1
|
Cao J, Wang L. Mechanistic Study on the Optimization of Asphalt-Based Material Properties by Physicochemical Interaction and Synergistic Modification of Molecular Structure. Polymers (Basel) 2024; 16:2924. [PMID: 39458752 PMCID: PMC11510754 DOI: 10.3390/polym16202924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
In order to investigate the relationship between the molecular structure of fibers and the differences in physicochemical interactions between fibers and asphalt on the performance of fiber-modified asphalt, this paper chose two types of fibers with different chemical structures: straw fiber and polyester fiber. First, the differences in molecular interactions between the two fibers and asphalt were explored using molecular dynamics, then the differences in the adsorption capacity of the two fibers on asphalt components were tested by attenuated total reflection infrared spectroscopy experiments, and finally, the differences in the rheological properties of the two fiber-modified asphalts were tested by dynamic shear rheology and low-temperature creep experiments. The molecular dynamics simulation findings reveal that polyester fibers may intersperse into asphalt molecules and interact with them via structures such as aromatic rings, whereas straw fibers are merely adsorbed on the asphalt's surface. Straw fibers and asphalt exhibit hydrogen bonding, whereas polyester fibers and asphalt display van der Waals interactions. The results of attenuated total reflectance infrared spectroscopy indicated that polyester fiber absorbed asphalt components better than straw fiber. The rheological tests revealed that the polyester fiber had the highest complex shear modulus in the temperature range of 46-82 °C, and at 64 °C, the phase angle was 4.289° lower than that of the straw fiber-treated bitumen. Polyester fiber-modified asphalt had a 32.48%, 15.72%, and 6.09% lower creep modulus than straw fiber-modified asphalt at three low-temperature conditions: -6 °C, -12 °C, and -18 °C. It is clear that fibers with aromatic rings as a chemical structure outperform lignin-based fibers in terms of improving asphalt characteristics. The research findings can serve as a theoretical foundation for the selection of fibers to produce fiber-modified asphalt.
Collapse
Affiliation(s)
| | - Lifeng Wang
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Hou W, Teng R, Zhang A, An B, Xu M, Ma C, Pan G, Liu S, Li W. Preparation of Coir Cellulose Nanofibers by Peroxyformic Acid Method and Their Application in Reinforced PVA Composite Films. ACS OMEGA 2024; 9:38205-38216. [PMID: 39281941 PMCID: PMC11391556 DOI: 10.1021/acsomega.4c05759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
To increase the value of waste coconut shells and further broaden their use by biorefining, a milder and greener method to prepare cellulose nanofibers (CCNFs) was developed. The CCNFs were separated from coir fibers by using peroxyformic acid and alkali treatment in combination with high-power ultrasonication. The basic properties of the CCNFs were comprehensively evaluated using scanning and transmission electron microscopy, spectroscopy, diffraction, and thermogravimetric techniques. The results revealed that the developed preparation method provided CCNFs with typical nanocellulose sizes, structures, and properties. Nanocellulose-reinforced poly(vinyl acetate) (PVA) composite films were prepared using the CCNFs, and their mechanical properties, transmittance, crystallinity, and thermal stability were investigated. The elongation at break of the film with 8% CCNFs was 612%. The tensile strength of the films with 4 and 12% CCNFs was 41.3 MPa, which was higher than that of a PVA film (36 MPa). The transmittance and thermal stability of the PVA composite films were not appreciably affected by the CCNFs. The CCNFs show promise as a nanofiller for PVA-based composite films with favorable mechanical properties, crystallinity, and high transparency.
Collapse
Affiliation(s)
- Weishan Hou
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Rui Teng
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Aojia Zhang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Bang An
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingcong Xu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunhui Ma
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Gaofeng Pan
- Mudanjiang Hengfeng Paper Co., Ltd, Mudanjiang 157000, China
| | - Shouxin Liu
- Engineering Research Center of Advanced Wooden Materials of the Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Simović M, Banjanac K, Veljković M, Nikolić V, López-Revenga P, Montilla A, Moreno FJ, Bezbradica D. Sunflower Meal Valorization through Enzyme-Aided Fractionation and the Production of Emerging Prebiotics. Foods 2024; 13:2506. [PMID: 39200433 PMCID: PMC11353406 DOI: 10.3390/foods13162506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, there has been a burgeoning interest in harnessing the potential of biomass and industry byproducts for the development of novel products and materials. In particular, this study explored the efficient valorization of sunflower meal (SFM), an underutilized byproduct of the oil extraction industry, usually discarded or used as low-value animal feed through enzyme-aided fractionation, specifically targeting the extraction and conversion of its abundant carbohydrate component, xylan, into emerging prebiotic compounds-xylo-oligosaccharides (XOSs)-which are recognized as promotors of a healthy gut microbiome and overall human wellbeing. An enzymatic treatment using Alcalase® 2.4 L was implemented for facilitating the recovery of a highly pure hemicellulosic fraction (92.2% carbohydrates) rich in β-(1→4)-linked xylose residues with arabinose and glucuronic acid substitutions (DP-xylan). A further enzymatic treatment of this substrate, using ROHALASE® SEP-VISCO under optimized conditions (70 °C, pH 6, 0.005% v/v enzyme concentration), produced 52.3% of XOSs with a polymerization degree (DP) less than 20 after two hours. Further analyses demonstrated that the majority of the obtained product had a DP less than 6, predominantly consisting of di- and trisaccharides (XOS2 and XOS3) without the significant generation of xylose. These findings highlight the significant potential of SFM for the generation of valuable prebiotic compounds in a sustainable manner.
Collapse
Affiliation(s)
- Milica Simović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegieva 4, 11000 Belgrade, Serbia;
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy, Karnegieva 4, 11000 Belgrade, Serbia; (K.B.); (M.V.)
| | - Milica Veljković
- Innovation Center of Faculty of Technology and Metallurgy, Karnegieva 4, 11000 Belgrade, Serbia; (K.B.); (M.V.)
| | - Valentina Nikolić
- Department of Food Technology and Biochemistry, Maize Research Institute, Slobodana Bajića 1, 11000 Belgrade, Serbia;
| | - Paula López-Revenga
- Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (P.L.-R.); (A.M.); (F.J.M.)
| | - Antonia Montilla
- Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (P.L.-R.); (A.M.); (F.J.M.)
| | - Francisco Javier Moreno
- Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (P.L.-R.); (A.M.); (F.J.M.)
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegieva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Morozova O, Vasil’eva I, Shumakovich G, Khlupova M, Chertkov V, Shestakova A, Yaropolov A. Green Extraction of Reed Lignin: The Effect of the Deep Eutectic Solvent Composition on the UV-Shielding and Antioxidant Properties of Lignin. Int J Mol Sci 2024; 25:8277. [PMID: 39125847 PMCID: PMC11312954 DOI: 10.3390/ijms25158277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Lignin, the second most abundant natural polymer, is a by-product of the biorefinery and pulp and paper industries. This study was undertaken to evaluate the properties and estimate the prospects of using lignin as a by-product of the pretreatment of common reed straw (Phragmites australis) with deep eutectic solvents (DESs) of various compositions: choline chloride/oxalic acid (ChCl/OA), choline chloride/lactic acid (ChCl/LA), and choline chloride/monoethanol amine (ChCl/EA). The lignin samples, hereinafter referred to as Lig-OA, Lig-LA, and Lig-EA, were obtained as by-products after optimizing the conditions of reed straw pretreatment with DESs in order to improve the efficiency of subsequent enzymatic hydrolysis. The lignin was studied using gel penetration chromatography, UV-vis, ATR-FTIR, and 1H and 13C NMR spectroscopy; its antioxidant activity was assessed, and the UV-shielding properties of lignin/polyvinyl alcohol composite films were estimated. The DES composition had a significant impact on the structure and properties of the extracted lignin. The lignin's ability to scavenge ABTS+• and DPPH• radicals, as well as the efficiency of UV radiation shielding, decreased as follows: Lig-OA > Lig-LA > Lig-EA. The PVA/Lig-OA and PVA/Lig-LA films with a lignin content of 4% of the weight of PVA block UV radiation in the UVA range by 96% and 87%, respectively, and completely block UV radiation in the UVB range.
