1
|
Gonçalves GM, de Oliveira JM, Ferreira da Costa Fernandes T, Laureano-Melo R, da Silva Côrtes W, Capim SL, Araujo de Almeida Vasconcellos ML, Guimarães Marinho B. Evaluation of the in vivo and in vitro anti-inflammatory activity of a new hybrid NSAID tetrahydropyran derivative. Can J Physiol Pharmacol 2022; 100:341-351. [DOI: 10.1139/cjpp-2021-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluate the anti-inflammatory activity in vivo and in vitro of cis-(±)-acetate of 4-chloro-6-(naphtalene-1-yl)-tetrahydro-2H-pyran-2-yl) methyl 2-(2-(2,6-diclorofenylamine) phenyl (LS19). Male Swiss mice were analyzed in the paw edema, ear edema, and air pouch tests, and in vitro COX inhibition, cytotoxicity evaluation, and cytokine and nitric oxide determination tests. The compound showed effect on the carrageenan- and bradykinin-induced paw edema and capsaicin-induced ear edema tests. In addition, the compound was able to inhibit leukocyte migration to decrease the levels of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) and to increase the levels of the anti-inflammatory cytokine IL-10. The compound was also able to reduce levels of TNF-α, IL-6, and nitric oxide in the RAW 264.7 cell line and to inhibit COX activity. LS19 did not induce any significant changes in the viability of RAW 264.7 cells, demonstrating safety for these cell lines. The compound LS19 did not reduce the production of gastric mucus and induced a smaller increase in the extent of gastric lesions than that developed by the administration of diclofenac. In summary, the new compound proved to be safer and it had additional mechanisms compared to diclofenac.
Collapse
Affiliation(s)
- Gabriela Mastrangelo Gonçalves
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Joyce Mattos de Oliveira
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | | | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, RJ, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Saulo Luis Capim
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Catu, BA, Brasil
| | | | - Bruno Guimarães Marinho
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| |
Collapse
|
2
|
Choi SI, Hwang SW. Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Biomol Ther (Seoul) 2018; 26:255-267. [PMID: 29378387 PMCID: PMC5933892 DOI: 10.4062/biomolther.2017.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.
Collapse
Affiliation(s)
- Seung-In Choi
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
4
|
Ameyaw EO, Koffuor GA, Asare KK, Konja D, Du-Bois A, Kyei S, Forkuo AD, Abankwah Owusu Mensah RN. Cryptolepine, an indoloquinoline alkaloid, in the management of diabetes mellitus and its associated complications. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:263-73. [PMID: 27366353 PMCID: PMC4927132 DOI: 10.5455/jice.20160606124435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2016] [Indexed: 01/14/2023]
Abstract
Background: Effective long-term management is the key to treatment of diabetes mellitus (DM) and its complications. Aim: To ascertain the ability of cryptolepine (CRP) in managing DM and some associated complications. Materials and Methods: Changes in fasting blood sugar (FBS), body weight, response to thermally-induced pain, and semen quality were assessed in normal and alloxan-induced diabetic rats treated with CRP (10, 30, or 100 mg/kg), glibenclamide (10 mg/kg), or normal saline (2 ml/kg) per os. Hematological profile, liver and kidney function tests, lipid profile, as well as liver, kidney, and pancreas histopathological examinations were also conducted to establish possible effects of CRP treatment. Results: CRP treatment reduced (P ≤ 0.001) FBS and body weight, inhibited (P ≤ 0.05 - 0.001) the latency to tail flick or withdrawal from pain stimulus. It did not alter (P > 0.05): Hematological parameters, elevated (P ≤ 0.05 - 0.001) plasma aspartate transaminase, alanine transaminase, and gamma-glutamyl transferase, reduced (P ≤ 0.01) plasma urea, and elevated (P ≤ 0.001) plasma creatinine associated with DM. CRP, however, reversed (P ≤ 0.05 - 0.001) DM-associated elevation (P ≤ 0.05 - 0.001) of plasma cholesterol, triglycerides, and low-density lipoproteins, and the reduction in high-density lipoproteins. CRP (10-30 mg/kg) showed dose-dependent regeneration of β-islet cells but could not repair degenerated liver and kidney tissue. CRP worsens dose-dependently (P ≤ 0.001) reduced sperm quality associated with DM. Conclusion: CRP abolishes hyperglycemia, weight loss, cold allodynia, neuropathic pain, and hyperlipidemia as well as pancreatic β-islet cell damage associated with DM. It, however, does not improve liver and kidney damage and lowered semen quality.
Collapse
Affiliation(s)
- Elvis Ofori Ameyaw
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Asumeng Koffuor
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Daniels Konja
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Asante Du-Bois
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kyei
- Department of Optometry, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Arnold Donkor Forkuo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Nana Abankwah Owusu Mensah
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
5
|
Gobeil F, Sirois P, Regoli D. Preclinical pharmacology, metabolic stability, pharmacokinetics and toxicology of the peptidic kinin B1 receptor antagonist R-954. Peptides 2014; 52:82-9. [PMID: 24361511 DOI: 10.1016/j.peptides.2013.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 01/06/2023]
Abstract
We previously showed that R-954 (AcOrn[Oic(2),(αMe)Phe(5),dβNal(7),Ile(8)]desArg(9)-bradykinin) is a potent, selective and stable peptide antagonist of the inducible GPCR kinin B1 receptor. This compound shows potential applications for the treatment of several diseases, including cancer and neurological disturbances of diabetes. To enable clinical translation, more information regarding its pharmacological, pharmacokinetics (PK) and toxicological properties at preclinical stage is warranted. This was the principal objective of the present study. Herein, specificity of R-954 was characterized in binding studies on 133 human molecular targets to reveal minor cross-reactivities against the angiotensin AT2 and the bombesin receptors (110- and 330-fold lower affinity than for B1R, respectively). The pharmacokinetic of R-954 was studied in both normal and streptozotocin-diabetic anaesthetized rats providing half-lives of 1.9-2.7h. R-954 does not appear to be metabolized in the rat circulation and in several rat tissue homogenates, as the kidney, lung and liver. It appears to be excreted as parent drug in the bile (21%) and in urine. A preliminary toxicological profile of R-954 was obtained in rats under various administration routes. R-954 appears to be well tolerated. Overall, these results indicate that R-954 exhibits favorable preclinical pharmacological/PK characteristics and encouraging safety profiles, suitable for early studies in humans.
