1
|
El-Ghonemy DH. Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation. J Genet Eng Biotechnol 2021; 19:45. [PMID: 33761018 PMCID: PMC7991022 DOI: 10.1186/s43141-021-00144-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The increasing demand and the continuous depletion in fossil fuels have persuaded researchers to investigate new sources of renewable energy. Bioethanol produced from cellulose could be a cost-effective and a viable alternative to petroleum. It is worth note that β-glucosidase plays a key role in the hydrolysis of cellulose and therefore in the production of bioethanol. This study aims to investigate a simple and standardized method for maximization of extracellular β-glucosidase production from a novel fungal isolate under solid-state fermentation using agro-industrial residues as the sole source of carbon and nitrogen. Furthermore, purification and characterization of β-glucosidase were performed to determine the conditions under which the enzyme displayed the highest performance. RESULTS A fungus identified genetically as a new Aspergillus sp. DHE7 was found to exhibit the highest extracellular β-glucosidase production among the sixty fungal isolates tested. Optimization of culture conditions improved the enzyme biosynthesis by 2.1-fold (174.6 ± 5.8 U/g of dry substrate) when the fungus grown for 72 h at 35 °C on jojoba meal with 60% of initial substrate moisture, pH 6.0, and an inoculum size of 2.54 × 107 spores/mL. The enzyme was purified to homogeneity through a multi-step purification process. The purified β-glucosidase is monomeric with a molecular mass of 135 kDa as revealed by the SDS-PAGE analysis. Optimum activity was observed at 60 °C and pH of 6.0, with a remarkable pH and thermal stability. The enzyme retained about 79% and 53% of its activity, after 1 h at 70 °C and 80 °C, respectively. The purified β-glucosidase hydrolysed a wide range of substrates but displaying its greater activity on p-nitrophenyl-β-D-glucopyranoside and cellobiose. The values of Km and Vmax on p-nitrophenyl β-D-glucopyranoside were 0.4 mM and 232.6 U/mL, respectively. Purified β-glucosidase displayed high catalytic activity (improved by 25%) in solutions contained ethanol up to 15%. CONCLUSION β-glucosidase characteristics associated with its ability to hydrolyse cellobiose, underscore its utilization in improving the quality of food and beverages. In addition, taking into consideration that the final concentration of ethanol produced by the conventional methods is about 10%, suggests its use in ethanol-containing industrial processes and in the saccharification processes for bioethanol production.
Collapse
Affiliation(s)
- Dina H El-Ghonemy
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, 33 El Buhouth St, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Qin Y, Li Q, Luo F, Fu Y, He H. One-step purification of two novel thermotolerant β-1,4-glucosidases from a newly isolated strain of Fusarium chlamydosporum HML278 and their characterization. AMB Express 2020; 10:182. [PMID: 33030626 PMCID: PMC7544787 DOI: 10.1186/s13568-020-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
A newly identified cellulase-producing Fusarium chlamydosporum HML278 was cultivated under solid-state fermentation of sugarcane bagasse, and two new β-glucosides enzymes (BG FH1, BG FH2) were recovered from fermentation solution by modified non-denaturing active gel electrophoresis and gel filtration chromatography. SDS-PAGE analysis showed that the molecular weight of BG FH1 and BG FH2 was 93 kDa and 52 kDa, respectively, and the enzyme activity was 5.6 U/mg and 11.5 U/mg, respectively. The optimal reaction temperature of the enzymes was 60 ℃, and the enzymes were stable with a temperature lower than 70 ℃. The optimal pH of the purified enzymes was 6.0, and the enzymes were stable between pH 4–10. Km and Vmax values were 2.76 mg/mL and 20.6 U/mg for pNPG, respectively. Thin-layer chromatography and high-performance liquid chromatography analysis showed that BG FH1and BG FH2 had hydrolysis activity toward cellobiose and could hydrolyze cellobiose into glucose. In addition, both enzymes exhibited transglycoside activity, which could use glucose to synthesize cellobiose and cellotriose, and preferentially synthesize alcohol. In conclusion, our study demonstrated that F. chlamydosporum HML278 produces heat-resistant β-glucosidases with both hydrolytic activity and transglycosidic activity, and these β-glucosidases have potential application in bioethanol and papermaking industries.
