gianluca Selvaggio
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Robert A. Pearlstein
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| |
Collapse
|
43
|
Malone K, Hancox JC. QT interval prolongation and Torsades de Pointes with donepezil, rivastigmine and galantamine. Ther Adv Drug Saf 2020; 11:2042098620942416. [PMID: 32874532 PMCID: PMC7436781 DOI: 10.1177/2042098620942416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/19/2020] [Indexed: 01/08/2023] Open
Abstract
Background Acetylcholinesterase inhibitors (AChEis) including donepezil, galantamine and rivastigmine are used to treat Alzheimer's disease (AD). This study aimed to evaluate evidence from the case report literature for an association between these agents and risk of QT interval prolongation and Torsades de Pointes (TdP) arrhythmia. Methods Published literature was mined with predetermined MeSH terms for each of donepezil, galantamine and rivastigmine, to identify cases of QT interval prolongation and TdP. Case reports were analysed using causality scales and a QT interval nomogram. Results A total of 13 case reports were found (10 for donepezil, 2 for galantamine and 1 for rivastigmine) with rate corrected QT interval (QTc) prolongation. Five cases with donepezil exhibited TdP. TdP was not reported in the cases with galantamine and rivastigmine. The use of a QT heart rate nomogram highlighted risk with donepezil compared with the other two drugs and the application of the Naranjo causality scale suggested probable or possible causation for all donepezil cases. All patients had at least two other risk factors for TdP, including modifiable risk factors such as electrolyte disturbances, bradycardia, co-administration of QT prolonging drugs. A number of recent cases involved recent changes in medication. Conclusion Our evaluation of the case report literature suggests that there is evidence for a causal association between donepezil and QTc/TdP risk. Attention to risk factors for QTc prolongation/TdP should be exercised when prescribing donepezil and modifiable risk factors corrected. Owing to the low number of cases with galantamine and rivastigmine, further work is needed to establish whether these drugs may be more suitable than donepezil for patients with other risk factors for TdP.
Collapse
Affiliation(s)
- Katie Malone
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
44
|
Szendrey J, Lamothe SM, Vanner S, Guo J, Yang T, Li W, Davis J, Joneja M, Baranchuk A, Zhang S. Anti-Ro52 antibody acts on the S5-pore linker of hERG to chronically reduce channel expression. Cardiovasc Res 2020; 115:1500-1511. [PMID: 30544220 DOI: 10.1093/cvr/cvy310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr). Malfunction of hERG/IKr is the primary cause of acquired long QT syndrome (LQTS), an electrical disorder of the heart that can cause arrhythmias and sudden death. Patients with autoimmune diseases display a high incidence of LQTS. While dysfunction of hERG channels induced by autoantibodies such as anti-Ro52 may play a role in this pathology, the underlying mechanisms are not well understood. Here, we investigated the acute and chronic effects of anti-Ro52 antibody on hERG channels stably expressed in human embryonic kidney (hERG-HEK) 293 cells as well as IKr in neonatal rat ventricular myocytes. METHODS AND RESULTS Using whole-cell patch clamp, western blot analyses, and immunocytochemistry, we found that a 12-h treatment of hERG-HEK cells with patients' sera containing anti-Ro52 autoantibody decreased the hERG current (IhERG) by 32% compared to cells treated with autoantibody-negative patients' sera. Commercial anti-Ro52 antibody at 100 µg/mL did not acutely block IhERG. Instead, a 12-h treatment with anti-Ro52 antibody at a concentration of 4 µg/mL significantly reduced mature hERG protein expression and IhERG. Specifically, anti-Ro52 antibody did not acutely block hERG current but chronically facilitated hERG endocytic degradation. The extracellular S5-pore linker of hERG, which forms the turret of the channel on the outside of the cell, is the target region for anti-Ro52-mediated hERG reduction since its replacement with the analogous region of EAG abolished the anti-Ro52 effect. In neonatal rat ventricular myocytes, 100 µg/mL anti-Ro52 antibody did not acutely block IKr, but a 12-h treatment of cells with 4 µg/mL anti-Ro52 antibody selectively reduced IKr and prolonged the action potential duration. CONCLUSIONS Our results indicate that anti-Ro52 antibody acts on the hERG S5-pore linker to chronically decrease hERG expression and current. These findings provide novel insights into hERG regulation and anti-Ro52 antibody-associated LQTS.
