1
|
Yang W, Jo JI, Tabata Y. A Reverse Transfection System with Cationized Gelatin Nanospheres Incorporating Molecular Beacon as a Tool to Visualize Cell Function. ACS APPLIED BIO MATERIALS 2023; 6:3363-3375. [PMID: 36640270 DOI: 10.1021/acsabm.2c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of this research is to design a reverse transfection system with cationized gelatin nanospheres (cGNS) incorporating a molecular beacon (MB) to visualize a cell function. The cGNS were prepared by the conventional coacervation method. The MB as an imaging probe was incorporated into the cGNS to prepare imaging complexes (cGNSMB). The conventional transfection of 2D culture was performed by incubating MC3T3 cells in the medium containing cGNSMB. The reverse transfection was done by incubating cells on the substrate which had been precoated with both gelatin and cGNSMB. Significantly higher internalization efficiency and fluorescence intensity of cGNSMB were observed in the reverse transfection system than in the conventional one. To apply this system for visualization of 3D cell aggregate, gelatin microspheres (GMS) were prepared, while cGNSMB were bound on the GMS to prepare the GMS-cGNSMB of a cell scaffold. Then the cells were incubated with GMS-cGNSMB to form 3D cell aggregates. On the other hand, as a control, the conventional transfection of 3D culture was performed by incubating the cell aggregates formed with the medium containing cGNSMB. Homogeneous fluorescence of MB from the inside to the outside of aggregates was observed for the reverse transfection group. However, for the conventional transfection, the fluorescence was observed only around the surface of cell aggregates. It is concluded that the reverse transfection system with cGNS incorporating MB is promising to visualize the cell function of a higher transfection efficiency for the 2D culture and in a homogeneous manner for the 3D culture.
Collapse
Affiliation(s)
- Wenxuan Yang
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto606-8507, Japan
| |
Collapse
|
2
|
Appadoo V, Carter MCD, Jennings J, Guo X, Liu B, Hacker TA, Lynn DM. Stimuli-Responsive Polymer Coatings for the Rapid and Tunable Contact Transfer of Plasmid DNA to Soft Surfaces. ACS Biomater Sci Eng 2022; 8:4390-4401. [PMID: 36130280 DOI: 10.1021/acsbiomaterials.2c00706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the design and characterization of thin polymer-based coatings that promote the contact transfer of DNA to soft surfaces under mild and physiologically relevant conditions. Past studies reveal polymer multilayers fabricated using linear poly(ethylene imine) (LPEI), poly(acrylic acid) (PAA), and plasmid DNA promote contact transfer of DNA to vascular tissue. Here, we demonstrate that changes in the structure of the polyamine building blocks of these materials can have substantial impacts on rates and extents of contact transfer. We used two hydrogel-based substrate models that permit identification and manipulation of parameters that influence contact transfer. We used a planar gel model to characterize films having the structure (cationic polymer/PAA/cationic polymer/plasmid DNA)x fabricated using either LPEI or one of three poly(β-amino ester)s as polyamine building blocks. The structure of the polyamine influenced subsequent contact transfer of DNA significantly; in general, films fabricated using more hydrophilic polymers promoted transfer more effectively. This planar model also permitted characterization of the stabilities of films transferred onto secondary surfaces, revealing rates of DNA release to be slower than rates of release prior to transfer. We also used a three-dimensional hole-based hydrogel model to evaluate contact transfer of DNA from the surfaces of inflatable catheter balloons used in vascular interventions and selected a rapid-transfer coating for proof-of-concept studies to characterize balloon-mediated contact transfer of DNA to peripheral arterial tissue in swine. Our results reveal robust and largely circumferential transfer of DNA to the luminal walls of peripheral arteries using inflation times as short as 15 to 30 s. The materials and approaches reported here provide new and useful tools for promoting rapid, substrate-mediated contact transfer of plasmid DNA to soft surfaces in vitro and in vivo that could prove useful in a range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Visham Appadoo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Matthew C D Carter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - James Jennings
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Xuanrong Guo
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - David M Lynn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Arai T, Aiki Y, Sato T. Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism. Polym J 2022. [DOI: 10.1038/s41428-021-00603-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Mendrek B, Fus-Kujawa A, Teper P, Botor M, Kubacki J, Sieroń AL, Kowalczuk A. Star polymer-based nanolayers with immobilized complexes of polycationic stars and DNA for deposition gene delivery and recovery of intact transfected cells. Int J Pharm 2020; 589:119823. [PMID: 32861771 DOI: 10.1016/j.ijpharm.2020.119823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Abstract
We designed a novel thermoresponsive system of nanolayers composed of star poly[oligo(ethylene glycol) methacrylate]s (S-POEGMA) covalently bonded to a solid support and covered with polyplexes of cationic star polymers and plasmid DNA (pDNA). S-POEGMA stars were attached to the solid support via a UV-mediated "grafting to" method. To the best of our knowledge, for the first time, the conformational changes of obtained star nanolayers, occurring with changes in temperature, were studied using a quartz crystal microbalance technique. Next, the polyplexes of star poly[N,N'-dimethylaminoethyl methacrylate-ran-di(ethylene glycol) methacrylate] (S-P(DMAEMA-DEGMA)) with pDNA, exhibiting a phase transition temperature (TCP) in culture medium DMEM, were deposited on S-POEGMA layers when the temperature increased above the TCP of polyplex. The thermoresponsivity of the system was then the main mechanism for controlling the adhesion, proliferation, transfection and detachment of HT-1080 cells. The nanolayers promoted the effective cell culture and delivered nucleic acids into cells, with a transfection efficiency several times higher than that of the control. The detachment of the transfected cells was regulated only by the change of temperature. The studies demonstrated that we obtained a novel and effective system, based on a star polymer architecture, useful for gene delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Agnieszka Fus-Kujawa
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Jerzy Kubacki
- A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
5
|
Xiao S, Peng Q, Yang Y, Tao Y, Zhou Y, Xu W, Shi X. Preparation of [Amine-Terminated Generation 5 Poly(amidoamine)]-graft-Poly(lactic-co-glycolic acid) Electrospun Nanofibrous Mats for Scaffold-Mediated Gene Transfection. ACS APPLIED BIO MATERIALS 2019; 3:346-357. [PMID: 35019451 DOI: 10.1021/acsabm.9b00848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shili Xiao
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, People’s Republic of China
- State Key Laboratory Cultivation Base for New Textile Materials & Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China
| | - Qingyan Peng
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, People’s Republic of China
| | - Yuhui Yang
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, People’s Republic of China
| | - Yongzhen Tao
- State Key Laboratory Cultivation Base for New Textile Materials & Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China
| | - Yang Zhou
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, People’s Republic of China
| | - Weilin Xu
- State Key Laboratory Cultivation Base for New Textile Materials & Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
6
|
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019; 160:61-75. [DOI: 10.1016/j.biochi.2019.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
7
|
Pannier AK, Kozisek T, Segura T. Surface- and Hydrogel-Mediated Delivery of Nucleic Acid Nanoparticles. Methods Mol Biol 2019; 1943:177-197. [PMID: 30838617 DOI: 10.1007/978-1-4939-9092-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene expression within a cell population can be directly altered through gene delivery approaches. Traditionally for nonviral delivery, plasmids or siRNA molecules, encoding or targeting the gene of interest, are packaged within nanoparticles. These nanoparticles are then delivered to the media surrounding cells seeded onto tissue culture plastic; this technique is termed bolus delivery. Although bolus delivery is widely utilized to screen for efficient delivery vehicles and to study gene function in vitro, this delivery strategy may not result in efficient gene transfer for all cell types or may not identify those delivery vehicles that will be efficient in vivo. Furthermore, bolus delivery cannot be used in applications where patterning of gene expression is needed. In this chapter, we describe methods that incorporate material surfaces (i.e., surface-mediated delivery) or hydrogel scaffolds (i.e., hydrogel-mediated delivery) to efficiently deliver genes. This chapter includes protocols for surface-mediated DNA delivery focusing on the simplest and most effective methods, which include nonspecific immobilization of DNA complexes (both polymer and lipid vectors) onto serum-coated cell culture polystyrene and self-assembled monolayers (SAMs) of alkanethiols on gold. Also, protocols for the encapsulation of DNA/cationic polymer nanoparticles into hydrogel scaffolds are described, including methods for the encapsulation of low amounts of DNA (<0.2 μg/μl) and high amounts of DNA (>0.2 μg/μl) since incorporation of high amounts of DNA pose significant challenges due to aggregation.