Collapse
|
3
|
Monteiro LMO, Pereira MG, Vici AC, Heinen PR, Buckeridge MS, Polizeli MDLTDM. Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. Int J Biol Macromol 2019; 136:1133-1141. [PMID: 31220494 DOI: 10.1016/j.ijbiomac.2019.06.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
Abstract
β-glucosidases (BGLs) hydrolyze short-chain cellulooligosaccharides. Some BGLs can hydrolyze anthocyanins and be applied in the clarification process of food industries, especially grape juice and wine. Enzyme immobilization is a valuable tool to increase enzyme stabilization. In this work, Malbranchea pulchella BGL was immobilized on Monoaminoethyl-N-ethyl-agarose ionic support, MANAE-agarose, and Concanavalin A-Sepharose affinity support, Con-A-Sepharose. The formed biocatalysts, denominated BLG-MANAE and BLG-ConA, were applied in the grape juice and red wine clarification. BGL-MANAE and BGL-ConA hyperactivated M. pulchella BGL 10- and 3-fold, respectively. Both biocatalysts showed at least 70% activity at pH range 2-11, until 24 h incubation. BGL-MANAE and BGL-ConA showed activity of 60% and 100%, respectively, at 50 °C, up to 24 h. Both biocatalysts were efficiently reused 20-fold. They were stable in the presence of up to 0.1 M glucose for 24 h incubation, and with 5%, 10% and 15% ethanol kept up to 70% activity. BGL-MANAE biocatalyst was 11% and 25% more efficient than BGL-ConA in clarification of concentrate and diluted wines, respectively. Likewise, BGL-MANAE biocatalysts were 14% and 33% more efficient than the BGL-ConA in clarification of diluted and concentrated juices, respectively. Therefore, the BGL-MANAE biocatalyst was especially effective in red wine and grape juice clarification.
Collapse
Affiliation(s)
- Lummy Maria Oliveira Monteiro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Bandeirantes Av., 3.900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Marita Gimenez Pereira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Bandeirantes Av., 3.900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Ana Claudia Vici
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Bandeirantes Av., 3.900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Paulo Ricardo Heinen
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Bandeirantes Av., 3.900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Marcos S Buckeridge
- Instituto de Biociências, Universidade de São Paulo, Matão Street, 277, 05508-090 São Paulo, SP, Brazil
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Bandeirantes Av., 3.900, 14049-900 Ribeirão Preto, SP, Brazil; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Bandeirantes Av., 3.900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Wang F, Huang D, Ma Y, Zhang F, Linhardt RJ. Preparation of salidroside with n-butyl β-D-glucoside as the glycone donor via a two-step enzymatic synthesis catalyzed by immobilized β-glucosidase from bitter almonds. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2018.1549236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Feng Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
- The Key Laboratory of Food Colloids and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Dengfa Huang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Yong Ma
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
5
|
Jayakody LN, Liu JJ, Yun EJ, Turner TL, Oh EJ, Jin YS. Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2018; 115:2859-2868. [PMID: 30011361 DOI: 10.1002/bit.26799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/02/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a biodegradable surfactant, ethyl-β-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular β-glucosidase (GH1-1) originating from Neurospora crassa. We identified the formation of ethyl-β-d-glucoside in SSF of cellulose by the EJ2 strain owing to transglycosylation activity of GH1-1. The EJ2 strain coproduced 0.34 ± 0.03 g ethanol/g cellulose and 0.06 ± 0.00 g ethyl-β-d-glucoside/g cellulose at a rate of 0.30 ± 0.02 g·L-1 ·h-1 and 0.09 ± 01 g·L-1 ·h-1 , respectively, during the SSF of Avicel PH-101 cellulose, supplemented only with Celluclast 1.5 L. Herein, we report a possible coproduction of a value-added chemical (alkyl-glucosides) during SSF of cellulose exploiting the transglycosylation activity of GH1-1 in engineered S. cerevisiae. This coproduction could have a substantial effect on the overall technoeconomic feasibility of theSSF of cellulose.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Eun Ju Yun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Timothy Lee Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
6
|
Charoensapyanan R, Takahashi Y, Murakami S, Ito K, Rudeekulthamrong P, Kaulpiboon J. Synthesis, structural characterization, and biological properties of pentyl- and isopentyl-α-D-glucosides. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
|
8
|
Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Figueira JA, Sato HH, Fernandes P. Establishing the feasibility of using β-glucosidase entrapped in Lentikats and in sol-gel supports for cellobiose hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:626-34. [PMID: 23294439 DOI: 10.1021/jf304594s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
β-Glucosidases represent an important group of enzymes due to their pivotal role in various biotechnological processes. One of the most prominent is biomass degradation for the production of fuel ethanol from cellulosic agricultural residues and wastes, where the use of immobilized biocatalysts may prove advantageous. Within such scope, the present work aimed to evaluate the feasibility of entrapping β-glucosidase in either sol-gel or in Lentikats supports for application in cellobiose hydrolysis, and to perform the characterization of the resulting bioconversion systems. The activity and stability of the immobilized biocatalyst over given ranges of temperature and pH values were assessed, as well as kinetic data, and compared to the free form, and the operational stability was evaluated. Immobilization increased the thermal stability of the enzyme, with a 10 °C shift to an optimal temperature in the case of sol-gel support. Mass transfer hindrances as a result of immobilization were not significant, for sol-gel support. Lentikats-entrapped glucosidase was used in 19 consecutive batch runs for cellobiose hydrolysis, without noticeable decrease in product yield. Moreover, encouraging results were obtained for continuous operation. In the overall, the feasibility of using immobilized biocatalysts for cellobiose hydrolysis was established.
