1
|
Zhuo Z, Nie J, Xie B, Wang F, Shi M, Jiang Y, Zhu W. A comprehensive study of Ephedra sinica Stapf-Schisandra chinensis (Turcz.) Baill herb pair on airway protection in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117614. [PMID: 38113990 DOI: 10.1016/j.jep.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedra sinica Stapf (Mahuang) and Schisandra chinensis (Turcz.) Baill (Wuweizi) are commonly utilized in traditional Chinese medicine for the treatment of cough and asthma. The synergistic effect of Mahuang-Wuweizi herb pair enhances their efficacy in alleviating respiratory symptoms, making them extensively employed in the management of respiratory disorders. Although previous studies have demonstrated the therapeutic potential of Mahuang-Wuweizi in pulmonary fibrosis, the precise mechanism underlying their effectiveness against asthma remains elusive. AIM OF THE STUDY The objective of this study is to investigate the mechanism underlying the preventive and therapeutic effects of Mahuang-Wuweizi herb pair on asthma progression, focusing on airway inflammation and airway remodeling. MATERIALS AND METHODS The active constituents and potential mechanisms of Mahuang-Wuweizi in the management of asthma were elucidated through network pharmacology analysis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to detect the main components of Mahuang-Wuweizi decoction. A rat model of bronchial asthma was established, and the effects of Mahuang-Wuweizi were investigated using hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The results of network pharmacological prediction showed that Mahuang had 22 active components and Wuweizi had 8 active components, with 225 potential targets. 1159 targets associated with asthma and 115 targets that overlap between drugs and diseases were identified. These include interleukin-6 (IL-6), tumor necrosis factor (TNF), Tumor Protein 53, interleukin-1β (IL-1β), as well as other essential targets. Additionally, there is a potential correlation between asthma and Phosphatidylinositol 3 kinase (PI3K)/Protein Kinase B (AKT) signaling pathway, calcium ion channels, nuclear factor-kappa B (NF-κB) signaling pathway, and other signaling pathways. The animal experiment results demonstrated that treatment with Mahuang and Wuweizi, in comparison to the model group, exhibited improvements in lung tissue pathological injury, reduction in collagen fiber accumulation around the airway and proliferation of airway smooth muscle, decrease in concentration levels of IL-6, TNF-α and IL-1β in lung tissue, as well as alleviation of airway inflammation. Furthermore, Mahuang and Wuweizi suppressed the expression of phospholipase C (PLC), transient receptor potential channel 1 (TRPC1), myosin light chain kinase (MLCK), NF-κB P65 protein in ovalbumin (OVA)-sensitized rat lung tissue and downregulated the mRNA expression of PLC, TRPC1, PI3K, AKT, NF-κB P65 in asthmatic rats. These findings were consistent with network pharmacological analysis. CONCLUSION The results show that the synergistic interaction between Mahuang and Wuweizi occur, and they can effectively reduce airway remodeling and airway inflammation induced by inhaling OVA in bronchial asthma rats by inhibiting the expression of PLC/TRPC1/PI3K/AKT/NF-κB signaling pathway. Therefore, Mahuang and Wuweizi may be potential drugs to treat asthma.
Collapse
Affiliation(s)
- Zushun Zhuo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Jianhua Nie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Bin Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fei Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Min Shi
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yini Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Weifeng Zhu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
2
|
Grebert C, Becq F, Vandebrouck C. Focus on TRP channels in cystic fibrosis. Cell Calcium 2019; 81:29-37. [DOI: 10.1016/j.ceca.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
|
3
|
Chaudhuri AD, Tapadar SR, Kar S, Saha S. Bronchiectasis and Focal Segmental Glomerulosclerosis in Rheumatoid Arthritis. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2017; 5:271-274. [PMID: 30787801 PMCID: PMC6298295 DOI: 10.4103/1658-631x.213303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A 28-year-old male patient who was a nonsmoker presented with bilateral symmetrical polyarthritis and polyarthralgia, suggestive of rheumatoid arthritis (RA), along with shortness of breath, fever and cough, suggestive of chronic renal failure and nephrotic range proteinuria. The chest radiograph was suggestive of panacinar emphysematous changes with bilateral central bronchiectasis. The patient reported that two of his brothers had died in their third decade because of renal failure. Renal biopsy showed focal and segmental glomerulosclerosis (FSGS). FSGS with panacinar emphysema and bronchiectasis is a rare entity in RA patients, and considering the possibilities of a familial pattern of FSGS, transient receptor potential cation channel 6 channelopathy was the most valid diagnosis.
Collapse
Affiliation(s)
- Arunabha D Chaudhuri
- Department of Pulmonary Medicine, R. G. Kar Medical College, Kolkata, West Bengal, India
| | - Sumit R Tapadar
- Department of Pulmonary Medicine, R. G. Kar Medical College, Kolkata, West Bengal, India
| | - Saurav Kar
- Department of Pulmonary Medicine, R. G. Kar Medical College, Kolkata, West Bengal, India
| | - Sayantan Saha
- Department of Pulmonary Medicine, R. G. Kar Medical College, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Liu SC, Lu HH, Fan HC, Wang HW, Chen HK, Lee FP, Yu CJ, Chu YH. The identification of the TRPM8 channel on primary culture of human nasal epithelial cells and its response to cooling. Medicine (Baltimore) 2017; 96:e7640. [PMID: 28767579 PMCID: PMC5626133 DOI: 10.1097/md.0000000000007640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It has been proposed that the transient receptor potential (TRP) channel Melastatin 8 (TRPM8) is a cold-sensing TRP channel. However, its presence and its role in the nasal cavity have not yet been fully studied. METHODS Immunohistology was used to study TRPM8 receptors in both the nasal mucosa tissue and the primary cultures of human nasal cells. Cells from primary cultures were immunostained with antibodies to TRPM8, mucin, cytokeratin (CK)-14, CK-18, and vimentin. Western blotting and real-time polymerase chain reaction (PCR) were used to determine the physiological role of TRPM8 in mucus production in the nasal cavity, with and without its agonist and antagonist. RESULTS The TRPM8 is clearly present in the epithelium, mucous glands, and vessels. No obvious TRPM8-immunoreactive cells were detected in the connective tissue. Immunostaining of cytospin preparations showed that epithelial cells test positive for CK-14, CK-18, TRPM8, and mucin 5AC (MUC5AC). Fibroblastic cells are stained negative for TRPM8. Secreted mucins in the cultured supernatant are detected after exposure to menthol and moderate cooling to 24°C. Both induce a statistically significant increase in the level of MUC5AC mRNA and mucin production. BCTC, a TRPM8 antagonist, has a statistically significant inhibitory effect on MUC5AC mRNA expression and MUC5AC protein production that is induced by menthol and moderate cooling to 24°C. CONCLUSIONS The study demonstrates that TRPM8 is present in the nasal epithelium. When it is activated by moderate cooling to 24°C or menthol, TRPM8 induces the secretion of mucin. This study shows that TRPM8 channels are important regulators of mucin production. Therefore, TRPM8 antagonists could be used to treat refractory rhinitis.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Hsuan-Hsuan Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital
| | - Hsing-Won Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei, Taiwan, Republic of China
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
| | - Fei-Peng Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Yueng-Hsiang Chu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
| |
Collapse
|
5
|
Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 2016; 311:L639-52. [PMID: 27521425 DOI: 10.1152/ajplung.00458.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.
