1
|
Pysz PM, Hoskins JK, Zou M, Stenken JA. 3D Printed Customizable Microsampling Devices for Neuroscience Applications. ACS Chem Neurosci 2023; 14:3278-3287. [PMID: 37646856 DOI: 10.1021/acschemneuro.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Multifunctional devices that incorporate chemical or physical measurements combined with ways to manipulate brain tissue via drug delivery, electrical stimulation, or light for optogenetics are desired by neuroscientists. The next generation in vivo brain devices will likely utilize the extensive flexibility and rapid processing of 3D printing. This Perspective demonstrates how close we are to this reality for advanced neuroscience measurements. 3D printing provides the opportunity to improve microsampling-based devices in ways that have not been previously available. Not only can 3D printing be used for actual device creation, but it can also allow printing of peripheral objects necessary to assemble functional devices. The most probable 3D printing set up for microsampling devices with appropriate nm to μm feature size will likely require 2-photon polymerization-based printers. This Perspective describes the advantages and challenges for 3D printing of microsampling devices as an initial step to meet the next generation device needs of neuroscientists.
Collapse
Affiliation(s)
- Patrick M Pysz
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julia K Hoskins
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie A Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
3
|
Chae U, Shin H, Choi N, Ji MJ, Park HM, Lee SH, Woo J, Cho Y, Kim K, Yang S, Nam MH, Yu HY, Cho IJ. Bimodal neural probe for highly co-localized chemical and electrical monitoring of neural activities in vivo. Biosens Bioelectron 2021; 191:113473. [PMID: 34237704 DOI: 10.1016/j.bios.2021.113473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/31/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Investigation of the chemical and electrical signals of cells in vivo is critical for studying functional connectivity and brain diseases. Most previous studies have observed either the electrical signals or the chemical signals of cells because recording electrical signals and neurochemicals are done by fundamentally different methods. Herein, we present a bimodal MEMS neural probe that is monolithically integrated with an array of microelectrodes for recording electrical activity, microfluidic channels for sampling extracellular fluid, and a microfluidic interface chip for multiple drug delivery and sample isolation from the localized region at the cellular level. In this work, we successfully demonstrated the functionality of our probe by monitoring and modulating bimodal (electrical and chemical) neural activities through the delivery of chemicals in a co-localized brain region in vivo. We expect our bimodal probe to provide opportunities for a variety of in-depth studies of brain functions as well as for the investigation of neural circuits related to brain diseases.
Collapse
Affiliation(s)
- Uikyu Chae
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Lee
- Department of Medical Records and Health Information Management College of Nursing and Health, Kongju National University, Gongju-si, Chungcheongnam-do, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kanghwan Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seulkee Yang
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min-Ho Nam
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun-Yong Yu
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Le Prieult F, Barini E, Laplanche L, Schlegel K, Mezler M. Collecting antibodies and large molecule biomarkers in mouse interstitial brain fluid: a comparison of microdialysis and cerebral open flow microperfusion. MAbs 2021; 13:1918819. [PMID: 33993834 PMCID: PMC8128180 DOI: 10.1080/19420862.2021.1918819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The determination of concentrations of large therapeutic molecules, like monoclonal antibodies (mAbs), in the interstitial brain fluid (ISF) is one of the cornerstones for the translation from preclinical species to humans of treatments for neurodegenerative diseases. Microdialysis (MD) and cerebral open flow microperfusion (cOFM) are the only currently available methods for extracting ISF, and their use and characterization for the collection of large molecules in rodents have barely started. For the first time, we compared both methods at a technical and performance level for measuring ISF concentrations of a non-target-binding mAb, trastuzumab, in awake and freely moving mice. Without correction of the data for recovery, concentrations of samples are over 10-fold higher through cOFM compared to MD. The overall similar pharmacokinetic profile and ISF exposure between MD (corrected for recovery) and cOFM indicate an underestimation of the absolute concentrations calculated with in vitro recovery. In vivo recovery (zero-flow rate method) revealed an increased extraction of trastuzumab at low flow rates and a 6-fold higher absolute concentration at steady state than initially calculated with the in vitro recovery. Technical optimizations have significantly increased the performance of both systems, resulting in the possibility of sampling up to 12 mice simultaneously. Moreover, strict aseptic conditions have played an important role in improving data quality. The standardization of these complex methods makes the unraveling of ISF concentrations attainable for various diseases and modalities, starting in this study with mAbs, but extending further in the future to RNA therapeutics, antibody-drug conjugates, and even cell therapies.
Collapse
Affiliation(s)
- Florie Le Prieult
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Erica Barini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Loic Laplanche
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Schlegel
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Mario Mezler
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| |
Collapse
|
5
|
Fan B, Rusinek CA, Thompson CH, Setien M, Guo Y, Rechenberg R, Gong Y, Weber AJ, Becker MF, Purcell E, Li W. Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. MICROSYSTEMS & NANOENGINEERING 2020; 6:42. [PMID: 32685185 PMCID: PMC7355183 DOI: 10.1038/s41378-020-0155-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 05/02/2023]
Abstract
Diamond possesses many favorable properties for biochemical sensors, including biocompatibility, chemical inertness, resistance to biofouling, an extremely wide potential window, and low double-layer capacitance. The hardness of diamond, however, has hindered its applications in neural implants due to the mechanical property mismatch between diamond and soft nervous tissues. Here, we present a flexible, diamond-based microelectrode probe consisting of multichannel boron-doped polycrystalline diamond (BDD) microelectrodes on a soft Parylene C substrate. We developed and optimized a wafer-scale fabrication approach that allows the use of the growth side of the BDD thin film as the sensing surface. Compared to the nucleation surface, the BDD growth side exhibited a rougher morphology, a higher sp 3 content, a wider water potential window, and a lower background current. The dopamine (DA) sensing capability of the BDD growth surface electrodes was validated in a 1.0 mM DA solution, which shows better sensitivity and stability than the BDD nucleation surface electrodes. The results of these comparative studies suggest that using the BDD growth surface for making implantable microelectrodes has significant advantages in terms of the sensitivity, selectivity, and stability of a neural implant. Furthermore, we validated the functionality of the BDD growth side electrodes for neural recordings both in vitro and in vivo. The biocompatibility of the microcrystalline diamond film was also assessed in vitro using rat cortical neuron cultures.
