1
|
Stathori G, Hatziagapiou K, Mastorakos G, Vlahos NF, Charmandari E, Valsamakis G. Endocrine-Disrupting Chemicals, Hypothalamic Inflammation and Reproductive Outcomes: A Review of the Literature. Int J Mol Sci 2024; 25:11344. [PMID: 39518897 PMCID: PMC11545284 DOI: 10.3390/ijms252111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental and industrial agents that interfere with hormonal functions. EDC exposure is linked to various endocrine diseases, especially in reproduction, although the mechanisms remain unclear and effects vary among individuals. Neuroinflammation, particularly hypothalamic inflammation, is an emerging research area with implications for endocrine-related diseases like obesity. The hypothalamus plays a crucial role in regulating reproduction, and its inflammation can adversely affect reproductive health. EDCs can cross the blood-brain barrier, potentially causing hypothalamic inflammation and disrupting the reproductive axis. This review examines the existing literature on EDC-mediated hypothalamic inflammation. Our findings suggest that exposure to 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), polychlorinated biphenyl (PCB), tributyltin (TBT), phthalates, bisphenol A (BPA), and chlorpyrifos (CPF) in animals is linked to hypothalamic inflammation, specifically affecting the hypothalamic centers of the gonadotropic axis. To our knowledge, this is the first comprehensive review on this topic, indicating hypothalamic inflammation as a possible mediator between EDC exposure and reproductive dysfunction. Further human studies are needed to develop effective prevention and treatment strategies against EDC exposure.
Collapse
Affiliation(s)
- Galateia Stathori
- Center for Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.S.); (E.C.)
| | - Kyriaki Hatziagapiou
- Division of Endocrinology, Metabolism and Diabetes, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Department of Physiotherapy, School of Health and Care Sciences, University of West Attica, 12243 Egaleo, Greece
| | - George Mastorakos
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.M.); (N.F.V.)
| | - Nikolaos F. Vlahos
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.M.); (N.F.V.)
| | - Evangelia Charmandari
- Center for Prevention and Management of Overweight and Obesity, Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.S.); (E.C.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, ‘Aretaieion’ University Hospital, 11528 Athens, Greece; (G.M.); (N.F.V.)
| |
Collapse
|
2
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
3
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
4
|
De Sousa SMC, Manavis J, Feng J, Wang P, Schreiber AW, Scott HS, Torpy DJ. A putative role for the aryl hydrocarbon receptor (AHR) gene in a patient with cyclical Cushing's disease. BMC Endocr Disord 2020; 20:18. [PMID: 31996203 PMCID: PMC6988286 DOI: 10.1186/s12902-020-0495-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Apart from PRKAR1A mutations in a subset of cyclical Cushing's syndrome due to primary pigmented nodular adrenocortical disease, the molecular basis of cyclical Cushing's syndrome has not been investigated. We speculated that cyclical Cushing's syndrome may be due to mutations in the clock genes that govern circadian rhythms, including the hypothalamic-pituitary-adrenal axis. CASE PRESENTATION A 47-year-old man presented with mass effects from a sellar lesion. He was ultimately diagnosed with cyclical Cushing's disease due to a giant corticotrophinoma. We performed whole exome sequencing of germline and tumour DNA, SNP array of tumour DNA and tumour immunohistochemistry in order to detect variants in candidate circadian/pituitary-associated genes. We identified a rare germline missense variant in the aryl hydrocarbon receptor (AHR) gene, which has previously been indirectly linked to pituitary tumorigenesis and clock system disruption. The AHR variant was found in a highly conserved site involved in phosphorylation. It was predicted to be damaging by multiple in silico tools and AHR tumour immunohistochemistry demonstrated loss of the normal nuclear staining pattern, suggestive of an inactivating mutation. We also found a novel, damaging germline missense variant in the retinoid X receptor gamma (RXRG) gene, multiple somatic chromosomal gains (including AHR), and a somatic mutational signature consistent with oncogenesis that may have acted synergistically with the AHR variant. CONCLUSIONS This is the first report of an AHR variant with predicted pathogenicity in the pituitary adenoma setting. Our preliminary data suggest that the highly conserved AHR gene may represent a link between pituitary tumorigenesis, the hypothalamic-pituitary-adrenal axis and the clock system. Further research may indicate a role for the gene in the development of cyclical Cushing's disease.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia.
- School of Medicine, University of Adelaide, Adelaide, Australia.
| | - Jim Manavis
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Jinghua Feng
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
| | - Andreas W Schreiber
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
6
|
Abstract
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.