Collapse
|
6
|
Zhang L, An X, Wang Q, He M. Activation of Cold-Sensitive Channels TRPM8 and TRPA1 Inhibits the Proliferative Airway Smooth Muscle Cell Phenotype. Lung 2016; 194:595-603. [PMID: 27236325 DOI: 10.1007/s00408-016-9901-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 01/18/2023]
Abstract
PURPOSE Airway smooth muscle cell (ASMC) phenotypic modulation is one of the key factors contributing to asthma. Temperature changes may induce asthma, and these changes are known to be related to the temperature-sensitive transient receptor potential channels (TS-TRPs). The present study was designed to investigate the cellular functions of cold-sensitive channels, TRPM8 and TRPA1, in the phenotypic modulation of ASMCs. METHODS A rat asthma model was constructed and the expression of TS-TRPs in ASM was tested. Using the agonists and antagonists for both TRPM8 and TRPA1, the effects of cold-sensitive channels on the phenotypic modulation of ASMCs were evaluated by measurement of contractile protein expression and cell proliferation and migration. Signaling pathways and matrix metalloproteinase-2 (MMP-2) activity were assayed with Western blotting and gelatin zymography. RESULTS TRPM8 and TRPA1 were decreased in the ASM of the rat asthma model. Icilin and menthol, agonists for TRPM8 and TRPA1, inhibited ASMC proliferation and migration induced by fetal bovine serum (FBS) or platelet-derived growth factor (PDGF). Moreover, icilin reversed the FBS-induced inhibition of the expression of contractile phenotype markers, smooth muscle α-actin, and SM22α. Icilin also antagonized the activation of p38 and MMP-2 and the repression of p21 caused by FBS. CONCLUSIONS Our findings show, for the first time, that the activation of TRPM8 and TRPA1 inhibits ASMC proliferative phenotype. These data suggest that TRPM8 and TRPA1 agonists may be promising new therapies for asthma.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiuyu Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China. .,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai, China.
| |
Collapse
|
7
|
Olloquequi J, Silva O R. Biomass smoke as a risk factor for chronic obstructive pulmonary disease: effects on innate immunity. Innate Immun 2016; 22:373-81. [PMID: 27226464 DOI: 10.1177/1753425916650272] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/24/2016] [Indexed: 11/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of mortality and morbidity worldwide, is considered an archetypical disease of innate immunity, where inhaled particles and gases trigger an inflammatory response, favoring tissue proliferation in small airways and tissue destruction in lung parenchyma, in addition to the recruitment of immune cells to these compartments. Although cigarette smoking is still considered the main risk factor for developing COPD, the trend of proposing biomass smoke (BS) exposure as a principal risk factor is gaining importance, as around 3 billion people worldwide are exposed to this pollutant daily. A considerable amount of evidence has shown the potential of BS as an enhancer of lung inflammation. However, an impairment of some innate immune responses after BS exposure has also been described. Regarding the mechanisms by which biomass smoke alters the innate immune responses, three main classes of cell surface receptors-the TLRs, the scavenger receptors and the transient receptor potential channels-have shown the ability to transduce signals initiated after BS exposure. This article is an updated and comprehensive review of the immunomodulatory effects described after the interaction of BS components with these receptors.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Rafael Silva O
- Unidad de Enfermedades Respiratorias, Hospital Regional de Talca, Región del Maule, Chile
| |
Collapse
|
8
|
LeGay CM, Gorobets E, Iftinca M, Ramachandran R, Altier C, Derksen DJ. Natural-Product-Derived Transient Receptor Potential Melastatin 8 (TRPM8) Channel Modulators. Org Lett 2016; 18:2746-9. [PMID: 27171974 DOI: 10.1021/acs.orglett.6b01222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A library of novel structural hybrids of menthol and cubebol was tested for each derivative's ability to interact with the transient receptor potential subfamily melastatin member 8 (TRPM8) channel. This structure-activity relationship study revealed three potent modulators of the TRPM8 ion channel: a novel agonist (4) with an EC50 value of 11 ± 1 μM, an antagonist (15) with an IC50 value of 2 ± 1 μM, and an allosteric modulator (21) that minimized channel desensitization toward menthol. Each of these novel exocyclic olefin analogues of menthol is readily accessible by synthesis and was tested using Ca(2+) assays and electrophysiology.
Collapse
Affiliation(s)
- Christina M LeGay
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Evgueni Gorobets
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Mircea Iftinca
- Department of Physiology & Pharmacology, University of Calgary , 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Rithwik Ramachandran
- Department of Physiology & Pharmacology, Schulich Medicine & Dentistry, University of Western Ontario , 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| | - Christophe Altier
- Department of Physiology & Pharmacology, University of Calgary , 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Darren J Derksen
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
9
|
Ghavideldarestani M, Atkin SL, Leese HJ, Sturmey RG. Expression and function of transient receptor potential channels in the female bovine reproductive tract. Theriogenology 2016; 86:551-61. [PMID: 27001231 DOI: 10.1016/j.theriogenology.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/07/2016] [Accepted: 02/06/2016] [Indexed: 12/29/2022]
Abstract
The epithelium lining the oviduct is critical for early reproductive events, many of which are mediated via intracellular calcium ions. Despite this, little is known about the regulation of calcium homeostasis in the oviductal epithelium. Epithelial transient receptor potential channels (TRPCs) modulate calcium flux in other tissues, and their expression and functional regulation have therefore been examined using the bovine oviduct as a model for the human. The effects of FSH, LH, 17β-estradiol, and progesterone on TRPCs expression and intracellular calcium flux were determined. Transient receptor potential channels 1, 2, 3, 4, and 6 were expressed in the bovine reproductive tract, and their gene expression varied throughout the estrous cycle. In more detailed studies undertaken on TRPC1 and 6, we show that protein expression varied through the estrus cycle; specifically, 17β-estradiol, FSH, and LH individually and in combination upregulated TRPC1 and 6 expression in cultured bovine oviduct epithelial cells although progesterone antagonized these effects. Functional studies showed changes in calcium mobilization in bovine oviduct epithelial cells were dependent on TRPCs. In conclusion, TRPC1, 2, 3, 4, and 6 are present in the epithelium lining the bovine oviduct, and TRPC1 and 6 vary through the estrous cycle suggesting an important role in early reproductive function.
Collapse
Affiliation(s)
- Maryam Ghavideldarestani
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK.
| | - Stephen L Atkin
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Henry J Leese
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Roger G Sturmey
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
10
|
TRPC6 channel translocation into phagosomal membrane augments phagosomal function. Proc Natl Acad Sci U S A 2015; 112:E6486-95. [PMID: 26604306 DOI: 10.1073/pnas.1518966112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in the innate immune system in the lung with attendant bacterial infections contribute to lung tissue damage, respiratory insufficiency, and ultimately death in the pathogenesis of cystic fibrosis (CF). Professional phagocytes, including alveolar macrophages (AMs), have specialized pathways that ensure efficient killing of pathogens in phagosomes. Phagosomal acidification facilitates the optimal functioning of degradative enzymes, ultimately contributing to bacterial killing. Generation of low organellar pH is primarily driven by the V-ATPases, proton pumps that use cytoplasmic ATP to load H(+) into the organelle. Critical to phagosomal acidification are various channels derived from the plasma membrane, including the anion channel cystic fibrosis transmembrane conductance regulator, which shunt the transmembrane potential generated by movement of protons. Here we show that the transient receptor potential canonical-6 (TRPC6) calcium-permeable channel in the AM also functions to shunt the transmembrane potential generated by proton pumping and is capable of restoring microbicidal function to compromised AMs in CF and enhancement of function in non-CF cells. TRPC6 channel activity is enhanced via translocation to the cell surface (and then ultimately to the phagosome during phagocytosis) in response to G-protein signaling activated by the small molecule (R)-roscovitine and its derivatives. These data show that enhancing vesicular insertion of the TRPC6 channel to the plasma membrane may represent a general mechanism for restoring phagosome activity in conditions, where it is lost or impaired.