Collapse
Affiliation(s)
- Bin Fan
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI USA
| | - Cory A. Rusinek
- Fraunhofer USA Center for Coatings and Diamond Technologies, East Lansing, MI USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI USA
| | - Monica Setien
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI USA
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI USA
| | - Robert Rechenberg
- Fraunhofer USA Center for Coatings and Diamond Technologies, East Lansing, MI USA
| | - Yan Gong
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI USA
| | - Arthur J. Weber
- Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Michael F. Becker
- Fraunhofer USA Center for Coatings and Diamond Technologies, East Lansing, MI USA
| | - Erin Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI USA
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI USA
| |
Collapse
|
6
|
Feng S, Shirani E, Inglis DW. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. BIOSENSORS 2019; 9:E80. [PMID: 31226857 PMCID: PMC6627903 DOI: 10.3390/bios9020080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The chemical, temporal, and spatial resolution of chemical signals that are sampled and transported with continuous flow is limited because of Taylor dispersion. Droplets have been used to solve this problem by digitizing chemical signals into discrete segments that can be transported for a long distance or a long time without loss of chemical, temporal or spatial precision. In this review, we describe Taylor dispersion, sampling theory, and Laplace pressure, and give examples of sampling probes that have used droplets to sample or/and transport fluid from a continuous medium, such as cell culture or nerve tissue, for external analysis. The examples are categorized, as follows: (1) Aqueous-phase sampling with downstream droplet formation; (2) preformed droplets for sampling; and (3) droplets formed near the analyte source. Finally, strategies for downstream sample recovery for conventional analysis are described.
Collapse
Affiliation(s)
- Shilun Feng
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| | - Elham Shirani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
7
|
Zaelzer C, Gizowski C, Salmon CK, Murai KK, Bourque CW. Detection of activity-dependent vasopressin release from neuronal dendrites and axon terminals using sniffer cells. J Neurophysiol 2018; 120:1386-1396. [PMID: 29975164 DOI: 10.1152/jn.00467.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Our understanding of neuropeptide function within neural networks would be improved by methods allowing dynamic detection of peptide release in living tissue. We examined the usefulness of sniffer cells as biosensors to detect endogenous vasopressin (VP) release in rat hypothalamic slices and from isolated neurohypophyses. Human embryonic kidney cells were transfected to express the human V1a VP receptor (V1aR) and the genetically encoded calcium indicator GCaMP6m. The V1aR couples to Gq11, thus VP binding to this receptor causes an increase in intracellular [Ca2+] that can be detected by a rise in GCaMP6 fluorescence. Dose-response analysis showed that VP sniffer cells report ambient VP levels >10 pM (EC50 = 2.6 nM), and this effect could be inhibited by the V1aR antagonist SR 49059. When placed over a coverslip coated with sniffer cells, electrical stimulation of the neurohypophysis provoked a reversible, reproducible, and dose-dependent increase in VP release using as few as 60 pulses delivered at 3 Hz. Suspended sniffer cells gently plated over a slice adhered to the preparation and allowed visualization of VP release in discrete regions. Electrical stimulation of VP neurons in the suprachiasmatic nucleus caused significant local release as well as VP secretion in distant target sites. Finally, action potentials evoked in a single magnocellular neurosecretory cell in the supraoptic nucleus provoked significant VP release from the somatodendritic compartment of the neuron. These results indicate that sniffer cells can be used for the study of VP secretion from various compartments of neurons in living tissue. NEW & NOTEWORTHY The specific functional roles of neuropeptides in neuronal networks are poorly understood due to the absence of methods allowing their real-time detection in living tissue. Here, we show that cultured "sniffer cells" can be engineered to detect endogenous release of vasopressin as an increase in fluorescence.
Collapse
Affiliation(s)
- Cristian Zaelzer
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre , Montréal, Québec , Canada
| | - Claire Gizowski
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre , Montréal, Québec , Canada
| | - Christopher K Salmon
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre , Montréal, Québec , Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre , Montréal, Québec , Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre , Montréal, Québec , Canada
| |
Collapse
|
8
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
9
|
Cheng Q, Wang H, Wu Y, Zhao S, Kong X, Chen Y, Jiang J. Highly selective enzymatic-free electrochemical sensor for dopamine detection based on the self-assemblied film of a sandwich mixed (phthalocyaninato) (porphyrinato) europium derivative. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s108842461750081x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An efficient enzymatic-free electrochemical sensor is firstly developed based on the self-assemblied film of a sandwich mixed (phthalocyaninato) (porphyrinato) europium(III) double-decker complex, Eu(Pc)[T(OH)PP], [Pc = phthalocyaninate, T(OH)PP = 5,10,15,tris (4-tert-butylphenyl)-20-(4-hydroxyphenyl)porphyrinate] prepared by using a solution-processing QLS method. The Eu(Pc)[T(OH)PP]semiconducting active layer on an ITO working electrode leads to a good sensing property for the detection of dopamine with an excellent selectivity, due to the high Eu(Pc)[T(OH)PP] molecular ordering/packing in the QLS film and more favorable interaction between the Eu(Pc)[T(OH)PP] and DA molecules. The amperometric responses are linearly proportional to the concentration of dopamine in the range of 8–100 [Formula: see text]M, with a low detection limit of 4.8 [Formula: see text]M and good sensitivity, indicating the great potential of electroactive tetrapyrrole rare earth sandwich type complexes in the field of nonenzymatic electrochemical sensors.
Collapse
Affiliation(s)
- Qianqian Cheng
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Haoyuan Wang
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanling Wu
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuai Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Xia Kong
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanli Chen
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianzhuang Jiang
- School of Science, China University of Petroleum (East China), Qingdao 266580, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Roychoudhury A, Basu S, Jha SK. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens Bioelectron 2016; 84:72-81. [DOI: 10.1016/j.bios.2015.11.061] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
|
11
|
Burrell MH, Atcherley CW, Heien ML, Lipski J. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 2015; 6:1802-12. [PMID: 26322962 DOI: 10.1021/acschemneuro.5b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tonic dopamine (DA) levels influence the activity of dopaminergic neurons and the dynamics of fast dopaminergic transmission. Although carbon fiber microelectrodes and fast-scan cyclic voltammetry (FSCV) have been extensively used to quantify stimulus-induced release and uptake of DA in vivo and in vitro, this technique relies on background subtraction and thus cannot provide information about absolute extracellular concentrations. It is also generally not suitable for prolonged (>90 s) recordings due to drift of the background current. A recently reported, modified FSCV approach called fast-scan controlled-adsorption voltammetry (FSCAV) has been used to assess tonic DA levels in solution and in the anesthetized mouse brain. Here we describe a novel extension of FSCAV to investigate pharmacologically induced, slowly occurring changes in tonic (background) extracellular DA concentration, and phasic (stimulated) DA release in brain slices. FSCAV was used to measure adsorption dynamics and changes in DA concentration (for up to 1.5 h, sampling interval 30 s, detection threshold < 10 nM) evoked by drugs affecting DA release and uptake (amphetamine, l-DOPA, pargyline, cocaine, Ro4-1284) in submerged striatal slices obtained from rats. We also show that combined FSCAV-FSCV recordings can be used for concurrent study of stimulated release and changes in tonic DA concentration. Our results demonstrate that FSCAV can be effectively used in brain slices to measure prolonged changes in extracellular level of endogenous DA expressed as absolute values, complementing studies conducted in vivo with microdialysis.