Collapse
Affiliation(s)
- Olga Morozova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia; (O.M.); (I.V.); (G.S.); (M.K.)
| | - Irina Vasil’eva
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia; (O.M.); (I.V.); (G.S.); (M.K.)
| | - Galina Shumakovich
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia; (O.M.); (I.V.); (G.S.); (M.K.)
| | - Maria Khlupova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia; (O.M.); (I.V.); (G.S.); (M.K.)
| | - Vyacheslav Chertkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Alla Shestakova
- State Research Institute of Chemistry and Technology of Organoelement Compounds, Shosse Entuziastov 38, 111123 Moscow, Russia;
| | - Alexander Yaropolov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071 Moscow, Russia; (O.M.); (I.V.); (G.S.); (M.K.)
| |
Collapse
|
5
|
Qu W, Niu B, Lv C, Liu J. A Review of Sisal Fiber-Reinforced Geopolymers: Preparation, Microstructure, and Mechanical Properties. Molecules 2024; 29:2401. [PMID: 38792261 PMCID: PMC11123993 DOI: 10.3390/molecules29102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The early strength of geopolymers (GPs) and their composites is higher, and the hardening speed is faster than that of ordinary cementitious materials. Due to their wide source of raw materials, low energy consumption in the production process, and lower emissions of pollutants, they are considered to have the most potential to replace ordinary Portland cement. However, similar to other inorganic materials, the GPs themselves have weak flexural and tensile strength and are sensitive to micro-cracks. Improving the toughness of GP materials can be achieved by adding an appropriate amount of fiber materials into the matrix. The use of discrete staple fibers shows great potential in improving the toughness of GPs. Sisal is a natural fiber that is reproducible and easy to obtain. Due to its good mechanical properties, low cost, and low carbon energy usage, sisal fiber (SF) is a GP composite reinforcement with potential development. In this paper, the research progress on the effect of SF on the properties of GP composites in recent decades is reviewed. It mainly includes the chemical composition and physical properties of SFs, the preparation technology of sisal-reinforced geopolymers (SFRGs), the microstructure analysis of the interface of SFs and the GP matrix, and the macroscopic mechanical properties of SFRGs. The properties of SFs make them have good bonding properties with the GP matrix. The addition of SFs can improve the flexural strength and tensile strength of GP composites, and SFRGs have good engineering application prospects.
Collapse
Affiliation(s)
- Wenbo Qu
- College of Architecture and Civil Engineering, Qiqihar University, Qiqihar 161006, China; (W.Q.); (B.N.)
| | - Bowen Niu
- College of Architecture and Civil Engineering, Qiqihar University, Qiqihar 161006, China; (W.Q.); (B.N.)
| | - Chun Lv
- College of Architecture and Civil Engineering, Qiqihar University, Qiqihar 161006, China; (W.Q.); (B.N.)
| | - Jie Liu
- College of Light-Industry and Textile Engineering, Qiqihar University, Qiqihar 161006, China
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| |
Collapse
|
6
|
Aparna, Kumar V, Nautiyal R. Isolation and chemical characterization of lignocellulosic fiber from Pueraria montana using Box-Behnken design for weed management. Int J Biol Macromol 2024; 268:131479. [PMID: 38608990 DOI: 10.1016/j.ijbiomac.2024.131479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
The huge demand for natural fibers necessitates the search for non-traditional bioresources including invasive species which are deteriorating the ecosystem and biodiversity. The study aims to utilize Pueraria montana weed for the extraction of lignocellulosic fiber using both traditional (water retting) and chemical extraction methods to determine the better extraction method. Chemically extracted fiber showed 17.09 g/tex bundle strength whereas water-extracted fiber showed 11.7 g/tex bundle strength. Therefore, chemical extraction method was chosen for fiber isolation by optimization of reaction conditions using Box Behnken Design. Based on the design, optimal conditions obtained were 1 % w/v NaOH, 0.75 % v/v H2O2, and 3 days retting time. Solid-state NMR illustrated the breakdown of hemicellulose linkages at 25.89 ppm. FTIR revealed the disappearance of C=O groups of hemicellulose at 1742 cm-1. TGA demonstrated thermal stability of chemically treated fiber up to 220 °C and activation energy of 60.122 KJ/mol. XRD evidenced that chemically extracted fiber has a crystallinity index of 71.1 % and a crystal size of 2 nm. Thus P. montana weed holds potential for the isolation of natural fiber as its chemical composition and properties are comparable to commercial lignocellulosic fibers. The study exemplifies the transformation of weed to a bioresource of natural fibers.
Collapse
Affiliation(s)
- Aparna
- Chemistry and Bioprospecting Division, Forest Research Institute, Dehradun, India; Institute of Green Economy, Gurugram 122002, India
| | - Vineet Kumar
- Chemistry and Bioprospecting Division, Forest Research Institute, Dehradun, India; Institute of Green Economy, Gurugram 122002, India.
| | - Raman Nautiyal
- Chemistry and Bioprospecting Division, Forest Research Institute, Dehradun, India; Institute of Green Economy, Gurugram 122002, India
| |
Collapse
|
7
|
Fang J, Zhang B, Fan Y, Liu M, Xu Q, Huang Y, Zhang H. Optimizing invasive plant biomass valorization: Deep eutectic solvents pre-treatment coupled with ZSM-5 catalyzed fast pyrolysis for superior bio-oil quality. BIORESOURCE TECHNOLOGY 2024; 400:130652. [PMID: 38575096 DOI: 10.1016/j.biortech.2024.130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/24/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The primary objective of this study is to explore the application of a deep eutectic solvent, synthesized from lactic acid and choline chloride, in combination with a pre-treatment involving ZSM-5 catalytic fast pyrolysis, aimed at upgrading the quality of bio-oil. Characterization results demonstrate a reduction in lignin content post-treatment, alongside a significant decrease in carboxyls and carbonyls, leading to an increase in the C/O ratio and noticeable enhancement in crystallinity. During catalytic fast pyrolysis experiments, the pre-treatment facilitates the production of oil fractions, achieving yields of 54.53% for total hydrocarbons and 39.99% for aromatics hydrocarbons under optimized conditions. These findings validate the positive influence of the deep eutectic solvent pre-treatment combined with ZSM-5 catalytic fast pyrolysis on the efficient production of bio-oil and high-value chemical derivatives. .
Collapse
Affiliation(s)
- Jie Fang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bo Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Yulong Fan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Minjia Liu
- School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Qing Xu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
8
|
Liu J, Wu L, Wang R, Xue X, Wang D, Liang J. Evaluation of biomass sources on the production of biofuels from lignocellulosic waste over zeolite catalysts. BIORESOURCE TECHNOLOGY 2024; 398:130510. [PMID: 38432545 DOI: 10.1016/j.biortech.2024.130510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Catalytic fast pyrolysis (CFP) is a promising method to convert biomass waste into sustainable bio-oils. However, the relationship gap between biomass characteristics and bio-oil quality has hindered the development of CFP technology. This study investigated the pyrolysis and CFP of ten biomass sources over zeolites, and showed that biomass sources and zeolites played important roles in bio-oil production. For noncatalytic trials, the bio-oil yield was positively related to holocellulose (R2 = 0.75) and volatiles content (R2 = 0.62) but negatively to ash content (R2 = -0.65). The bio-oil quality was dramatically improved after catalyst addition. For CFP over ZSM-5, hydrocarbons selectivity of bio-oils was increased by 1.6∼79.3 times, which was closely related to H/C ratio (R2 = 0.79). For ZSM-5@SBA-15 trials, the dependency of hydrocarbons selectivity on biomass characteristics was less clear than that in ZSM-5 counterparts, although undesirable PAHs were inhibited for most biomass sources. This study demonstrated the influence mechanism of biomass characteristics on bio-oil compositions.
Collapse
Affiliation(s)
- Jiaomei Liu
- School of Energy and Power Engineering, Beihang University, 102206, China
| | - Liu Wu
- School of Energy and Power Engineering, Beihang University, 102206, China
| | - Rong Wang
- Chunliang Oil Fields in Shengli, 256504, China
| | - Xiangfei Xue
- School of Energy and Power Engineering, Beihang University, 102206, China
| | - Dongyu Wang
- School of Energy and Power Engineering, Beihang University, 102206, China
| | - Jie Liang
- School of Energy and Power Engineering, Beihang University, 102206, China.
| |
Collapse
|
9
|
Liao H, Feng B, Ying W, Lian Z, Zhang J. Novel approach for corn straw biorefineries: Production of xylooligosaccharides, lignin and ethanol by nicotinic acid hydrolysis and pentanol pretreatment. BIORESOURCE TECHNOLOGY 2024; 395:130352. [PMID: 38272142 DOI: 10.1016/j.biortech.2024.130352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The productive separation and conversion of corn straw offers significant prospects for the economic viability of biorefineries centered on straw resources. In this work, a graded utilization method was proposed to produce xylo-oligosaccharides (XOS), ethanol and lignin from corn straw by nicotinic acid (NA) hydrolysis and water/pentanol pretreatment. A XOS yield of 52.6 % was achieved under optimized conditions of 100 mM NA, 170 °C and 30 min. The solid residue was directly treated with water/pentanol, achieving a lignin removal rate of 79.7 %, and the total XOS yield was improved to 62.6 %. The lignin recovered from pentanol had a high purity of 97.6 %, with high phenolic OH content. Simultaneous saccharification and fermentation of final residue resulted in an ethanol yield of 92.0 %, which yielded 55.3 g/L ethanol. Thus, NA hydrolysis and water/pentanol pretreatment provided an efficient, environmentally friendly approach to fractionate corn straw for the co-production of XOS, ethanol, and lignin.