Collapse
|
11
|
Zholos AV. TRP Channels in Respiratory Pathophysiology: the Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr Neuropharmacol 2015; 13:279-91. [PMID: 26411771 PMCID: PMC4598440 DOI: 10.2174/1570159x13666150331223118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
There is rapidly growing evidence indicating multiple and important roles of Ca(2+)- permeable cation TRP channels in the airways, both under normal and disease conditions. The aim of this review was to summarize the current knowledge of TRP channels in sensing oxidative, chemical irritant and temperature stimuli by discussing expression and function of several TRP channels in relevant cell types within the respiratory tract, ranging from sensory neurons to airway smooth muscle and epithelial cells. Several of these channels, such as TRPM2, TRPM8, TRPA1 and TRPV1, are discussed in much detail to show that they perform diverse, and often overlapping or contributory, roles in airway hyperreactivity, inflammation, asthma, chronic obstructive pulmonary disease and other respiratory disorders. These include TRPM2 involvement in the disruption of the bronchial epithelial tight junctions during oxidative stress, important roles of TRPA1 and TRPV1 channels in airway inflammation, hyperresponsiveness, chronic cough, and hyperplasia of airway smooth muscles, as well as TRPM8 role in COPD and mucus hypersecretion. Thus, there is increasing evidence that TRP channels not only function as an integral part of the important endogenous protective mechanisms of the respiratory tract capable of detecting and ensuring proper physiological responses to various oxidative, chemical irritant and temperature stimuli, but that altered expression, activation and regulation of these channels may also contribute to the pathogenesis of respiratory diseases.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre "Institute of Biology", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine.
| |
Collapse
|
12
|
Vachel L, Norez C, Jayle C, Becq F, Vandebrouck C. The low PLC-δ1 expression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity. Cell Calcium 2014; 57:38-48. [PMID: 25477137 DOI: 10.1016/j.ceca.2014.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
Increase of Ca(2+) influx in Cystic Fibrosis (CF) cells has been reported to be related to Transient Receptor Potential Canonical (TRPC6) channel, which is implicated in a functional coupling with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Several members of the Transient Receptor Potential Vanilloid (TRPV) channels family have already been described as emerging target for respiratory diseases. Two specific isoforms, TRPV5 and TRPV6 are of particular interest in the context of CF Ca(2+) homeostasis as they are highly selective toward Ca(2+) and constitutively activated. Thus, we investigated the involvement of these channels in Ca(2+) influx in CF and non-CF human bronchial epithelial cell lines. 16HBE14o-, CFBE41o- cell lines, primary human airway epithelial cells (hAEC) and freshly isolated human airway epithelial cells from CF and non-CF individuals were used. We showed that both channels are expressed in CF and non-CF cells and constitutive Ca(2+) influx was significantly higher (85%) in cells from CF individuals compared to cells from non-CF ones. Using the selective inhibitor of TRPV6 channel SOR-C27 and a siRNA strategy, our results revealed that TRPV6 was mostly involved in the increase of Ca(2+) influx. TRPV6 channel is negatively regulated by the PLC-PIP2 pathway. We measured the Ca(2+) influx in the presence of the non-specific PLC inhibitor, U73122, in non-CF human bronchial epithelial cells. Ca(2+) influx was increased by 33% with U73122 and this increase was largely reduced in the presence of SOR-C27. PLC inhibition in CF cells by U73122 had no effect on Ca(2+) influx. These results showed that PLC-PIP2 pathway is dysregulated in CF cells and leads to the increase of TRPV6 activity. The regulation of TRPV6 by PLC-PIP2 pathway implicates the specific PLC isoform, PLC-δ1. Immunoblot experiments revealed that expression of PLC-δ1 was decreased by 70% in CF cells. TRPV6 activity was normalized but not the level of expression of PLC-δ1 protein after F508del-CFTR rescue by low temperature for 48 h or treated for 24 h by 10 μM VX-809 in CF cells. This study revealed TRPV6 and PLC-δ1 as critical actor of Ca(2+) homeostasis in CF human bronchial epithelial cells.
Collapse
Affiliation(s)
- Laura Vachel
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France.
| |
Collapse
|
13
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
14
|
Grace MS, Baxter M, Dubuis E, Birrell MA, Belvisi MG. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 2014; 171:2593-607. [PMID: 24286227 PMCID: PMC4009002 DOI: 10.1111/bph.12538] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.
Collapse
Affiliation(s)
- M S Grace
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M Baxter
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - E Dubuis
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| | - M G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
15
|
Vohra PK, Thompson MA, Sathish V, Kiel A, Jerde C, Pabelick CM, Singh BB, Prakash YS. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2953-2960. [PMID: 23899746 DOI: 10.1016/j.bbamcr.2013.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.
Collapse
Affiliation(s)
- Pawan K Vohra
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Michael A Thompson
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Alexander Kiel
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Calvin Jerde
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Brij B Singh
- Department of Biochemistry and Molecular Biology, University of North Dakota, 264 Centennial Dr, Grand Forks, ND 58202, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 2013; 48:157-63. [PMID: 23065130 PMCID: PMC3604064 DOI: 10.1165/rcmb.2012-0231oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/21/2012] [Indexed: 11/24/2022] Open
Abstract
The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca(2+) responses to bradykinin (10 μM) and S-(-)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β(2)-agonists, in airway diseases such as asthma.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Anesthesiology, Columbia University Medical Center, 650 West 168th Street, Black Building 7-713, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Van Scott MR, Chandler J, Olmstead S, Brown JM, Mannie M. Airway Anatomy, Physiology, and Inflammation. THE TOXICANT INDUCTION OF IRRITANT ASTHMA, RHINITIS, AND RELATED CONDITIONS 2013. [PMCID: PMC7122617 DOI: 10.1007/978-1-4614-9044-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 2012. [PMID: 23065130 DOI: 10.1165/rcmb] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca(2+)](i)) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100-300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca(2+) responses to bradykinin (10 μM) and S-(-)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca(2+)](i) regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β(2)-agonists, in airway diseases such as asthma.
Collapse
Affiliation(s)
- Elizabeth A Townsend
- Department of Anesthesiology, Columbia University Medical Center, 650 West 168th Street, Black Building 7-713, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
20
|
Antigny F, Norez C, Becq F, Vandebrouck C. CFTR and Ca Signaling in Cystic Fibrosis. Front Pharmacol 2011; 2:67. [PMID: 22046162 PMCID: PMC3200540 DOI: 10.3389/fphar.2011.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/11/2011] [Indexed: 11/13/2022] Open
Abstract
Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF) disease the most common CF transmembrane conductance regulator (CFTR) mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER) compartment, rapidly degraded by the ubiquitin/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G-protein-coupled receptors by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism at the origin of this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the onset of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease CF.