Collapse
Affiliation(s)
- Mark H. Burrell
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher W. Atcherley
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Janusz Lipski
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Su CK, Tseng PJ, Lin MH, Chiu HT, del Vall A, Huang YF, Sun YC. Online open-tubular fractionation scheme coupled with push–pull perfusion sampling for profiling extravasation of gold nanoparticles in a mouse tumor model. J Chromatogr A 2015; 1402:1-7. [DOI: 10.1016/j.chroma.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/20/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023]
|
13
|
Ou Y, Wu J, Sandberg M, Weber SG. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures. Anal Bioanal Chem 2014; 406:6455-68. [PMID: 25168111 DOI: 10.1007/s00216-014-8067-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023]
Abstract
This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push-pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push-pull perfusion can distinguish ectoenzyme activity with a ~100 μm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | | | |
Collapse
|
14
|
Fan Y, Lee CY, Rubakhin SS, Sweedler JV. Stimulation and release from neurons via a dual capillary collection device interfaced to mass spectrometry. Analyst 2014; 138:6337-46. [PMID: 24040641 DOI: 10.1039/c3an01010d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptides are cell to cell signaling molecules that modulate a wide range of physiological processes. Neuropeptide release has been studied in sample sizes ranging from single cells and neuronal clusters, to defined brain nuclei and large brain regions. We have developed and optimized cell stimulation and collection approaches for the efficient measurement of neuropeptide release from neuronal samples using a dual capillary system. The defining feature is a capillary that contains octadecyl-modified silica nanoparticles on its inner wall to capture and extract releasates. This collection capillary is inserted into another capillary used to deliver solutions that chemically stimulate the cells, with solution flowing up the inner capillary to facilitate peptide collection. The efficiency of peptide collection was evaluated using six peptide standards mixed in physiological saline. The extracted peptides eluted from these capillaries were characterized via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with low femtomole detection limits. Using the capillary collection system in small custom-fabricated culturing chambers, individual cultured neurons and neuronal clusters from the model animal Aplysia californica were stimulated with distinct neuronal secretagogues and the releasates were collected and characterized using MALDI-TOF MS.
Collapse
Affiliation(s)
- Yi Fan
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
15
|
Birngruber T, Ghosh A, Hochmeister S, Asslaber M, Kroath T, Pieber TR, Sinner F. Long-term implanted cOFM probe causes minimal tissue reaction in the brain. PLoS One 2014; 9:e90221. [PMID: 24621608 PMCID: PMC3951198 DOI: 10.1371/journal.pone.0090221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe.
Collapse
Affiliation(s)
- Thomas Birngruber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Arijit Ghosh
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Sonja Hochmeister
- Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Martin Asslaber
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Kroath
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Thomas R. Pieber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Frank Sinner
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
16
|
In vitro studies of carbon fiber microbiosensor for dopamine neurotransmitter supported by copper-graphene oxide composite. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Birngruber T, Ghosh A, Perez-Yarza V, Kroath T, Ratzer M, Pieber TR, Sinner F. Cerebral open flow microperfusion: A newin vivotechnique for continuous measurement of substance transport across the intact blood-brain barrier. Clin Exp Pharmacol Physiol 2013; 40:864-71. [DOI: 10.1111/1440-1681.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Birngruber
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
| | - Arijit Ghosh
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| | - Veronica Perez-Yarza
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| | - Thomas Kroath
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
| | - Maria Ratzer
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
| | - Thomas R Pieber
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| | - Frank Sinner
- Joanneum Research GmbH; HEALTH-Institute for Biomedicine and Health Sciences; Graz Austria
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Medical University of Graz; Graz Austria
| |
Collapse
|
18
|
Wyckhuys T, Verhaeghe J, Wyffels L, Langlois X, Schmidt M, Stroobants S, Staelens S. N-acetylcysteine- and MK-801-induced changes in glutamate levels do not affect in vivo binding of metabotropic glutamate 5 receptor radioligand 11C-ABP688 in rat brain. J Nucl Med 2013; 54:1954-61. [PMID: 24050937 DOI: 10.2967/jnumed.113.121608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Abnormal glutamate transmission is involved in various neurologic disorders, such as epilepsy, schizophrenia, and Parkinson disease. At present, no imaging techniques are capable of measuring acute fluctuations in endogenous glutamate levels in vivo. We evaluated the potential of (11)C-ABP688, a PET ligand that binds to an allosteric site of the metabotropic glutamate 5 receptor, in rats by using small-animal PET and β-microprobes after pharmacologic challenges with N-acetylcysteine (NAc) and MK-801. Both compounds are known to induce increases in endogenous glutamate levels. METHODS Three experiments with (11)C-ABP688 were performed to validate our study setup: first, metabolite analyses during workup (n = 3) and after a selected treatment (n = 3); second, a test-retest (n = 12) small-animal PET experiment (1 h scan; 27.75 MBq of (11)C-ABP688 administered intravenously; <3 nmol/kg); and third, a small-animal PET and β-microprobe cold blocking study (n = 6/condition) with unlabeled ABP688. After this experimental validation, rats were pretreated with either NAc (intravenous infusion of 50 mg/kg/h) or MK-801 (0.16 mg/kg; given intraperitoneally); this step was followed by small-animal PET with (11)C-ABP688 (n = 12) or β-microprobe measurements (n = 10/condition) of (11)C-ABP688. Time-activity curves were extracted, and the nondisplaceable binding potential (BPND) was calculated by use of the simplified reference tissue model with the cerebellum as a reference region. RESULTS (11)C-ABP688 BPND measurements were highly reproducible (test-retest), and both small-animal PET and β-microprobes were able to discriminate changes in (11)C-ABP688 binding (cold blocking). The average small-animal PET BPND measurements in the test experiment for the caudate putamen, frontal cortex, cerebral cortex, hippocampus, and thalamus were 2.58, 1.40, 1.60, 1.86, and 1.09, respectively. However, no significant differences in BPND measurements were observed with small-animal PET in the test and retest conditions on the one hand and the NAc and MK-801 conditions on the other hand for any of these regions. When β-microprobes were used, the average BPND in the caudate putamen was 0.94, and no significant changes in the test and MK-801 conditions were observed. CONCLUSION Pharmacologic challenges with NAc and MK-801 did not affect the (11)C-ABP688 BPND in the rat brain. These data suggest that the in vivo affinity of (11)C-ABP688 for binding to an allosteric site of the metabotropic glutamate 5 receptor is not modulated by changes in glutamate levels and that (11)C-ABP688 is not capable of measuring acute fluctuations in endogenous levels of glutamate in vivo in the rat brain.