Collapse
Affiliation(s)
- Joelise A Figueira
- Department of Food Science, School of Food Engineering, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | |
Collapse
|
10
|
Rather M, Mishra S. β-Glycosidases: An alternative enzyme based method for synthesis of alkyl-glycosides. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2043-7129-1-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Tiwari MK, Lee KM, Kalyani D, Singh RK, Kim H, Lee JK, Ramachandran P. Role of Glu445 in the substrate binding of β-glucosidase. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Mutations in the substrate entrance region of -glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel 2012; 25:733-40. [DOI: 10.1093/protein/gzs073] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Kim KH, Ha SK, Choi SU, Kim SY, Lee KR. Bioactive phenolic constituents from the seeds of Pharbitis nil. Chem Pharm Bull (Tokyo) 2012; 59:1425-9. [PMID: 22041085 DOI: 10.1248/cpb.59.1425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two new lignans, termed pharsyringaresinol (1) and pharbilignoside (2), a new phenylethanoid glycoside, termed pharbiniloside (3), and 22 known compounds, were isolated from the ethanol extract of the seeds of Pharbitis nil. The structures of the new compounds (1-3) were determined on the basis of spectroscopic analyses, including 2D-NMR and circular dichroism (CD) spectroscopy studies. Among the isolates, compounds 2, 11, 12, and 24 exhibited significant cytotoxicity against human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15) with IC(50) values ranging from 8.07 to 28.30 µM. In addition, compounds 11, 12 and 24 potently inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells, a microglia cells with IC(50) values ranging from 14.7 to 19.9 µM.
Collapse
Affiliation(s)
- Ki Hyun Kim
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440–746, Korea
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJS, Reynolds CD, Sihanonth P. Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungusDaldinia eschscholzii(Ehrenb.:Fr.) Rehm. FEMS Microbiol Lett 2007; 270:162-70. [PMID: 17439636 DOI: 10.1111/j.1574-6968.2007.00662.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An extracellular beta-glucosidase was purified from culture filtrates of the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm grown on 1.0% (w/v) carboxymethyl-cellulose using ammonium sulfate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography. The enzyme is monomeric with a molecular weight of 64.2 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and has a pI of 8.55. The enzyme catalyzes the hydrolysis of p-nitrophenyl-beta-D-glucopyranoside (PNPG) as the substrate, with a K(m) of 1.52 mM, and V(max) of 3.21 U min mg(-1) protein. Glucose competitively inhibited beta-glucosidase with a K(i) value of 0.79 mM. Optimal activity with PNPG as the substrate was at pH 5.0 and 50 degrees C. The enzyme was stable at pH 5.0 at temperatures up to 50 degrees C. The purified beta-glucosidase was active against PNPG, cellobiose, sophorose, laminaribiose and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel or o-nitrophenyl-beta-d-galactopyranoside. The activity of beta-glucosidase was stimulated by Ca(2+), Co(2+), Mg(2+), Mn(2+), glycerol, dimethyl sulfoxide (DMSO), dithiothreitol and EDTA, and strongly inhibited by Hg(2+). The internal amino acid sequences of D. eschscholziibeta-glucosidase have similarity to the sequences of the family 3 beta-glucosyl hydrolase.