Collapse
Affiliation(s)
- Fabrice Antigny
- Institut de Physiologie et de Biologie Cellulaires, Université de Poitiers, CNRS Poitiers, France
| | | | | | | |
Collapse
|
21
|
Valverde MA, Cantero-Recasens G, Garcia-Elias A, Jung C, Carreras-Sureda A, Vicente R. Ion channels in asthma. J Biol Chem 2011; 286:32877-82. [PMID: 21799020 DOI: 10.1074/jbc.r110.215491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.
Collapse
Affiliation(s)
- Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Banner KH, Igney F, Poll C. TRP channels: emerging targets for respiratory disease. Pharmacol Ther 2011; 130:371-84. [PMID: 21420429 DOI: 10.1016/j.pharmthera.2011.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/16/2022]
Abstract
The mammalian transient receptor potential (TRP) superfamily of cation channels is divided into six subfamilies based on sequence homology TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin) and TRPML (mucolipin). The expression of these channels is especially abundant in sensory nerves, and there is increasing evidence demonstrating their existence in a broad range of cell types which are thought to play a key role in respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). These ion channels can be activated by a diverse range of chemical and physical stimuli. Physical stimuli include temperature, membrane potential changes and osmotic stress, and some of the more well known chemical stimuli include capsaicin (TRPV1), menthol (TRPM8) and acrolein (TRPA1). There is increasing evidence in this rapidly moving field to suggest that selective blockers of these channels may represent attractive novel strategies to treat characteristic features of respiratory diseases such as asthma and COPD. This review focuses on summarising the evidence that modulation of selected TRP channels may have beneficial effects at targeting key features of these respiratory diseases including airways inflammation, airways hyper-reactivity, mucus secretion and cough.
Collapse
Affiliation(s)
- Katharine Helen Banner
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom.
| | | | | |
Collapse
|
23
|
Upadhye KV, Candiello JE, Davidson LA, Lin H. Whole-Cell Electrical Activity Under Direct Mechanical Stimulus by AFM Cantilever Using Planar Patch Clamp Chip Approach. Cell Mol Bioeng 2011; 4:270-280. [PMID: 22174731 DOI: 10.1007/s12195-011-0160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins.
Collapse
Affiliation(s)
- Kalpesh V Upadhye
- Department of Bioengineering, University of Pittsburgh, Suite 306, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
24
|
Zhang Q, He J, Lu W, Yin W, Yang H, Xu X, Wang D. [Expression of transient receptor potential canonical channel proteins in human non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:612-6. [PMID: 20681449 PMCID: PMC6015152 DOI: 10.3779/j.issn.1009-3419.2010.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
背景与目的 经典瞬时受体电位(transient receptor potential canonical, TRPC)通道蛋白是一种非选择性阳离子通道蛋白家族,主要位于细胞膜表面,对钙离子具有通透性。研究认为,TRPC可能构成钙池操纵性钙通道(store-operated calcium channels, SOCC)并介导钙池操纵性钙内流(store-operated calcium entry, SOCE),从而参与细胞的增殖、迁移、基因转录等生命活动。本研究检测非小细胞肺癌(non-small cell lung cancer, NSCLC)组织中TRPC mRNA及蛋白质的表达情况,初步探讨TRPC与NSCLC的可能关系。 方法 建立TRPC1-7等7个家族成员的荧光定量PCR检测方法,对24例NSCLC患者的肿瘤组织进行了TRPC mRNA的定量检测,并通过蛋白质免疫印迹法对TRPC在蛋白质水平的表达进行了验证。 结果 在NSCLC患者癌组织检测到TRPC1、TRPC3、TRPC4和TRPC6 mRNA的表达,未检测到TRPC2、TRPC5和TRPC7 mRNA的表达。肺癌组织中TRPC表达丰度为:TRPC1≈TRPC6>TRPC3>TRPC4。蛋白质免疫印迹证实了非小细胞肺癌组织中TRPC1、TRPC3、TRPC4和TRPC6在蛋白质水平的表达。 结论 非小细胞肺癌组织在mRNA和蛋白质水平均表达TRPC1、TRPC3、TRPC4和TRPC6,其中主要表达TRPC1和TRPC6,它们在构成肺癌细胞中SOCC、介导产生SOCE中的作用有待进一步研究。
Collapse
Affiliation(s)
- Qi Zhang
- State Key Lab of Respiratory Diseases, the first affiliated hospital of Guangzhou Medical College, Guangzhou Medical College, Guangzhou 510120, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Antigny F, Norez C, Dannhoffer L, Bertrand J, Raveau D, Corbi P, Jayle C, Becq F, Vandebrouck C. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis. Am J Respir Cell Mol Biol 2010; 44:83-90. [PMID: 20203293 DOI: 10.1165/rcmb.2009-0347oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In cystic fibrosis (CF), abnormal control of cellular Ca(2+) homeostasis is observed. We hypothesized that transient receptor potential canonical (TRPC) channels could be a link between the abnormal Ca(2+) concentrations in CF cells and cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. We measured the TRPC and CFTR activities (using patch clamp and fluorescent probes) and interactions (using Western blotting and co-immunoprecipitation) in CF and non-CF human epithelial cells treated with specific and scrambled small interfering RNA (siRNA). The TRPC6-mediated Ca(2+) influx was abnormally increased in CF compared with non-CF cells. After correction of abnormal F508 deletion (del)-CFTR trafficking in CF cells, the level of TRPC6-dependent Ca(2+) influx was also normalized. In CF cells, siRNA-TRPC6 reduced this abnormal Ca(2+) influx. In non-CF cells, siRNA-TRPC6 reduced the Ca(2+) influx and activity wild-type (wt)-CFTR. Co-immunoprecipitation experiments revealed TRPC6/CFTR and TRPC6/F508 del-CFTR interactions in CF or non-CF epithelial cells. Although siRNA-CFTR reduced the activity of wt-CFTR in non-CF cells and of F508 del-CFTR in corrected CF cells, it also enhanced TRPC6-dependent Ca(2+) influx in non-CF cells, mimicking the results obtained in CF cells. Finally, this functional and reciprocal coupling between CFTR and TRPC6 was also detected in non-CF ciliated human epithelial cells freshly isolated from lung samples. These data indicate that TRPC6 and CFTR are functionally and reciprocally coupled within a molecular complex in airway epithelial human cells. Because this functional coupling is lost in CF cells, the TRPC6-dependent Ca(2+) influx is abnormal.
Collapse
Affiliation(s)
- Fabrice Antigny
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Centre National de la Recherche Scientifique, 40 Avenue du Recteur Pineau, Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Finney-Hayward TK, Popa MO, Bahra P, Li S, Poll CT, Gosling M, Nicholson AG, Russell REK, Kon OM, Jarai G, Westwick J, Barnes PJ, Donnelly LE. Expression of transient receptor potential C6 channels in human lung macrophages. Am J Respir Cell Mol Biol 2009; 43:296-304. [PMID: 19843708 DOI: 10.1165/rcmb.2008-0373oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with pulmonary inflammation with increased numbers of macrophages located in the parenchyma. These macrophages have the capacity to mediate the underlying pathophysiology of COPD; therefore, a better understanding of their function in chronic inflammation associated with this disease is vital. Ion channels regulate many cellular functions; however, their role in macrophages is unclear. This study examined the expression and function of transient receptor potential (TRP) channels in human macrophages. Human alveolar macrophages and lung tissue macrophages expressed increased mRNA and protein for TRPC6 when compared with monocytes and monocyte-derived macrophages. Moreover, TRPC6 mRNA expression was significantly elevated in alveolar macrophages from patients with COPD compared with control subjects. There were no differences in mRNA for TRPC3 or TRPC7. Although mRNA for TRPM2 and TRPV1 was detected in these cells, protein expression could not be determined. Fractionation of lung-derived macrophages demonstrated that TRPC6 protein was more highly expressed by smaller macrophages compared with larger macrophages. Using whole-cell patch clamp electrophysiology, TRPC6-like currents were measured in both macrophage subpopulations with appropriate biophysical and basic pharmacological profiles. These currents were active under basal conditions in the small macrophages. These data suggest that TRPC6-like channels are functional on human lung macrophages, and may be associated with COPD.