Collapse
Affiliation(s)
- Tine Wyckhuys
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
Huang H, Gao Y, Shi F, Wang G, Shah SM, Su X. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer–enzyme hybrid system. Analyst 2012; 137:1481-6. [DOI: 10.1039/c2an16143e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Slaney TR, Nie J, Hershey ND, Thwar PK, Linderman J, Burns MA, Kennedy RT. Push-pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring. Anal Chem 2011; 83:5207-13. [PMID: 21604670 DOI: 10.1021/ac2003938] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-flow push-pull perfusion is a sampling method that yields better spatial resolution than competitive methods like microdialysis. Because of the low flow rates used (50 nL/min), it is challenging to use this technique at high temporal resolution which requires methods of collecting, manipulating, and analyzing nanoliter samples. High temporal resolution also requires control of Taylor dispersion during sampling. To meet these challenges, push-pull perfusion was coupled with segmented flow to achieve in vivo sampling at 7 s temporal resolution at 50 nL/min flow rates. By further miniaturizing the probe inlet, sampling with 200 ms resolution at 30 nL/min (pull only) was demonstrated in vitro. Using this method, L-glutamate was monitored in the striatum of anesthetized rats. Up to 500 samples of 6 nL each were collected at 7 s intervals, segmented by an immiscible oil and stored in a capillary tube. The samples were assayed offline for L-glutamate at a rate of 15 samples/min by pumping them into a reagent addition tee fabricated from Teflon where reagents were added for a fluorescent enzyme assay. Fluorescence of the resulting plugs was monitored downstream. Microinjection of 70 mM potassium in physiological buffered saline evoked l-glutamate concentration transients that had an average maxima of 4.5 ± 1.1 μM (n = 6 animals, 3-4 injections each) and rise times of 22 ± 2 s. These results demonstrate that low-flow push-pull perfusion with segmented flow can be used for high temporal resolution chemical monitoring and in complex biological environments.
Collapse
Affiliation(s)
- Thomas R Slaney
- University of Michigan, Department of Chemistry, 930 N. University Avenue, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Njagi J, Chernov MM, Leiter JC, Andreescu S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal Chem 2010; 82:989-96. [PMID: 20055419 DOI: 10.1021/ac9022605] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We developed a novel implantable enzyme-based carbon fiber biosensor for in vivo monitoring of dopamine. The biosensor is fabricated using tyrosinase immobilized in a biocompatible matrix consisting of a biopolymer, chitosan and ceria-based metal oxides, deposited onto the surface of a carbon fiber microelectrode with a diameter of approximately 100 microm. Tyrosinase catalyzes the conversion of dopamine to o-dopaquinone, and the reduction of o-dopaquinone, which requires a low potential difference, was detected electrochemically. The role of each component in the sensing layer was systematically investigated in relation to the analytical performance of the biosensor. In its optimal configuration, the biosensor demonstrated a detection limit of 1 nM dopamine, a linear range of 5 orders of magnitude between 10 nM and 220 microM, a sensitivity of 14.2 nA x microM(-1), and good selectivity against ascorbic acid, uric acid, serotonin, norepinephrine, epinephrine, and 3,4-dihydroxy-l-phenylalanine (L-DOPA). The system provided continuous, real time monitoring of electrically stimulated dopamine release in the brain of an anesthetized rat. Levels of dopamine up to 1.69 microM were measured. This new implantable dopamine biosensor provides an alternative to fast scan cyclic voltammetry for in vivo monitoring of dopamine.
Collapse
Affiliation(s)
- John Njagi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, USA
| | | | | | | |
Collapse
|
22
|
Su CK, Sun YC, Tzeng SF, Yang CS, Wang CY, Yang MH. In vivo monitoring of the transfer kinetics of trace elements in animal brains with hyphenated inductively coupled plasma mass spectrometry techniques. MASS SPECTROMETRY REVIEWS 2010; 29:392-424. [PMID: 19437493 DOI: 10.1002/mas.20240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The roles of metal ions to sustain normal function and to cause dysfunction of neurological systems have been confirmed by various studies. However, because of the lack of adequate analytical method to monitor the transfer kinetics of metal ions in the brain of a living animal, research on the physiopathological roles of metal ions in the CNS remains in its early stages and more analytical efforts are still needed. To explicitly model the possible links between metal ions and physiopathological alterations, it is essential to develop in vivo monitoring techniques that can bridge the gap between metalloneurochemistry and neurophysiopathology. Although inductively coupled plasma mass spectrometry (ICP-MS) is a very powerful technique for multiple trace element analyses, when dealing with chemically complex microdialysis samples, the detection capability is largely limited by instrumental sensitivity, selectivity, and contamination that arise from the experimental procedure. As a result, in recent years several high efficient and clean on-line sample pretreatment systems have been developed and combined with microdialysis and ICP-MS for the continuous and in vivo determination of the concentration-time profiles of metal ions in the extracellular space of rat brain. This article reviews the research relevant to the development of analytical techniques for the in vivo determination of dynamic variation in the concentration levels of metal ions in a living animal.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Liang J, Ping XJ, Li YJ, Ma YY, Wu LZ, Han JS, Cui CL. Morphine-induced conditioned place preference in rats is inhibited by electroacupuncture at 2 Hz: Role of enkephalin in the nucleus accumbens. Neuropharmacology 2010; 58:233-40. [DOI: 10.1016/j.neuropharm.2009.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 11/30/2022]
|
24
|
Schultz KN, Kennedy RT. Time-resolved microdialysis for in vivo neurochemical measurements and other applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:627-661. [PMID: 20636092 DOI: 10.1146/annurev.anchem.1.031207.113047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Monitoring changes in chemical concentrations over time in complex environments is typically performed using sensors and spectroscopic techniques. Another approach is to couple sampling methods, such as microdialysis, with chromatographic, electrophoretic, or enzymatic assays. Recent advances of such coupling have enabled improvements in temporal resolution, multianalyte capability, and automation. In a sampling and analysis method, the temporal resolution is set by the mass sensitivity of the analytical method, analysis time, and zone dispersion during sampling. Coupling methods with high speed and mass sensitivity to microdialysis sampling help to reduce some of these contributions to yield methods with temporal resolution of seconds. These advances have been primarily used in monitoring neurotransmitters in vivo. This review covers the problems associated with chemical monitoring in the brain, recent advances in using microdialysis for time-resolved in vivo measurements, sample applications, and other potential applications of the technology such as determining reaction kinetics and process monitoring.
