1
|
Geraghty RJ, Aliota MT, Bonnac LF. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021; 13:667. [PMID: 33924302 PMCID: PMC8069527 DOI: 10.3390/v13040667] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents significant human health threats due to the absence of available treatments. Vaccines represent a key answer to control these viruses. However, in the case of a public health emergency, vaccine development, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories: the family of drugs targeting the host-cell machinery essential for virus infection and replication, and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses, nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review, we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms of action.
Collapse
Affiliation(s)
- Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA;
| | - Laurent F. Bonnac
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Knecht KM, Buzovetsky O, Schneider C, Thomas D, Srikanth V, Kaderali L, Tofoleanu F, Reiss K, Ferreirós N, Geisslinger G, Batista VS, Ji X, Cinatl J, Keppler OT, Xiong Y. The structural basis for cancer drug interactions with the catalytic and allosteric sites of SAMHD1. Proc Natl Acad Sci U S A 2018; 115:E10022-E10031. [PMID: 30305425 PMCID: PMC6205433 DOI: 10.1073/pnas.1805593115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that depletes cellular dNTPs in noncycling cells to promote genome stability and to inhibit retroviral and herpes viral replication. In addition to being substrates, cellular nucleotides also allosterically regulate SAMHD1 activity. Recently, it was shown that high expression levels of SAMHD1 are also correlated with significantly worse patient responses to nucleotide analog drugs important for treating a variety of cancers, including acute myeloid leukemia (AML). In this study, we used biochemical, structural, and cellular methods to examine the interactions of various cancer drugs with SAMHD1. We found that both the catalytic and the allosteric sites of SAMHD1 are sensitive to sugar modifications of the nucleotide analogs, with the allosteric site being significantly more restrictive. We crystallized cladribine-TP, clofarabine-TP, fludarabine-TP, vidarabine-TP, cytarabine-TP, and gemcitabine-TP in the catalytic pocket of SAMHD1. We found that all of these drugs are substrates of SAMHD1 and that the efficacy of most of these drugs is affected by SAMHD1 activity. Of the nucleotide analogs tested, only cladribine-TP with a deoxyribose sugar efficiently induced the catalytically active SAMHD1 tetramer. Together, these results establish a detailed framework for understanding the substrate specificity and allosteric activation of SAMHD1 with regard to nucleotide analogs, which can be used to improve current cancer and antiviral therapies.
Collapse
Affiliation(s)
- Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Constanze Schneider
- Institute of Medical Virology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Zentrum für Arzneimittelforschung, -entwicklung, und -sicherheit, Goethe University of Frankfurt, 60590 Frankfurt, Germany
| | - Vishok Srikanth
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Florentina Tofoleanu
- Department of Chemistry, Yale University, New Haven, CT 06520
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Zentrum für Arzneimittelforschung, -entwicklung, und -sicherheit, Goethe University of Frankfurt, 60590 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Zentrum für Arzneimittelforschung, -entwicklung, und -sicherheit, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology, Frauenhofer Institute for Molecular Biology and Applied Ecology, 60590 Frankfurt, Germany
| | | | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 Jiangsu, China
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute, Department of Virology, Ludwig Maximilians University, 80336 Munich, Germany
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| |
Collapse
|
3
|
Hollenbaugh JA, Shelton J, Tao S, Amiralaei S, Liu P, Lu X, Goetze RW, Zhou L, Nettles JH, Schinazi RF, Kim B. Substrates and Inhibitors of SAMHD1. PLoS One 2017; 12:e0169052. [PMID: 28046007 PMCID: PMC5207538 DOI: 10.1371/journal.pone.0169052] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/09/2016] [Indexed: 11/19/2022] Open
Abstract
SAMHD1 hydrolyzes 2'-deoxynucleoside-5'-triphosphates (dNTPs) into 2'-deoxynucleosides and inorganic triphosphate products. In this paper, we evaluated the impact of 2' sugar moiety substitution for different nucleotides on being substrates for SAMHD1 and mechanisms of actions for the results. We found that dNTPs ((2'R)-2'-H) are only permissive in the catalytic site of SAMHD1 due to L150 exclusion of (2'R)-2'-F and (2'R)-2'-OH nucleotides. However, arabinose ((2'S)-2'-OH) nucleoside-5'-triphosphates analogs are permissive to bind in the catalytic site and be hydrolyzed by SAMHD1. Moreover, when the (2'S)-2' sugar moiety is increased to a (2'S)-2'-methyl as with the SMDU-TP analog, we detect inhibition of SAMHD1’s dNTPase activity. Our computational modeling suggests that (2'S)-2'-methyl sugar moiety clashing with the Y374 of SAMHD1. We speculate that SMDU-TP mechanism of action requires that the analog first docks in the catalytic pocket of SAMHD1 but prevents the A351-V378 helix conformational change from being completed, which is needed before hydrolysis can occur. Collectively we have identified stereoselective 2' substitutions that reveal nucleotide substrate specificity for SAMHD1, and a novel inhibitory mechanism for the dNTPase activity of SAMHD1. Importantly, our data is beneficial for understanding if FDA-approved antiviral and anticancer nucleosides are hydrolyzed by SAMHD1 in vivo.