Collapse
Affiliation(s)
- R Formosa
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - J Borg
- Department of Applied Biomedical ScienceFaculty of Health Sciences, University of Malta, Msida, Malta
| | - J Vassallo
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of MedicineNeuroendocrine Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
7
|
Formosa R, Vassallo J. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland. Discov Oncol 2017. [PMID: 28634910 DOI: 10.1007/s12672-017-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta. .,Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
8
|
Tapella L, Sesta A, Cassarino MF, Zunino V, Catalano MG, Pecori Giraldi F. Benzene and 2-ethyl-phthalate induce proliferation in normal rat pituitary cells. Pituitary 2017; 20:311-318. [PMID: 27853917 PMCID: PMC5427103 DOI: 10.1007/s11102-016-0777-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Endocrine disruptors are known to modulate a variety of endocrine functions and increase the risk for neoplasia. Epidemiological data reported increased prevalence of pituitary tumors in high industrial areas while genotyping studies showed that mutations in the aryl hydrocarbon receptor (AhR) interacting protein (AIP)-chaperone to the dioxin ligand AhR-gene are linked to predisposition to pituitary tumor development. Aim of the present study was to establish whether endocrine pollutants can induce cell proliferation in normal rat pituitary cells. METHODS Pituitary primary cultures were incubated with 250, 650 and 1250 pM benzene or 2-ethyl-phthalate for up to 96 h and viability, energy content and cell proliferation assessed. Expression of pituitary tumor transforming gene (PTTG), cyclin D1 (Ccnd1), AhR and AIP was quantified by RT-qPCR. RESULTS Incubation with benzene or 2-ethyl-phthalate increased viability and energy content in pituitary cells. The endocrine disruptors also increased cell proliferation as well as Ccnd1 and PTTG expression. Increased AhR and AIP expression was observed after incubation with the two pollutants. CONCLUSIONS Our findings indicate that benzene and 2-ethyl-phthalate activate AhR/AIP expression and stimulate proliferation in normal rat pituitary cells. This study is the first demonstration that pollutants can induce normal pituitary cells to proliferate and provides a link between epidemiological and genomic findings in pituitary tumors.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Antonella Sesta
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Maria Francesca Cassarino
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Valentina Zunino
- Unit of Oncological Endocrinology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Francesca Pecori Giraldi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Neuroendocrinology Research Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy.
| |
Collapse
|
9
|
Benner S, Endo T, Kakeyama M, Tohyama C. Environmental insults in early life and submissiveness later in life in mouse models. Front Neurosci 2015; 9:91. [PMID: 25873851 PMCID: PMC4379894 DOI: 10.3389/fnins.2015.00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/04/2015] [Indexed: 01/12/2023] Open
Abstract
Dominant and subordinate dispositions are not only determined genetically but also nurtured by environmental stimuli during neuroendocrine development. However, the relationship between early life environment and dominance behavior remains elusive. Using the IntelliCage-based competition task for group-housed mice, we have previously described two cases in which environmental insults during the developmental period altered the outcome of dominance behavior later in life. First, mice that were repeatedly isolated from their mother and their littermates (early deprivation; ED), and second, mice perinatally exposed to an environmental pollutant, dioxin, both exhibited subordinate phenotypes, defined by decreased occupancy of limited resource sites under highly competitive circumstances. Similar alterations found in the cortex and limbic area of these two models are suggestive of the presence of neural systems shared across generalized dominance behavior.
Collapse
Affiliation(s)
- Seico Benner
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Department of Neurobiology and Behavior, Nagasaki University Nagasaki, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| |
Collapse
|
10
|
Kim S, Sundaramoorthi H, Jagadeeswaran P. Dioxin-induced thrombocyte aggregation in zebrafish. Blood Cells Mol Dis 2014; 54:116-22. [PMID: 25129381 DOI: 10.1016/j.bcmd.2014.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.
Collapse
Affiliation(s)
- Seongcheol Kim
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Hemalatha Sundaramoorthi
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, 1510 Chestnut, Denton TX 76203, USA.
| |
Collapse
|
11
|
Yi SW, Hong JS, Ohrr H, Yi JJ. Agent Orange exposure and disease prevalence in Korean Vietnam veterans: the Korean veterans health study. ENVIRONMENTAL RESEARCH 2014; 133:56-65. [PMID: 24906069 DOI: 10.1016/j.envres.2014.04.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
Between 1961 and 1971, military herbicides were used by the United States and allied forces for military purposes. Agent Orange, the most-used herbicide, was a mixture of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid, and contained an impurity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Many Korean Vietnam veterans were exposed to Agent Orange during the Vietnam War. The aim of this study was to evaluate the association between Agent Orange exposure and the prevalence of diseases of the endocrine, nervous, circulatory, respiratory, and digestive systems. The Agent Orange exposure was assessed by a geographic information system-based model. A total of 111,726 Korean Vietnam veterans were analyzed for prevalence using the Korea National Health Insurance claims data from January 2000 to September 2005. After adjusting for covariates, the high exposure group had modestly elevated odds ratios (ORs) for endocrine diseases combined and neurologic diseases combined. The adjusted ORs were significantly higher in the high exposure group than in the low exposure group for hypothyroidism (OR=1.13), autoimmune thyroiditis (OR=1.93), diabetes mellitus (OR=1.04), other endocrine gland disorders including pituitary gland disorders (OR=1.43), amyloidosis (OR=3.02), systemic atrophies affecting the nervous system including spinal muscular atrophy (OR=1.27), Alzheimer disease (OR=1.64), peripheral polyneuropathies (OR=1.09), angina pectoris (OR=1.04), stroke (OR=1.09), chronic obstructive pulmonary diseases (COPD) including chronic bronchitis (OR=1.05) and bronchiectasis (OR=1.16), asthma (OR=1.04), peptic ulcer (OR=1.03), and liver cirrhosis (OR=1.08). In conclusion, Agent Orange exposure increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland; various neurologic diseases; COPD; and liver cirrhosis. Overall, this study suggests that Agent Orange/2,4-D/TCDD exposure several decades earlier may increase morbidity from various diseases, some of which have rarely been explored in previous epidemiologic studies.