Collapse
Affiliation(s)
- Aphichart Karnchanatat
- Biotechnology Programme, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
16
|
Hommalai G, Chaiyen P, Svasti J. Studies on the transglucosylation reactions of cassava and Thai rosewood β-glucosidases using 2-deoxy-2-fluoro-glycosyl-enzyme intermediates. Arch Biochem Biophys 2005; 442:11-20. [PMID: 16139237 DOI: 10.1016/j.abb.2005.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Beta-glucosidases from cassava and Thai rosewood can synthesize a variety of alkyl glucosides using various alcohols as glucosyl acceptors for transglucosylation. Both enzymes were inactivated by 2-deoxy-2-fluoro-sugar analogues to form the covalent glycosyl-enzyme intermediates, indicating that the reaction mechanism was of the double-replacement type. The trapped enzyme intermediates were used for investigating transglucosylation specificity, by measuring the rate of reactivation by various alcohols. The glucosyl-enzyme intermediate from the cassava enzyme showed a 20- to 120-fold higher rate of glucose transfer to alcohols than the glucosyl-enzyme intermediate from the Thai rosewood enzyme. Kinetic analysis indicated that the aglycone binding site of the cassava enzyme was hydrophobic, since the enzyme bound better to more hydrophobic alcohols and showed poor transfer of glucose to hydrophilic sugars. With butanol, transglucosylation was faster with the primary alcohols than with the secondary or tertiary alcohol. Studies with ethanol and chloro-substituted ethanols indicated that the rate of transglucosylation was significantly faster with alcohols with lower pKa values, where the reactive alkoxide was more readily generated, indicating that the formation of the alkoxide species was a major step governing the formation of the transition state in the cassava enzyme.
Collapse
Affiliation(s)
- Greanggrai Hommalai
- Department of Biochemistry, Center for Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
17
|
Jiang Z, Zhu Y, Li L, Yu X, Kusakabe I, Kitaoka M, Hayashi K. Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl beta-D-xylobiosides and xylosides. J Biotechnol 2005; 114:125-34. [PMID: 15464606 DOI: 10.1016/j.jbiotec.2004.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 05/24/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The recombinant xylanase B (XynB) of Thermotoga maritima MSB8 was characterized and was found to cleave p-nitrophenyl beta-D-xyloside via the transglycosylation reaction in the previous study. XynB was activated in the presence of alcohols, and XynB activity was increased by iso-propanol (2M) to 2.1-fold. This type of activation was investigated and was shown to be due to the transglycosylation activity with p-nitrophenyl beta-D-xylobioside being converted to alkyl beta-D-xylobiosides in the presence of XynB and alcohols. Through the transglycosylation reaction, alkyl beta-xylosides and xylobiosides were simultaneously produced in the presence of xylan and alcohols. Primary alcohols were found to be the best acceptors. The highest yields of alkyl beta-xylosides and xylobiosides were 33% and 50% of the total sugar, respectively. XynB showed a great ability to transfer xylose and xylobiose to secondary alcohol acceptors, and was unique for being able to synthesize the tertiary alkyl beta-xylosides and xylobiosides with high yields of 18.2% and 11.6% of the total sugar, respectively. This is the first report of a xylanase with the ability to synthesize tertiary alkyl beta-xylosides and xylobiosides. The specificity of the beta-linkage was confirmed by the proton nuclear magnetic resonance ((1)H NMR). Thus, XynB of T. maritima appears to be an ideal enzyme for the synthesis of useful alkyl beta-xylosides and xylobiosides.
Collapse
Affiliation(s)
- Zhengqiang Jiang
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 294, No. 17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Svasti J, Phongsak T, Sarnthima R. Transglucosylation of tertiary alcohols using cassava beta-glucosidase. Biochem Biophys Res Commun 2003; 305:470-5. [PMID: 12763016 DOI: 10.1016/s0006-291x(03)00793-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have compared the ability of beta-glucosidases from cassava, Thai rosewood, and almond to synthesize alkyl glucosides by transglucosylating alkyl alcohols of chain length C(1)-C(8). Cassava linamarase shows greater ability to transfer glucose from p-nitrophenyl-beta-glucoside to secondary alcohol acceptors than other beta-glucosidases, and is unique in being able to synthesize C(4), C(5), and C(6) tertiary alkyl beta-glucosides with high yields of 94%, 82%, and 56%, respectively. Yields of alkyl glucosides could be optimized by selecting appropriate enzyme concentrations and incubation times. Cassava linamarase required pNP-glycosides as donors and could not use mono- or di-saccharides as sugar donors in alkyl glucoside synthesis.
Collapse
Affiliation(s)
- Jisnuson Svasti
- Center for Excellence in Protein Structure and Function, Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | | | | |
Collapse
|
19
|
|