Collapse
Affiliation(s)
- Hong Liao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Baojun Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
10
|
Dey P, Bhattacharjee S, Yadav DK, Hmar BZ, Gayen K, Bhowmick TK. Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. Int J Biol Macromol 2023; 253:127412. [PMID: 37844815 DOI: 10.1016/j.ijbiomac.2023.127412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The coating on fruits and vegetables increases the shelf-life by providing protection against their spoilage. The existing petroleum-based coating materials have considerable health threats. Edible coating materials prepared with the cellulose derivative extracted from the waste biomass could be a sustainable alternative and environment friendly process to increase the shelf-life periods of the post-harvest crops. Selection of suitable waste biomass and extraction of cellulose are the critical steps for the synthesis of cellulose-based edible film. Conversion of extracted cellulose into cellulosic macromolecular derivatives such as carboxy-methyl-cellulose (CMC) is vital for synthesizing edible coating formulation. Applications of sophisticated tools and methods for the characterization of the coated fruits would be helpful to determine the efficiency of the coating material. In this review, we focused on: i) criteria for the selection of suitable waste biomass for extraction of cellulose, ii) pretreatment and extraction process of cellulose from the different waste biomasses, iii) synthesis processes of CMC by using extracted cellulose, iv) characterizations of CMC as food coating materials, v) various formulation techniques for the synthesis of the CMC based food coating materials and vi) the parameters which are used to evaluate the shelf-life performance of different coated fruits.
Collapse
Affiliation(s)
- Puspita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Satyajit Bhattacharjee
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Dev Kumar Yadav
- DRDO-Defence Food Research Laboratory, Mysore 570 011, India
| | | | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| |
Collapse
|
11
|
Sun S, Wang Q, Wang X, Wu C, Zhang X, Bai J, Sun B. Dry torrefaction and continuous thermochemical conversion for upgrading agroforestry waste into eco-friendly energy carriers: Current progress and future prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167061. [PMID: 37714342 DOI: 10.1016/j.scitotenv.2023.167061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Agroforestry Waste (AW) is seen as a carbon neutral resource. However, the poor quality of AW reduced its potential application value. Even more unfortunately, chlorine in AW led to the formation of organic pollutants such as dioxins under higher temperatures. Alkali and alkaline earth metals (AAEMs) in ash may deepen the reaction degree. Co-pretreatment of dry torrefaction and de-ashing followed by thermochemical conversion is a promising technology, which can improve raw material quality, inhibit the release of organic pollutants and transform AW into eco-friendly energy carriers. In order to better understand the process, theoretical basis such as the structural characteristics, thermal properties and separation methods of structural components of AW are described in detail. In addition, dry torrefaction related reactors, process parameters, kinetic analysis models as well as the evaluation methods of torrefaction degree and environmental impact are systematically reviewed. The problem of ash accumulation caused by dry torrefaction can be well solved by de-ashing pretreatment. This paper provides a comprehensive discussion on the role of the two- and three-stage conversion technologies around dry torrefacion, de-ashing pretreatment and thermochemical conversion in products quality enhancement. Finally, the existing technical challenges, including suppression of gaseous pollutant release, harmless treatment and reuse of torrefaction liquid product (TPL) and reduction of torrefaction operating costs, are summarized and evaluated. The future research directions, such as vitrification of the reused TPL (after de-ashing or acid catalysis) and integration of oxidative torrefaction with thermochemical conversion technologies, are proposed.
Collapse
Affiliation(s)
- Shipeng Sun
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China.
| | - Xinmin Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Chunlei Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Xu Zhang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Baizhong Sun
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| |
Collapse
|
12
|
Šípošová K, Labancová E, Hačkuličová D, Kollárová K, Vivodová Z. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87102-87117. [PMID: 37418187 PMCID: PMC10406670 DOI: 10.1007/s11356-023-28029-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/28/2023] [Indexed: 07/08/2023]
Abstract
Cadmium (Cd) is a transition metal and hazardous pollutant that has many toxic effects on plants. This heavy metal poses a health risk for both humans and animals. The cell wall is the first structure of a plant cell that is in contact with Cd; therefore, it can change its composition and/or ratio of wall components accordingly. This paper investigates the changes in the anatomy and cell wall architecture of maize (Zea mays L.) roots grown for 10 days in the presence of auxin indole-3-butyric acid (IBA) and Cd. The application of IBA in the concentration 10-9 M delayed the development of apoplastic barriers, decreased the content of lignin in the cell wall, increased the content of Ca2+ and phenols, and influenced the composition of monosaccharides in polysaccharide fractions when compared to the Cd treatment. Application of IBA improved the Cd2+ fixation to the cell wall and increased the endogenous concentration of auxin depleted by Cd treatment. The proposed scheme from obtained results may explain the possible mechanisms of the exogenously applied IBA and its effects on the changes in the binding of Cd2+ within the cell wall, and on the stimulation of growth that resulted in the amelioration of Cd stress.
Collapse
Affiliation(s)
- Kristína Šípošová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
13
|
Gbenebor OP, Olanrewaju OA, Usman MA, Adeosun SO. Lignin from Brewers' Spent Grain: Structural and Thermal Evaluations. Polymers (Basel) 2023; 15:polym15102346. [PMID: 37242920 DOI: 10.3390/polym15102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Lignocellulose is a renewable ubiquitous material that comprises cellulose, hemicellulose, and lignin. Lignin has been isolated from different lignocellulosic biomass via chemical treatments, but there has been little or no investigation carried out on the processing of lignin from brewers' spent grain (BSG) to the best of authors' knowledge. This material makes up 85% of the brewery industry's byproducts. Its high moisture content hastens its deterioration, which has posed a huge challenge to its preservation and transportation; this eventually causes environmental pollution. One of the methods of solving this environmental menace is the extraction of lignin as a precursor for carbon fiber production from this waste. This study considers the viability of sourcing lignin from BSG with the use of acid solutions at 100 °C. Structural and thermal analyses were carried out on extracted samples, and the results were compared with other biomass-soured lignin to assess the proficiency of this isolation technique. Wet BSG sourced from Nigeria Breweries (NB), Lagos, was washed and sun-dried for 7 days. Tetraoxosulphate (VI) (H2SO4), hydrochloric (HCl), and acetic acid, each of 10 M, were individually reacted with dried BSG at 100 °C for 3 h and designated as H2, HC, and AC lignin. The residue (lignin) was washed and dried for analysis. Wavenumber shift values from Fourier transform infrared spectroscopy (FTIR) show that intra- and intermolecular OH interactions in H2 lignin are the strongest and possess the highest magnitude of hydrogen-bond enthalpy (5.73 kCal/mol). The thermogravimetric analysis (TGA) results show that a higher lignin yield can be achieved when it is isolated from BSG, as 82.9, 79.3, and 70.2% were realized for H2, HC, and AC lignin. The highest size of ordered domains (0.0299 nm) displayed by H2 lignin from X-ray diffraction (XRD) informs that it has the greatest potential of forming nanofibers via electrospinning. The enthalpy of reaction values of 133.3, 126.6, and 114.1 J/g recorded for H2, HC, and AC lignin, respectively, from differential scanning calorimetry (DSC) results affirm that H2 lignin is the most thermally stable with the highest glass transition temperature (Tg = 107 °C).