Collapse
Affiliation(s)
- Sang-Wook Yi
- Department of Preventive Medicine and Public Health, Kwandong University College of Medicine, Beomil-ro 579-beongil 24, Naegok-dong, Gangneung, Gangwon-do 210-701, Republic of Korea.
| | - Jae-Seok Hong
- Research Department, Health Insurance Review & Assessment Service, 22 Banpo-daero, 11F, Seocho-gu, Seoul 137-927, Republic of Korea.
| | - Heechoul Ohrr
- Department of Preventive Medicine and Public Health, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Repulbic of Korea.
| | - Jee-Jeon Yi
- Institute for Occupational and Environmental Health, Kwandong University College of Medicine, Beomil-ro 579-beongil 24, Naegok-dong, Gangneung, Gangwon-do 210-701, Republic of Korea.
| |
Collapse
|
12
|
Liu C, Wang Q, Liang K, Liu J, Zhou B, Zhang X, Liu H, Giesy JP, Yu H. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:147-57. [PMID: 23306105 DOI: 10.1016/j.aquatox.2012.12.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/22/2012] [Accepted: 12/11/2012] [Indexed: 05/04/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC(50)) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in the six receptor-centered gene networks in zebrafish embryos/larvae, and TDCPP seemed to have higher potency in changing the mRNA expression of these genes.
Collapse
Affiliation(s)
- Chunsheng Liu
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment, Nanjing University, Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Palermo FA, Cocci P, Nabissi M, Polzonetti-Magni A, Mosconi G. Cortisol response to waterborne 4-nonylphenol exposure leads to increased brain POMC and HSP70 mRNA expressions and reduced total antioxidant capacity in juvenile sole (Solea solea). Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:135-9. [PMID: 22918179 DOI: 10.1016/j.cbpc.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/21/2022]
Abstract
4-Nonylphenol (4-NP) is a breakdown product of alkylphenolpolyethoxylates and can be found in almost all environmental water matrices. 4-NP can act as environmental stressor on fish, typically causing modulation of hypothalamic-pituitary-interrenal axis (HPI). To examine the effects of the xenoestrogen 4-NP or 17β-estradiol (E2) on induction of stress response mechanisms by evaluating the levels of proopiomelanocortin (POMC) mRNA, heat shock protein 70 (HSP70) mRNA and plasma cortisol, we exposed juvenile sole (Solea solea), under static condition for 7 day, to either 10(-6) or 10(-8) M 4-NP, or 10(-8) M E2. In addition, plasma cortisol titers were correlated to the total antioxidant capacity (TAC), one of the oxidative stress parameters. 4-NP treatments resulted in high levels of POMC mRNA, HSP70 mRNA and plasma cortisol. On the contrary, E2 basically down-regulated POMC expression. Moreover, elevated cortisol levels in fish exposed to the highest dose of 4-NP were accompanied by low TAC. These results suggest that 4-NP modulates the sole HPI axis inducing a cortisol-mediated stress response. Specifically, we suggest that 4-NP affects brain POMC mRNA levels via non-estrogen receptor (ER)-mediated mechanism further supporting the ability of 4-NP to target multiple receptor systems.
Collapse
Affiliation(s)
- Francesco Alessandro Palermo
- Centro Universitario di Ricerca per lo Sviluppo e la Gestione delle Risorse dell'Ambiente Marino e Costiero (UNICRAM), Università degli Studi di Camerino, Lungomare A. Scipioni 6, I-63074 San Benedetto del Tronto (AP), Italy.
| | | | | | | | | |
Collapse
|
14
|
Long M, Krüger T, Ghisari M, Bonefeld-Jørgensen EC. Effects of selected phytoestrogens and their mixtures on the function of the thyroid hormone and the aryl hydrocarbon receptor. Nutr Cancer 2012; 64:1008-19. [PMID: 22966911 DOI: 10.1080/01635581.2012.711419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phytoestrogens (PEs) are natural plant components, which can induce biologic responses in vertebrates by mimicking or blocking the actions of natural hormones or influencing the hormone production in the body. This study investigated the effect of different mixtures composed of food-relevant PEs on the thyroid hormone (TH) system assessing the proliferation of the 3,3',5-triiodi-L-thryonine (T3) dependent rat pituitary GH3 cells using the T-screen assay, and the effect on the aryl hydrocarbon receptor (AhR) transactivation using an AhR-luciferase reporter gene assay. Most tested PEs and their mixtures showed effect on both the TH and AhR system. Single isoflavonoid metabolites and their mixture and coumestrol induced GH3 cell growth and AhR transactivity dose-dependently. Isoflavonoid metabolites elicited an additive effect on the T3-dependent GH3 cell growth, and a synergistic effect on the AhR transactivity. In conclusion, nutrition-relevant PEs, alone and in mixture may possess endocrine-disrupting potential by interfering with TH and AhR functions, which need to be considered when assessing the effects on human health.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
15
|
Moran TB, Brannick KE, Raetzman LT. Aryl-hydrocarbon receptor activity modulates prolactin expression in the pituitary. Toxicol Appl Pharmacol 2012; 265:139-45. [PMID: 22975028 DOI: 10.1016/j.taap.2012.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/22/2022]
Abstract
Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary.