Collapse
Affiliation(s)
- Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Neurology and Dermatology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2018; 15:18-29. [DOI: 10.1038/s41584-018-0125-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Lu J, Li N, Gao Y, Li N, Guo Y, Liu H, Chen X, Zhu C, Dong Z, Yamamoto A. The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules 2018; 23:molecules23082001. [PMID: 30103462 PMCID: PMC6222674 DOI: 10.3390/molecules23082001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
The polyamidoamine (PAMAM) dendrimer is a highly efficient absorption promoter. In the present study, we studied the absorption-enhancing effects and the mechanism of PAMAM dendrimers with generation 0 to generation 3 (G0–G3) and concentrations (0.1–1.0%) on the pulmonary absorption of macromolecules. The absorption-enhancing mechanisms were elucidated by microarray, western blotting analysis, and PCR. Fluorescein isothiocyanate-labeled dextrans (FDs) with various molecular weights were used as model drugs of poorly absorbable drugs. The absorption-enhancing effects of PAMAM dendrimers on the pulmonary absorption of FDs were in a generation- and concentration-dependent manner. The G3 PAMAM dendrimer with high effectiveness was considered to the best absorption enhancer for improving the pulmonary absorption of FDs. G3 PAMAM dendrimers at three different concentrations were non-toxic to Calu-3 cells. Based on the consideration between efficacy and cost, the 0.1% G3 PAMAM dendrimer was selected for subsequent studies. The results showed that treatment with a 0.1% G3 PAMAM dendrimer could increase the secretion of organic cation transporters (OCTs), OCT1, OCT2, and OCT3, which might be related to the absorption-enhancing mechanisms of the pulmonary absorption of FDs. These findings suggested that PAMAM dendrimers might be potentially safe absorption enhancers for improving absorption of FDs by increasing the secretion of OCT1, OCT2, and OCT3.
Collapse
Affiliation(s)
- Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nannan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Yaochun Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Chunyan Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
10
|
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548:707-720. [PMID: 30012508 DOI: 10.1016/j.ijpharm.2018.07.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Dendrimers are novel polymeric nanoarchitectures characterized by hyper-branched 3D-structure having multiple functional groups on the surface that increases their functionality and make them versatile and biocompatible. Their unique properties like nanoscale uniform size, high degree of branching, polyvalency, water solubility, available internal cavities and convenient synthesis approaches make them promising agent for biological and drug delivery applications. Dendrimers have received an enormous attention from researchers among various nanomaterials. Dendrimers can be used as a carrier for diverse therapeutic agents. They can be used for reducing drug toxicities and enhancement of their efficacies. The present review provide a comprehensive outline of synthesis of dendrimers, interaction of dendrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Atul P Sherje
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Mrunal Jadhav
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Bhushan R Dravyakar
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Darshana Kadam
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
11
|
Bahadoran A, Ebrahimi M, Yeap SK, Safi N, Moeini H, Hair-Bejo M, Hussein MZ, Omar AR. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model. Int J Nanomedicine 2017; 12:8573-8585. [PMID: 29270010 PMCID: PMC5729183 DOI: 10.2147/ijn.s139126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3+/CD4+ T cells and CD3+/CD8+ T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3+/CD4+ and CD3+/CD8+ T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang.,Department of Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur
| | - Mehdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, UPM, Serdang, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang
| | - Nikoo Safi
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang
| | | | - Mohd Hair-Bejo
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang.,Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, UPM
| | - Mohd Zobir Hussein
- Advanced Technology Institute, Universiti Putra Malaysia, UPM, Serdang, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang.,Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, UPM
| |
Collapse
|
12
|
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606596. [PMID: 28752600 PMCID: PMC5683089 DOI: 10.1002/adma.201606596] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 05/13/2023]
Abstract
The delivery of drugs to a target site frequently involves crossing biological barriers. The degree and nature of the impediment to flux, as well as the potential approaches to overcoming it, depend on the tissue, the drug, and numerous other factors. Here an overview of approaches that have been taken to crossing biological barriers is presented, with special attention to transdermal drug delivery. Technology and knowledge pertaining to addressing these issues in a variety of organs could have a significant clinical impact.
Collapse
Affiliation(s)
- Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannah Goldberg
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017; 22:E1401. [PMID: 28832535 PMCID: PMC5600151 DOI: 10.3390/molecules22091401] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/09/2023] Open
Abstract
Dendrimers are highly branched polymers with easily modifiable surfaces. This makes them promising structures for functionalization and also for conjugation with drugs and DNA/RNA. Their architecture, which can be controlled by different synthesis processes, allows the control of characteristics such as shape, size, charge, and solubility. Dendrimers have the ability to increase the solubility and bioavailability of hydrophobic drugs. The drugs can be entrapped in the intramolecular cavity of the dendrimers or conjugated to their functional groups at their surface. Nucleic acids usually form complexes with the positively charged surface of most cationic dendrimers and this approach has been extensively employed. The presence of functional groups in the dendrimer's exterior also permits the addition of other moieties that can actively target certain diseases and improve delivery, for instance, with folate and antibodies, now widely used as tumor targeting strategies. Dendrimers have been investigated extensively in the medical field, and cancer treatment is one of the greatest areas where they have been most used. This review will consider the main types of dendrimer currently being explored and how they can be utilized as drug and gene carriers and functionalized to improve the delivery of cancer therapy.