Collapse
|
27
|
Colsoul B, Nilius B, Vennekens R. On the putative role of transient receptor potential cation channels in asthma. Clin Exp Allergy 2009; 39:1456-66. [PMID: 19624522 DOI: 10.1111/j.1365-2222.2009.03315.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mammalian transient receptor potential (TRP) superfamily consists of 28 mammalian TRP cation channels, which can be subdivided into six main subfamilies: the TRPC ('Canonical'), TRPV ('Vanilloid'), TRPM ('Melastatin'), TRPP ('Polycystin'), TRPML ('Mucolipin') and the TRPA ('Ankyrin') groups. Increasing evidence has accumulated during the previous few years that links TRP channels to the cause of several diseases or to critically influence and/or determine their progress. This review focuses on the possible role of TRP channels in the aetiology of asthmatic lung disease.
Collapse
Affiliation(s)
- B Colsoul
- Laboratory Ion Channel Research, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
28
|
Fisher JT. The TRPV1 ion channel: Implications for respiratory sensation and dyspnea. Respir Physiol Neurobiol 2009; 167:45-52. [DOI: 10.1016/j.resp.2009.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/05/2023]
|
29
|
Damann N, Owsianik G, Li S, Poll C, Nilius B. The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol (Oxf) 2009; 195:3-11. [PMID: 18983454 DOI: 10.1111/j.1748-1716.2008.01918.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM The role of the calcium-conducting ion channel transient receptor potential canonical 6 (TRPC6) in macrophage inflammatory protein-2 (MIP-2) induced migration of mouse neutrophils was investigated. METHODS Neutrophil granulocytes isolated from murine bone marrow of wild-type (TRPC6+/+) and TRPC6 knockout (TRPC6)/)) mice were tested for the presence of TRPC6 channel expression using quantitative real-time polymerase chain reactions and immunocytochemistry. The effect of different stimuli (e.g. MIP-2, 1-oleoyl-2-acetyl-sn-glycerol, formyl-methionyl-leucyl-phenylalanin) on migration of isolated neutrophils was tested by two-dimensional (2D) migration assays, phalloidin staining and intracellular calcium imaging. RESULTS We found that neutrophil granulocytes express TRPC6 channels. MIP-2 induced fast cell migration of isolated neutrophils in a 2D celltracking system. Strikingly, MIP-2 was less potent in neutrophils derived from TRPC6)/) mice. These cells showed less phalloidin-coupled fluorescence and the pattern of cytosolic calcium transients was altered. CONCLUSIONS We describe in this paper for the first time a role for transient receptor potential (TRP) channels in migration of native lymphocytes as a new paradigm for the universal functional role of TRPs. Our data give strong evidence that TRPC6 operates downstream to CXC-type Gq-protein-coupled chemokine receptors upon stimulation with MIP-2 and is crucial for the arrangement of filamentous actin in migrating neutrophils. This is a novel cell function of TRP channel beyond their well-recognized role as universal cell sensors.
Collapse
Affiliation(s)
- N Damann
- Department of Molecular Cell Biology, Laboratory of Ion Channel Research, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Ito S, Kume H, Naruse K, Kondo M, Takeda N, Iwata S, Hasegawa Y, Sokabe M. A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2007; 38:407-13. [PMID: 17975175 DOI: 10.1165/rcmb.2007-0259oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In response to mechanical stretch, airway smooth muscle exhibits various cellular functions such as contraction, proliferation, and cytoskeletal remodeling, all of which are implicated in the pathophysiology of asthma. We tested the hypothesis that mechanical stretch of airway smooth muscle cells increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by activating stretch-activated (SA) nonselective cation channels. A single uniaxial stretch (3 s) was given to human bronchial smooth muscle cells cultured on an elastic silicone membrane. After the mechanical stretch, a transient increase in [Ca(2+)](i) was observed. The [Ca(2+)](i) increase was significantly dependent on stretch amplitude. The augmented [Ca(2+)](i) due to stretch was completely abolished by removal of extracellular Ca(2+) and was markedly attenuated by an application of Gd(3+), an inhibitor of SA channels, or ruthenium red, a transient receptor potential vanilloid (TRPV) inhibitor. In contrast, the stretch-induced rises of [Ca(2+)](i) were not altered by other Ca(2+) channel inhibitors such as nifedipine, BTP-2, and SKF-96365. Moreover, the [Ca(2+)](i) increases were not affected by indomethacin, a cyclooxygenase inhibitor, U-73122, a phospholipase C inhibitor, or xestospongin C, an inhibitor of the inositol-trisphosphate receptor. These findings demonstrate that a novel Ca(2+) influx pathway activated by mechanical stretch, possibly through the Ca(2+)-permeable SA channel activated directly by stretch rather than by indirect mechanisms via intracellular messenger production, is involved in human airway smooth muscle cells. A molecular candidate for the putative SA channel may be one of the members of the TRPV channel family. Thus, abnormal Ca(2+) homeostasis in response to excessive mechanical strain would contribute to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Barnes PJ. The problem of cough and development of novel antitussives. Pulm Pharmacol Ther 2007; 20:416-22. [PMID: 17189707 DOI: 10.1016/j.pupt.2006.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/06/2006] [Indexed: 01/08/2023]
Abstract
Cough is a very common clinical symptom and current therapies are largely ineffective, indicating a major unmet medial need. There is a pressing need to develop novel and safe antitussive therapies. This is likely to arise from better understanding of the sensory nerves involved in cough and the signalling pathways that are activated. A major therapeutic target should be sensitization of the cough reflex which is a feature of patients with both acute (virally induced) cough and chronic cough, including chronic idiopathic cough. Studies on human cough mechanisms are limited. There are several novel therapeutic approaches that are currently being explored. Perhaps the most promising drugs are transient receptor potential vanilloid-1 (TRPV(1)) antagonists, selective cannabinoid agonists (CB2 agonists), maxi-K channel openers and P2X3 antagonists. New cough therapies may target airway nerve sensitization and may best be delivered as inhalers to minimize any systemic effects. Understanding the intercellular signalling pathways involved in nociception may lead to novel drugs, such as p38 mitogen-activated protein (MAP) kinase inhibitors, being used in the treatment of cough in the future. It is also likely that several novel treatments that are developed as analgesics will also prove to be beneficial in the treatment of cough.