Collapse
Affiliation(s)
- Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada J1H 5N4; Institute of Pharmacology of Sherbrooke (IPS), Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada J1H 5N4.
| | - Pierre Sirois
- CHUL Research Center, Laval University, Quebec, Canada G1V 4G2
| | - Domenico Regoli
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada J1H 5N4
| |
Collapse
|
6
|
Lu J, Xing J, Li J. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 2013; 304:H1166-74. [PMID: 23417862 DOI: 10.1152/ajpheart.00926.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in each group). In contrast, there was no significant difference in B1 receptor expression in both experimental groups, and arterial injection of R-715, a B1 receptors blocker, had no significant effects on RSNA and MAP responses evoked by muscle stretch. Accordingly, results obtained from this study support our hypothesis that heightened kinin B2 receptor expression in the sensory nerves contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion.
Collapse
Affiliation(s)
- Jian Lu
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
7
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
8
|
Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp Neurol 2012; 234:373-81. [DOI: 10.1016/j.expneurol.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
9
|
Costa R, Motta EM, Dutra RC, Manjavachi MN, Bento AF, Malinsky FR, Pesquero JB, Calixto JB. Anti-nociceptive effect of kinin B₁ and B₂ receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 2012; 164:681-93. [PMID: 21470206 DOI: 10.1111/j.1476-5381.2011.01408.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In the current study, we investigated the role of both kinin B₁ and B₂ receptors in peripheral neuropathy induced by the chronic treatment of mice with paclitaxel a widely used chemotherapeutic agent. EXPERIMENTAL APPROACH Chemotherapy-evoked hyperalgesia was induced by i.p. injections of paclitaxel (2 mg·kg⁻¹) over 5 consecutive days. Mechanical and thermal hyperalgesia were evaluated between 7 and 21 days after the first paclitaxel treatment. KEY RESULTS Treatment with paclitaxel increased both mechanical and thermal hyperalgesia in mice (C57BL/6 and CD1 strains). Kinin receptor deficient mice (B₁, or B₂ receptor knock-out and B₁B₂ receptor, double knock-out) presented a significant reduction in paclitaxel-induced hypernociceptive responses in comparison to wild-type animals. Treatment of CD1 mice with kinin receptor antagonists (DALBK for B₁ or Hoe 140 for B₂ receptors) significantly inhibited both mechanical and thermal hyperalgesia when tested at 7 and 14 days after the first paclitaxel injection. DALBK and Hoe 140 were also effective against paclitaxel-induced peripheral neuropathy when given intrathecally or i.c.v. A marked increase in B₁ receptor mRNA was observed in the mouse thalamus, parietal and pre-frontal cortex from 7 days after the first paclitaxel treatment. CONCLUSIONS AND IMPLICATIONS Kinins acting on both B₁ and B₂ receptors, expressed in spinal and supra-spinal sites, played a crucial role in controlling the hypernociceptive state caused by chronic treatment with paclitaxel.
Collapse
Affiliation(s)
- Robson Costa
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Biswas K, Peterkin TAN, Bryan MC, Arik L, Lehto SG, Sun H, Hsieh FY, Xu C, Fremeau RT, Allen JR. Discovery of Potent, Orally Bioavailable Phthalazinone Bradykinin B1 Receptor Antagonists. J Med Chem 2011; 54:7232-46. [DOI: 10.1021/jm200808v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaustav Biswas
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tanya A. N. Peterkin
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Marian C. Bryan
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Leyla Arik
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sonya G. Lehto
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hong Sun
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Feng-Yin Hsieh
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Cen Xu
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Robert T. Fremeau
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jennifer R. Allen
- Departments of †Chemistry Research and Discovery, ‡Pharmacokinetics and Drug Metabolism, and §Neuroscience Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
11
|
Martini E, Di Cesare Mannelli L, Bartolucci G, Bertucci C, Dei S, Ghelardini C, Guandalini L, Manetti D, Scapecchi S, Teodori E, Romanelli MN. Synthesis and Biological Evaluation of 3,7-Diazabicyclo[4.3.0]nonan-8-ones as Potential Nootropic and Analgesic Drugs. J Med Chem 2011; 54:2512-6. [DOI: 10.1021/jm101376k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elisabetta Martini
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Gianluca Bartolucci
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Carlo Bertucci
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Dei
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Carla Ghelardini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Luca Guandalini
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Serena Scapecchi
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Aryl sulfones as novel Bradykinin B1 receptor antagonists for treatment of chronic pain. Bioorg Med Chem Lett 2008; 18:4764-9. [DOI: 10.1016/j.bmcl.2008.07.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 07/23/2008] [Accepted: 07/28/2008] [Indexed: 11/22/2022]
|
13
|
Chen JJ, Biswas K. Small molecule bradykinin B1 receptor antagonists as potential therapeutic agents for pain. PROGRESS IN MEDICINAL CHEMISTRY 2008; 46:173-204. [PMID: 18381126 DOI: 10.1016/s0079-6468(07)00004-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Jian Jeffrey Chen
- Chemistry Research and Discovery, Amgen Inc., MS 29-1-B, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
14
|
Lungu C, Dias JP, França CED, Ongali B, Regoli D, Moldovan F, Couture R. Involvement of kinin B1 receptor and oxidative stress in sensory abnormalities and arterial hypertension in an experimental rat model of insulin resistance. Neuropeptides 2007; 41:375-87. [PMID: 17988733 DOI: 10.1016/j.npep.2007.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/06/2007] [Accepted: 09/18/2007] [Indexed: 11/25/2022]
Abstract
Diabetes Mellitus leads to pain neuropathy and cardiovascular complications which remain resistant to current therapies involving the control of glycaemia. This study aims at defining the contribution of kinin B(1) receptor (B(1)R) and the oxidative stress on sensory abnormalities and arterial hypertension in a rat model of insulin resistance. Rats were fed with 10% d-glucose for a chronic period of 12-14 weeks and the impact of a diet supplemented with alpha-lipoic acid, a potent antioxidant, was determined on tactile and cold allodynia, arterial hypertension and the expression of kinin B(1)R (real-time PCR and autoradiography) in several tissues. Acute effects of brain penetrant (LF22-0542) and peripherally acting (R-715) B(1)R antagonists were also assessed. Glucose-fed rats exhibited tactile and cold allodynia along with increases in systolic blood pressure between 4 and 12 weeks; these alterations were alleviated by alpha-lipoic acid. The latter regimen also decreased significantly increased plasma levels of insulin and glucose and insulin resistance (HOMA index) at 14 weeks. B(1)R mRNA was virtually absent in liver, aorta, lung, kidney and spinal cord isolated from control rats, yet B(1)R mRNA was markedly increased in all tissues in glucose-fed rats. Up-regulated B(1)R mRNA and B(1)R binding sites (spinal cord) were significantly reduced by alpha-lipoic acid in glucose-fed rats. LF22-0542 reduced tactile and cold allodynia (3h) and reversed arterial hypertension (3-48h) in glucose-fed rats. R-715 abolished tactile and cold allodynia but had not effect on blood pressure. Data suggest that the oxidative stress contributes to the induction and up-regulation of B(1)R in the model of insulin resistance induced by glucose feeding. The over expressed B(1)R contributes centrally to arterial hypertension and in the periphery to sensory abnormalities.