Collapse
Affiliation(s)
- Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil.
| | - Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Jayanthi M, Rajakumar P. Synthesis and Antimicrobial Activity of Unsymmetrical Dendrimers With Indazole, Salicylates and Anthranilates as Surface Units. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mani Jayanthi
- Department of Organic ChemistryUniversity of Madras Guindy Chennai 600025 India
| | - Perumal Rajakumar
- Department of Organic ChemistryUniversity of Madras Guindy Chennai 600025 India
| |
Collapse
|
15
|
Appadoo V, Carter MCD, Lynn DM. Controlling the surface-mediated release of DNA using 'mixed multilayers'. Bioeng Transl Med 2016; 1:181-192. [PMID: 27981243 PMCID: PMC5125402 DOI: 10.1002/btm2.10023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022] Open
Abstract
We report the design of erodible 'mixed multilayer' coatings fabricated using plasmid DNA and combinations of both hydrolytically degradable and charge-shifting cationic polymer building blocks. Films fabricated layer-by-layer using combinations of a model poly(β-amino ester) (polymer 1) and a model charge-shifting polymer (polymer 2) exhibited DNA release profiles that were substantially different than those assembled using DNA and either polymer 1 or polymer 2 alone. In addition, the order in which layers of these two cationic polymers were deposited during assembly had a profound impact on DNA release profiles when these materials were incubated in physiological buffer. Mixed multilayers ∼225 nm thick fabricated by depositing layers of polymer 1/DNA onto films composed of polymer 2/DNA released DNA into solution over ∼60 days, with multi-phase release profiles intermediate to and exhibiting some general features of polymer 1/DNA or polymer 2/DNA films (e.g., a period of rapid release, followed by a more extended phase). In sharp contrast, 'inverted' mixed multilayers fabricated by depositing layers of polymer 2/DNA onto films composed of polymer 1/DNA exhibited release profiles that were almost completely linear over ∼60-80 days. These and other results are consistent with substantial interdiffusion and commingling (or mixing) among the individual components of these compound materials. Our results reveal this mixing to lead to new, unanticipated, and useful release profiles and provide guidance for the design of polymer-based coatings for the local, surface-mediated delivery of DNA from the surfaces of topologically complex interventional devices, such as intravascular stents, with predictable long-term release profiles.
Collapse
Affiliation(s)
- Visham Appadoo
- Dept. of Chemistry, 1101 University Avenue University of Wisconsin-Madison Madison WI 53706
| | - Matthew C D Carter
- Dept. of Chemistry, 1101 University Avenue University of Wisconsin-Madison Madison WI 53706
| | - David M Lynn
- Dept. of Chemistry, 1101 University Avenue University of Wisconsin-Madison Madison WI 53706; Dept. of Chemical and Biological Engineering, 1415 Engineering Drive University of Wisconsin-Madison Madison WI 53706
| |
Collapse
|
16
|
Kouketsu T, Yokomachi K, Kakimoto MA, Jikei M. Synthesis of Polyamide Dendrimers bearing Multiple Hydrogen Bonding Parts on the Periphery. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008304042385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A series of polyamide dendrimers (GO-G2) having carboxy1 groups on the periphery were prepared by the divergent method. The reaction of G 18NH2 dendrimer with glutaric acid anhydride gave polyamide dendrimer (Gi-8COOH). The structure of polyamide dendrimers were confirmed by IR, 1H, 13C NMR, MALDI-TOF mass, and elemental analysis. Poly(4-vinylpyridine) (P4VP) was prepared by atom transfer radical polymerization of 4-vinylpyridine. A hydrogen bonded GI-8COOH/P4VP 1/8 (molar ratio) complex was prepared by mixing GIA8COOH with P4VP in methanol, followed by removing the solvent. IR spectrum of Gl-8COOH/P4VP 1/8 complex showed the characteristic absorptions at 2550 and 1950 cm-1 due to the hydrogen bonding. A glass transition temperature (Tg) of GI-8COOH/P4VP 1/8 complex was observed at 177°C by DSC measurement, whereas the Tg values of G 1-8COOH and P4VP were at 147 and 138°C, respectively.
Collapse
Affiliation(s)
| | - Kazutoshi Yokomachi
- Department of Organic and Polymeric materials, Tokyo Institute of Technology, Tokyo, Japan
| | - Masa-Aki Kakimoto
- Department of Organic and Polymeric materials, Tokyo Institute of Technology, Tokyo, Japan
| | - Mitsutoshi Jikei
- Department of Material-process Engineering & Applied Chemistry for Environments Akita University, Akita, Japan
| |
Collapse
|
17
|
Yousefi N, Wargenau A, Tufenkji N. Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14339-48. [PMID: 27211513 DOI: 10.1021/acsami.6b00775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Identifying the mechanisms of nanoparticle (NP) interactions with cell membranes is key to understanding potential NP cytotoxicity and applications as nanocarriers for targeted drug delivery. To elucidate these mechanisms of interaction, supported phospholipid bilayers (SPBs) are commonly used as models of cell membranes. However, SPBs are soft thin films, and, as such, their properties can be significantly affected by the underlying substrate. Free-floating cell membranes would be best modeled by weakly adhered SPBs; thus, we propose a method for tailoring the interfacial interaction of an electrically charged SPB-substrate system based on modulations in the solution chemistry. Using the dissipation signal of the quartz crystal microbalance with dissipation monitoring (QCM-D), we show that the method can be used to tailor SPB-substrate interactions without the loss of its structural integrity. To demonstrate the application of the method, SPBs are exposed to cationic and anionic polystyrene latex NPs. These studies reveal that the bilayer response to the modulations in the interfacial interaction with its underlying substrate can be used as a sensitive tool to probe the integrity of SPBs upon exposure to NPs. As expected, anionic NPs tend to impart no significant damage to the anionic bilayers, whereas cationic NPs can be detrimental to bilayer integrity. This is the first report of a QCM-D based method to probe bilayer integrity following exposure to NPs. Importantly, the degree of SPB interaction with its underlying substrate is shown to be a critical factor in the kinetics of bilayer disruption by cationic NPs, whereby weakly adhered bilayers are prone to significantly faster breakup. Since free-floating cell membranes are better represented by a weakly adhered SPB, the results of this work critically influence paradigms in experimental studies involving SPBs as models for cell membranes.
Collapse
Affiliation(s)
- Nariman Yousefi
- Department of Chemical Engineering, McGill University , Montreal, Quebec, Canada
| | - Andreas Wargenau
- Department of Chemical Engineering, McGill University , Montreal, Quebec, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University , Montreal, Quebec, Canada
| |
Collapse
|
18
|
Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polym Chem 2016. [DOI: 10.1039/c6py01006g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unimolecular micelles have high functionalities, encapsulation capabilities and site specific confinement abilities in various applications.