Collapse
Affiliation(s)
- Tyler B Moran
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
16
|
Magre S, Rebourcet D, Ishaq M, Wargnier R, Debard C, Meugnier E, Vidal H, Cohen-Tannoudji J, Le Magueresse-Battistoni B. Gender differences in transcriptional signature of developing rat testes and ovaries following embryonic exposure to 2,3,7,8-TCDD. PLoS One 2012; 7:e40306. [PMID: 22808131 PMCID: PMC3392256 DOI: 10.1371/journal.pone.0040306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Dioxins are persistent organic pollutants interfering with endocrine systems and causing reproductive and developmental disorders. The objective of our project was to determine the impact of an in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on reproductive function of male and female offspring in the rat with a special emphasis on the immature period. We used a low dose of TCDD (unique exposure by oral gavage of 200 ng/kg at 15.5 days of gestation) in order to mirror a response to an environmental dose of TCDD not altering fertility of the progeny. We choose a global gene expression approach using Affymetrix microarray analysis, and testes of 5 days and ovaries of 14 days of age. Less than 1% of the expressed genes in gonads were altered following embryonic TCDD exposure; specifically, 113 genes in ovaries and 56 in testes with 7 genes common to both sex gonads. It included the repressor of the aryl hydrocarbon receptor (Ahrr), the chemokines Ccl5 and Cxcl4 previously shown to be regulated by dioxin in testis, Pgds2/Hpgds and 3 others uncharacterized. To validate and extend the microarray data we realized real-time PCR on gonads at various developmental periods of interest (from 3 to 25 days for ovaries, from 5 to the adult age for testes). Overall, our results evidenced that both sex gonads responded differently to TCDD exposure. For example, we observed induction of the canonic battery of TCDD-induced genes coding enzymes of the detoxifying machinery in ovaries aged of 3–14 days of age (except Cyp1a1 induced at 3–10 days) but not in testes of 5 days (except Ahrr). We also illustrated that inflammatory pathway is one pathway activated by TCDD in gonads. Finally, we identified several new genes targeted by TCDD including Fgf13 in testis and one gene, Ptgds2/Hpgds regulated in the two sex gonads.
Collapse
Affiliation(s)
- Solange Magre
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Diane Rebourcet
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Muhammad Ishaq
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Richard Wargnier
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Cyrille Debard
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Emmanuelle Meugnier
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Hubert Vidal
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Brigitte Le Magueresse-Battistoni
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
- * E-mail:
| |
Collapse
|
17
|
Jablonska O, Piasecka J, Ostrowska M, Sobocinska N, Wasowska B, Wasowka B, Ciereszko RE. The expression of the aryl hydrocarbon receptor in reproductive and neuroendocrine tissues during the estrous cycle in the pig. Anim Reprod Sci 2011; 126:221-8. [PMID: 21715111 DOI: 10.1016/j.anireprosci.2011.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/30/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been recognized as a mediator of xenobiotic-induced toxicity. In addition, it was demonstrated that the AhR is able to influence the regulation of reproductive processes in females. The aim of this study was to examine AhR mRNA (real-time PCR) and protein (Western-blot) expression in ovarian follicles and stroma, corpora lutea (CL), oviducts, endometrium, myometrium as well as in medial basal hypothalami (MBH), and anterior (AP) and posterior (PP) pituitaries harvested during the follicular (days 17-19) and luteal (days 8-10) phase of the porcine estrous cycle. The AhR transcript and protein were found in all structures collected during both phases. AhR mRNA expression tended (p=0.06) to be higher in the CL than in follicles. The AhR protein expression in ovarian stroma was higher (p≤0.01) during the follicular than in the luteal phase. Endometrial expression of AhR mRNA was higher (p≤0.01), while AhR protein was lower (p≤0.01) during the follicular phase in comparison to the luteal phase. Within neuroendocrine tissues, AhR mRNA and protein content in hypothalamus were relatively low and did not differ (p>0.05) between phases. In contrast, higher AhR mRNA expression in AP (p≤0.001) and protein expression in PP (p≤0.01) were found during the luteal phase compared to the follicular phase. Differences in AhR expression observed in reproductive and neuroendocrine tissues during the follicular and luteal phase of the estrous cycle indicate the involvement of AhR in the regulation of reproductive function in pigs.