Collapse
Affiliation(s)
- Kristin N Schultz
- Department of Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
25
|
Frost SI, Keen KL, Levine JE, Terasawa E. Microdialysis methods for in vivo neuropeptide measurement in the stalk-median eminence in the Rhesus monkey. J Neurosci Methods 2007; 168:26-34. [PMID: 17936911 DOI: 10.1016/j.jneumeth.2007.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/31/2007] [Accepted: 09/02/2007] [Indexed: 11/29/2022]
Abstract
Direct measurement of neuropeptides in the hypothalamus is essential for neuroendocrine studies. However, the small quantities of peptides released at their neuroterminals and relatively large molecular sizes make these measurements difficult. We have evaluated microdialysis probes with two membrane materials (polycarbonate and polyarylethersulfone, both: molecular cut off 20,000 Da) in vitro, and adapted the method for in vivo hypothalamic sample collection in non-human primates. The results of in vitro experiments showed that the polyarylethersulfone membrane yielded a several fold higher recovery rate than the polycarbonate membrane. In in vivo experiments, a guide cannula with stylet was inserted into the medial basal hypothalamus through the permanently implanted cranial pedestal under light sedation. The stylet was replaced by a microdialysis probe and artificial CSF was infused. The results indicated that the neuropeptide luteinizing hormone-releasing hormone was readily measurable in dialysates collected at 10 min-intervals, and responded to neuroactive substances applied through the probe. The animals were fully conscious except for the initial hour of sampling. After the experiment the animal was returned to the home cage, and later similarly examined during several additional experiments. Therefore, the microdialysis method described here is a highly useful tool for neuroendocrine studies in non-human primates.
Collapse
Affiliation(s)
- Samuel I Frost
- Wisconsin National Primate Research Center, Northwestern University, Evanston, IL 60208-7180, USA
| | | | | | | |
Collapse
|
26
|
Tannenbaum PL, Schultz-Darken NJ, Saltzman W, Terasawa E, Woller MJ, Abbott DH. Gonadotrophin-releasing hormone (GnRH) release in marmosets I: in vivo measurement in ovary-intact and ovariectomised females. J Neuroendocrinol 2007; 19:342-53. [PMID: 17425609 DOI: 10.1111/j.1365-2826.2007.01534.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vivo hypothalamic gonadotrophin-releasing hormone (GnRH) release was characterised for the first time in a New World primate. A nonterminal and repeatable push-pull perfusion (PPP) technique reliably measured GnRH in conscious common marmoset monkeys. Nineteen adult females (n = 8 ovary-intact in the mid-follicular phase; n = 11 ovariectomised) were fitted with long-term cranial pedestals, and a push-pull cannula was temporarily placed in unique locations within the pituitary stalk-median eminence (S-ME) 2 days prior to each PPP session. Marmosets underwent 1-3 PPPs (32 PPPs in total) lasting up to 12 h. Plasma cortisol levels were not elevated in these habituated marmosets during PPP, and PPP did not disrupt ovulatory cyclicity or subsequent fertility in ovary-intact females. GnRH displayed an organised pattern of release, with pulses occurring every 50.0 +/- 2.6 min and lasting 25.4 +/- 1.3 min. GnRH pulse frequency was consistent within individual marmosets across multiple PPPs. GnRH mean concentration, baseline concentration and pulse amplitude varied predictably with anatomical location of the cannula tip within the S-ME. GnRH release increased characteristically in response to a norepinephrine infusion and decreased abruptly during the evening transition to lights off. Ovary-intact (mid-follicular phase) and ovariectomised marmosets did not differ significantly on any parameter of GnRH release. Overall, these results indicate that PPP can be used to reliably assess in vivo GnRH release in marmosets and will be a useful tool for future studies of reproductive neuroendocrinology in this small primate.
Collapse
Affiliation(s)
- P L Tannenbaum
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
27
|
Cellar NA, Burns ST, Meiners JC, Chen H, Kennedy RT. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal Chem 2007; 77:7067-73. [PMID: 16255611 DOI: 10.1021/ac0510033] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multilayer soft lithography was used to prepare a poly(dimethylsiloxane) microfluidic chip that allows for in vivo sampling of amino acid neurotransmitters by low-flow push-pull perfusion. The chip incorporates a pneumatically actuated peristaltic pump to deliver artificial cerebrospinal fluid to a push-pull perfusion probe, pull sample from the probe, perform on-line derivatization with o-phthaldialdehyde, and push derivatized amino acids into the flow-gated injector of a high-speed capillary electrophoresis-laser-induced fluorescence instrument. Peristalsis was achieved by sequential actuation of six, 200 microm wide by 15 microm high control valves that drove fluid through three fluidic channels of equal dimensions. Electropherograms with 100,000 theoretical plates were acquired at approximately 20-s intervals. Relative standard deviations of peak heights were 4% in vitro, and detection limits for the excitatory amino acids were approximately 60 nM. For in vivo measurements, push-pull probes were implanted in the striatum of anesthetized rats and amino acid concentrations were monitored while sampling at 50 nL/min. o-Phosphorylethanolamine, glutamate, aspartate, taurine, glutamine, serine, and glycine were all detected with stable peak heights observed for over 4 h with relative standard deviations of 10% in vivo. Basal concentrations of glutamate were 1.9 +/- 0.6 microM (n = 4) in good agreement with similar methods. Monitoring of dynamic changes of neurotransmitters resulting from 10-min applications of 70 mM K(+) through the push channel of the pump was demonstrated. The combined system allows temporal resolution for multianalyte monitoring of approximately 45 s with spatial resolution 65-fold better than conventional microdialysis probe with 4-mm length. The system demonstrates the feasibility of sampling from a complex microenvironment with transfer to a microfluidic device for on-line analysis.