Collapse
Affiliation(s)
- Xiaoshan Fan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- A*STAR
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
19
|
Wang H, Pan J, Chen H, Yuan L. Application of Polyethylenimine-Grafted Silicon Nanowire Arrays for Gene Transfection. Methods Mol Biol 2016; 1445:279-87. [PMID: 27436326 DOI: 10.1007/978-1-4939-3718-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyplexes are one of the most important and promising approaches to deliver exogenous DNA into cells. However, it is severely restricted by the aggregation of polyplexes. Surface-tethered polyplexes can inhibit the aggregation effect and increase the local concentrations of DNA, exhibiting an excellent potential in gene transfection. Since silicon nanowires have the ability to penetrate the cell membrane, branched polyethylenimine (bPEI)-grafted silicon nanowire arrays (SiNWAs) can stimulate gene transfection to a great extent. Herein, the method for the preparation of bPEI-grafted SiNWAs, as an example of surface-tethered polyplexes, is introduced in detail.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Jingjing Pan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Hong Chen
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Lin Yuan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| |
Collapse
|
20
|
Yan JY, Liu CY, Wu ZW, Chien CT, Chiu WC, Lin SY. Designed nucleus penetrating thymine-capped dendrimers: a potential vehicle for intramuscular gene transfection. J Mater Chem B 2015; 3:9060-9066. [PMID: 32263037 DOI: 10.1039/c5tb01435b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A nucleus penetrating vehicle is indispensible when seeking to deliver plasmid DNA for gene transfection. In this study, dendrimers with terminal thymine groups were synthesized to meet this objective. Through modifications of the hydrophilic and neutral thymine moieties on hyperbranched peripheries, these dendrimers can achieve biosafety, efficient endosomal escape ability, cytosolic accessibility, and eventually, nuclear entry for the purposes of gene transfection. After optimization of the thymine coverages, better gene expression can only be achieved while replacing ∼50% of the amine groups of a dendrimer with thymine moieties. Presumably, a specific dendrimer comprising thymine and primary amines might possess a synergistic effect to promote pDNA condensation via the cooperation of electrostatic interaction and hydrogen bonding. In comparison, a dendrimer entirely capped by thymine can lose external amines, decreasing pDNA complexity and stability, which would cause poor gene transfection. The utility of specific thymine-capped dendrimers in vivo level was demonstrated to successfully and efficiently deliver plasmid DNA at a low complex ratio into mouse muscle by intramuscular injection. Upon the easy accessibility of intramuscular administration, the capability of thymine-capped dendrimers might be potentially used in immunotherapeutic gene transfection in the future.
Collapse
Affiliation(s)
- Jia-Ying Yan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road Zhunan, Miaoli 35053, Taiwan.
| | | | | | | | | | | |
Collapse
|
21
|
Zakrewsky M, Kumar S, Mitragotri S. Nucleic acid delivery into skin for the treatment of skin disease: Proofs-of-concept, potential impact, and remaining challenges. J Control Release 2015; 219:445-456. [PMID: 26385169 DOI: 10.1016/j.jconrel.2015.09.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/26/2023]
Abstract
Nucleic acids (NAs) hold significant potential for the treatment of several diseases. Topical delivery of NAs for the treatment of skin diseases is especially advantageous since it bypasses the challenges associated with systemic administration which suffers from enzymatic degradation, systemic toxicity and lack of targeting to skin. However, the skin's protective barrier function limits the delivery of NAs into skin after topical application. Here, we highlight strategies for enhancing delivery of NAs into skin, and provide evidence that translation of topical NA therapies could have a transformative impact on the treatment of skin diseases.
Collapse
Affiliation(s)
- Michael Zakrewsky
- Center for Bioengineering and Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sunny Kumar
- Center for Bioengineering and Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Samir Mitragotri
- Center for Bioengineering and Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
22
|
Yu Y, Si Y, Bechler SL, Liu B, Lynn DM. Polymer Multilayers that Promote the Rapid Release and Contact Transfer of DNA. Biomacromolecules 2015; 16:2998-3007. [PMID: 26285737 PMCID: PMC4753844 DOI: 10.1021/acs.biomac.5b00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/14/2015] [Indexed: 01/25/2023]
Abstract
We report a layer-by-layer approach to the fabrication of thin polymer-based multilayers that release DNA rapidly in physiologically relevant environments. This approach exploits the properties of a weak anionic polyelectrolyte [poly(acrylic acid); PAA] to disrupt ionic interactions and promote disassembly in coatings that otherwise erode slowly. We investigated this approach using multilayers fabricated from plasmid DNA and linear poly(ethylenimine) (LPEI), a model synthetic cationic polymer used widely for DNA delivery. LPEI/DNA multilayers erode and release DNA slowly over ∼4 days when incubated in PBS buffer. In contrast, substitution of every other layer of DNA with PAA lead to thin films that released DNA rapidly, with >60% being released in the first 5 min. These quick-release coatings release bioactive DNA and can be used to fabricate uniform coatings on a variety of objects, including the tips of inflatable balloon catheters. We demonstrate that these coatings can promote high levels of cell transfection in vitro and the robust contact transfer and expression of DNA in vascular tissue in vivo using a rat model of vascular injury. These materials provide useful alternatives to multilayers and other coatings that promote the prolonged release of DNA. More broadly, approaches that depart from the use of degradable polymers to promote film erosion create opportunities to design new gene delivery coatings using a broader range of polymer-based building blocks designed for other gene delivery applications. With further development, this approach could thus provide a new and useful platform for the rapid contact transfer of DNA to cells and tissues of interest in a range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Yan Yu
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Yi Si
- Division
of Vascular Surgery, Department of Surgery, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Shane L. Bechler
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Bo Liu
- Division
of Vascular Surgery, Department of Surgery, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David M. Lynn
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Fan X, Hu Z, Wang G. Facile synthesis of polyester dendrimer via combining thio-bromo “Click” chemistry and ATNRC. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University; Xinxiang 453007 People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; People's Republic of China
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions; Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; People's Republic of China
| |
Collapse
|
24
|
Kanai T, Thirumoolan D, Mohanram R, Vetrivel K, Basha KA. Antimicrobial activity of hyperbranched polymers: Synthesis, characterization, and activity assay study. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911514565936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Poly(cyanurateamine) and poly(triacrylatetrimine) hyperbranched polymers were synthesized for the first time by adopting Michael addition reaction. These polymers were obtained by reacting diethylenetriamine (A2) with 2,4,6-triallylcyanurate (B3) and trimethylolpropane triacrylate (B3), respectively, at room temperature. The polymers were characterized by spectroscopic techniques such as Fourier transform infrared, 1H-, and 13C-nuclear magnetic resonance spectroscopy. The antimicrobial activity of hyperbranched polymers was studied against Staphylococcus aureus ATCC 25923, Escherichia coli, Bacillus firmus, Bacillus subtilis MTCC 2423, Serratia marcescens, Pseudomonas aeruginosa, Micrococcus sp., and Acinetobacter beijerinckii. Both poly(cyanurateamine) and poly(triacrylatetrimine) show good antibacterial activity against gram-positive bacteria compared to gram-negative bacteria. Interestingly, poly(triacrylatetrimine) is better resistant to promising antibiotics and antiseptics bacteria, Pseudomonas aeruginosa and Serratia marcescens in comparison with poly(cyanurateamine).