Collapse
Affiliation(s)
- C Lungu
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
15
|
Petcu M, Dias JP, Ongali B, Thibault G, Neugebauer W, Couture R. Role of kinin B1 and B2 receptors in a rat model of neuropathic pain. Int Immunopharmacol 2007; 8:188-96. [PMID: 18182225 DOI: 10.1016/j.intimp.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 12/14/2022]
Abstract
Kinin B1 and B2 receptor (R) gene expression (mRNA) is increased in the sensory system after peripheral nerve injury. This study measured the densities of B1R and B2R binding sites in the spinal cord and dorsal root ganglia (DRG) by quantitative autoradiography, and evaluated the effects of two selective non-peptide antagonists at B1R (LF22-0542) and B2R (LF16-0687) on pain behavior after partial ligation of the left sciatic nerve. Increases of B1R binding sites were seen in superficial laminae of the ipsi- and contralateral spinal cord at 2 and 14 days while B2R binding sites were increased on the ipsilateral side at 2 days and on both sides at 14 days. In DRG, B1R and B2R binding sites were significantly increased at 2 days (ipsilateral) and 14 days on both sides. Whereas tactile allodynia started to develop progressively from 2 to 25 days post-ligation, the occurrence of cold allodynia and thermal hyperalgesia became significant from day 8 and day 14 post-ligation, respectively. At day 21 after sciatic nerve ligation, thermal hyperalgesia was blocked by LF22-0542 (10 mg/kg, s.c.) and LF16-0687 (3 mg/kg, s.c.), yet both antagonists had no effect on tactile and cold allodynia. Data highlight the implication of both kinin receptors in thermal hyperalgesia but not in tactile and cold allodynia associated with peripheral nerve injury. Hence LF22-0542 and LF16-0687 present therapeutic potential for the treatment of some aspects of neuropathic pain.
Collapse
Affiliation(s)
- M Petcu
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
16
|
Biswas K, Li A, Chen JJ, D'Amico DC, Fotsch C, Han N, Human J, Liu Q, Norman MH, Riahi B, Yuan C, Suzuki H, Mareska DA, Zhan J, Clarke DE, Toro A, Groneberg RD, Burgess LE, Lester-Zeiner D, Biddlecome G, Manning BH, Arik L, Dong H, Huang M, Kamassah A, Loeloff R, Sun H, Hsieh FY, Kumar G, Ng GY, Hungate RW, Askew BC, Johnson E. Potent Nonpeptide Antagonists of the Bradykinin B1 Receptor: Structure−Activity Relationship Studies with Novel Diaminochroman Carboxamides. J Med Chem 2007; 50:2200-12. [PMID: 17408249 DOI: 10.1021/jm070055c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bradykinin B1 receptor is induced following tissue injury and/or inflammation. Antagonists of this receptor have been studied as promising candidates for treatment of chronic pain. We have identified aryl sulfonamides containing a chiral chroman diamine moiety that are potent antagonists of the human B1 receptor. Our previously communicated lead, compound 2, served as a proof-of-concept molecule, but suffered from poor pharmacokinetic properties. With guidance from metabolic profiling, we performed structure-activity relationship studies and have identified potent analogs of 2. Variation of the sulfonamide moiety revealed a preference for 3- and 3,4-disubstituted aryl sulfonamides, while bulky secondary and tertiary amines were preferred at the benzylic amine position for potency at the B1 receptor. Modifying the beta-amino acid core of the molecule lead to the discovery of highly potent compounds with improved in vitro pharmacokinetic properties. The most potent analog at the human receptor, compound 38, was also active in a rabbit B1 receptor cellular assay. Furthermore, compound 38 displayed in vivo activity in two rabbit models, a pharmacodynamic model with a blood pressure readout and an efficacy model of inflammatory pain.
Collapse
Affiliation(s)
- Kaustav Biswas
- Department of Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The bradykinin B1 receptor is an inducible G-protein-coupled receptor. It is induced or upregulated at the site of inflammation or injury. A large body of preclinical data supports the development of B1 antagonists as novel therapeutics for the treatment of pain and inflammation. The necessary in vitro and in vivo drug discovery tools are currently available to evaluate novel B1 antagonists. Two major classes of small-molecule B1 antagonists, arylsulfonamide-based and biphenyl-based B1 antagonists, have been disclosed in the last few years.