Collapse
Affiliation(s)
- Nicholas A Cellar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
28
|
Shao XM, Feldman JL. Efficient measurement of endogenous neurotransmitters in small localized regions of central nervous systems in vitro with HPLC. J Neurosci Methods 2006; 160:256-63. [PMID: 17092561 PMCID: PMC2441908 DOI: 10.1016/j.jneumeth.2006.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/30/2022]
Abstract
High performance liquid chromatography (HPLC) is widely used to determine neurotransmitter concentrations in the central nervous system (CNS). Finding the optimal methods to sample from CNS tissue poses a challenge for neuroscientists. Here, we describe a method that allows assay of neurotransmitters (or other chemicals) in small regions (down to 180mum in diameter) in in vitro preparations concurrently with electrophysiological recordings. The efficiency for measuring small amounts of chemicals is enhanced by a sample collecting pipette with filter paper at the tip that makes close contact with the target region in CNS tissue. With a wire plunger in the calibrated pipette controlled by a microsyringe pump, there is virtually no dead volume. Samples in a volume of 10muL (taken, e.g., at 2muL/min over 5min) can be injected into a HPLC machine with microbore columns. We demonstrate the effectiveness of this method by measuring acetylcholine (ACh) in the ventral horn and its surrounding areas of the spinal cord in en bloc brainstem-spinal cord preparations. In control conditions, endogenous ACh levels in these regions were detectable. Application of neostigmine (an inhibitor of acetylcholinesterases (AChEs)) increased ACh concentrations, and at the same time, induced tonic/seizure-like activity in efferent motor output recorded from cervical ventral nerve roots. Higher ACh concentrations in the ventral horn were differentiated from nearby regions: the lateral and midline aspects of the ventral spinal cord. In addition, ACh in the preBötzinger Complex (preBötC) and the hypoglossal nucleus in medullary slice preparations can also be measured. Our results indicate that the method proposed in this study can be used to measure neurotransmitters in small and localized CNS regions. Correlation between changes in neurotransmitters in target regions and the neuronal activities can be revealed in vitro. Our data also suggest that there is endogenous ACh release in spinal ventral motor columns at fourth cervical (C4) level that regulates the respiratory-related motor activity.
Collapse
Affiliation(s)
- Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
29
|
Fillenz M. In vivo neurochemical monitoring and the study of behaviour. Neurosci Biobehav Rev 2005; 29:949-62. [PMID: 15963566 DOI: 10.1016/j.neubiorev.2005.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 12/31/2022]
Abstract
In vivo neurochemical monitoring techniques measure changes in the extracellular compartment of selected brain regions. These changes reflect the release of chemical messengers and intermediates of brain energy metabolism resulting from the activity of neuronal assemblies. The two principal techniques used in neurochemical monitoring are microdialysis and voltammetry. The presence of glutamate in the extracellular compartment and its pharmacological characteristics suggest that it is released from astrocytes and acts as neuromodulator rather than a neurotransmitter. The changes in extracellular noradrenaline and dopamine reflect their role in the control of behaviour. Changes in glucose and oxygen, the latter a measure of local cerebral blood flow, reflect synaptic processing in the underlying neuronal networks rather than a measure of efferent output from the brain region. In vivo neurochemical monitoring provides information about the intermediate processing that intervenes between the application of the stimulus and the resulting behaviour but does not reflect the final efferent output that leads to behaviour.
Collapse
Affiliation(s)
- Marianne Fillenz
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
30
|
Kasuya E, Sakumoto R, Saito T, Ishikawa H, Sengoku H, Nemoto T, Hodate K. A novel stereotaxic approach to the hypothalamus for the use of push-pull perfusion cannula in Holstein calves. J Neurosci Methods 2005; 141:115-24. [PMID: 15585295 DOI: 10.1016/j.jneumeth.2004.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 05/25/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
To determine secretory patterns of growth hormone-releasing hormone (GHRH) and somatostatin (SS) and their roles in the regulation of growth hormone (GH) secretion, a method for collecting hypothalamic perfusates, a push-pull perfusion method was developed in calves. With the use of the stereotaxic apparatus for cattle, a cannula was implanted into the hypothalamus of four male calves based upon cerebral ventriculography. Push-pull perfusates were collected at 10 min intervals for 6h and GHRH and SS concentrations in perfusates and plasma GH concentration were determined by EIAs and RIA, respectively. A cannula was implanted into the hypothalamus based on the image of the third ventricle and maintained for 1 month. GHRH and SS showed pulsatile secretion and the pulses for GHRH and SS were irregular in conscious animals. Neither GHRH nor SS secretion had a clear relationship with GH secretion. In the present study, we thus (1) established a stereotaxic technique for approaching the hypothalamus using cerebral ventriculography for calves, and (2) demonstrated that GHRH and SS secretion were pulsatile but not closely related to GH profile in conscious calves. The technique is useful for the study of the functions of the hypothalamus in the control of pituitary hormones in cattle.
Collapse
Affiliation(s)
- Etsuko Kasuya
- Physiology and Genetic Regulation Department, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba 305-0901, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Torner L, Maloumby R, Nava G, Aranda J, Clapp C, Neumann ID. In vivo release and gene upregulation of brain prolactin in response to physiological stimuli. Eur J Neurosci 2004; 19:1601-8. [PMID: 15066156 DOI: 10.1111/j.1460-9568.2004.03264.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although prolactin (PRL) actions and expression in the brain have been shown, dynamic changes in its intracerebral release and gene expression have still not been demonstrated. Using push-pull perfusion, the in vivo release of PRL was monitored within the paraventricular nucleus (PVN) and medial preoptic area (MPOA) of virgin female, lactating and male rats in response to various stimuli. Perfusion with a depolarizing medium (56 mm K(+)) increased local release of PRL within both the PVN (P < 0.05) and MPOA (P < 0.05) of urethane-anaesthetized rats, indicating release from excitable neuronal structures. The PRL in perfusates was verified by radioimmunoassay, Nb2 cell bioassays and western blot. Systemic osmotic stimulation (3 m NaCl i.p., 8 mL/kg b.w.) raised PRL concentration in plasma (P < 0.01) but not within the PVN, suggesting independent release from the pituitary and in distinct brain regions. Immobilization for 30 min increased PRL release within the PVN (P < 0.05) and the MPOA (P < 0.01) of virgin female and male (P < 0.05 each) rats and increased hypothalamic PRL mRNA expression (P = 0.008) after 30 and 90 min as revealed by real-time polymerase chain reaction. This indicates a stress-induced activation of both PRL release from and synthesis in hypothalamic neurons. Additionally, PRL was significantly released within, but not outside, the PVN (P < 0.01) and the MPOA (P < 0.05) of lactating rats during suckling and this was accompanied by a significant increase of PRL mRNA (P < 0.05) in the hypothalamus 60 min after suckling. This is the first demonstration of stimulus-induced, locally restricted release and gene upregulation of PRL within the brain, emphasizing the involvement of this 'novel' neuropeptide in various brain functions.