Collapse
Affiliation(s)
| | | | - Mohammed Awwalu Usman
- Department of Chemical and Petroleum Engineering, University of Lagos, Lagos 101017, Nigeria
| | - Samson Oluropo Adeosun
- Department of Metallurgical and Materials Engineering, University of Lagos, Lagos 101017, Nigeria
- Department of Industrial Engineering, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
14
|
Tanpichai S, Thongdeelerd C, Chantaramanee T, Boonmahitthisud A. Property enhancement of epoxidized natural rubber nanocomposites with water hyacinth-extracted cellulose nanofibers. Int J Biol Macromol 2023; 234:123741. [PMID: 36806770 DOI: 10.1016/j.ijbiomac.2023.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cellulose nanofibers (CNFs) have been widely used as reinforcement in various polymer matrices; however, limited studies of the use of CNFs in epoxidized natural rubber (ENR) have been reported. Here, we successfully prepared CNF-reinforced ENR nanocomposites with superior mechanical performance. CNFs were disintegrated from water hyacinth (Eichhornia crassipes) using high-pressure homogenization, and ENR nanocomposites with CNFs were fabricated by initial mixing and hot pressing. The crosslink densities of the nanocomposites with CNFs were higher than that of the neat ENR. Due to stronger interfacial interactions between the hydroxyl groups of the CNFs and the functional groups of the ENR, stress could be efficiently transferred from the ENR matrix to the stiff CNFs, resulting in a significant increase in the mechanical properties. Compared with those of the neat ENR, the tensile strength and Young's modulus of the ENR nanocomposites were improved by 80 and 39 %, respectively, with the incorporation of 2 parts per hundred rubber (phr) CNFs, whereas no loss in elongation at break was observed. The introduction of CNFs also improved the oil resistance of the nanocomposites. Therefore, CNFs could be the potential reinforcing agent in the ENR nanocomposites used in the various engineering applications of the rubber material.
Collapse
Affiliation(s)
- Supachok Tanpichai
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand; Cellulose and Bio-based Nanomaterials Research Group, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Chutidech Thongdeelerd
- Program of Petrochemical and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tamonwan Chantaramanee
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anyaporn Boonmahitthisud
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Trivedi AK, Gupta MK. An efficient approach to extract nanocrystalline cellulose from sisal fibers: Structural, morphological, thermal and antibacterial analysis. Int J Biol Macromol 2023; 233:123496. [PMID: 36731698 DOI: 10.1016/j.ijbiomac.2023.123496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Nanocellulose has been proposed by many researchers as a suitable bio-reinforcement material for the development of sustainable bio-nanocomposites in advanced applications due to its excellent properties. Conventional techniques for extracting nanocellulose from plant biomass are time-consuming and involve chemical wastage. This study aims to extract nanocellulose using simple processes with minimal consumption of chemicals in a minimum time. In the present work, cellulose nanocrystalline has been extracted from sisal fibers efficiently by chemical treatment assisted with steam explosion and mechanical grinding. The morphology of extracted sisal cellulose nanocrystalline (CNC-S) was analyzed by FESEM, whereas the DLS, TEM and AFM confirmed its nanosize. The average aspect ratio and zeta potential (ζ) of CNC-S were measured as 7.4 and -14.3 mV, respectively. The XRD analysis indicated that the crystallinity of the fibers considerably improved from 48.74 % for untreated fibers (UT-S) to 74.28 % for CNC-S. The chemical structure of the fibers was changed as hemicellulose and lignin were found to be eliminated after the chemical treatment which FTIR confirmed. From TGA-DTG results, it was observed that CNC-S has good thermal stability. It was also noticed that CNC-S did not show any antibacterial properties against E. coli and S. aureus due to the complete removal of lignin. This study suggests that the present extraction process can be considered as an efficient process to convert fibers into high performance nanocellulose to be used as potential reinforcing material in advanced applications.
Collapse
Affiliation(s)
- Alok Kumar Trivedi
- Mechanical Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P., India
| | - M K Gupta
- Mechanical Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, U.P., India.
| |
Collapse
|
16
|
Dong J, Zeng J, Li P, Li J, Wang B, Xu J, Gao W, Chen K. Mechanically strong nanopapers based on lignin containing cellulose micro- and nano-hybrid fibrils: Lignin content-fibrils morphology-strengthening mechanism. Carbohydr Polym 2023; 311:120753. [PMID: 37028856 DOI: 10.1016/j.carbpol.2023.120753] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Lignin-containing cellulose nanopapers are emerging multifunctional materials in the fields of coatings, films, and packaging. However, the forming mechanism and properties of nanopapers with various lignin content have not been thoroughly studied. In this work, a mechanically strong nanopaper was fabricated based on lignin-containing cellulose micro- and nano-hybrid fibrils (LCNFs). The influence of lignin content and fibrils morphology on the formation process of nanopapers was investigated to understand the strengthening mechanism of nanopapers. LCNFs with high lignin content provided nanopapers with intertwined micro- and nano-hybrid fibrils layers with small layer spacing, while LCNFs with low lignin content offered nanopapers interlaced nanofibrils layers with large layer spacing. Although lignin was expected to interfere with hydrogen bonds between fibrils, the uniformly distributed lignin contributed to the stress transfer between fibrils. Due to the good coordination between microfibrils, nanofibrils and lignin (as network skeleton, filler and natural binder, respectively), the well-designed LCNFs nanopapers with lignin content of 14.5 % showed excellent mechanical properties, including tensile strength (183.8 MPa), Young's modulus (5.6 GPa) and elongation (9.2 %). This work deeply reveals the relationship between lignin content, morphology and strengthening mechanism of nanopapers, and providing theoretical guidance for employing LCNFs as structural and reinforcing materials to design robust composites.
Collapse
Affiliation(s)
- Jiran Dong
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jinsong Zeng
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Pengfei Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Bin Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Kefu Chen
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
17
|
Bacterial Community Drives the Carbon Source Degradation during the Composting of Cinnamomum camphora Leaf Industrial Extracted Residues. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The increasing production of industrial aromatic plant residues (IAPRs) are potentially environmental risky, and composting is a promising solution to resolve the coming IAPR problems. Carbon source degradation is a basic but important field in compost research; however, we still lack a clear understanding of carbon source degradation and the corresponding relationship to microbial community variation during IAPR composting, which hampers the improvement of IAPR composting efficiency and the promotion of this technology. In this study, samples were chosen on the first day, the 10th day, the 20th day, and the last day during the composting of Cinnamomum camphora leaf IAPRs, and the microbial community composition, main carbon source composition, and several enzyme activities were measured accordingly. The results showed that during composting, the hemicellulose had the highest reduction (200 g kg−1), followed by cellulose (143 g kg−1), lignin (15.5 g kg−1), starch (5.48 g kg−1), and soluble sugar (0.56 g kg−1), which supported that hemicellulose and cellulose were the main carbon source to microbes during composting. The relative abundance of the main bacterial phylum Firmicute decreased from 85.1% to 40.3% while Actinobactreia increased from 14.4% to 36.7%, and the relative abundance of main fungal class Eurotiomycetes decreased from 60.9% to 19.6% while Sordariomycetes increased from 16.9% to 69.7%. Though principal coordinates analysis found that both bacterial and fungal community composition significantly varied during composting (p < 0.05), structure equation modeling (SEM) supported that bacterial composition rather than fungal counterpart was more responsible for the change in carbon source composition, as the standard total effects offered by bacterial composition (−0.768) was about five times the fungal composition (−0.144). Enzyme2 (comprised of xylanase, laccase, cellulase and manganese peroxidase) provided −0.801 standard total effects to carbon source composition, while Enzyme1 (comprised of lignin peroxidase and polyphenol oxidase) had only 0.172. Furthermore, xylanase and laccase were the only two enzymes appeared in co-occurrence network, clustered with nearly all the carbon sources concerned (except starch) in module-II. Xylanase, hemicellulose, and cellulose were linked to higher numbers of OTUs, more than laccase and other carbon sources. In addition, there were 11 BOTUs but only 1 FOTUs directly interacted to xylanase, hemicellulose, and cellulose simultaneously, three of them were Limnochordaceae and two were Savagea, which highlighted the potential core function in lignocellulose degradation provided by bacterial members, especially Limnochordaceae and Savagea. Thus, the results supported that during composting of Cinnamomum camphora leaf IAPRs, the degradation of dominate carbon sources, hemicellulose and cellulose, was mainly driven by bacterial community rather than fungal community. In addition, the bacterial originated xylanase and laccase played potentially core roles in the functional modules. This research clearly investigated the microbial dynamics of carbon source degradation during the composting of Cinnamomum camphora leaf IAPRs, and offers valuable information about and new insight into future IAPRs waste treatment.