Collapse
Affiliation(s)
- Tapan Kanai
- Polymer Division, Naval Material Research Laboratory, Ambernath, India
| | - D Thirumoolan
- P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, India
| | - R Mohanram
- Department of Marine Biotechnology, Naval Materials Research Laboratory, Ambernath, India
| | - K Vetrivel
- P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, India
| | - K Anver Basha
- P.G. & Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam, India
| |
Collapse
|
25
|
Jain A, Muntimadugu E, Domb AJ, Khan W. Cationic Polysaccharides in Gene Delivery. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Approval of Glybera®, a gene therapy to treat lipoprotein lipase deficiency, by the European Union Marketing Authorization, and more than 1800 clinical trials in over 31 countries for the treatment of many incurable diseases, narrates the successful journey of gene therapy in the biomedical field. However, the undesired side effects of gene therapy using viral and other vectors have overshadowed the success story of gene therapy. Non-viral vectors, and more particularly cationic polysaccharides due to their non-toxicity, water solubility, biodegradability and excellent compatibility with body systems, provide an excellent alternative for gene delivery. This chapter highlights significant contributions made by cationic polysaccharides in gene delivery.
Collapse
Affiliation(s)
- Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad India 500037
| | - Eameema Muntimadugu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad India 500037
| | - Abraham J. Domb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel 91120
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad India 500037
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel 91120
| |
Collapse
|
26
|
Pan J, Lyu Z, Jiang W, Wang H, Liu Q, Tan M, Yuan L, Chen H. Stimulation of gene transfection by silicon nanowire arrays modified with polyethylenimine. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14391-14398. [PMID: 25032791 DOI: 10.1021/am5036626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, a novel gene delivery strategy was proposed based on silicon nanowire arrays modified with high-molecular-weight 25 kDa branched polyethylenimine (SN-PEI). Both the plasmid DNA (pDNA) binding capacity and the in vitro gene transfection efficiency of silicon nanowire arrays (SiNWAs) were significantly enhanced after modification with high-molecular-weight bPEI. Moreover, the transfection efficiency was substantially further increased by the introduction of free pDNA/PEI complexes formed by low-molecular-weight branched PEI (bPEI, 2 kDa). Additionally, factors affecting the in vitro transfection efficiency of the novel gene delivery system were investigated in detail, and the transfection efficiency was optimized on SN-PEI with a bPEI grafting time of 3 h, an incubation time of 10 min for tethered pDNA/PEI complexes consisting of high-molecular-weight bPEI grafted onto SiNWAs, and with an N/P ratio of 80 for free pDNA/PEI complexes made of low-molecular-weight bPEI. Together, our results indicate that high-molecular-weight bPEI modified SiNWAs can serve as an efficient platform for gene delivery.
Collapse
Affiliation(s)
- Jingjing Pan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 2014; 20:2119. [DOI: 10.1007/s00894-014-2119-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
|
28
|
Jang JH, Houchin TL, Shea LD. Gene delivery from polymer scaffolds for tissue engineering. Expert Rev Med Devices 2014; 1:127-38. [PMID: 16293016 DOI: 10.1586/17434440.1.1.127] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The combination of gene therapy with tissue engineering offers the potential to direct progenitor cell proliferation and differentiation into functional tissue replacements. Many approaches to engineering tissue replacements feature a polymer scaffold to create and maintain a space, support cell adhesion, and organize tissue formation. Polymer scaffolds, either natural, synthetic, or a combination of the two, have also been adapted to serve as delivery vehicles for viral and nonviral vectors, which can induce the expression of tissue inductive factors. Gene delivery is a versatile approach, capable of targeting any cellular process through localized expression of tissue inductive factors. The design and application of tissue engineering scaffolds for localized gene transfer are reviewed. Scaffolds are designed either to release the vector into the local tissue environment or maintain the vector at the polymer surface, which is regulated by the effective affinity of the vector for the polymer. Polymeric delivery can enhance gene transfer locally, promote and extend transgene expression, avoid vector distribution to distant tissues, and reduce the immune response to the vector. Scaffolds capable of controlled DNA delivery can provide a fundamental tool for directing progenitor cell function, which has applications with the engineering of numerous types of tissue. The utility of this approach will increase with the development of design parameters that correlate release and transgene expression, and with continued research into the biology of tissue formation.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156 Evanston, IL 60208-3120, USA
| | | | | |
Collapse
|
29
|
Keeney M, Onyiah S, Zhang Z, Tong X, Han LH, Yang F. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials 2013; 34:9657-65. [DOI: 10.1016/j.biomaterials.2013.08.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/19/2013] [Indexed: 01/03/2023]
|
30
|
Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 2013; 65:1316-30. [PMID: 23415951 DOI: 10.1016/j.addr.2013.01.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/08/2012] [Accepted: 01/30/2013] [Indexed: 12/21/2022]
Abstract
Drugs are introduced into the body by numerous routes such as enteral (oral, sublingual and rectum administration), parenteral (intravascular, intramuscular, subcutaneous and inhalation administration), or topical (skin and mucosal membranes). Each route has specific purposes, advantages and disadvantages. Today, the oral route remains the preferred one for different reasons such as ease and compliance by patients. Several nanoformulated drugs have been already approved by the FDA, such as Abelcet®, Doxil®, Abraxane® or Vivagel®(Starpharma) which is an anionic G4-poly(L-lysine)-type dendrimer showing potent topical vaginal microbicide activity. Numerous biochemical studies, as well as biological and pharmacological applications of both dendrimer based products (dendrimers as therapeutic compounds per se, like Vivagel®) and dendrimers as drug carriers (covalent conjugation or noncovalent encapsulation of drugs) were described. It is widely known that due to their outstanding physical and chemical properties, dendrimers afforded improvement of corresponding carried-drugs as dendrimer-drug complexes or conjugates (versus plain drug) such as biodistribution and pharmacokinetic behaviors. The purpose of this manuscript is to review the recent progresses of dendrimers as nanoscale drug delivery systems for the delivery of drugs using enteral, parenteral and topical routes. In particular, we focus our attention on the emerging and promising routes such as oral, transdermal, ocular and transmucosal routes using dendrimers as delivery systems.