Collapse
Affiliation(s)
- Jian Jeffrey Chen
- Amgen Inc., Chemistry Research and Development, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
18
|
Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 2006; 99:6-38. [PMID: 16177542 DOI: 10.1254/jphs.srj05001x] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The kallikrein-kinin system is an endogenous metabolic cascade, triggering of which results in the release of vasoactive kinins (bradykinin-related peptides). This complex system includes the precursors of kinins known as kininogens and mainly tissue and plasma kallikreins. The pharmacologically active kinins, which are often considered as either proinflammatory or cardioprotective, are implicated in many physiological and pathological processes. The interest of the various components of this multi-protein system is explained in part by the multiplicity of its pharmacological activities, mediated not only by kinins and their receptors, but also by their precursors and their activators and the metallopeptidases and the antiproteases that limit their activities. The regulation of this system by serpins and the wide distribution of the different constituents add to the complexity of this system, as well as its multiple relationships with other important metabolic pathways such as the renin-angiotensin, coagulation, or complement pathways. The purpose of this review is to summarize the main properties of this kallikrein-kinin system and to address the multiple pharmacological interventions that modulate the functions of this system, restraining its proinflammatory effects or potentiating its cardiovascular properties.
Collapse
|
19
|
Fotsch C, Biddlecome G, Biswas K, Chen JJ, D'Amico DC, Groneberg RD, Han NB, Hsieh FY, Kamassah A, Kumar G, Lester-Zeiner D, Liu Q, Mareska DA, Riahi BB, Wang YJJ, Yang K, Zhan J, Zhu J, Johnson E, Ng G, Askew BC. A new class of bradykinin 1 receptor antagonists containing the piperidine acetic acid tetralin core. Bioorg Med Chem Lett 2006; 16:2071-5. [PMID: 16464576 DOI: 10.1016/j.bmcl.2006.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/16/2006] [Accepted: 01/17/2006] [Indexed: 11/19/2022]
Abstract
The bradykinin 1 (B1) receptor is upregulated during times of inflammation and is important for maintaining inflamed and chronic pain states. Blocking this receptor has been shown to reverse and/or ameliorate pain and inflammation in animal models. In this report, we describe a new class of B1 receptor antagonists that contain the piperidine acetic acid tetralin core. A structure-activity relationship for these analogs is described in this paper. The most potent compounds from this class have IC50s<20 nM in a B1 receptor functional assay. One of these compounds, 13g, shows modest oral bioavailability in rats.
Collapse
Affiliation(s)
- Christopher Fotsch
- Amgen Inc., Department of Chemistry Research and Development, One Amgen Center Drive, Thousand Oaks, CA 91360, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ferreira J, Beirith A, Mori MAS, Araújo RC, Bader M, Pesquero JB, Calixto JB. Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J Neurosci 2006; 25:2405-12. [PMID: 15745967 PMCID: PMC6726078 DOI: 10.1523/jneurosci.2466-04.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Injury to peripheral nerves often results in a persistent neuropathic pain condition that is characterized by spontaneous pain, allodynia, and hyperalgesia. Nerve injury is accompanied by a local inflammatory reaction in which nerve-associated and immune cells release several pronociceptive mediators. Kinin B1 receptors are rarely expressed in nontraumatized tissues, but they can be expressed after tissue injury. Because B1 receptors mediate chronic inflammatory painful processes, we studied their participation in neuropathic pain using receptor gene-deleted mice. In the absence of neuropathy, we found no difference in the paw-withdrawal responses to thermal or mechanical stimulation between B1 receptor knock-out mice and 129/J wild-type mice. Partial ligation of the sciatic nerve in the wild-type mouse produced a profound and long-lasting decrease in thermal and mechanical thresholds in the paw ipsilateral to nerve lesion. Threshold changed neither in the sham-operated animals nor in the paw contralateral to lesion. Ablation of the gene for the B1 receptor resulted in a significant reduction in early stages of mechanical allodynia and thermal hyperalgesia. Furthermore, systemic treatment with the B1 selective receptor antagonist des-Arg9-[Leu8]-bradykinin reduced the established mechanical allodynia observed 7-28 d after nerve lesion in wild-type mice. Partial sciatic nerve ligation induced an upregulation in B1 receptor mRNA in ipsilateral paw, sciatic nerve, and spinal cord of wild-type mice. Together, kinin B1 receptor activation seems to be essential to neuropathic pain development, suggesting that an oral-selective B1 receptor antagonist might have therapeutic potential in the management of chronic pain.
Collapse
Affiliation(s)
- Juliano Ferreira
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, 88015-420 Florianópolis, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gabra BH, Berthiaume N, Sirois P, Nantel F, Battistini B. The kinin system mediates hyperalgesia through the inducible bradykinin B1 receptor subtype: evidence in various experimental animal models of type 1 and type 2 diabetic neuropathy. Biol Chem 2006; 387:127-43. [PMID: 16497144 DOI: 10.1515/bc.2006.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Both insulin-dependent (type 1) and insulin-independent (type 2) diabetes are complex disorders characterized by symptomatic glucose intolerance due to either defective insulin secretion, insulin action or both. Unchecked hyperglycemia leads to a series of complications among which is painful diabetic neuropathy, for which the kinin system has been implicated. Here, we review and compare the profile of several experimental models of type 1 and 2 diabetes (chemically induced versus gene-prone) and the incidence of diabetic neuropathy upon aging. We discuss the efficacy of selective antagonists of the inducible bradykinin B1 receptor (BKB1-R) subtype against hyperalgesia assessed by various nociceptive tests. In either gene-prone models of type 1 and 2 diabetes, the incidence of hyperalgesia mostly precedes the development of hyperglycemia. The administration of insulin, achieving euglycemia, does not reverse hyperalgesia. Treatment with a selective BKB1-R antagonist does not affect basal nociception in most normal control rats, whereas it induces a significant time- and dose-dependent attenuation of hyperalgesia, or even restores nociceptive responses, in experimental diabetic neuropathy models. Diabetic hyperalgesia is absent in streptozotocin-induced type 1 diabetic BKB1-R knockout mice. Thus, selective antagonism of the inducible BKB1-R subtype may constitute a novel and potential therapeutic approach for the treatment of painful diabetic neuropathy.