Collapse
|
18
|
Raju V, Revathiswaran R, Subramanian KS, Parthiban KT, Chandrakumar K, Anoop EV, Chirayil CJ. Isolation and characterization of nanocellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method. Sci Rep 2023; 13:1199. [PMID: 36681725 PMCID: PMC9867748 DOI: 10.1038/s41598-022-26600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/16/2022] [Indexed: 01/22/2023] Open
Abstract
Extraction of nanocellulose is challenging, especially from hardwoods due to its complex chemical structure as well as structural hierarchy. In this study, nanocellulose was isolated from wood pulp of two hardwood species, namely Eucalyptus tereticornis Sm. and Casuarina equisetifolia L. by steam explosion process. Pure cellulose wood pulp was obtained through Kraft pulping process followed by alkaline and bleaching pre-treatments. Isolated nanocellulose was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Fourier Transformed Infrared (FTIR) Spectra, Thermogravimetric Analysis (TGA), and X-ray diffraction (XRD) studies. Nanocellulose obtained from both species showed non-significant difference with average diameter of 27.801 nm for eucalyptus and 28.690 nm for casuarina, which was confirmed from TEM and AFM images. FTIR spectra of nanocellulose showed prominent peaks corresponding to cellulose and absence of peaks corresponding to lignin. The elemental purity of nanocellulose was confirmed with EDAX detector. XRD analysis showed the enrichment of crystalline cellulose in nanocellulose, and also confirmed the significant conversion of cellulose I to cellulose II. During TG analysis the untreated fibres started to degrade earlier than the nanocellulose which indicated the higher thermal stability of nanocellulose. Highly entangled network like structure along with high aspect ratio make the nanofibres a versatile material for reinforcing the composites. This successful method can be replicated for industrial level production of cellulose nanofibres.
Collapse
Affiliation(s)
- Vishnu Raju
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, 641301, India.
- Department of Forest Products and Utilization, College of Forestry, Kerala Agricultural University, Thrissur, Kerala, 680656, India.
| | - Revathi Revathiswaran
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, 641301, India
| | | | | | - Kalichamy Chandrakumar
- Department of Bioenergy, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Elaveetil Vasu Anoop
- Department of Forest Products and Utilization, College of Forestry, Kerala Agricultural University, Thrissur, Kerala, 680656, India
| | | |
Collapse
|
19
|
Ajayi SM, Olusanya SO, Sodeinde KO, Didunyemi AE, Atunde MO, Fapojuwo D, Olumayede EG, Lawal OS. Hydrophobic Modification of Cellulose from Oil Palm Empty Fruit Bunch: Characterization and Application in Pickering Emulsions Stabilization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
20
|
de Amorim Dos Santos A, Silva MJFE, Scatolino MV, Durães AFS, Dias MC, Damásio RAP, Tonoli GHD. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4934-4948. [PMID: 35978240 DOI: 10.1007/s11356-022-22575-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Specific kinds of enzymes have been used as an eco-friendly pre-treatment for mechanical extraction of cellulose nanofibrils (CNFs) from vegetal pulps. Another well-established pre-treatment is the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidation, which has gained considerable attention. Pre-treatments assist in fiber swelling, facilitating mechanical fibrillation, and reducing energy consumption; however, some of these methods are extremely expensive. This work aimed to evaluate the influence of enzymatic pre-treatment with endoglucanase on the energy consumption during mechanical fibrillation of cellulose pulps. Bleached pulps from Eucalyptus sp. and Pinus sp. were pre-treated with endoglucanase enzyme compared to TEMPO-meditated oxidation. Average diameters of CNFs pre-treated with enzymes were close to that found for TEMPO-oxidized nanofibrils (TOCNFs). Results showed that enzymatic pre-treatment did not significantly modify the pulp chemical and morphological characteristics with efficient stabilization of the CNFs suspension at higher supernatant turbidity. Energy consumption of pulps treated with endoglucanase enzymes was lower than that shown by pulps treated with TEMPO, reaching up to 58% of energy savings. The enzyme studied in the pulp treatment showed high efficiency in reducing energy consumption during mechanical fibrillation and production of films with high mechanical quality, being an eco-friendly option for pulp treatment.
Collapse
Affiliation(s)
- Allan de Amorim Dos Santos
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil.
| | | | - Mário Vanoli Scatolino
- Agricultural Sciences Center, Federal University of the Semiarid (UFERSA), Mossoró, RN, 59625-900, Brazil
| | - Alisson Farley Soares Durães
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil
| | - Matheus Cordazzo Dias
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil
| | | | | |
Collapse
|
21
|
High-performance structural linear low-density polyethylene/Saccharum munja composite: a "design-of-experiments" approach. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Effect of Loblolly Pine ( Pinus taeda L.) Hemicellulose Structure on the Properties of Hemicellulose-Polyvinyl Alcohol Composite Film. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010046. [PMID: 36615241 PMCID: PMC9822227 DOI: 10.3390/molecules28010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hemicellulose is the second most abundant natural polysaccharide and a promising feedstock for biomaterial synthesis. In the present study, the hemicellulose of loblolly pine was obtained by the alkali extraction-graded ethanol precipitation technique, and the hemicellulose-polyvinyl alcohol (hemicellulose-PVA) composite film was prepared by film casting from water. Results showed that hemicellulose with a low degree of substitution is prone to self-aggregation during film formation, while hemicellulose with high branching has better compatibility with PVA and is easier to form a homogeneous composite film. In addition, the higher molecular weight of hemicellulose facilitates the preparation of hemicellulose-PVA composite film with better mechanical properties. More residual lignin in hemicellulose results in the better UV shielding ability of the composite film. This study provides essential support for the efficient and rational utilization of hemicellulose.
Collapse
|
23
|
Allegretti C, Bellinetto E, D’Arrigo P, Ferro M, Griffini G, Rossato LAM, Ruffini E, Schiavi L, Serra S, Strini A, Turri S. Fractionation of Raw and Parboiled Rice Husks with Deep Eutectic Solvents and Characterization of the Extracted Lignins towards a Circular Economy Perspective. Molecules 2022; 27:8879. [PMID: 36558011 PMCID: PMC9785053 DOI: 10.3390/molecules27248879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.
Collapse
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Emanuela Bellinetto
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Paola D’Arrigo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Letizia Anna Maria Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Schiavi
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
24
|
Ajayi SM, Olusanya SO, Sodeinde KO, Olumayede EG, Lawal OS, Didunyemi AE, Atunde MO, Fapojuwo D. Application of hydrophobically modified cellulose from oil palm frond in Pickering emulsions stabilization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
25
|
Chen D, Hu K, Zhu L, Hendrickx M, Kyomugasho C. Cell wall polysaccharide changes and involvement of phenolic compounds in ageing of Red haricot beans (Phaseolus vulgaris) during postharvest storage. Food Res Int 2022; 162:112021. [DOI: 10.1016/j.foodres.2022.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
26
|
Comparative Multi-Omics Analysis Reveals Lignin Accumulation Affects Peanut Pod Size. Int J Mol Sci 2022; 23:ijms232113533. [DOI: 10.3390/ijms232113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.
Collapse
|
27
|
Zielinska S, Staniszewska I, Cybulska J, Zdunek A, Szymanska-Chargot M, Zielinska D, Liu ZL, Pan Z, Xiao HW, Zielinska M. Modification of the cell wall polysaccharides and phytochemicals of okra pods by cold plasma treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Liao C, Xiao Y, Chen K, Li P, Wu Y, Li X, Zuo Y. Synergistic modification of polylactic acid by oxidized straw fibers and degradable elastomers: A green composite with good strength and toughness. Int J Biol Macromol 2022; 221:773-783. [PMID: 36096256 DOI: 10.1016/j.ijbiomac.2022.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Polylactic acid-based (PLA) composites are widely used in biomedicine, electrical components, food packaging and other fields, but their unsatisfactory mechanical properties such as high brittleness and poor toughness, cause problems in functional applications. This work developed a green and environmentally friendly strategy to improve PLA mechanical properties. Flexible polybutylene succinate (PBS) and alkaline hydrogen peroxide (AHP) treated straw fibers (SF) synergistically modified PLA. AHP is decomposed into a large amount of HOO-, which oxidizes the hydroxyl groups in SF to carboxyl groups to obtain oxidized straw fiber (OSF), which reacts with PLA in the molten state to form new ester bonds. The tensile strength of the OSF/PLA composite is 41.78 MPa, 38 % higher than the SF/PLA composite. The impact toughness of OSF/PBS/PLA composite is 14.47 KJ/m2 increased by 54 % after the adding PBS, while the tensile strength was also better than the control group. The synergistic action of PLA and PBS in OSF is attributed to the formation of new chemical bonds, efficient crystallization, and compatible interface. This study provides a new strategy to produce fiber-reinforced PLA composites with good toughness. It takes positive significance for developing degradable plastics with good performance and controllable cost.