Collapse
Affiliation(s)
- Luz Torner
- University of Regensburg, Institute of Zoology, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Ginovart N, Sun W, Wilson AA, Houle S, Kapur S. Quantitative validation of an intracerebral ?-sensitive microprobe system to determine in vivo drug-induced receptor occupancy using [11C]raclopride in rats. Synapse 2004; 52:89-99. [PMID: 15034915 DOI: 10.1002/syn.20010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we evaluated the potential of using a new beta-sensitive microprobe system for in vivo quantification of [11C]raclopride binding and for in vivo determination of drug-induced receptor occupancy in the rat striatum. To validate this system, an ex vivo tissue dissection method was used to corroborate in vivo beta-microprobe measurements. Our data showed that the beta-microprobe-derived [11C]raclopride binding kinetics in striatum could be quantified using a tissue compartmental model with a cerebellar reference region. Haloperidol (0.001-0.1 mg/kg; i.v.) induced a dose-dependent decrease in [11C]raclopride binding in striatum as measured using the beta-microprobe with an ED50 value of 0.013 mg/kg. Highly significant relationships (P < 0.0001) were observed, within the same animals, between in vivo and ex vivo measures of haloperidol-induced D2-receptor occupancy (r = 0.98) as well as between in vivo and ex vivo measures of [11C]raclopride binding potentials (r = 0.99). Results from pretreatment and displacement studies with unlabeled raclopride and amphetamine conformed to the effect of these drugs as observed in humans using [11C]raclopride and PET and allowed estimation of the in vivo k(off) value of raclopride to 0.025 +/- 0.004 min(-1). However, allowing the system to stabilize before measurements and shielding the photomultiplier tubes were critical for obtaining these consistent results. This study demonstrates that the beta-microprobe provides reliable measurements of [11C]raclopride binding kinetics in rodents, allows for quantitative in vivo measurements of antipsychotic drug action in brain, and represents a valid and cost-effective alternative to positron emission tomography imaging in small animals.
Collapse
Affiliation(s)
- Nathalie Ginovart
- PET Centre, Centre for Addiction and Mental Health and University of Toronto, Toronto, Ontario M5T 1R8, Canada.
| | | | | | | | | |
Collapse
|
33
|
Lisi TL, Westlund KN, Sluka KA. Comparison of microdialysis and push-pull perfusion for retrieval of serotonin and norepinephrine in the spinal cord dorsal horn. J Neurosci Methods 2003; 126:187-94. [PMID: 12814843 DOI: 10.1016/s0165-0270(03)00093-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Both push-pull and microdialysis methods are utilized to measure norepinephrine and serotonin in the dorsal horn of the spinal cord. This experiment was designed to determine which technique is better for measurement of norepinephrine and serotonin in the spinal cord and also to determine if the samples are best collected with or without perchloric acid. Sample stability and an assay validation for precision, limit of quantification, and limit of detection were also performed. Push-pull or microdialysis catheters were placed transversely through the dorsal horn and the catheter was perfused with artificial cerebrospinal fluid. Noxious pinch (20 s/min for 10 min) was used to evoke a change in the concentration of catecholamines. Samples were collected before, during and after pinch. No basal concentrations of epinephrine and serotonin were found with microdialysis. Although basal concentrations of norepinephrine were measured by microdialysis, there was no change in response to noxious pinch. The push-pull technique coupled with collection of samples without perchloric acid showed that significant increases in serotonin and norepinephrine are measurable in response to noxious pinch. In contrast, when samples were collected with perchloric acid present there was no change in serotonin or norepinephrine in response to pinch. The stability of catecholamines is greatly affected by perchloric acid such that there is a near complete loss of ability to detect serotonin and norepinephrine by 24 h in samples collected by push-pull. In contrast, samples collected without perchloric acid showed only a 20% reduction in concentration by 24 h. Even without perchloric acid, by 1 wk there was a 50% or greater loss in the concentrations of norepinephrine in push-pull samples. Thus, to measure changes in catecholamines in the dorsal horn, push-pull collected without perchloric provides measurable, reliable and valid results if analyzed by high performance liquid chromatography within 24 h.
Collapse
Affiliation(s)
- T L Lisi
- Physical Therapy and Rehabilitation Science Graduate Program, Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
34
|
Abstract
Methods to follow in vivo chemical composition provide information regarding the processes of intercellular communication. There is a need for methods that provide chemical information from small volumes of the central nervous system (CNS) without sacrificing neurochemical recovery. One method that offers potential for providing such information is push-pull perfusion. In this study a low flow push-pull perfusion system is introduced that provides high (70-80%) in vitro recoveries. A concentric probe design is used with a 27-gauge stainless steel outer cannula for saline infusion and an inner fused silica capillary for fluid withdrawal. Flow rates of 10-50 nl/min were reliably generated and were well matched in vitro. Sampling was performed in the striatum of an anesthetized rat generating a 0.5 microl sample every 12 min. Capillary electrophoresis was used to determine glutamate levels in each sample; the basal level was found to be 1.97+/-0.70 microM. The method described was also demonstrated to deliver L-trans-pyrrolidine-2,4-dicarboxylic acid through the perfusion solution while sampling. Post-sampling histological analysis demonstrates little tissue disturbance to the sampled region. These data provide evidence that low flow push-pull method is a viable alternative for studying neurochemical signaling in the CNS.