Collapse
|
22
|
Conley RK, Wheeldon A, Webb JK, DiPardo RM, Homnick CF, Bock MG, Chen TB, Chang RSL, Pettibone DJ, Boyce S. Inhibition of acute nociceptive responses in rat spinal cord by a bradykinin B1 receptor antagonist. Eur J Pharmacol 2005; 527:44-51. [PMID: 16310181 DOI: 10.1016/j.ejphar.2005.06.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/28/2005] [Accepted: 06/28/2005] [Indexed: 11/23/2022]
Abstract
This study used behavioural and in vivo electrophysiological paradigms to examine the effects of systemic and spinal administration of a bradykinin B1 receptor antagonist, compound X, on acute nociceptive responses in the rat. In behavioural experiments, compound X significantly increased the latency to withdraw the hindpaw from a radiant heat source after both intravenous and intrathecal administration, without affecting motor performance on the rotarod. In electrophysiological experiments, both intravenous and direct spinal administration of compound X attenuated the responses of single dorsal horn neurones to noxious thermal stimulation of the hindpaw. These data show that the antinociceptive effects of a bradykinin B1 receptor antagonist are mediated, at least in part, at the level of the spinal cord and suggest a role for spinal bradykinin B1 receptors in acute nociception.
Collapse
Affiliation(s)
- Rachel K Conley
- Merck Sharp and Dohme, In Vivo Neuroscience Department, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fox A, Kaur S, Li B, Panesar M, Saha U, Davis C, Dragoni I, Colley S, Ritchie T, Bevan S, Burgess G, McIntyre P. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br J Pharmacol 2005; 144:889-99. [PMID: 15685199 PMCID: PMC1576084 DOI: 10.1038/sj.bjp.0706139] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (K(i) 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (K(i) 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB(1)-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man.
Collapse
Affiliation(s)
- Alyson Fox
- Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gabra BH, Benrezzak O, Pheng LH, Duta D, Daull P, Sirois P, Nantel F, Battistini B. Inhibition of Type 1 Diabetic Hyperalgesia in Streptozotocin-Induced Wistar versus Spontaneous Gene-Prone BB/Worchester Rats: Efficacy of a Selective Bradykinin B1Receptor Antagonist. J Neuropathol Exp Neurol 2005; 64:782-9. [PMID: 16141788 DOI: 10.1097/01.jnen.0000178448.79713.5f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Insulin-dependent type 1 diabetes (T1D) is linked to a series of complications, including painful diabetic neuropathy (PDN). Several neurovascular systems are activated in T1D, including the inducible bradykinin (BK) B1 receptor (BKB1-R) subtype. We assessed and compared the efficacy profile of a selective BKB1-R antagonist on hyperalgesia in 2 models of T1D: streptozotocin (STZ) chemically induced diabetic Wistar rats and spontaneous BioBreeding/Worchester diabetic-prone (BB/Wor-DP) rats. Nociception was measured using the hot plate test to determine thermal hyperalgesia. STZ diabetic rats developed maximal hyperalgesia (35% decrease in their hot plate reaction time) within a week and remained in such condition and degree for up to 4 weeks postinjection. BB/Wor-DP rats also developed hyperalgesia over time that preceded hyperglycemia, starting at the age of 6 weeks (9% decrease in the hot plate reaction time) and stabilizing over the age of 16 to 24 weeks to a maximum (60% decrease in the hot plate reaction time). Single, acute subcutaneous administration of the selective BKB1-R antagonist induced significant time- and dose-dependent attenuation of hyperalgesia in both STZ diabetic and BB/Wor-DP rats. Thus, selective antagonism of the inducible BKB1-R subtype may constitute a novel and potential therapeutic approach for the treatment of PDN.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
El Midaoui A, Ongali B, Petcu M, Rodi D, de Champlain J, Neugebauer W, Couture R. Increases of spinal kinin receptor binding sites in two rat models of insulin resistance. Peptides 2005; 26:1323-30. [PMID: 16042974 DOI: 10.1016/j.peptides.2005.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An autoradiographic study was conducted to determine whether kinin receptors are altered in the rat spinal cord in two experimental models of chronic hyperglycemia and insulin resistance. Sprague-Dawley rats were given 10% d-glucose in their drinking water alone or with insulin (9 mU/kg/min with osmotic pumps) for 4 weeks. Both groups and control rats were treated either with a normal chow diet or with an alpha-lipoic acid-supplemented diet as antioxidant therapy. After 4 weeks of treatment, glycemia, insulinemia, blood pressure, insulin resistance index, the production of superoxide anion in the aorta and the density of B2 receptor binding sites in the dorsal horn were significantly increased in the two models. These effects were prevented or attenuated by alpha-lipoic acid. In contrast, B2 receptor binding sites of most spinal cord laminae were increased in the glucose group only and were not affected by alpha-lipoic acid. Results show that chronic hyperglycemia associated with insulin resistance increases B1 and B2 receptor binding sites in the rat spinal cord through distinct mechanisms, including the oxidative stress for the B1 receptor.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Que., Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
26
|
Campos MM, Ongali B, De Souza Buck H, Schanstra JP, Girolami JP, Chabot JG, Couture R. Expression and distribution of kinin B1 receptor in the rat brain and alterations induced by diabetes in the model of streptozotocin. Synapse 2005; 57:29-37. [PMID: 15858836 DOI: 10.1002/syn.20150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A role for kinin B1 receptors was suggested in the spinal cord and peripheral organs of streptozotocin (STZ)-diabetic rats. The present study aims at determining whether B1 receptors are also induced and over-expressed in the brain of STZ-rats at 2, 7, and 21 days post-treatment. This was addressed by in situ hybridization using the [35S]-UTPalphaS-labeled riboprobe and by in vitro autoradiography with the radioligand [125I]-HPP-des-Arg10-Hoe 140. In control rats, B1 receptor mRNA was found widely distributed in many brain regions. Low mRNA levels were found in thalamus and hypothalamus (7-12 nCi/g) while high mRNA signals were detected in cortical regions and hippocampus (18-29 nCi/g). In diabetic rats, B1 receptor mRNA was markedly increased in hippocampus, temporal/parietal cortices and amygdala at 2 and 7 days (+88 to +150%). Low densities of B1 receptor binding sites were detected in all analyzed regions in control rats (0.18-0.37 fmol/mg tissue). In diabetic rats, B1 receptor binding sites were significantly increased in hippocampus, amygdala, temporal/parietal, and perhinal/piriform cortices (+ 55 to + 165 %) at 7 days only. Results highlight an early but transient and reversible up-regulation of B1 receptors in specific brain regions of STZ-diabetic rats. This may offer the advantage of reducing putative central side effects with B1 receptor antagonists if used for the treatment of diabetic complications in the periphery.