Collapse
Affiliation(s)
- Olga Jablonska
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, Olsztyn, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu J, Zhang CM, Coenraads PJ, Ji ZY, Chen X, Dong L, Ma XM, Han W, Tang NJ. Abnormal expression of MAPK, EGFR, CK17 and TGk in the skin lesions of chloracne patients exposed to dioxins. Toxicol Lett 2011; 201:230-4. [DOI: 10.1016/j.toxlet.2011.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/28/2010] [Accepted: 01/06/2011] [Indexed: 11/30/2022]
|
19
|
Cao J, Patisaul HB, Petersen SL. Aryl hydrocarbon receptor activation in lactotropes and gonadotropes interferes with estradiol-dependent and -independent preprolactin, glycoprotein alpha and luteinizing hormone beta gene expression. Mol Cell Endocrinol 2011; 333:151-9. [PMID: 21187122 PMCID: PMC3059512 DOI: 10.1016/j.mce.2010.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
Abstract
Arylhydrocarbon receptor (Ahr) activation by 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) interferes with female reproductive functions, but there is little information on the specific targets of TCDD in the hypothalamic-pituitary-gonadal (HPG) axis. In these studies, we found that TCDD upregulated known AhR target genes, cytochrome p450 1a1 (Cyp1a1), Cyp1a2 and Cyp1b1 in the rat pituitary gland. Moreover, 75% of pituitary lactotropes and 45% of gonadotropes contained Ahr mRNA, and most Ahr-containing cells were estrogen receptor 1 (Esr1)-positive. TCDD abrogated estradiol (E(2))-induced prolactin (Prl) expression in vivo and in vitro; conversely, E(2) blocked TCDD upregulation of luteinizing hormone beta (Lhb) and glycoprotein hormone alpha polypeptide (Cga) expression. TCDD had no effect on levels of Ahr mRNA, but upregulated Esr1 mRNA. E(2) independently repressed Ahr and Esr1 expression and blocked TCDD upregulation of Esr1. Thus, complex interactions between Ahr and Esr alter Prl and luteinizing hormone (LH) synthesis by direct actions in lactotropes and gonadotropes. These findings provide important insights into how TCDD disrupts female reproductive functions.
Collapse
Affiliation(s)
- JinYan Cao
- Molecular and Cellular Biology Graduate Program, 435 Morrill I North, University of Massachusetts Amherst, 637 North Pleasant Street, Amherst, MA 01003-9298
- Department of Biology, 127 David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Heather B. Patisaul
- Department of Biology, 127 David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Sandra L. Petersen
- Molecular and Cellular Biology Graduate Program, 435 Morrill I North, University of Massachusetts Amherst, 637 North Pleasant Street, Amherst, MA 01003-9298
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts, Amherst MA 01003
| |
Collapse
|
20
|
Lee JS, Kim EY, Nomaru K, Iwata H. Molecular and functional characterization of Aryl hydrocarbon receptor repressor from the chicken (Gallus gallus): interspecies similarities and differences. Toxicol Sci 2010; 119:319-34. [PMID: 21047992 DOI: 10.1093/toxsci/kfq336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) has been recognized as a negative feedback modulator of AHR-mediated responses in fish and mammals. However, the repressive mechanism by the AHRR has not been investigated in other animals. To understand the molecular mechanism of dioxin toxicity and the evolutionary history of the AHR signaling pathway in avian species, the present study addresses chicken AHRR (ckAHRR). The complementary DNA sequence of ckAHRR encodes an 84-kDa protein sharing 29-52% identities with other AHRRs. High levels of ckAHRR messenger RNA were recorded in the kidney and intestine of nontreated chicks. In hepatoma LMH cells, the 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) 50% effective concentration value for ckAHRR induction (0.0016nM) was the same as that for chicken cytochrome P450 1A5 (ckCYP1A5), implying a shared transcriptional regulation of ckAHRR and ckCYP1A5 by chicken AHR (ckAHR). In ckAHRR transient transfection assays, ckAHRR repressed both ckAHR1- and ckAHR2-mediated transcriptional activities. Deletion and mutation assays revealed that basic helix-loop-helix/Per-ARNT-Sim A domains of ckAHRR, particularly 217-402 amino acid residues, are indispensable for the repression, but the AHR nuclear translocator sequestration by ckAHRR and SUMOylation of ckAHRR are not involved in its repressive mechanism. Additionally, subcellular localization assay of ckAHR1-enhanced green fluorescent protein fusion protein showed that ckAHRR did not affect nuclear translocation of the ckAHR1. Furthermore, ckAHRR inhibited the TCDD- and 17β estradiol-enhanced ckCYP1A5 transcription through AHR-estrogen receptor α (ERα) cross talk. Taken together, the function of AHRR is conserved in chicken in terms of the negative regulation of AHR and ERα activities, but its functional mechanism is likely distinct from those of the mammalian and fish homologues.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Japan
| | | | | | | |
Collapse
|
21
|
Effect of β-naphthoflavone on AhR-regulated genes (CYP1A1, 1A2, 1B1, 2S1, Nrf2, and GST) and antioxidant enzymes in various brain regions of pig. Toxicology 2009; 265:69-79. [DOI: 10.1016/j.tox.2009.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 12/30/2022]
|
22
|
Moon BH, Hong CG, Kim SY, Kim HJ, Shin SK, Kang S, Lee KJ, Kim YK, Lee MS, Shin KH. A single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin that produces reduced food and water intake induces long-lasting expression of corticotropin-releasing factor, arginine vasopressin, and proopiomelanocortin in rat brain. Toxicol Appl Pharmacol 2008; 233:314-22. [DOI: 10.1016/j.taap.2008.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
|
23
|