Collapse
|
31
|
Wu Y, Terp MC, Kwak KJ, Gallego-Perez D, Nana-Sinkam SP, Lee LJ. Surface-mediated nucleic acid delivery by lipoplexes prepared in microwell arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2358-67. [PMID: 23471869 PMCID: PMC4114522 DOI: 10.1002/smll.201202258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/06/2012] [Indexed: 05/27/2023]
Abstract
Many delivery methods have been developed to improve the therapeutic efficacy and facilitate the clinical translation of nucleic acid-based therapeutics. A facile surface-mediated nucleic acid delivery by lipoplexes is prepared in a microwell array, which combines the advantages of lipoplexes as an efficient carrier system, surface-mediated delivery, and the control of surface topography. Uniform disc-like lipoplexes containing nucleic acids are formed in the microwell array with a diameter of ∼818 nm and thickness of ∼195 nm. The microwell array-mediated delivery of lipoplexes containing FAM-oligodeoxynucleotides is ∼18.6 and ∼10.6 times more efficient than the conventional transfection method in an adherent cell line (A549 non-small cell lung cancer cells) and a suspension cell line (KG-1a acute myelogenous leukemia cells), respectively. MicroRNA-29b is then used as a model nucleic acid to investigate the therapeutic efficacy of lipoplexes delivered by the microwell array. Compared to conventional transfection methods, the effective therapeutic dosage of microRNA-29b is reduced from the microgram level to the nanogram level by lipoplexes prepared in the microwell array. The microwell array is also a very flexible platform. Both nucleic acid therapeutics and imaging reagents are incorporated in lipoplexes and successfully delivered to A549 cells, demonstrating its potential applications in theranostic medicine.
Collapse
Affiliation(s)
- Yun Wu
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
| | - Megan Cavanaugh Terp
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
- William G. Lowrie Department of Chemical and Bimolecular Engineering The Ohio State University 140 W 19th Avenue, Room 125A Columbus, Ohio 43210, USA
| | - Kwang Joo Kwak
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
| | - Daniel Gallego-Perez
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
| | - Serge P. Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine DHLRI, 473 W 12th Avenue Room 201, Columbus, Ohio 43210, USA
| | - L. James Lee
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
- William G. Lowrie Department of Chemical and Bimolecular Engineering The Ohio State University 140 W 19th Avenue, Room 125A Columbus, Ohio 43210, USA
| |
Collapse
|
32
|
Preparation of cell-culturing glass surfaces that release branched polyethyleneimine triggered by thiol-disulfide exchange. Colloids Surf B Biointerfaces 2013; 103:360-5. [PMID: 23261556 DOI: 10.1016/j.colsurfb.2012.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
To develop a chemical stimulus-responsive substrate for culturing cells, polyethyleneimine (PEI) having a pyridyl disulfide moiety was attached via disulfide linkages to a glass coverslip modified with a silane coupling agent having a thiol group. The surface modification was confirmed by X-ray photoelectron spectroscopy and zeta potential analysis. The obtained surface exhibited sufficiently high cell adhesiveness. Zeta potential measurements revealed that the PEI derivatives were released from the surface through thiol-disulfide exchange when the modified glass coverslip was immersed in a neutral pH buffer containing cysteine. The cell viability assay demonstrated that this chemical stimulus was substantially nontoxic to 293T cells. Because PEI is a widely used transfection reagent, this functional glass coverslip would be potentially useful as an experimental platform for reverse transfection.
Collapse
|
33
|
Xu L, Yeudall WA, Yang H. Dendrimer-Based RNA Interference Delivery for Cancer Therapy. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1135.ch012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Leyuan Xu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - W. Andrew Yeudall
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
34
|
Abstract
Gene expression within a cell population can be directly altered through gene delivery approaches. Traditionally for nonviral delivery, plasmids or siRNA molecules, encoding or targeting the gene of interest, are packaged within nanoparticles. These nanoparticles are then delivered to the media surrounding cells seeded onto tissue culture plastic; this technique is termed bolus delivery. Although bolus delivery is widely utilized to screen for efficient delivery vehicles and to study gene function in vitro, this delivery strategy may not result in efficient gene transfer for all cell types or may not identify those delivery vehicles that will be efficient in vivo. Furthermore, bolus delivery cannot be used in applications where patterning of gene expression is needed. In this chapter, we describe methods that incorporate material surfaces (i.e., surface-mediated delivery) or hydrogel scaffolds (i.e., hydrogel-mediated delivery) to efficiently deliver genes. This chapter includes protocols for surface-mediated DNA delivery focusing on the simplest and most effective methods, which include nonspecific immobilization of DNA complexes (both polymer and lipid vectors) onto serum-coated cell culture polystyrene and self-assembled monolayers of alkanethiols on gold. Also, protocols for the encapsulation of DNA/cationic polymer nanoparticles into hydrogel scaffolds are described, including methods for the encapsulation of low amounts of DNA (<0.2 μg/μL) and high amounts of DNA (>0.2 μg/μL) since incorporation of high amounts of DNA poses significant challenges due to aggregation.
Collapse
|
35
|
Paul A, Shao W, Abbasi S, Shum-Tim D, Prakash S. PAMAM Dendrimer-Baculovirus Nanocomplex for Microencapsulated Adipose Stem Cell-Gene Therapy: In Vitro and in Vivo Functional Assessment. Mol Pharm 2012; 9:2479-88. [DOI: 10.1021/mp3000502] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell
Therapy Research Laboratory, Department of Biomedical Engineering,
Faculty of Medicine, McGill University,
3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Wei Shao
- Biomedical Technology and Cell
Therapy Research Laboratory, Department of Biomedical Engineering,
Faculty of Medicine, McGill University,
3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Sana Abbasi
- Biomedical Technology and Cell
Therapy Research Laboratory, Department of Biomedical Engineering,
Faculty of Medicine, McGill University,
3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Dominique Shum-Tim
- Divisions of Cardiac Surgery
and Surgical Research, McGill University Health Center, 687 Pine Avenue West, Suite S8.73, Montreal, Quebec, H3A 1A1, Canada
| | - Satya Prakash
- Biomedical Technology and Cell
Therapy Research Laboratory, Department of Biomedical Engineering,
Faculty of Medicine, McGill University,
3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
36
|
Nakayama Y. Hyperbranched polymeric "star vectors" for effective DNA or siRNA delivery. Acc Chem Res 2012; 45:994-1004. [PMID: 22353143 DOI: 10.1021/ar200220t] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although gene therapy offers an attractive strategy for treating inherited disorders, current techniques using viral and nonviral delivery systems have not yielded many successful results in clinical trials. Viral vectors such as retroviruses, lentiviruses, and adenoviruses deliver genes efficiently; however, the possibility of negative outcomes from viral transformation cannot be completely ruled out. In contrast, various types of nonviral vectors are attracting considerable attention because they are easier to handle and induce weak immune responses. Cationic polymers, such as polyethylenimine (PEI) and poly(N,N-dimethylaminopropyl acrylamide) (PDMAPAAm), can generate nanoparticles through the formation of polyion complexes, "polyplexes" with DNA. These nonviral systems offer many advantages over viral systems. The primary obstacle to implementing these cationic polymers in an effective gene therapy remains their comparatively inefficient gene transfection in vivo. We describe four strategies for the development of hyperbranched star vectors (SVs) for enhancing DNA or siRNA delivery. The molecular design was performed by living radical polymerization in which the chain length can be controlled by photoirradiation and solution conditions, including concentrations of the monomer or iniferter (a molecule that serves as a combination of initiator, transfer agent, and terminator). The branch composition is controlled by the types of monomers that are added stepwise. In our first strategy, we prepared a series of only cationic PDMAPAAm-based SVs with no branches or 3, 4, or 6 branching numbers. These SVs could form polyion complexes (polyplexes) by mixing with DNA only in aqueous solution. The relative gene expression activity of the delivered DNA increased according to the degree of branching. In addition, increasing the molecular weight of SVs and narrowing their polydispersity index (PDI) improved their activity. For targeting DNA delivery to the specific cells, we modified the SV with ligands. Interestingly, the SV could adsorb the RGD peptide, making gene transfer possible in endothelial cells which are usually refractory to such treatments. The peptide was added to the polyplex solution without covalent derivatization to the SV. The introduction of additional branching by cross-linking using iniferter-induced coupling reactions further improved gene transfection activity. After block copolymerization of PDMAPAAm-based SVs with a nonionic monomer (DMAAm), the blocked SVs (BSVs) produced polyplexes with DNA that had excellent colloidal stability for 1 month, leading to efficient in vitro and in vivo gene delivery. Moreover, BSVs served as carriers for siRNA delivery. BSVs enhanced siRNA-mediated gene silencing in mouse liver and lung. As an alternative approach, we developed a novel gene transfection method in which the polyplexes were kept in contact with their deposition surface by thermoresponsive blocking of the SV. This strategy was more effective than reverse transfection and the conventional transfection methods in solution.