Collapse
Affiliation(s)
- Chenggang Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yuanping Xiao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Kang Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Ping Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yingfeng Zuo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
29
|
Mnasri A, Dhaouadi H, Khiari R, Halila S, Mauret E. Effects of Deep Eutectic Solvents on cellulosic fibres and paper properties: Green “chemical” refining. Carbohydr Polym 2022; 292:119606. [DOI: 10.1016/j.carbpol.2022.119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/07/2022] [Indexed: 11/02/2022]
|
30
|
Luna P, Risfaheri, Hoerudin, Charalampopoulos D, Chatzifragkou A. Fractionation of carbohydrate polymers from Indonesian sorghum by-products. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Insights on the physico-chemical properties of alkali lignins from different agro-industrial residues and their use in phenol-formaldehyde wood adhesive formulation. Int J Biol Macromol 2022; 221:149-162. [PMID: 36058399 DOI: 10.1016/j.ijbiomac.2022.08.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
The current study investigates for the first time the physico-chemical performances of lignins from cactus waste seeds (CWS) and spent coffee (SC) in comparison to previously isolated lignins from sugar byproducts (bagasse (SCB) and beet pulp (SBP)). In this work, lignin-phenol formaldehyde (LPF) resins were formulated using various lignin loadings (5-30 wt%), characterized and applied in the manufacturing of plywood panels. Several characterization techniques were applied to identify the chemical and morphological properties, thermal stability, and phenolic content of the extracted lignins, as well as the bonding strength and wood failure of the formulated resins. Results showed that the CWS and SC could be considered as an important source for lignin recovery with a considerable yield of 15.46 % and 27.08 % and an important hydroxyl phenolic content of 1.26 mmol/g and 1.36 mmol/g for CWS and SC, respectively. Interestingly, 20 wt% of extracted lignins in PF adhesives were the optimal formulation showing an improved modulus of elasticity (MOE) of about 3505, 3536 and 3515 N/mm2, and a higher modulus of rupture (MOR) of about 55, 55 and 56 N/mm2 for panels containing CWS, SC and SCB-lignins, respectively, over the reference panels (MOE = 3198 N/mm2 and MOR = 48 N/mm2). Additionally, formaldehyde emission from plywood remarkably decreases by up to 20 % when lignin was incorporated into the PF matrix. Herein, the treatment of the CWS and SC for the extraction of alkali lignin and its application showed a new route to produce high added-value products from underused residues.
Collapse
|
32
|
Zhou Y, Lin D, Ye X, Sun B. Reuse of Acid‐treated Waste Corn Straw for Photocatalytic Hydrogen Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202201596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yunlong Zhou
- School of Energy and Power Engineering Northeast Electric Power University Jilin City Jilin Province China
| | - Dongyao Lin
- School of Energy and Power Engineering Northeast Electric Power University Jilin City Jilin Province China
| | - Xiaoyuan Ye
- School of Energy and Power Engineering Northeast Electric Power University Jilin City Jilin Province China
| | - Bo Sun
- School of Energy and Power Engineering Northeast Electric Power University Jilin City Jilin Province China
| |
Collapse
|
33
|
Akhlaq M, Maqsood H, Uroos M, Iqbal A. A Comparative Study of Different Methods for Cellulose Extraction from Lignocellulosic Wastes and Conversion into Carboxymethyl Cellulose. ChemistrySelect 2022. [DOI: 10.1002/slct.202201533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maida Akhlaq
- Centre for Research in Ionic Liquids School of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Hassan Maqsood
- Centre for Research in Ionic Liquids School of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Maliha Uroos
- Centre for Research in Ionic Liquids School of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Ayesha Iqbal
- Centre for Research in Ionic Liquids School of Chemistry University of the Punjab 54590 Lahore Pakistan
| |
Collapse
|
34
|
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, Alugongo GM, Cao Z. Biodegradation and hydrolysis of rice straw with corn steep liquor and urea-alkali pretreatment. Front Nutr 2022; 9:989239. [PMID: 35990351 PMCID: PMC9387106 DOI: 10.3389/fnut.2022.989239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
The current study evaluated the corn steep liquor (CSL) and urea-alkali pretreatment effect to enhance biodegradation and hydrolysis of rice straw (RS) by ruminal microbiome. The first used RS (1) without (Con) or with additives of (2) 4% CaO (Ca), (3) 2.5% urea plus 4% CaO (UCa) and (4) 9% corn steep liquor + 2.5% urea + 4% CaO (CUCa), and then the efficacy of CSL plus urea-alkali pretreatment was evaluated both in vitro and in vivo. The Scanning electron microscopy, X-ray diffraction analysis, cellulose degree of polymerization and Fourier-transform infrared spectroscopy, respectively, results showed that Ca, UCa, and CUCa pretreatment altered the physical and chemical structure of RS. CSL plus Urea-alkali pretreated enhanced microbial colonization by improving the enzymolysis efficiency of RS, and specially induced adhesion of Carnobacterium and Staphylococcus. The CUCa pretreatment could be developed to improve RS nutritional value as forage for ruminants, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Wu W, He H, Dong Q, Wang Y, An F, Song H. Structural and rheological properties of nanocellulose with different polymorphs, nanocelluloses I and II, prepared by natural deep eutectic solvents from sugarcane bagasse. Int J Biol Macromol 2022; 220:892-900. [DOI: 10.1016/j.ijbiomac.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
|
36
|
Thermal and Physico-Chemical Characteristics of Plaster Reinforced with Wheat Straw for Use as Insulating Materials in Building. BUILDINGS 2022. [DOI: 10.3390/buildings12081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper, a new material consisting of plaster and wheat straw was studied with the purpose of reducing energy consumption. The aim of this study is to test this new compound for use as an insulation material in buildings, where the samples were prepared by mixing wheat straw after grinding it in different proportions from 0% to 15%. On the other hand, the physico-chemical properties and thermal conductivity of the samples were experimentally investigated, and the time lag and energy savings for the samples were also studied. The results showed that the addition of wheat straw leads to an increase in the time lag and also to a decrease in the thermal conductivity, which leads to an improvement in the thermal resistance and energy savings. As well, fiber addition has no effect on the chemical composition of the matrix, as shown by FTIR and XRD analyses.The findings of the DSC and TGA analysis indicate that the inclusion of wheat straw fibers has an effect on the thermal characteristics of the matrix. This new biocomposite can be used as an additive to plaster to create environmentally friendly composite materials for thermal insulation in buildings.
Collapse
|
37
|
Sriraveeroj N, Amornsakchai T, Sunintaboon P, Watthanaphanit A. Synergistic Reinforcement of Cellulose Microfibers from Pineapple Leaf and Ionic Cross-Linking on the Properties of Hydrogels. ACS OMEGA 2022; 7:25321-25328. [PMID: 35910183 PMCID: PMC9330245 DOI: 10.1021/acsomega.2c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels contain a large amount of water; thus, they are jelly-like, soft, and fragile. Although hydrogels' stiffness and strength can be improved by introducing another network to form a double or interpenetrating network, these mechanical properties are still not enough as many applications demand even stiffer and stronger hydrogels. Different methods of reinforcing hydrogels have been proposed and published. In this research, cellulose microfiber isolated from pineapple leaf was used as the reinforcement for hydrogels. The reinforcing efficiency of the fiber was studied for both single and double networks through the compression test. Other properties such as morphology and swelling behavior of the reinforced hydrogels were also studied. A synergistic effect of the second network and the fiber on the reinforcement was observed. The improvement due to the effect of fiber loading of only 0.6 wt % was found to be as high as 150%. This is greater than that observed in some nanofiller systems. Thus, the fiber can be used as a green reinforcement for similar hydrogel systems.
Collapse
Affiliation(s)
- Nithinan Sriraveeroj
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
- Center
of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Panya Sunintaboon
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Anyarat Watthanaphanit
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| |
Collapse
|
38
|
Effect of Rice Husk-Based Silica on the Friction Properties of High Density Polyethylene Composites. MATERIALS 2022; 15:ma15093191. [PMID: 35591522 PMCID: PMC9099483 DOI: 10.3390/ma15093191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022]
Abstract
Rice husk ash (RHA)-reinforced composites are now used in many tribological applications. We prepared two kinds of RHAs using different pretreatment and the same pyrolysis process, namely water-treated RHA (WRHA) and acid-treated RHA (ARHA). Comparing the two RHAs, the RHA pretreated with hydrochloric acid (HCl) was found to have a smaller particle size and a more uniform dispersion. Accordingly, the two kinds of RHAs were used as fillers and added to the high-density polyethylene (HDPE) matrix by an extrusion process. The results showed that the friction coefficient (COF) value of the composites with ARHA was reduced to 0.12 when an additional amount of 0.75 wt.% or 1.5 wt.%. WRHA was used as a filler to the amount of 1.5 wt.%, but the COF value was raised to about 0.21. The reason for this phenomenon may be due to its larger particle size and more severe abrasive wear. This work provides a method for making natural biomass fillers that can effectively reduce the COF of HDPE composites with slight decreases in mechanical properties.