Collapse
Affiliation(s)
- Maria Martha Campos
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
27
|
Couture R, Girolami JP. Putative roles of kinin receptors in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2005; 500:467-85. [PMID: 15464053 DOI: 10.1016/j.ejphar.2004.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/07/2023]
Abstract
The role of endogenous kinins and their receptors in diabetes mellitus is being confirmed with the recent developments of molecular and genetic animal models. Compelling evidence suggests that the kinin B(2) receptor is organ-protective and partakes to the therapeutic effects of angiotensin 1-converting enzyme inhibitors (ACEI) and angiotensin AT(1) receptor antagonists. Benefits derive primarily from vasodilatory, antihypertensive, antiproliferative, antihypertrophic, antifibrotic, antithrombotic and antioxidant properties of kinin B(2) receptor activation. Mechanisms include the formation of nitric oxide and prostacyclin and the inhibition of NAD(P)H oxidase activity involving classical and novel signalling pathways. Kinin B(2) receptor also ameliorates insulin resistance by increasing glucose uptake and supply, and by inducing glucose transporter-4 translocation either directly or through phosphorylation of insulin receptor. The kinin B(1) receptor, which is induced by the cytokine network, growth factors and hyperglycaemia, mediates hyperalgesia, vascular hyperpermeability and leukocytes infiltration in diabetic animals. However, emerging data highlight reno- and cardio-protective effects mediated by kinin B(1) receptor under chronic ACEI therapy in diabetes mellitus. Thus, the Janus-faced of kinin receptors needs to be taken into account in future drug development. For instance, locally acting kinin B(1)/B(2) receptor agonists if used in a safe therapeutic window may represent a more rationale strategy in the prevention and management of diabetic complications. Because kinin B(2) receptor antagonists may further increase insulin resistance, the persisting dogma that restricts the development of kinin receptor analogues to antagonists (that is still relevant to abrogate pain and inflammation) needs to be revisited.
Collapse
Affiliation(s)
- Réjean Couture
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | |
Collapse
|
28
|
Gabra BH, Sirois P. Hyperalgesia in non-obese diabetic (NOD) mice: A role for the inducible bradykinin B1 receptor. Eur J Pharmacol 2005; 514:61-7. [PMID: 15878325 DOI: 10.1016/j.ejphar.2005.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 12/20/2022]
Abstract
Most studies performed to investigate the role of the inducible bradykinin B(1) receptor in the pathology and complications of type 1 diabetes have been carried out using the model of streptozotocin (STZ)-induced diabetes. The model of spontaneous autoimmune diabetes in non-obese diabetic (NOD) mice involves a long-term inflammatory process that closely resembles the human type 1 diabetes. In the present study, we aimed at establishing the correlation between the progress of diabetic hyperalgesia and the incidence of diabetes, as a function of age, in NOD mice. We also evaluated the implication of the bradykinin B(1) receptor, a receptor up-regulated during the inflammatory progress of diabetes, in the development of diabetic hyperalgesia in NOD mice. Female NOD mice were followed up from the 4th to the 32nd week of age for the incidence of diabetes. Only NOD mice with plasma glucose concentration >20 mmol/l were considered diabetic. The nociception was assessed using the hot plate and the tail immersion pain tests and the effect of acute and chronic administration of the selective bradykinin B(1) receptor agonist, desArg(9)bradykinin and its selective antagonists, R-715 (Ac-Lys-[D-beta Nal(7), Ile(8)]desArg(9)bradykinin) and R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)bradykinin), on the development of diabetic hyperalgesia was studied. Diabetic NOD mice developed a significant time-dependent hyperalgesia, as measured in both tests, starting from the 8th week of age with the maximum effect observed over 16 to 20 weeks, whereas the incidence of diabetes in the tested NOD mice was only 40.16% at the age of 16 weeks and reached a maximum of 73.23% at the age 24 weeks. Both acute and chronic administration of desArg(9)bradykinin (400 microg/kg) markedly increased the hyperalgesic activity in diabetic NOD mice in the hot plate and tail immersion nociceptive tests. The selective bradykinin B(1) receptor antagonist R-715 (400 microg/kg) and its more potent and long acting analogue R-954 (200 microg/kg), administered in acute or chronic manner, significantly attenuated diabetic hyperalgesia in NOD mice in both thermal pain tests and restored nociceptive responses to values observed in control non-diabetic siblings. Our results bring the first evidence that the development of hyperalgesia in NOD mice, a model of spontaneous type 1 diabetes, precedes the occurrence of hyperglycemia and is mediated by the bradykinin B(1) receptor. It is suggested that bradykinin B(1) receptor antagonism could become a novel therapeutic approach to the treatment of diabetic neuropathic complications.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, Sherbrooke, Province of Quebec, Canada J1H 5N4
| | | |
Collapse
|
29
|
Lawson SR, Gabra BH, Nantel F, Battistini B, Sirois P. Effects of a selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: Distinct vasculopathic profile of major key organs. Eur J Pharmacol 2005; 514:69-78. [PMID: 15878326 DOI: 10.1016/j.ejphar.2005.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/28/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Diffuse vasculopathy is a common feature of the morbidity and increased mortality associated with insulino-dependent type 1 diabetes. Increased vascular permeability leading to plasma extravasation occurs in surrounding tissues following endothelial dysfunction. Such micro- and macro-vascular complications develop over time and lead to oedema, hypertension, cardiomyopathy, renal failure (nephropathy) and other complications (neuropathy, retinopathy). In the present investigation, we studied the effect of a selective bradykinin B(1) receptor antagonist, R-954, on the enhanced vascular permeability in streptozotocin (STZ)-induced diabetic Wistar rats compared with age-matched controls. Plasma extravasation was determined using Evans blue dye in selected target tissues (left and right heart atria, ventricles, lung, abdominal and thoracic aortas, liver, spleen, renal cortex and medulla), at 1 and 4 weeks following STZ administration. The vascular permeability was significantly increased in the aortas, cortex, medulla, and spleen in 1-week STZ rats and remained elevated at 4 weeks of diabetes. Both atria showed an increased vascular permeability only after 4-week STZ-administration. R-954 (2 mg/kg, bolus, s.c.), given 2 h prior to Evans blue dye, to 1- and 4-week diabetic rats significantly inhibited (by 48-100%) plasma leakage in most tested tissues affected by diabetes with no effect in healthy rats. These results showed that the inducible bradykinin B(1) receptor subtype participates in the modulation of the vascular permeability in diabetic rats and suggest that selective bradykinin B(1) receptor antagonism could have a beneficial role in reducing diabetic vascular complications.