Collapse
Affiliation(s)
- Peter J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
33
|
Mukerji N, Damodaran TV, Winn MP. TRPC6 and FSGS: the latest TRP channelopathy. Biochim Biophys Acta Mol Basis Dis 2007; 1772:859-68. [PMID: 17459670 DOI: 10.1016/j.bbadis.2007.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 01/12/2023]
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome in children and adults throughout the world. In the past 50 years, significant advances have been made in the identification and characterization of familial forms of nephrotic syndrome and FSGS. Resultant to these pursuits, several podocyte structural proteins such as nephrin, podocin, alpha-actinin 4 (ACTN4), and CD2-associated protein (CD2AP) have emerged to provide critical insight into the pathogenesis of hereditary nephrotic syndromes. The latest advance in familial FSGS has been the discovery of a mutant form of canonical transient receptor potential cation channel 6 (TRPC6), which causes an increase in calcium transients and essentially a gain of function in this cation channel located on the podocyte cell membrane. The TRP ion channel family is a diverse group of cation channels united by a common primary structure which contains six membrane-spanning domains, with both carboxy and amino termini located intracellularly. TRP channels are unique in their ability to activate independently of membrane depolarization. TRPC6 channels have been shown to be activated via phospholipase C stimulation. The mechanisms by which mutant TRPC6 causes an increase in intracellular calcium and leads to glomerulosclerosis are unknown. Mutant TRPC6 may affect critical interactions with the aforementioned podocyte structural proteins, leading to abnormalities in the slit diaphragm or podocyte foot processes. Mutant TRPC6 may also amplify injurious signals mediated by Ang II, a common final pathway of podocyte apoptosis in various mammalian species. Current evidence also suggests that blocking TRPC6 channels may be of therapeutic benefit in idiopathic FSGS, a disease with a generally poor prognosis. Preliminary experiments reveal the commonly used immunosuppressive agent FK-506 can inhibit TRPC6 activity in vivo. This creates the exciting possibility that blocking TRPC6 channels within the podocyte may translate into long-lasting clinical benefits in patients with FSGS.
Collapse
Affiliation(s)
- Nirvan Mukerji
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
34
|
Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165-217. [PMID: 17237345 DOI: 10.1152/physrev.00021.2006] [Citation(s) in RCA: 1048] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of cation channels that are mostly permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are expressed in almost every tissue and cell type and play an important role in the regulation of various cell functions. Currently, significant scientific effort is being devoted to understanding the physiology of TRP channels and their relationship to human diseases. At this point, only a few channelopathies in which defects in TRP genes are the direct cause of cellular dysfunction have been identified. In addition, mapping of TRP genes to susceptible chromosome regions (e.g., translocations, breakpoint intervals, increased frequency of polymorphisms) has been considered suggestive of the involvement of these channels in hereditary diseases. Moreover, strong indications of the involvement of TRP channels in several diseases come from correlations between levels of channel expression and disease symptoms. Finally, TRP channels are involved in some systemic diseases due to their role as targets for irritants, inflammation products, and xenobiotic toxins. The analysis of transgenic models allows further extrapolations of TRP channel deficiency to human physiology and disease. In this review, we provide an overview of the impact of TRP channels on the pathogenesis of several diseases and identify several TRPs for which a causal pathogenic role might be anticipated.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KULeuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
35
|
Jia Y, Lee LY. Role of TRPV receptors in respiratory diseases. Biochim Biophys Acta Mol Basis Dis 2007; 1772:915-27. [PMID: 17346945 DOI: 10.1016/j.bbadis.2007.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 12/24/2022]
Abstract
Transient receptor potential vanilloid type channels (TRPVs) are expressed in several cell types in human and animal lungs. Increasing evidence has demonstrated important roles of these cation channels, particularly TRPV1 and TRPV4, in the regulation of airway function. These TRPVs can be activated by a number of endogenous substances (hydrogen ion, certain lipoxygenase products, etc.) and changes in physiological conditions (e.g., temperature, osmolarity, etc.). Activation of these channels can evoke Ca(2+) influx and excitation of the neuron. TRPV1 channels are generally expressed in non-myelinated afferents innervating the airways and lungs, which also contain sensory neuropeptides such as tachykinins. Upon stimulation, these sensory nerves elicit centrally-mediated reflex responses as well as local release of tachykinins, and result in cough, airway irritation, reflex bronchoconstriction and neurogenic inflammation in the airways. Recent studies clearly demonstrated that the excitability of TRPV1 channels is up-regulated by certain autacoids (e.g., prostaglandin E(2), bradykinin) released during airway inflammatory reaction. Under these conditions, the TRPV1 can be activated by a slight increase in airway temperature or tissue acidity. Indirect evidence also suggests that TRPV channels may play a part in the pathogenesis of certain respiratory diseases such as asthma and chronic cough. Therefore, the potential use of TRPV antagonists as a novel therapy for these diseases certainly merits further investigation.
Collapse
Affiliation(s)
- Yanlin Jia
- Neurobiology, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
36
|
Janssen LJ, Killian K. Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 2006; 7:123. [PMID: 17010205 PMCID: PMC1592490 DOI: 10.1186/1465-9921-7-123] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/29/2006] [Indexed: 11/10/2022] Open
Abstract
Ultimately, asthma is a disease characterized by constriction of airway smooth muscle (ASM). The earliest approach to the treatment of asthma comprised the use of xanthines and anti-cholinergics with the later introduction of anti-histamines and anti-leukotrienes. Agents directed at ion channels on the smooth muscle membrane (Ca2+ channel blockers, K+ channel openers) have been tried and found to be ineffective. Functional antagonists, which modulate intracellular signalling pathways within the smooth muscle (beta-agonists and phosphodiesterase inhibitors), have been used for decades with success, but are not universally effective and patients continue to suffer with exacerbations of asthma using these drugs. During the past several decades, research energies have been directed into developing therapies to treat airway inflammation, but there have been no substantial advances in asthma therapies targeting the ASM. In this manuscript, excitation-contraction coupling in ASM is addressed, highlighting the current treatment of asthma while proposing several new directions that may prove helpful in the management of this disease.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Kieran Killian
- Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
37
|
Kwan HY, Huang Y, Yao X. Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 2006; 207:315-21. [PMID: 16331690 DOI: 10.1002/jcp.20567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There are two known phosphorylation-mediated inactivation mechanisms for TRPC3 channels. Protein kinase G (PKG) inactivates TRPC3 by direct phosphorylation on Thr-11 and Ser-263 of the TRPC3 proteins, and protein kinase C (PKC) inactivates TRPC3 by phosphorylation on Ser-712. In the present study, we explored the relationship between these two inactivation mechanisms of TRPC3. HEK cells were first stably transfected with a PKG-expressing construct and then transiently transfected with a TRPC3-expressing construct. Addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analog of diacylglycerol (DAG), elicited a TRPC3-mediated [Ca2+]i rise in these cells. This OAG-induced rise in [Ca2+]i could be inhibited by phorbol 12-myristate 13-acetate (PMA), an agonist for PKC, in a dose-dependent manner. Importantly, point mutations at two PKG phosphorylation sites (T11A-S263Q) of TRPC3 markedly reduced the PMA inhibition. Furthermore, inhibition of PKG activity by KT5823 (1 microM) or H8 (10 microM) greatly reduced the PMA inhibition of TRPC3. These data strongly suggest that the inhibitory action of PKC on TRPC3 is partly mediated through PKG in these PKG-overexpressing cells. The importance of this scheme was also tested in vascular endothelial cells, in which PKG plays a pivotal functional role. In these cells, OAG-induced [Ca2+]i rise was inhibited by PMA, which activates PKC, and by 8-BrcGMP and S-nitroso-N-acetylpenicillamine (SNAP), both of which activate PKG. Importantly, the PMA inhibition on OAG-induced [Ca2+]i rise was significantly reduced by PKG inhibitor KT5823 (1 microM) or DT-3 (500 nM), suggesting an important role of PKG in the PMA-induced inhibition of TRPC channels in native endothelial cells.