Collapse
Affiliation(s)
- John Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| | - Shawn M Lamothe
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| | - Stephanie Vanner
- Division of Rheumatology, Department of Medicine, Kingston General Hospital, Queen's University, Kingston, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| | - Jordan Davis
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| | - Mala Joneja
- Division of Rheumatology, Department of Medicine, Kingston General Hospital, Queen's University, Kingston, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Department of Medicine, Kingston General Hospital, Queen's University, Kingston, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Canada
| |
Collapse
|
45
|
Havakuk O, Schwartz AL, Rosso R, Viskin S. Editorial commentary: A question on proarrhythmic food: Is grapefruit "the forbidden fruit" for patients with long QT syndrome? Trends Cardiovasc Med 2020; 30:313-314. [PMID: 32513416 DOI: 10.1016/j.tcm.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ofer Havakuk
- Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Arie Lorin Schwartz
- Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Raphael Rosso
- Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Sami Viskin
- Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
46
|
Ruiz Diaz JC, Frenkel D, Aronow WS. The relationship between atypical antipsychotics drugs, QT interval prolongation, and torsades de pointes: implications for clinical use. Expert Opin Drug Saf 2020; 19:559-564. [PMID: 32189527 DOI: 10.1080/14740338.2020.1745184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Increased mortality has been observed in patients with mental health disorders. Specifically, exposure to antipsychotic medications conveys a greater than 2 fold risk of sudden death, thought to be mediated through effects on QT prolongation and risk of torsades de pointes.Areas covered: We review the association between antipsychotic drugs and sudden cardiac death, the physiologic basis for these associations, assessment of patients at risk, and strategies to minimize risk of sudden cardiac death.Expert opinion: Despite the prevalence of antipsychotic medication use for many decades, there remain considerable challenges in reducing the associated risk of sudden cardiac death. A structured algorithm that incorporates patient clinical factors and antipsychotic drug factors may improve risk assessment and reduce the risk of adverse cardiac events. Future advancements in genetics and artificial intelligence may allow for enhanced risk stratification and predicting response (efficacy and adverse effects) to therapy.
Collapse
Affiliation(s)
- Juan Carlos Ruiz Diaz
- Division of Cardiology, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Daniel Frenkel
- Division of Cardiology, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Wilbert S Aronow
- Division of Cardiology, Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| |
Collapse
|
47
|
AKAP5 anchors PKA to enhance regulation of the HERG channel. Int J Biochem Cell Biol 2020; 122:105741. [PMID: 32173522 DOI: 10.1016/j.biocel.2020.105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022]
Abstract
The activation of the β-adrenergic receptor (β-AR) regulates the human ether a-go-go-related gene (HERG) channel via protein kinase A (PKA), which in turn induces lethal arrhythmia in patients with long QT syndromes (LQTS). However, the role of A-kinase anchoring proteins (AKAPs) in PKA's regulation of the HERG channel and its molecular mechanism are not clear. Here, HEK293 cells were transfected with the HERG gene alone or co-transfected with HERG and AKAP5 using Lipofectamine 2000. Western blotting was performed to determine HERG protein expression, and immunofluorescence and immunoprecipitation were used to assess the binding and cellular colocalization of HERG, AKAP5, and PKA. The HEK293-HERG and HEK293-HERG + AKAP5 cells were treated with forskolin at different concentrations and different time. HERG protein expression significantly increased under all treatment conditions (P < 0.001). The level of HERG protein expression in HEK293-HERG + AKAP5 cells was higher than that observed in HEK293-HERG cells (P < 0.001). Immunofluorescence and immunoprecipitation indicated that HERG bound to PKA and AKAP5 and was colocalized at the cell membrane. The HERG channel protein, AKAP5, and PKA interacted with each other and appeared to form intracellular complexes. These results provide evidence for a novel mechanism which AKAP5 anchors PKA to up-regulate the HERG channel protein.
Collapse
|
48
|
Wu CC, Chang CS, Hsu CC, Wang CP, Tsai IT, Lu YC, Houng JY, Chang CC, Chung FM, Lee YJ, Hung WC. Elevated Plasma Adiponectin Levels Are Associated with Abnormal Corrected QT Interval in Patients with Stable Angina. Int Heart J 2020; 61:29-38. [PMID: 31956139 DOI: 10.1536/ihj.19-270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low-circulating levels of adiponectin (ADPN) are associated with obesity, diabetes mellitus, and coronary artery disease. On the contrary, some studies have demonstrated a link between relatively high levels of plasma ADPN and heart failure, atrial fibrillation, and adverse outcome. However, little is known about the relationship between ADPN level and prolonged QT interval. The aim of this study was to investigate the association between plasma ADPN levels and prolonged QT interval in patients with stable angina.In this retrospective study, because the diverse disease severity and condition of the study population may have affected the results, we chose individuals with stable angina. Plasma ADPN concentrations were measured using enzyme-linked immunosorbent assays. A 12-lead ECG recording was obtained from each patient.We enrolled 479 stable-angina patients. Patients with an abnormal corrected QT (QTc) interval had higher median plasma ADPN levels than those with normal QTc intervals. Age- and sex-adjusted ADPN levels were positively associated with heart rate, QTc interval, left ventricular mass index, and creatinine but negatively associated with left ventricular ejection fraction, waist circumference, current smoking, total cholesterol, triglycerides, low-density lipoprotein cholesterol, albumin, and estimated glomerular filtration rate. A multiple logistic regression analysis revealed ADPN as an independent association factor for abnormal QTc interval. Increasing concentrations of sex-specific ADPN were independently and significantly associated with abnormal QTc interval, even after full adjustment of known biomarkers.Our results indicate that ADPN may play a role in the pathogenesis of abnormal QTc interval in patients with stable angina.