Collapse
|
39
|
Hasan M, Rahman M, Chen Y, Cicek N. Optimization of Typha Fibre Extraction and Properties for Bio-Composite Applications Using Desirability Function Analysis. Polymers (Basel) 2022; 14:polym14091685. [PMID: 35566855 PMCID: PMC9100250 DOI: 10.3390/polym14091685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The effect of extraction time, temperature, and alkali concentration on the physical and mechanical properties of cattail (Typha latifolia L.) fibres were investigated using five levels of time (4, 6, 8, 10, and 12 h), four levels of temperature (70, 80, 90, and 95 °C), and three levels of NaOH concentration (4, 7, 10%, w/v) in a 3 × 4 × 5 factorial experimental design. The extraction parameters were optimized for bio-composite application using a desirability function analysis (DFA), which determined that the optimum extraction time, temperature and NaOH concentration were 10 h, 90 °C, and 7%, respectively. A sensitivity analysis for optimal treatment conditions confirmed that the higher overall desirability does not necessarily mean a better solution. However, the analysis showed that the majority of optimum settings for time, temperature, and concentration of NaOH found in the sensitivity analysis matched with the optimum conditions determined by DFA, which confirmed the validity of the optimum treatment conditions.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2M8, Canada;
| | - Mashiur Rahman
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2M8, Canada;
- E1-349 EITC, Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (Y.C.); (N.C.)
- Correspondence: ; Tel.: +1-204-4748509
| | - Ying Chen
- E1-349 EITC, Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (Y.C.); (N.C.)
| | - Nazim Cicek
- E1-349 EITC, Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (Y.C.); (N.C.)
| |
Collapse
|
40
|
Puițel AC, Suditu GD, Danu M, Ailiesei GL, Nechita MT. An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods. Polymers (Basel) 2022; 14:polym14091662. [PMID: 35566831 PMCID: PMC9102963 DOI: 10.3390/polym14091662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we describe an experimental study on the hot alkali extraction of hemicelluloses from wheat straw and corn stalks, two of the most common lignocellulosic biomass constituents in Romania. The chemical compositions of the raw materials were determined analytically, and the relevant chemical components were cellulose, hemicelluloses, lignin, and ash. Using the response surface methodology, the optimum values of the hot alkaline extraction parameters, i.e., time, temperature, and NaOH concentration, were identified and experimentally validated. The physicochemical characterization of the isolated hemicelluloses was performed using HPLC, FTIR, TG, DTG, and 1H-NMR spectroscopy. The main hemicellulose components identified experimentally were xylan, arabinan, and glucan. The study emphasizes that both corn stalks and wheat straw are suitable as raw materials for hemicellulose extraction, highlighting the advantages of alkaline pretreatments and showing that optimization methods can further improve the process efficiency.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
| | - Gabriel Dan Suditu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
| | - Maricel Danu
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania;
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania;
| | - Mircea Teodor Nechita
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, No. 73, 700050 Iaşi, Romania; (A.C.P.); (G.D.S.); (M.D.)
- Correspondence:
| |
Collapse
|
41
|
Lu H, Zhang L, Yan M, Wang K, Jiang J. Screw extrusion pretreatment for high-yield lignocellulose nanofibrils (LCNF) production from wood biomass and non-wood biomass. Carbohydr Polym 2022; 277:118897. [PMID: 34893299 DOI: 10.1016/j.carbpol.2021.118897] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023]
Abstract
To develop a facile and low-cost nanofibrils process with excellent feedstock adaptability, high-yield lignocellulose nanofibrils (LCNF) are produced directly from wood and non-wood biomass using glycerol solvent via screw extrusion pretreatment. Different LCNFs are obtained from four classical raw materials (polar, pine, bamboo, and wheat straw) in this research, followed by comparing their morphological, thermochemical, and mechanical properties. More than 70 wt% of LCNF could be obtained from low-cost substrates except for LCNF from wheat straw with 62.3 wt% yield. Besides, the morphology property of wood LCNF exhibit more uniform distribution over that of non-wood LCNF due to narrower size distribution. Strikingly, despite of the slightly lower LCNF crystallinity various from 52.4% to 62.6% obtained from four substrates, all the LCNFs separated from wood and non-wood biomass exhibit high thermal stability (Tmax over 330 °C), which is higher than conventional nanocellulose, indicating that the crystal area could be well maintained during the pretreated process. Moreover, all the LCNF films show excellent tensile strength which is close to nanocellulose materials. Besides, the Young's modulus of wood-based LCNF films is higher than that of non-wood based LCNF films. Overall, LCNF with excellent performance could be achieved from low-cost biomass by our facile process, which provides a feasible route for industrial production of bio-based nanofilms.
Collapse
Affiliation(s)
- Hailong Lu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering of State Administration of Forestry and Grassland, Key Lab of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering of State Administration of Forestry and Grassland, Key Lab of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering of State Administration of Forestry and Grassland, Key Lab of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China.
| |
Collapse
|
42
|
Liu J, Zuo X, Peng K, He R, Yang L, Liu R. Biogas and Volatile Fatty Acid Production During Anaerobic Digestion of Straw, Cellulose, and Hemicellulose with Analysis of Microbial Communities and Functions. Appl Biochem Biotechnol 2022; 194:762-782. [PMID: 34524637 DOI: 10.1007/s12010-021-03675-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The anaerobic digestion efficiency and methane production of straw was limited by its complex composition and structure. In this study, rice straw (RS), cellulose, and hemicellulose were used as raw materials to study biogas production performance and changes in the volatile fatty acids (VFAs). Further, microbial communities and genetic functions were analyzed separately for each material. The biogas production potential of RS, cellulose, and hemicellulose was different, with cumulative biogas production of 283.75, 412.50, and 620.64 mL/(g·VS), respectively. The methane content of the biogas produced from cellulose and hemicellulose was approximately 10% higher than that produced from RS after the methane content stabilized. The accumulation of VFAs occurred in the early stage of anaerobic digestion in all materials, and the cumulative amount of VFAs in both cellulose and hemicellulose was relatively higher than that in RS, and the accumulation time was 12 and 14 days longer, respectively. When anaerobic digestion progressed to a stable stage, Clostridium was the dominant bacterial genus in all three anaerobic digestion systems, and the abundance of Ruminofilibacter was higher during anaerobic digestion of RS. Genetically, anaerobic digestion of all raw materials proceeded mainly via aceticlastic methanogenesis, with similar functional components. The different performance of anaerobic digestion of RS, cellulose, and hemicellulose mainly comes from the difference of composition of raw materials. Increasing the accessibility of cellulose and hemicellulose in RS feedstock by pretreatment is an effective way to improve the efficiency of anaerobic digestion. Since the similar microbial community structure will be acclimated during anaerobic digestion, there is no need to adjust the initial inoculum when the accessibility of cellulose and hemicellulose changes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Xiaoyu Zuo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China.
| | - Ke Peng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Rui He
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Luyao Yang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, People's Republic of China
| | - Rufei Liu
- China Urban Construction Design & Research Institute, No.36, Deshengmenwai Street, Beijing, China
| |
Collapse
|
43
|
Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. Int J Biol Macromol 2022; 195:412-423. [PMID: 34871659 DOI: 10.1016/j.ijbiomac.2021.11.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Lignin-enriched waste products from bioethanol production of agriculture residues were tested as structuring agents in castor oil once functionalized with hexamethylene diisocyanate. Cane bagasse, barley and wheat straw were processed through steam explosion, pre-saccharification and simultaneous saccharification and fermentation (PSSF). Alternatively, cane bagasse was submitted to steam explosion and enzymatic hydrolysis (EH). Several Nuclear Magnetic Resonance techniques were used to characterize both residues and NCO-functionalized counterparts. The β-O-4'/resinol/phenylcoumaran content and hydroxyphenyl/guaiacyl/syringyl distribution depend on biomass source, pretreatment, and enzymatic hydrolysis. Total hydroxyl content (from 1.23 for cane bagasse to 1.85 for wheat straw residues), aromatic/aliphatic hydroxyl ratio (0.78 for cane bagasse and 0.61 and 0.49 for barley and wheat straw residues, respectively) and S/G ratio (ranging from 0.25 to 0.86) influence the NCO-functionalization and oleogel rheological response. Oleogels obtained with barley straw residues exhibited the highest values of the storage modulus; around 2 × 105 Pa and 104 Pa for 25% and 20% contents, respectively. PSSF process showed weaker modification, leading to softer viscoelastic response compared to EH. These oleogels exhibited rheological properties similar to lubricating greases of different NLGI grades. Therefore, we herein show an integrative protocol for the valorization of lignin-enriched residues from bioethanol production as potential thickeners of lubricating greases.