Collapse
Affiliation(s)
- Sibi R Lawson
- Institute of Pharmacology of Sherbrooke (IPS), School of Medicine, University of Sherbrooke, Sherbrooke, Province of Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
30
|
Ongali B, Campos MM, Petcu M, Rodi D, Cloutier F, Chabot JG, Thibault G, Couture R. Expression of kinin B1 receptors in the spinal cord of streptozotocin-diabetic rat. Neuroreport 2005; 15:2463-6. [PMID: 15538175 DOI: 10.1097/00001756-200411150-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have reported cardiovascular and nociceptive responses after intrathecal injection of kinin B1 receptor (B1R) agonists in the model of streptozotocin (STZ)-diabetic rat (diabetic). The aim of this study was to measure the early up-regulation of B1R binding sites and mRNA in the thoracic spinal cord of diabetic and control rats. Data show significant increases of specific B1R binding sites in the dorsal horn of diabetic rats 2 days (+315%), 7 days (+303%) and 21 days (+181%) after STZ treatment. Levels of mRNA were significantly increased (+68%) at 2 and 7 days but not at 21 days. These data bring the first molecular evidence for an early up-regulation of B1R in the spinal cord of diabetic rat.
Collapse
Affiliation(s)
- Brice Ongali
- Department of Physiology, Université de Montréal, Pavillon Paul-G.-Desmarais, 2960, Chemin de la Tour, Montréal, Québec, H3T 1J4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zaczynska E, Gabra BH, Sirois P. Bradykinin stimulates MMP-2 production in guinea pig tracheal smooth muscle cells. Inflammation 2005; 27:307-15. [PMID: 14635788 DOI: 10.1023/a:1026080527573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The implication of bradykinin (BK) receptors in the release of the matrix metalloproteinase-2 (MMP-2; gelatinase A) was studied in guinea pig tracheal smooth muscle cells (GP-TSMC). Bradykinin (10(-8)-10(-4) M) induced a time- and concentration-dependent upregulation of MMP-2 production from cultured GP-TSMC. Pretreatment of the GP-TSMC with the bradykinin B2 receptor (BKB2-R) antagonist Hpp-HOE-140 (Hpp-D-Arg0-Hyp3-Thi5-D-Tic7-Oic8-BK; 10(-8)-10(-4) M) significantly inhibited the BK-stimulated upregulation of MMP-2 in GP-TSMC in a concentration-related manner. Conversely, GP-TSMC pretreated with the selective bradykinin B1 receptor (BKB1-R) antagonist R-954 (Ac-Om[Oic2, alpha-MePhe5, D-betaNal7, Ile8]desArg9BK; 10(-8)-10(-4) M) did not show any change in the response to BK. Moreover, the selective BKB2-R agonist Lys0BK (kallidin; 10(-8)-10(-4) M) stimulated whereas the selective BKB1-R agonist desArg9BK (DBK; 10(-8)-10(-4) M) had no effect on MMP-2 release from GP-TSMC. Further, the nonselective cyclooxygenase (COX) enzyme inhibitor indomethacin (IND; 10(-5) M), the glucocorticosteroid dexamethasone (DEX; 1 ng/mL) and the protein synthesis inhibitors, cycloheximide (CHX; 10(-6) M) and actinomycin D (ACT-D; 10(-8) M) also inhibited BK-induced MMP-2 release from GP-TSMC. These results provide the first evidence for the involvement of BK in the release of MMP-2 from airway smooth muscle cells through activation of the BKB2-R. Such response is mostly mediated by the induction of COX and the subsequent production of endogenous prostaglandins (PGs). It could therefore be suggested that MMP-2 might play a role in the process of airway remodeling.
Collapse
Affiliation(s)
- Ewa Zaczynska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | |
Collapse
|
32
|
Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 2004; 143:803-18. [PMID: 15520046 PMCID: PMC1575942 DOI: 10.1038/sj.bjp.0706012] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 01/25/2023] Open
Abstract
Kinins are a family of peptides implicated in several pathophysiological events. Most of their effects are likely mediated by the activation of two G-protein-coupled receptors: B(1) and B(2). Whereas B(2) receptors are constitutive entities, B(1) receptors behave as key inducible molecules that may be upregulated under some special circumstances. In this context, several recent reports have investigated the importance of B(1) receptor activation in certain disease models. Furthermore, research on B(1) receptors in the last years has been mainly focused in determining the mechanisms and pathways involved in the process of induction. This was essentially favoured by the advances obtained in molecular biology studies, as well as in the design of selective and stable peptide and nonpeptide kinin B(1) receptor antagonists. Likewise, development of kinin B(1) receptor knockout mice greatly helped to extend the evidence about the relevance of B(1) receptors during pathological states. In the present review, we attempted to remark the main advances achieved in the last 5 years about the participation of kinin B(1) receptors in painful and inflammatory disorders. We have also aimed to point out some groups of chronic diseases, such as diabetes, arthritis, cancer or neuropathic pain, in which the strategic development of nonpeptidic oral-available and selective B(1) receptor antagonists could have a potential relevant therapeutic interest.