Collapse
Affiliation(s)
- Hiu-Yee Kwan
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
38
|
Hirota S, Helli PB, Catalli A, Chew A, Janssen LJ. Airway smooth muscle excitation-contraction coupling and airway hyperresponsiveness. Can J Physiol Pharmacol 2006; 83:725-32. [PMID: 16333374 DOI: 10.1139/y05-070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary complaints from patients with asthma pertain to function of airway smooth muscle (ASM) function including shortness of breath, wheezing, and coughing. Thus, it is imperative to better understand the mechanisms underlying excitation-contraction coupling in ASM. Here, we review the various signaling pathways underlying contraction in ASM, and then examine how these are altered in asthma and airway hyperresponsiveness (a hallmark feature of asthma). Throughout, we highlight how studies of vascular smooth muscle have helped or hindered progress in understanding ASM physiology and pathophysiology.
Collapse
Affiliation(s)
- Simon Hirota
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
39
|
Bregestovski P, Spitzer N. Calcium in the function of the nervous system: new implications. Cell Calcium 2005; 37:371-4. [PMID: 15820383 DOI: 10.1016/j.ceca.2005.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 01/25/2023]
Affiliation(s)
- Piotr Bregestovski
- Institut de Neurobiologie de la Méditerranée (INMED), Parc Scientifique de Luminy, BP13, 13009 Marseille, France.
| | | |
Collapse
|
40
|
Chenik M, Douagi F, Ben Achour Y, Khalef NB, Ouakad M, Louzir H, Dellagi K. Characterization of two different mucolipin-like genes from Leishmania major. Parasitol Res 2005; 98:5-13. [PMID: 16240129 DOI: 10.1007/s00436-005-0012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Here, we report the existence of two different mucolipin-like genes in Leishmania parasites. The Leishmania major mucolipin-like A and B genes (lmmlA and lmmlB) encode two proteins of 776 and 590 amino acids, respectively, and may be classified among the mucolipins family [transient receptors potential mucolipin (TRPML)] because (1) they include a large region that exhibits significant similarities with specific domains of ion transport proteins and transient receptors potential (TRP) channels, (2) they contain at least 173 residues that display significant homologies with conserved regions of different mucolipins from several species, and (3) as TRPMLs, they include six predicted transmembrane domains. Gene expression analysis reveals that lmmlB is upregulated in metacyclics and amastigotes relative to procyclics, while lmmlA is constitutively expressed in the three Leishmania developmental stages. These genes could constitute potential drug targets.
Collapse
Affiliation(s)
- Mehdi Chenik
- Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Perez JF, Sanderson MJ. The frequency of calcium oscillations induced by 5-HT, ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. ACTA ACUST UNITED AC 2005; 125:535-53. [PMID: 15928401 PMCID: PMC2234076 DOI: 10.1085/jgp.200409216] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Increased resistance of airways or blood vessels within the lung is associated with asthma or pulmonary hypertension and results from contraction of smooth muscle cells (SMCs). To study the mechanisms regulating these contractions, we developed a mouse lung slice preparation containing bronchioles and arterioles and used phase-contrast and confocal microscopy to correlate the contractile responses with changes in [Ca2+]i of the SMCs. The airways are the focus of this study. The agonists, 5-hydroxytrypamine (5-HT) and acetylcholine (ACH) induced a concentration-dependent contraction of the airways. High concentrations of KCl induced twitching of the airway SMCs but had little effect on airway size. 5-HT and ACH induced asynchronous oscillations in [Ca2+]i that propagated as Ca2+ waves within the airway SMCs. The frequency of the Ca2+ oscillations was dependent on the agonist concentration and correlated with the extent of sustained airway contraction. In the absence of extracellular Ca2+ or in the presence of Ni2+, the frequency of the Ca2+ oscillations declined and the airway relaxed. By contrast, KCl induced low frequency Ca2+ oscillations that were associated with SMC twitching. Each KCl-induced Ca2+ oscillation consisted of a large Ca2+ wave that was preceded by multiple localized Ca2+ transients. KCl-induced responses were resistant to neurotransmitter blockers but were abolished by Ni2+ or nifedipine and the absence of extracellular Ca2+. Caffeine abolished the contractile effects of 5-HT, ACH, and KCl. These results indicate that (a) 5-HT and ACH induce airway SMC contraction by initiating Ca2+ oscillations, (b) KCl induces Ca2+ transients and twitching by overloading and releasing Ca2+ from intracellular stores, (c) a sustained, Ni2+-sensitive, influx of Ca2+ mediates the refilling of stores to maintain Ca2+ oscillations and, in turn, SMC contraction, and (d) the magnitude of sustained airway SMC contraction is regulated by the frequency of Ca2+ oscillations.
Collapse
Affiliation(s)
- Jose F Perez
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
42
|
Petersen OH, Michalak M, Verkhratsky A. Calcium signalling: Past, present and future. Cell Calcium 2005; 38:161-9. [PMID: 16076488 DOI: 10.1016/j.ceca.2005.06.023] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/25/2023]
Abstract
Ca2+ is a universal second messenger controlling a wide variety of cellular reactions and adaptive responses. The initial appreciation of Ca2+ as a universal signalling molecule was based on the work of Sydney Ringer and Lewis Heilbrunn. More recent developments in this field were critically influenced by the invention of the patch clamp technique and the generation of fluorescent Ca2+ indicators. Currently the molecular Ca2+ signalling mechanisms are being worked out and we are beginning to assemble a reasonably complete picture of overall Ca2+ homeostasis. Furthermore, investigations of organellar Ca2+ homeostasis have added complexity to our understanding of Ca2+ signalling. The future of the Ca2+ signalling field lies with detailed investigations of the integrative function in vivo and clarification of the pathology associated with malfunctions of Ca2+ signalling cascades.
Collapse
Affiliation(s)
- Ole H Petersen
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
43
|
Abstract
The mammalian TRP (transient receptor potential) family consists of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. These subfamilies encompass 28 ion channels that function as diverse cellular sensors. All of the channels are permeable to monovalent cations, and most are also permeable to Ca(2+). There are strong indications that TRP channels are involved in many diseases. At this point, four channelopathies have been identified in which a defect in a TRP channel-encoding gene is the direct cause of disease. TRPs are also involved in some systemic diseases because of their role as receptors for irritants, inflammation products, and xenobiotic toxins. Other indications of the involvement of TRPs in several diseases come from correlations between the levels of channel expression and disease symptoms or from the mapping of TRP-encoding genes to susceptible chromosome regions. Finally, the phenotypes of TRP knockout mice and other transgenic models allow a degree of extrapolation to human diseases. We present an overview of current knowledge about the role of TRP channels in human disease and highlight some TRP "suspects" for which a role in disease can be anticipated. An understanding of the genetics of disease may lead to the development of targeted new therapies.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg Katholieke Universiteit, Leuven, Belgium.