Collapse
|
44
|
Kumar A, Chauhan AS, Bains R, Das P. Rice straw (Oryza sativa L.) biomass conversion to furfural, 5-hydroxymethylfurfural, lignin and bio-char: A comprehensive solution. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement. MATERIALS 2021; 14:ma14216402. [PMID: 34771928 PMCID: PMC8585209 DOI: 10.3390/ma14216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
The compatibility between crop straw and Portland cement greatly restrict the application of crop straw in cement-based materials. In this study, rice straw fibers with different pretreatments were added to ordinary Portland cement (OPC), and the influence of different rice straw fiber (RF) content on the hydration process of OPC was measured using calorimeter tests. Additionally, compatibility between RF and OPC was evaluated using the inhibitory index. As a result, steam explosion treatment of rice straw removed most hemicellulose and post-treatment bleaching was used for delignification. As compared with the pure OPC, addition of RF inhibited the hydration of OPC, and the inhibition degree reduced with the increase in pretreatment degree of RF. The inhibitory index grade of different RF filled OPC (RF-OPC) samples is directly related to hemicellulose and lignin content. Compared with lignin, hemicellulose has a greater influence on cement hydration. Without considering the influence of other components, the RF-OPC samples with hemicellulose content of 1.54 wt.% reached the inhibitory index extreme grade, and the hemicellulose content of 2.05 wt.% led to the cessation of cement hydration. The inhibitory index of the samples with 2.05 and 0.85 wt.% lignin content is moderate and low grade, respectively. In addition, the results of XRD patterns and SEM images are consistent with those of heat of hydration. In terms of mechanical properties of cement-based composites with 10 wt.% rice straw fibers, pretreatment of fibers is beneficial to improving the fracture toughness of the samples.
Collapse
|
46
|
Gong X, Sun J, Xu X, Wang B, Li H, Peng F. Molybdenum-catalyzed hydrogenolysis of herbaceous biomass: A procedure integrated lignin fragmentation and components fractionation. BIORESOURCE TECHNOLOGY 2021; 333:124977. [PMID: 33872998 DOI: 10.1016/j.biortech.2021.124977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, a low-cost MoO2/C catalyst was prepared for the reductive catalytic fractionation (RCF) of various herbaceous biomass feedstocks (Miscanthus, Triarrhena, Floridulus, Sorghum stem and Corncob). Phenolic monomers from the hydrogenolysis of lignin component were obtained in up to 26.4 wt%, with high selectivity towards methyl coumarate (33%) and methyl ferulate (24%). The RCF left solid carbohydrate pulps with high retentions (up to 87%), which were suitable for enzymatic hydrolysis. The reaction conditions, including temperature, time, H2 pressure, and sawdust size were examined in terms of monophenols yield, selectivity, delignification and sugar retention. This study showed that MoO2/C could function as an excellent catalyst for lignin fragmentation as well as the fractionation of herbaceous biomass components.
Collapse
Affiliation(s)
- Xue Gong
- College of Science, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jiankui Sun
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Tangshan 063210, People's Republic of China
| | - Xiangya Xu
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, People's Republic of China
| | - Bo Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| |
Collapse
|
47
|
Extraction and Characterization of Hemicelluloses from a Softwood Acid Sulfite Pulp. Polymers (Basel) 2021; 13:polym13132044. [PMID: 34206666 PMCID: PMC8271795 DOI: 10.3390/polym13132044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Hemicelluloses were extracted from a softwood acid sulfite pulp in a three-step procedure. Further delignification step resulted in a holocellulose pulp containing only 1.7 wt.% of the lignin left. Cold caustic extraction (CCE) with 18 wt.% NaOH at 60 °C for 1 h was performed to solubilize hemicelluloses of the holocellulose. An unbleached cellulose pulp was then obtained 97% pure, which indicates that 89% of the hemicelluloses were removed. After purification, extraction yields between 1.1 wt.% and 9.5 wt.% were obtained from the delignified pulp and the hemicelluloses’ chemical compositions and structures were investigated by 1H, 13C nuclear magnetic resonance spectroscopy (NMR) and two-dimensional NMR by correlation spectroscopy (2D-COSY) and proton-detected heteronuclear single-quantum correlation (2D-HSQC), high-performance anion-exchange chromatography coupled with a pulsed amperometry detector (HPAEC-PAD), size-exclusion chromatography coupled with a refractive index detector (SEC-RI) and thermogravimetric analyses (TGA). Hemicelluloses were obtained with a purity of 96%, with short cellulosic chains as the only residue. Sulfite pulping modified the hemicelluloses’ structure, and it was found that two types of hemicelluloses were isolated, glucomannans, predominant at 67%, and methylglucuronoxylans. Finally, alkali-soluble hemicelluloses displayed relatively narrow size distributions and low molar masses, Mw varying between 18,900 and 30,000 g/mol after acid sulfite pulping.
Collapse
|
48
|
Wang X, Xia Q, Jing S, Li C, Chen Q, Chen B, Pang Z, Jiang B, Gan W, Chen G, Cui M, Hu L, Li T. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008011. [PMID: 33759326 DOI: 10.1002/smll.202008011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Indexed: 05/23/2023]
Abstract
The huge consumption of single-use plastic straws has brought a long-lasting environmental problem. Paper straws, the current replacement for plastic straws, suffer from drawbacks, such as a high cost of the water-proof wax layer and poor water stability due to the easy delamination of the wax layer. It is therefore crucial to find a high-performing alternative to mitigate the environmental problems brought by plastic straws. In this paper, all natural, degradable, cellulose-lignin reinforced composite straws, inspired by the reinforcement principle of cellulose and lignin in natural wood are developed. The cellulose-lignin reinforced composite straw is fabricated by rolling up a wet film made of homogeneously mixed cellulose microfibers, cellulose nanofibers, and lignin powders, which is then baked in oven at 150 °C. When baked, lignin melts and infiltrates the micro-nanocellulose network, acting as a polyphenolic binder to improve the mechanical strength and hydrophobicity performance of the resulting straw. The obtained straws demonstrate several advantageous properties over paper straws, including 1) excellent mechanical performance, 2) high hydrostability, and 3) low cost. Moreover, the natural degradability of the cellulose-lignin reinforced composite straws makes them promising candidates to replace plastic straws and suggests possible substitutes for other petroleum-based plastics.
Collapse
Affiliation(s)
- Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qinqin Xia
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Claire Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Jiang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Wentao Gan
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Mingjin Cui
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
49
|
Wang Q, Juan J, Xiao T, Zhang J, Chen H, Song X, Chen M, Huang J. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts. Appl Microbiol Biotechnol 2021; 105:3811-3823. [PMID: 33877414 DOI: 10.1007/s00253-021-11284-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022]
Abstract
The cultivation of Agaricus bisporus with compost made from wheat (Triticum aestivum L.), rice (Oryza sativa L.), and reed (Phragmites australis Trin.) straw was investigated. Straw degradation was analyzed at the microscopic level, and the corresponding changes in the breakdown of different lignocellulose components during different phases of composting and mushroom production helped in understanding the yield-limiting factors of using different straws to grow mushrooms. The wheat straw compost resulted in the highest mushroom production and had the highest bioconversion efficiency. The rice straw was limited by the softer texture, which resulted in low-porosity and overdecomposed compost in the composting process and decreased the amount of available lignocellulose during mycelial growth. Although reed straw had the largest carbon resources, its utilization rate was the lowest. The hard structure, low water holding capacity, and high porosity increased the recalcitrance of reed straw to degradation and prolonged the composting time, which resulted in large N and C losses and an increased C/N ratio. Moreover, reed straw failed to transform into "ready-to-consume C" in composting. Therefore, a high C/N ratio and deficiency of available nutrition decreased the utilization efficiency of the lignocellulosic components by A. bisporus during mycelial colonization and mushroom production. The investigation revealed that degradability by and availability to microbiota and A. bisporus seemed to be the overriding factors for optimizing the composting process with different straw types. KEY POINTS: • The physical structure of compost has a significant influence on the composting process. • Degradability and availability are key factors in compost quality evaluation. • Lignocellulose utilization efficiency positively correlated with mushroom yield.
Collapse
Affiliation(s)
- Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Jiaxiang Juan
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Xiaoxia Song
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Jianchun Huang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
50
|
Dörrstein J, Schwarz D, Scholz R, Walther F, Zollfrank C. Tuneable material properties of Organosolv lignin biocomposites in response to heat and shear forces. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|