Collapse
Affiliation(s)
- Yasuhide Nakayama
- Division of Medical Engineering and Materials, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
37
|
Jones CF, Campbell RA, Franks Z, Gibson CC, Thiagarajan G, Vieira-de-Abreu A, Sukavaneshvar S, Mohammad SF, Li DY, Ghandehari H, Weyrich AS, Brooks BD, Grainger DW. Cationic PAMAM dendrimers disrupt key platelet functions. Mol Pharm 2012; 9:1599-611. [PMID: 22497592 DOI: 10.1021/mp2006054] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood.
Collapse
Affiliation(s)
- Clinton F Jones
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah , Salt Lake City, Utah 84112-5820, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schautteet K, De Clercq E, Jönsson Y, Lagae S, Chiers K, Cox E, Vanrompay D. Protection of pigs against genital Chlamydia trachomatis challenge by parenteral or mucosal DNA immunization. Vaccine 2012; 30:2869-81. [DOI: 10.1016/j.vaccine.2012.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 01/06/2023]
|
39
|
Zelikin AN, Städler B. Intelligent Polymer Thin Films and Coatings for Drug Delivery. INTELLIGENT SURFACES IN BIOTECHNOLOGY 2012:243-290. [DOI: 10.1002/9781118181249.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Bechler SL, Lynn DM. Characterization of degradable polyelectrolyte multilayers fabricated using DNA and a fluorescently-labeled poly(β-amino ester): shedding light on the role of the cationic polymer in promoting surface-mediated gene delivery. Biomacromolecules 2012; 13:542-52. [PMID: 22224541 PMCID: PMC3278507 DOI: 10.1021/bm2016338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyelectrolyte multilayers (PEMs) fabricated from cationic polymers and DNA have been investigated broadly as materials for surface-mediated DNA delivery. One attractive aspect of this "multilayered" approach is the potential to exploit the presence of cationic polymer "layers" in these films to deliver DNA to cells more effectively. Past studies demonstrate that these films can promote transgene expression in vitro and in vivo, but significant questions remain regarding roles that the cationic polymers could play in promoting the internalization and processing of DNA. Here, we report physicochemical and in vitro cell-based characterization of DNA-containing PEMs fabricated using fluorescently end-labeled derivatives of a degradable polycation (polymer 1) used in past studies of surface-mediated transfection. This approach permitted simultaneous characterization of polymer and DNA in solution and in cells using fluorescence-based techniques, and provided information about the locations and behaviors of polymer 1 that could not be obtained using other methods. LSCM and flow cytometry experiments revealed that polymer 1 and DNA released from film-coated objects were both internalized extensively by cells and that they were colocalized to a significant extent inside cells (e.g., ~58% of DNA was colocalized with polymer). Fluorescence anisotropy measurements of solutions containing partially eroded films were also consistent with the presence of aggregates of polymer 1 and DNA in solution (e.g., after release from surfaces, but prior to internalization by cells). Our results support the view that polymer 1, which is incorporated into these materials as "layers" rather than as part of optimized, preformed "polyplexes", can act to promote or enhance surface-mediated DNA delivery. More broadly, our results suggest opportunities to improve the delivery properties of DNA-containing PEMs by incorporation of additional "layers" of other conventional cationic polymers designed to address specific intracellular barriers to transfection, such as endosomal escape, more effectively.
Collapse
Affiliation(s)
- Shane L Bechler
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
41
|
STUDY ON SUBSTRATE-MEDIATED GENE DELIVERY SYSTEMS LOADED WITH HEPARIN AND HEPARIN-BIOTIN MODIFIED NANOPARTICLES. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Cao W, Zhou J, Mann A, Wang Y, Zhu L. Folate-functionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery. Biomacromolecules 2011; 12:2697-707. [PMID: 21619062 DOI: 10.1021/bm200487h] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A folate-functionalized degradable amphiphilic dendrimer-like star polymer (FA-DLSP) with a well-defined poly(L-lactide) (PLLA) star polymer core and six hydrophilic polyester dendrons based on 2,2-bis(hydroxymethyl) propionic acid was successfully synthesized to be used as a nanoscale carrier for cancer cell-targeted drug delivery. This FA-DLSP hybrid formed unimolecular micelles in the aqueous solution with a mean particle size of ca. 15 nm as determined by dynamic light scattering and transmission electron microscopy. To study the feasibility of FA-DLSP micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, doxorubicin (DOX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 4 wt %. The DOX-loaded FA-DLSP micelles demonstrated a sustained release of DOX due to the hydrophobic interaction between the polymer core and the drug molecules. The hydrolytic degradation in vitro was monitored by weight loss and proton nuclear magnetic resonance spectroscopy to gain insight into the degradation mechanism of the FA-DLSP micelles. It was found that the degradation was pH-dependent and started from the hydrophilic shell gradually to the hydrophobic core. Flow cytometry and confocal microscope studies revealed that the cellular binding of the FA-DLSP hybrid against human KB cells with overexpressed folate-receptors was about twice that of the neat DLSP (without FA). The in vitro cellular cytotoxicity indicated that the FA-DLSP micelles (without DOX) had good biocompatibility with KB cells, whereas DOX-loaded micelles exhibited a similar degree of cytotoxicity against KB cells as that of free DOX. These results clearly showed that the FA-DLSP unimolecular micelles could be a promising nanosize anticancer drug carrier with excellent targeting property.