| | | | | |
Collapse
|
44
|
Helli PB, Pertens E, Janssen LJ. Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle. J Appl Physiol (1985) 2005; 99:1759-68. [PMID: 16024526 DOI: 10.1152/japplphysiol.00242.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Capacitative Ca2+ entry has been examined in several tissues and, in some, appears to be mediated by nonselective cation channels collectively referred to as "store-operated" cation channels; however, relatively little is known about the electrophysiological properties of these channels in airway smooth muscle. Consequently we examined the electrophysiological characteristics and changes in intracellular Ca2+ concentration associated with a cyclopiazonic acid (CPA)-evoked current in porcine and bovine airway smooth muscle using patch-clamp and Ca2+-fluorescence techniques. In bovine tracheal myocytes, CPA induced an elevation of intracellular Ca2+ that was dependent on extracellular Ca2+ and was insensitive to nifedipine (an L-type voltage-gated Ca2+ channel inhibitor). Using patch-clamp techniques and conditions that block both K+ and Cl- currents, we found that CPA rapidly activated a membrane conductance (I(CPA)) in porcine and bovine tracheal myocytes that exhibits a linear current-voltage relationship with a reversal potential around 0 mV. Replacement of extracellular Na+ resulted in a marked reduction of I(CPA) at physiological membrane potentials (i.e., -60 mV) that was accompanied by a shift in the reversal potential for I(CPA) toward more negative membrane potentials. In addition, I(CPA) was markedly inhibited by 10 microM Gd3+ and La3+ but was largely insensitive to 1 microM nifedipine. We conclude that CPA induces capacitative Ca2+ entry in porcine and bovine tracheal smooth muscle via a Gd3+- and La3+-sensitive, nonselective cation conductance.
Collapse
Affiliation(s)
- Peter B Helli
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
45
|
Dietrich A, Kalwa H, Rost BR, Gudermann T. The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 2005; 451:72-80. [PMID: 15971081 DOI: 10.1007/s00424-005-1460-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Among the "classical" or "canonical" transient receptor potential (TRPC) family, the TRPC3, -6, and -7 channels share 75% amino acid identity and are gated by exposure to diacylglycerol. TRPC3, TRPC6, and TRPC7 interact physically and coassemble to form functional tetrameric channels. This review focuses on the TRPC3/6/7 subfamily and describes their functional properties and regulation as homomers obtained from overexpression studies in cell lines. It also summarizes their heteromultimerization potential in vitro and in vivo and presents initial data concerning their physiological functions analyzed in isolated tissues with downregulated channel activity and gene-deficient mouse models.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, PhilippsUniversität Marburg, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|
46
|
Dietrich A, Mederos y Schnitzler M, Kalwa H, Storch U, Gudermann T. Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2005; 371:257-65. [PMID: 15909153 DOI: 10.1007/s00210-005-1052-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The mammalian transient receptor potential (TRP) superfamily of cation channels can be divided into six major families. Among them, the "classical" or "canonical" TRPC family is most closely related to Drosophila TRP, the founding member of the superfamily. All seven channels of this family designated TRPC1-7 share the common property of activation through phospholipase C (PLC)-coupled receptors, but their gating by receptor- or store-operated mechanisms is still controversial. The TRPC3, 6, and 7 channels are 75% identical and are also gated by direct exposure to diacylglycerols (DAG). TRPC3, 6, and 7 interact physically and, upon coexpression, coassemble to form functional tetrameric channels. This review will focus on the TRPC3/6/7 subfamily and describe their functional properties and regulation as homomers obtained from overexpression studies in cell lines. It will also summarize their heteromultimerization potential in vitro and in vivo and will present preliminary data concerning their physiological functions analyzed in isolated tissues with downregulated channel activity and gene-deficient mouse models.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 1, 35043, Marburg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Ong HL, Barritt GJ. Transient receptor potential and other ion channels as pharmaceutical targets in airway smooth muscle cells. Respirology 2005; 9:448-57. [PMID: 15612955 DOI: 10.1111/j.1440-1843.2004.00651.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regardless of the triggering stimulus in asthma, contraction of the airway smooth muscle (ASM) is considered to be an important pathway leading to the manifestation of asthmatic symptoms. Therefore, the various ion channels that modulate ASM contraction and relaxation are particularly attractive targets for therapy. Although voltage-operated Ca2+ channels (VOCC) are the most extensively characterised Ca(2+)-permeable channels in ASM cells and are obvious pharmacological targets, blockers of VOCC have not been successful in alleviating ASM contraction in asthma. Similarly, although the Cl- and K+ channels also modulate ASM contraction and relaxation by regulating plasma membrane potential, pharmacological interventions directed against these channels have failed to abrogate ASM contraction in asthma. A large body of evidence suggests that store-operated Ca2+ channels (SOCC) and Ca(2+)-permeable second messenger-activated non-selective cation channels (NSCC) predominantly mediate ASM contraction. However, development of pharmacological interventions involving these channels has been hampered by the paucity of information regarding their molecular identity. Members of the mammalian transient receptor potential (TRP) protein family, which form voltage-independent channels with variable Ca2+ selectivity that are activated by store depletion and/or by intracellular messengers, are potential molecular candidates for SOCC and NSCC in ASM cells. While the function of TRP channels in ASM cells remains to be elucidated and there are, at present, essentially no good TRP channel antagonists, this group of proteins is a potentially valuable pharmaceutical target for the treatment of asthma.
Collapse
Affiliation(s)
- Hwei L Ong
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | | |
Collapse
|
48
|
Suppression of Ca2+ influx by unfractionated heparin in non-excitable intact cells via multiple mechanisms. Biochem Pharmacol 2005; 69:929-40. [PMID: 15748704 DOI: 10.1016/j.bcp.2004.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Effect of unfractionated heparin (UFH), described as a cell-impermeant IP3 receptor antagonist, was studied on the capacitive Ca(2+) entry in non-permeabilized, intact cells, measuring the intracellular Ca(2+) levels using fluorescence microplate technique. Ca(2+) influx induced via Ca(2+) mobilization by histamine in Hela cells or evoked by store depletion with thapsigargin in RBL-2H3 cells was dose-dependently suppressed by UFH added either before or after the stimuli. UFH also prevented the spontaneous Ba(2+) entry indicating that the non-capacitive Ca(2+) channels may also be affected. In addition, UFH caused a significant and dose-dependent delay in Ca(2+), and other bivalent cation inflow after treatment of the cells with Triton X-100, but it did not diminish the amount of these cations indicating that UFH did not act simply as a cation chelator, but modulated the capacitive Ca(2+) entry possibly via store operated Ca(2+) channels (SOCCs). Inhibitory activities of UFH and 2-aminoethyl diphenyl borate on the capacitive Ca(2+) influx was found reversible, but the time courses of their actions were dissimilar suggesting distinct modes of action. It was also demonstrated using a fluorescence potentiometric dye that UFH had a considerable hyperpolarizing effect and could alter the changes of membrane potential during Ca(2+) influx after store depletion by thapsigargin. We presume that the hyperpolarizing property of this agent might contribute to the suppression of Ca(2+) influx. We concluded that UFH can negatively modulate SOCCs and also other non-capacitive Ca(2+) channels and these activities might also account for its multiple biological effects.
Collapse
|
49
|
Affiliation(s)
- Emil C Toescu
- Department of Physiology, Division of Medical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
50
|
Marthan R. Store-operated calcium entry and intracellular calcium release channels in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2004; 286:L907-8. [PMID: 15064237 DOI: 10.1152/ajplung.00410.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|