Collapse
Affiliation(s)
- Sumith Kottegoda
- Department of Chemistry, University of Illinios Chicago, 845 W Taylor ST, M/C 111, Chicago, IL 60607-7056, USA
| | | | | |
Collapse
|
35
|
Abstract
The gas NO is a messenger that modulates neuronal function. The use of NO donors and NO synthase inhibitors as pharmacological tools revealed that this free radical is probably implicated in the regulation of excitability and firing, in long-term potentiation and long-term depression, as well as in memory processes. Moreover, NO modulates neurotransmitter release. In vivo and in vitro studies have shown that, in all brain structures investigated, endogenous NO modulates the release of several neurotransmitters, such as acetylcholine, catecholamines, excitatory and inhibitory amino acids, serotonin, histamine, and adenosine. In most cases, enhanced NO level in the tissue increases the release of neurotransmitters, although decreasing effects have also been observed. Cyclic 3'-5' guanosine monophosphate and glutamate mediate the modulation of transmitter release by NO. Recent observations suggest that the release of some transmitters is dually influenced by NO. Thus, besides modulation by presynaptically located auto- and heteroreceptors, NO released from nitrergic neurons seems to play a universal role in modulating the release of transmitters in the brain.
Collapse
Affiliation(s)
- H Prast
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Str. 1, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
36
|
Feenstra MG. Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. PROGRESS IN BRAIN RESEARCH 2001; 126:133-63. [PMID: 11105645 DOI: 10.1016/s0079-6123(00)26012-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M G Feenstra
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Kalsbeek A, Barassin S, van Heerikhuize JJ, van der Vliet J, Buijs RM. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle. J Biol Rhythms 2000; 15:57-66. [PMID: 10677017 DOI: 10.1177/074873040001500107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well established that in the absence of photic cues, the circadian rhythms of rodents can be readily phase-shifted and entrained by various nonphotic stimuli that induce increased levels of locomotor activity (i.e., benzodiazepines, a new running wheel, and limited food access). In the presence of an entraining light-dark (LD) cycle, however, the entraining effects of nonphotic stimuli on (parts of) the circadian oscillator are far less clear. Yet, an interesting finding is that appropriately timed exercise after a phase shift can accelerate the entrainment of circadian rhythms to the new LD cycle in both rodents and humans. The present study investigated whether restricted daytime feeding (RF) (1) induces a phase shift of the melatonin rhythm under entrained LD conditions and (2) accelerates resynchronization of circadian rhythms after an 8-h phase advance. Animals were adapted to RF with 2-h food access at the projected time of the new dark onset. Before and at several time points after the 8-h phase advance, nocturnal melatonin profiles were measured in RF animals and animals on ad libitum feeding (AL). In LD-entrained conditions, RF did not cause any significant changes in the nocturnal melatonin profile as compared to AL. Unexpectedly, after the 8-h phase advance, RF animals resynchronized more slowly to the new LD cycle than AL animals. These results indicate that prior entrainment to a nonphotic stimulus such as RF may "phase lock" the circadian oscillator and in that way hinder resynchronization after a phase shift.
Collapse
Affiliation(s)
- A Kalsbeek
- Netherlands Institute for Brain Research, Amsterdam
| | | | | | | | | |
Collapse
|
38
|
Lowe G. Slice blotting: a method for detecting the release of immunoreactive substances from living brain tissue. J Neurosci Methods 1999; 90:117-27. [PMID: 10513595 DOI: 10.1016/s0165-0270(99)00074-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The intricate circuitry of the CNS forms highly organized structures containing a multitude of transmitters, modulators and other chemical signals expressed in specific patterns and pathways. Anatomical studies with immunohistochemical and molecular biological techniques have mapped in fine detail the distribution of these substances in fixed tissue. However, the release of neuroactive substances is often under precise spatial control and is regulated by numerous physiological factors. Understanding such complex intercellular signaling systems will require the development of new spatially resolved methods for detecting secretion in living systems. A simple but powerful method is described here for visualizing and quantifying the time-integrated spatial pattern of release of chemical signals from living neural tissue. The method combines the in vitro brain slice preparation with immunostaining protocols used for antigen detection on Western blots. It has widespread potential application in biological research because it can map in vitro patterns of release of cytokines, growth factors, chemoattractants, chemorepellents, morphogens, enzymes, and other paracrine signals in spatially organized systems, subject to a variety of stimuli and conditions.
Collapse
Affiliation(s)
- G Lowe
- Monell Chemical Senses Center, Philadelphia, PA 19014-3308, USA.
| |
Collapse
|
39
|
Myers RD, Robinson DE. Tetrahydropapaveroline injected in the ventral tegmental area shifts dopamine efflux differentially in the shell and core of nucleus accumbens in high-ethanol-preferring (HEP) rats. Alcohol 1999; 18:83-90. [PMID: 10386670 DOI: 10.1016/s0741-8329(99)00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Since the 1970s tetrahydropapaveroline (THP) and other tetrahydroisoquinoline alkaloids have been implicated in the etiology of alcoholism. When injected into the cerebral ventricle or at specific sites in the mesolimbic system such as the ventral tegmental area (VTA), THP evokes spontaneous and intense intake of alcohol in the nondrinking animal. Further, THP evokes the extracellular efflux of dopamine in the nucleus accumbens (NAC), which comprises, in part, the postulated alcohol drinking "circuit" of neurons. The purpose of this study was to characterize the action of a THP reactive structure, the VTA, on the activity of dopamine and its metabolism in the NAC. In the anesthetized high-ethanol-preferring (HEP) rat, artificial CSF was perfused for 10 min at a rate of 10 microl per min specifically in either the core or shell of the NAC. A microbore push-pull cannula system was selected over a microdialysis probe because of its superior recovery of neurotransmitters and tip exposure of less than 1.0 mm. After a series of 5-min perfusions, a single microinjection of 5.0 microg/microl of THP was made in the ipsilateral VTA while the NAC was perfused simultaneously. Sequential samples of the NAC perfusate were assayed by an HPLC coulometric system to quantitate the concentrations of dopamine and its metabolites, DOPAC and HVA, as well as the 5-HT metabolite, 5-HIAA. The results showed that THP injected in the VTA caused a significant increase by 94 +/- 23% in the efflux of dopamine from the core of the NAC. Conversely, the THP injected identically in the VTA suppressed the efflux of dopamine within the shell of the NAC by 51 +/- 10%. The levels of DOPAC, HVA and 5-HIAA within the core and shell of the NAC generally paralleled the increase and decrease in efflux, respectively, of dopamine. CSF control injections in the VTA as well as injections outside of the VTA failed to alter dopamine or metabolite activity in the NAC. These results demonstrate that the presence of THP in the VTA alters directly the function of the pathway of mesolimbic neurons generally and the dopaminergic system specifically. That such a perturbation could account for the induction of alcohol preference is proposed in relation to a reinforcing mechanism involving opioidergic and dopaminergic elements.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology and Center for Alcohol and Drug Abuse Studies, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|