Gauger KJ, Giera S, Sharlin DS, Bansal R, Iannacone E, Zoeller RT. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1623-30. [PMID: 18007995 PMCID: PMC2072832 DOI: 10.1289/ehp.10328] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/15/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) signaling by reducing TH levels in blood, by exerting direct effects on TH receptors (TRs), or both. OBJECTIVE Our objective was to identify individual PCBs that directly affect TH signaling by acting on the TR. METHODS We administered a mixture of six PCB congeners based on their ortho substitution pattern, including PCBs 77 and 126 (non-ortho), PCBs 105 and 118 (mono-ortho), and PCBs 138 and 153 (di-ortho), to pregnant Sprague-Dawley rats from gestational days (G) 6 to 16. This mixture, or various combinations of the components, was also evaluated in a transient transfection system using GH3 cells. RESULTS The mixture reduced serum TH levels in pregnant rats on G16 but simultaneously up-regulated the expression of malic enzyme in liver. It also functioned as a TR agonist in vitro; however, none of the individual PCB congeners comprising this mixture were active in this system. Using the aryl hydrocarbon receptor (AhR) antagonist alpha-naphthoflavone, and the cytochrome P450 (CYP)1A1 antagonist ellipticine, we show that the effect of the mixture on the thyroid hormone response element required AhR and CYP1A1. CONCLUSIONS We propose that PCB 126 induces CYP1A1 through the AhR in GH3 cells, and that CYP1A1 activates PCB 105 and/or 118 to a form a compound that acts as a TR agonist. These data suggest that some tissues may be especially vulnerable to PCBs interfering directly with TH signaling due to their capacity to express CYP1A1 in response to coplanar PCBs (or other dioxin-like molecules) if sufficient mono-ortho PCBs are present.
Collapse
Affiliation(s)
- Kelly J. Gauger
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Pioneer Valley Life Science Institute, Baystate Medical Center, Spingfield, Massachusetts, USA
| | - Stefanie Giera
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Institute of Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Tübingen, Germany
| | - David S. Sharlin
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
| | - Ruby Bansal
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | - Eric Iannacone
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Fairleigh Dickinson University, Madison, New Jersey, USA
| | - R. Thomas Zoeller
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
- Address correspondence to R.T. Zoeller, Biology Department, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003 USA. Telephone: (413) 545-2088. Fax: (413) 545-3243. E-mail:
| |
Collapse
|
24
|
Johansson C, Tofighi R, Tamm C, Goldoni M, Mutti A, Ceccatelli S. Cell death mechanisms in AtT20 pituitary cells exposed to polychlorinated biphenyls (PCB 126 and PCB 153) and methylmercury. Toxicol Lett 2006; 167:183-90. [PMID: 17049763 DOI: 10.1016/j.toxlet.2006.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/14/2006] [Accepted: 09/14/2006] [Indexed: 11/24/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent food contaminants that can have adverse effects on the endocrine and nervous systems, including the pituitary. In the present study, we have investigated cell death in the AtT20 pituitary cell line after exposure to coplanar PCB 126 and non-coplanar PCB 153. In addition, co-exposure to the PCBs and another neurotoxic food contaminant, methylmercury (MeHg), was studied to test possible interactive effects. Our results show that mainly necrosis is induced after exposure to the selected toxicants. Simultaneous exposure to moderately toxic doses of PCBs and MeHg resulted in additive or slightly synergistic effects on the induction of cell death. Furthermore, our data suggest that both PCB congeners trigger cell death in AtT20 cells via activation of calcium regulated calpains and lysosomal cathepsins, possibly through disruption of mitochondrial function and intracellular calcium signaling. However, caspase-activity appears not to be critical for PCB induced cell death in these cells. Presence of reactive oxygen species (ROS) and protective effects of pre-treatment with antioxidants were only found after MeHg exposure, suggesting that oxidative stress plays a major role in MeHg but not PCB toxicity in this experimental model.
Collapse
Affiliation(s)
- Carolina Johansson
- Division of Toxicology and Neurotoxicology, Institute of Environmental Medicine, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Haarmann-Stemmann T, Abel J. The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function. Biol Chem 2006; 387:1195-9. [PMID: 16972786 DOI: 10.1515/bc.2006.147] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The arylhydrocarbon receptor (AhR) pathway is known to be critical for cellular events, especially for those evoked by several environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Whereas the function of the AhR in TCDD toxicity is well analyzed, the importance of the recently cloned AhRR in the TCDD-stimulated AhR signaling cascade is still unclear. In mammalian tissues, the AhRR gene seems to be ubiquitously expressed and its expression is altered by various AhR ligands. Basal and induced AhRR mRNA levels were found to be highly cell-, tissue- and species-specific. An inhibitory activity of the AhRR on AhR signaling was proposed from overexpression studies. However, there are not sufficient data showing such functional activity of the AhRR in vivo. This short overview summarizes the present knowledge about the AhRR and should stimulate research in the AhRR field to elucidate its physiological function and its toxicological importance in dioxin toxicity.