Collapse
Affiliation(s)
- Weiqiang Cao
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, USA
| | | | | | | | | |
Collapse
|
43
|
Cao W, Zhu L. Synthesis and Unimolecular Micelles of Amphiphilic Dendrimer-like Star Polymer with Various Functional Surface Groups. Macromolecules 2011. [DOI: 10.1021/ma1021242] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weiqiang Cao
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lei Zhu
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
44
|
Yuan Q, Yeudall WA, Yang H. PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromolecules 2010; 11:1940-7. [PMID: 20593893 DOI: 10.1021/bm100589g] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface modification of polyamidoamine (PAMAM) dendrimers with polyethylene glycol (PEG) often results in the decrease in their buffering capacity, which is essential for gene transfer. In this work, bis-aryl hydrazone bond, which possesses protonatable pyridine and amines, was explored as a new linkage for PEGylation of PAMAM dendrimers. PEGylated polyamidoamine (PAMAM) dendrimer G4.0 conjugates with bis-aryl hydrazone (BAH) linkages were synthesized following a two-step procedure: activation of PAMAM dendrimer G4.0 and monofunctional methoxypolyethylene glycol amine (MW=5000 Da) with succinimidyl 4-hydrazinonicotinate acetone hydrazone (SANH) and succinimidyl 4-formylbenzoate (SFB), respectively, and coupling of SFB-activated PEG to SANH-activated G4.0 to generate PEGylated G4.0 with bis-aryl hydrazone linkages (G4.0-BAH-PEG). It was found that the incorporation of BAH linkages into the vector significantly enhanced the buffering capacity of the vector even with a high degree of PEGylation (42 PEG chains per dendrimer). G4.0-BAH-PEG conjugates could complex with DNA plasmid tightly at low weight ratios and display dramatically improved cytocompatibility. According to gene transfection studies in 293T and HN12 cells, this new vector has been shown to be capable of both transfecting more cells and inducing higher gene expression than the parent dendrimer. This work demonstrates that the use of the BAH linkage in coupling of PEG to the dendrimer helps maintain or increase the buffering capacity of the functionalized dendrimer and results in enhanced transfection.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Biomedical Engineering, School of Engineering, Philips Institute of Oral and Craniofacial Molecular Biology, School of Dentistry, and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | | | |
Collapse
|
45
|
Cao W, Zhou J, Wang Y, Zhu L. Synthesis and In Vitro Cancer Cell Targeting of Folate-Functionalized Biodegradable Amphiphilic Dendrimer-Like Star Polymers. Biomacromolecules 2010; 11:3680-7. [DOI: 10.1021/bm101154r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Weiqiang Cao
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States, and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Jing Zhou
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States, and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Yong Wang
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States, and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Lei Zhu
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States, and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
46
|
Posadas I, Guerra FJ, Ceña V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine (Lond) 2010; 5:1219-36. [DOI: 10.2217/nnm.10.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While efficient methods for cell line transfection are well described, for primary neurons a high-yield method different from those relying on viral vectors is lacking. Viral vector-based primary neuronal infection has several drawbacks, including complexity of vector preparation, safety concerns and the generation of immune and inflammatory responses, when used in vivo. This article will cover the different approaches that are being used to efficiently deliver genetic material (both DNA and small interfering RNA) to neuronal tissue using nonviral vectors, including the use of cationic lipids, polyethylenimine derivatives, dendrimers, carbon nanotubes and the combination of carbon-made nanoparticles with dendrimers. The effectiveness, both in vivo and in vitro, of the different methods to deliver genetic material to neural tissue is discussed.
Collapse
Affiliation(s)
- Inmaculada Posadas
- Unidad Asociada Neurodeath, CSIC-Universidad de Castilla-La Mancha. Departamento de Ciencias Médicas. Albacete, Spain Unidad Asociada Neurodeath, Facultad de Medicina, Avda. Almansa, 14, 02006 Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Spain
| | - Francisco Javier Guerra
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Química-IRICA, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- NanoDrugs, S.L. Parque Científico y Tecnológico, Albacete, Spain
| | | |
Collapse
|
47
|
Yuan Q, Lee E, Yeudall WA, Yang H. Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol 2010; 46:698-704. [PMID: 20729136 DOI: 10.1016/j.oraloncology.2010.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 11/29/2022]
Abstract
We designed an epidermal growth factor (EGF)-containing polyamidoamine (PAMAM) Generation 4 dendrimer vector labeled with quantum dots for targeted imaging and nucleic acid delivery. (1)H NMR, SDS-PAGE, and Western blotting were applied to characterize the synthesized G4.0-GGG-EGF nanoparticles. Targeting efficiency, cell viability, proliferation, and intracellular signal transduction were evaluated using HN12, NIH3T3, and NIH3T3/EGFR cells. We found that EGF-conjugated dendrimers did not stimulate growth of EGFR-expressing cells at the selected concentration. Consistent with this, minimal stimulation of post-receptor signaling pathways was observed. These nanoparticles can localize within cells that express the EGFR in a receptor-dependent manner, whereas uptake into cells lacking the receptor was low. A well characterized vimentin shRNA (shVIM) and yellow fluorescent protein (YFP) siRNA were used to test the delivery and transfection efficiency of the constructed targeted vector. Significant knockdown of expression was observed, indicating that this vector is useful for introduction of nucleic acids or drugs into cells by a receptor-targeted mechanism.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | |
Collapse
|
48
|
Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010; 27:1759-71. [PMID: 20593303 DOI: 10.1007/s11095-010-0141-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 03/29/2010] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) diseases represent the largest and fastest-growing area of unmet medical need. Nanotechnology plays a unique instrumental role in the revolutionary development of brain-specific drug delivery, imaging, and diagnosis. With the aid of nanoparticles of high specificity and multifunctionality, such as dendrimers and quantum dots, therapeutics, imaging agents, and diagnostic molecules can be delivered to the brain across the blood-brain barrier (BBB), enabling considerable progress in the understanding, diagnosis, and treatment of CNS diseases. Nanoparticles used in the CNS for drug delivery, imaging, and diagnosis are reviewed, as well as their administration routes, toxicity, and routes to cross the BBB. Future directions and major challenges are outlined.
Collapse
|
49
|
Zelikin AN. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS NANO 2010; 4:2494-2509. [PMID: 20423067 DOI: 10.1021/nn100634r] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Polymer films and coatings are among the popular and most successful tools to modulate surface properties of biomaterials, specifically tissue responses and fouling behavior. Over the past decade, a novel opportunity has been widely investigated, namely utility of surface coatings in surface-mediated drug delivery. In these applications, deposited polymer films act as both a coating to modulate surface properties and a reservoir for active therapeutic cargo. The field has recently accelerated beyond the proof-of-concept reports toward delivering practical solutions and established technologies for biomedical applications. This review briefly summarizes the recent successes of polymer thin films, specifically those constructed by sequential polymer deposition technique, in surface-mediated drug delivery.
Collapse
Affiliation(s)
- Alexander N Zelikin
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.
| |
Collapse
|
50
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|