Collapse
Affiliation(s)
- Cheng-Ching Wu
- Division of Cardiology, E-Da Hospital.,The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University.,Division of Cardiology, E-Da Cancer Hospital
| | - Chao-Sung Chang
- Division of Hematology and Oncology, E-Da Hospital.,School of Medicine, I-Shou University.,Division of Hematology and Oncology, Department of Internal Medicine, E-Da Cancer Hospital
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, E-Da Hospital.,Division of Gastroenterology and Hepatology, E-Da Dachang Hospital
| | - Chao-Ping Wang
- Division of Cardiology, E-Da Hospital.,School of Medicine, I-Shou University
| | - I-Ting Tsai
- School of Medicine, I-Shou University.,Department of Emergency, E-Da Hospital
| | - Yung-Chuan Lu
- School of Medicine, I-Shou University.,Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital
| | - Jer-Yiing Houng
- Department of Nutrition, Institute of Biotechnology and Chemical Engineering, I-Shou University
| | - Chi-Chang Chang
- School of Medicine, I-Shou University.,Department of Obstetrics & Gynecology, E-Da Hospital.,Department of Obstetrics & Gynecology, E-Da Dachang Hospital
| | | | | | - Wei-Chin Hung
- Division of Cardiology, E-Da Hospital.,The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University
| |
Collapse
|
49
|
Dickson CJ, Velez-Vega C, Duca JS. Revealing Molecular Determinants of hERG Blocker and Activator Binding. J Chem Inf Model 2020; 60:192-203. [PMID: 31880933 DOI: 10.1021/acs.jcim.9b00773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Kv11.1 potassium channel, encoded by the human ether-a-go-go-related gene (hERG), plays an essential role in the cardiac action potential. hERG blockade by small molecules can induce "torsade de pointes" arrhythmias and sudden death; as such, it is an important off-target to avoid during drug discovery. Recently, a cryo-EM structure of the open channel state of hERG was reported, opening the door to in silico docking analyses and interpretation of hERG structure-activity relationships, with a view to avoiding blocking activity. Despite this, docking directly to this cryo-EM structure has been reported to yield binding modes that are unable to explain known mutagenesis data. In this work, we use molecular dynamics simulations to sample a range of channel conformations and run ensemble docking campaigns at the known hERG binding site below the selectivity filter, composed of the central cavity and the four deep hydrophobic pockets. We identify a hERG conformational state allowing discrimination of blockers vs nonblockers from docking; furthermore, the binding pocket agrees with mutagenesis data, and blocker binding modes fit the hERG blocker pharmacophore. We then use the same protocol to identify a binding pocket in the hERG channel pore for hERG activators, again agreeing with the reported mutagenesis. Our approach may be useful in drug discovery campaigns to prioritize candidate compounds based on hERG liability via virtual docking screens.
Collapse
Affiliation(s)
- Callum J Dickson
- Computer-Aided Drug Discovery, Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jose S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry , Novartis Institutes for BioMedical Research , 181 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
50
|
Cardiac Syncope with Anoxic Seizure Activity. Case Rep Emerg Med 2020; 2020:6749382. [PMID: 31976092 PMCID: PMC6970508 DOI: 10.1155/2020/6749382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
This is a case report, which explores the presentation to the emergency department of a fit and well female with a known ventricular bigeminy. She presented with convulsive episodes. The working differential diagnosis was of possible cardiac syncope with anoxic seizure activity or neurogenically mediated arrhythmia secondary to subarachnoid haemorrhage. On further collateral history, the patient was on citalopram. The ECGs demonstrated PVCs of multiple morphologies that were transiently bidirectional, raising the possibility of catecholaminergic polymorphic ventricular tachycardia. The presentation of a young fit patient with syncope and seizure-like episodes should always raise concern for the admitting emergency medicine clinician of an underlying cardiac pathology.
Collapse
|