Collapse
Affiliation(s)
- Thomas Haarmann-Stemmann
- Arbeitsgruppe Toxikologie, Institut für umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf gGmbH, Auf'm Hennekamp 50, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
26
|
Yoon CY, Park M, Kim BH, Park JY, Park MS, Jeong YK, Kwon H, Jung HK, Kang H, Lee YS, Lee BJ. Gene Expression profile by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in the Liver of Wild-Type (AhR+/+) and Aryl Hydrocarbon Receptor-Deficient (AhR-/-) Mice. J Vet Med Sci 2006; 68:663-8. [PMID: 16891777 DOI: 10.1292/jvms.68.663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is one of the most toxic environmental pollutants that cause various biological effects on mammals. The purpose of our study was to identify the genes involved in hepatotoxicity and hepatocarcinogenesis caused by TCDD. C57BL/6 (AhR+/+, wild type) and B6.129-AhR<tm1Bra>/J (AhR-/-, knock out) mice were injected i.p. with a single treatment of TCDD at the dose of 100 microg/kg body weight. Relative liver weight was significantly increased at 72 hr after TCDD treatment without an apparent histopathological change in AhR+/+ mice (p<0.05). TCDD treatment also significantly increased activity of serum alanine aminotransferase in AhR-/- mice (p<0.05). The liver was analyzed for gene expression profiles 72 hr later. As compared with AhR-/- mice, the expression of 51 genes (>3-fold) was changed in AhR+/+ mice; 28 genes were induced, while 23 genes were repressed. Most of the genes were associated with chemotaxis, inflammation, carcinogenesis, acute-phase response, immune responses, cell metabolism, cell proliferation, signal transduction, and tumor suppression. This study suggests that the microarray analysis of genes in the liver of AhR+/+ and AhR-/- mice may help to clarify the mechanism of AhR-mediated hepatotoxicity and hepatocarcinogenesis by TCDD.
Collapse
Affiliation(s)
- Chang Yong Yoon
- Department of Toxicology, National Institute of Toxicological Research, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bussmann UA, Bussmann LE, Barañao JL. An aryl hydrocarbon receptor agonist amplifies the mitogenic actions of estradiol in granulosa cells: evidence of involvement of the cognate receptors. Biol Reprod 2005; 74:417-26. [PMID: 16237154 DOI: 10.1095/biolreprod.105.043901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that, besides mediating toxic responses, may have a central role in ovarian physiology. Studying the actions of AHR ligands on granulosa cells function, we have found that beta-naphthoflavone amplifies the comitogenic actions of FSH and 17beta-estradiol in a dose-dependent manner. This amplification was even greater in cells that overexpress the AHR and was reversed by cotreatment with the AHR antagonist alpha-naphthoflavone, suggesting that this effect is mediated by the AHR. The estrogen receptor is likewise implicated in this phenomenon, because a pure antiestrogen abolished the described synergism. However, the more traditional inhibitory AHR-estrogen receptor interaction was observed on the estrogen response element-driven transcriptional activity. On the other hand, alpha-naphthoflavone inhibited dose-dependently the mitogenic actions of FSH and 17beta-estradiol. Beta-naphthoflavone induced the expression of Cyp1a1 and Cyp1b1 transcripts, two well-characterized AHR-inducible genes that code for hydroxylases that metabolize estradiol to catecholestrogens. Nevertheless, the positive effect of beta-naphthoflavone on proliferation was not caused by increased metabolism of estradiol to catecholestrogens, because these compounds inhibited the hormonally stimulated DNA synthesis. This latter inhibition exerted by catecholestrogens suggests that these hydroxylases would play a regulatory point in granulosa cell proliferation. Our study indicates that AHR ligands modulate the proliferation of rat granulosa cells, and demonstrates for the first time that an agonist of this receptor is able to amplify the comitogenic action of classical hormones through a mechanism that might implicate a positive cross-talk between the AHR and the estrogen receptor pathways.