Collapse
Affiliation(s)
- João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Sainz IM, Uknis AB, Isordia-Salas I, Dela Cadena RA, Pixley RA, Colman RW. Interactions between bradykinin (BK) and cell adhesion molecule (CAM) expression in peptidoglycan‐polysaccharide (PG‐PS)‐induced arthritis. FASEB J 2004; 18:887-9. [PMID: 15001555 DOI: 10.1096/fj.03-0835fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bradykinin (BK), a vasoactive, proinflammatory nonapeptide, promotes cell adhesion molecule (CAM) expression, leukocyte sequestration, inter-endothelial gap formation, and protein extravasation in postcapillary venules. These effects are mediated by bradykinin-1 (B1R) and-2 (B2R) receptors. We delineated some of the mechanisms by which BK could influence chronic inflammation by altering CAM expression on leukocytes, endothelium, and synovium in joint sections of peptidoglycan-polysaccharide-injected Lewis rats. Blocking B1R results in significantly increased joint inflammation. Immunohistochemistry of the B1R antagonist group revealed increased leukocyte and synovial CD11b and CD54 expression and increased CD11b and CD44 endothelial expression. B2R antagonism decreased leukocyte and synovial CD44 and CD54 and endothelial CD11b expression. Although these findings implicate B2R involvement in the acute phase of inflammation by facilitating leukocyte activation (CD11b), homing (CD44), and transmigration (CD54). Treatment with a B2R antagonist did not affect the disease evolution in this model. In contrast, when both BK receptors are blocked, the aggravation of inflammation by B1R blockade is neutralized and there is no difference from the disease-untreated model. Our findings suggest that B1R and B2R signaling show physiologic antagonism. B1R signaling suggests involvement in down-regulation of leukocyte activation, transmigration, and homing. Further studies are needed to evaluate the B1 receptor agonist's role in this model.
Collapse
Affiliation(s)
- I M Sainz
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
34
|
Eric J, Bkaily G, Bkaily GB, Volkov L, Gabra BH, Sirois P. Des-Arg9-bradykinin increases intracellular Ca2+ in bronchoalveolar eosinophils from ovalbumin-sensitized and -challenged mice. Eur J Pharmacol 2003; 475:129-37. [PMID: 12954369 DOI: 10.1016/s0014-2999(03)02108-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of the selective bradykinin B1 receptor agonist, des-Arg9-bradykinin and the bradykinin B2 receptor agonist, bradykinin were studied on the intracellular free Ca2+ concentration ([Ca2+]i) in murine bronchoalveolar lavage cells from control and ovalbumin-sensitized mice using fura-2 microfluorimetry. The bronchoalveolar lavage cells of control mice, which were predominantly alveolar macrophages, showed an increase in [Ca2+]i in response to bradykinin (1 microM) but not to des-Arg9-bradykinin (1 microM), indicating the presence of functional bradykinin B2 receptors and the absence of B1 receptors. Such elevation in [Ca2+]i induced by bradykinin was totally inhibited by the selective bradykinin B2 receptor antagonist, D-Arg0-Hyp3-Thi5-D-Tic7-Oic8-bradykinin (HOE-140; 10 microM). In contrast, bronchoalveolar lavage cells from ovalbumin-sensitized and -challenged mice significantly responded to both bradykinin and des-Arg9-bradykinin, indicating the presence of both functional bradykinin B1 and B2 receptors. Eosinophils exhibited higher response to des-Arg9-bradykinin (1 microM; 485% increase in [Ca2+]i) compared to bradykinin (1 microM; 163% increase in [Ca2+]i). This des-Arg9-bradykinin-induced [Ca2+]i increase was markedly inhibited by the selective bradykinin B1 receptor antagonist, Ac-Lys-[D-betaNal7, Ile8]des-Arg9-bradykinin (R-715; 10 microM). Des-Arg9-bradykinin neither modified the basal [Ca2+]i in lymphocytes nor in mononuclear cells from ovalbumin-sensitized and challenged mice, while bradykinin produced a [Ca2+]i increase in both cell types. Our results further support the implication of the inducible bradykinin B1 receptors in airway inflammatory response in ovalbumin-sensitized and challenged mice.
Collapse
Affiliation(s)
- Jadranka Eric
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, PQ, J1H 5N4, Sherbrooke, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Gabra BH, Sirois P. Beneficial effect of chronic treatment with the selective bradykinin B1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides 2003; 24:1131-9. [PMID: 14612183 DOI: 10.1016/j.peptides.2003.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinins are important mediators of cardiovascular homeostasis, inflammation and nociception. Bradykinin (BK) B(1) receptors (BKB1-R) are over-expressed in pathological conditions including diabetes, and were reported to play a role in hyperglycemia, renal abnormalities, and altered vascular permeability associated with type 1 diabetes. Recent studies from our laboratory demonstrated that BKB1-R are implicated in streptozotocin (STZ)-diabetes-mediated hyperalgesia, since acute administration of the selective BKB1-R antagonists significantly and dose-dependently inhibited such hyperalgesic activity. In the present study, we examined the effect of chronic treatment of STZ-diabetic mice with the selective BKB1-R agonist desArg9bradykinin (DBK) and two specific antagonists R-715 and R-954, on diabetic hyperalgesia. Diabetes was induced in male CD-1 mice by injecting a single high dose of STZ (200mg/kg, i.p.) and nociception was assessed using the hot plate, plantar stimulation, tail immersion and tail flick tests. Drugs were injected i.p. twice daily for 7 days, starting 4 days after STZ. We showed that chronically administered R-715 (400 micrograms/kg) and R-954 (200 micrograms/kg), significantly attenuated the hyperalgesic effect developed in STZ-diabetic mice as measured by the four thermal nociceptive tests. Further, chronic treatment with DBK (400 micrograms/kg) produced a marked potentiation of the hyperalgesic activity, an effect that was reversed by both R-715 and R-954. The results from this chronic study confirm a pivotal role of the BKB1-R in the development of STZ-diabetic hyperalgesia and suggest a novel approach to the treatment of this short-term diabetic complication using BKB1-R antagonists.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
| | | |
Collapse
|