Collapse
Affiliation(s)
- Ursula A Bussmann
- Instituto de Biologia y Medicina Experimental-CONICET, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
28
|
Fetissov SO, Huang P, Zhang Q, Mimura J, Fujii-Kuriyama Y, Rannug A, Hökfelt T, Ceccatelli S. Expression of hypothalamic neuropeptides after acute TCDD treatment and distribution of Ah receptor repressor. ACTA ACUST UNITED AC 2004; 119:113-24. [PMID: 15093705 DOI: 10.1016/j.regpep.2004.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 01/20/2004] [Accepted: 01/29/2004] [Indexed: 11/21/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant originating from industrial waste. At sublethal concentrations it induces anorexia and weight loss as part of the so-called wasting syndrome. To gain insight into its possible underlying mechanisms, mRNA expression of some key hypothalamic neuropeptides involved in the regulation of body weight was studied using in situ hybridization histochemistry in adult male Sprague-Dawley rats 6 days after single oral administration of TCDD (15 microg/kg) and in age-paired control rats. In TCDD-treated rats which displayed a decrease in body weight gain vs. controls, arcuate nucleus expression of neuropeptide Y (NPY), proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA was increased. In the lateral hypothalamic area, melanin-concentrating hormone (MCH) mRNA expression was also increased, while levels of CART and orexin/hypocretin mRNA were not significantly changed. Since TCDD is known to bind to the aryl hydrocarbon receptor (AhR), the distribution of the AhR repressor (AhRR), which is co-expressed with AhR in the same cells, was studied by immunohistochemistry in the mouse hypothalamus using mouse AhRR specific antiserum. AhRR immunoreactivity was present in the nuclei of neurons found in all main hypothalamic groups including NPY, CART, MCH and orexin/hypocretin neurons. Xenobiotic response elements were found in these neuropeptide genes with the exception of MCH. Thus changes in expression of orexigenic and anorexigenic neuropeptides after TCDD treatment may help to explain the occurrence of the TCDD-induced weight loss, which may be either directly or indirectly related to the effects of TCDD on neuropeptide expression.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Department of Neuroscience B3:4, Karolinska Institutet, Retzius väg. 8, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Filbrandt CR, Wu Z, Zlokovic B, Opanashuk L, Gasiewicz TA. Presence and functional activity of the aryl hydrocarbon receptor in isolated murine cerebral vascular endothelial cells and astrocytes. Neurotoxicology 2004; 25:605-16. [PMID: 15183014 DOI: 10.1016/j.neuro.2003.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 07/11/2003] [Indexed: 10/27/2022]
Abstract
Numerous functions regulated by the central nervous system (CNS) are targeted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); however, the cell specific targets and mechanisms of toxicity are unknown. Outside of the brain, the peripheral vascular endothelium has been identified as a significant cellular target of TCDD toxicity resulting in apoptosis, edema, hemorrhaging and vascular dysfunction. Possible effects of TCDD in the vascular endothelium of the CNS have not been examined. Cellular dysfunction in this endothelium may disrupt function of the blood-brain barrier (BBB), which could severely compromise neuronal homeostasis and potentiate neurotoxicity. TCDD toxicity is mediated primarily by the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor that modulates the expression of a large battery of genes. This study examined the presence and functional activity of the AhR in response to TCDD in endothelial cells and astrocytes, the two primary components of the BBB. Primary mouse cortical endothelial cells and astrocytes express the AhR, as shown by immunocytochemical and western blot analyses. AhR activity was assessed by time- and concentration-dependent analyses of CYP1A1 and CYP1B1 protein expression following TCDD treatment. Both CYP1A1 and CYP1B1 proteins were induced in endothelial cells after 4 and 8h, respectively, while only CYP1B1 protein induction was detected in astrocytes after 16h. The CYP450 protein induction was sustained for greater than 72h in both cell types. These changes in protein expression were dependent on AhR activity as indicated by the inhibition of these responses by a receptor antagonist. Together these data indicate endothelial cells and astrocytes are responsive to TCDD through the AhR-mediated pathway and therefore could be targets of toxicity.
Collapse
Affiliation(s)
- Carissa R Filbrandt
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Box EHSC, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
30
|
Korkalainen M, Tuomisto J, Pohjanvirta R. Primary structure and inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) of aryl hydrocarbon receptor repressor in a TCDD-sensitive and a TCDD-resistant rat strain. Biochem Biophys Res Commun 2004; 315:123-31. [PMID: 15013435 DOI: 10.1016/j.bbrc.2004.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Indexed: 11/17/2022]
Abstract
The aryl hydrocarbon receptor repressor (AHRR) is a negative regulator of AH receptor (AHR), which mediates most of the toxic and biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AHR has been shown to be the major reason for the exceptionally wide (ca. 1000-fold) sensitivity difference in acute toxicity of TCDD between two rat strains, sensitive Long-Evans (Turku/AB) (L-E) and resistant Han/Wistar (Kuopio) (H/W), but there is another, currently unknown contributing factor involved. In the present study, we examined AHRR structure and expression in these rat strains to find out whether AHRR could be this auxiliary factor. Molecular cloning of AHRR coding region showed that consistent with AHRR proteins in other species, the N-terminal end of rat AHRR is highly conserved, but PAS B and Q-rich domains are severely truncated or lacking. Identical structures were recorded in both strains. Next, the time-, dose-, and tissue-dependent expression of AHRR was determined using quantitative real-time RT-PCR. In liver, AHRR expression was very low in untreated rats, but it increased rapidly after TCDD exposure (100microg/kg). Testis exhibited the highest constitutive expression of AHRR, whereas kidney, spleen, and heart showed the highest induction of AHRR in response to TCDD treatment. Again, no marked differences were found between H/W and L-E rats, implying that AHRR is not the auxiliary contributing factor to the strain difference in TCDD sensitivity. However, simultaneous measurement of CYP1A1 mRNA reinforced the view that AHRR is an important determinant of tissue-specific responsiveness to TCDD.
Collapse
Affiliation(s)
- Merja Korkalainen
- National Public Health Institute, Department of Environmental Health, P.O. Box 95, FIN-70701 Kuopio, Finland.
| | | | | |
Collapse
|
31
|
Ishida T, Taketoh J, Nakatsune E, Kan-o S, Naito E, Takeda S, Mutoh J, Ishii Y, Yamada H. Curcumin Anticipates the Suppressed Body Weight Gain with 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Mice. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takumi Ishida
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Junko Taketoh
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Emi Nakatsune
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Shoko Kan-o
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Eri Naito
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Shuso Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Junpei Mutoh
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|