Collapse
Affiliation(s)
- Joseph A. Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Russell W. Goetze
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - James H. Nettles
- Department of Biomedical Informatics and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
| | - Baek Kim
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia United States of America
- College of Pharmacy, Kyung-Hee University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
4
|
Novel carbocyclic nucleoside analogs suppress glomerular mesangial cells proliferation and matrix protein accumulation through ROS-dependent mechanism in the diabetic milieu. II. Acylhydrazone-functionalized pyrimidines. Bioorg Med Chem Lett 2016; 26:1020-1024. [DOI: 10.1016/j.bmcl.2015.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022]
|
5
|
Hollenbaugh JA, Schader SM, Schinazi RF, Kim B. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells. Virology 2015; 485:313-21. [PMID: 26319213 PMCID: PMC4619155 DOI: 10.1016/j.virol.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 01/05/2023]
Abstract
Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Susan M Schader
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
6
|
|
7
|
Shen Z, Fahey JV, Bodwell JE, Rodriguez-Garcia M, Rossoll RM, Crist SG, Patel MV, Wira CR. Estradiol regulation of nucleotidases in female reproductive tract epithelial cells and fibroblasts. PLoS One 2013; 8:e69854. [PMID: 23936114 PMCID: PMC3723851 DOI: 10.1371/journal.pone.0069854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022] Open
Abstract
The use of topical and oral adenosine derivatives in HIV prevention that need to be maintained in tissues and cells at effective levels to prevent transmission prompted us to ask whether estradiol could influence the regulation of catabolic nucleotidase enzymes in epithelial cells and fibroblasts from the upper and lower female reproductive tract (FRT) as these might affect cellular TFV-DP levels. Epithelial cells and fibroblasts were isolated from endometrium (EM), endocervix (CX) and ectocervix (ECX) tissues from hysterectomy patients, grown to confluence and treated with or without estradiol prior to RNA isolation. The expression of nucleotidase (NT) genes was measurable by RT-PCR in epithelial cells and fibroblasts from all FRT tissues. To determine if sex hormones have the potential to regulate NT, we evaluated NT gene expression and NT biological activity in FRT cells following hormone treatment. Estradiol increased expression of Cytosolic 5′-nucleotidase after 2 or 4 h in endometrial epithelial cells but not epithelial cells or fibroblasts from other sites. In studies using a modified 5′-Nucleotidase biological assay for nucleotidases, estradiol increased NT activity in epithelial cells and fibroblasts from the EM, CX and ECX at 24 and 48 h. In related studies, HUVEC primary cells and a HUVEC cell line were unresponsive to estradiol in terms of nucleotidase expression or biological activity. Our findings of an increase in nucleotidase expression and biological activity induced by estradiol do not directly assess changes in microbicide metabolism. However, they do suggest that when estradiol levels are elevated during the menstrual cycle, FRT epithelial cells and fibroblasts from the EM, CX and ECX have the potential to influence microbicide levels that could enhance protection of HIV-target cells (CD4+T cells, macrophages and dendritic cells) throughout the FRT.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - John V. Fahey
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jack E. Bodwell
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Richard M. Rossoll
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Sarah G. Crist
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Mickey V. Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
8
|
Comprehensive in vitro analysis of simian retrovirus type 4 susceptibility to antiretroviral agents. J Virol 2013; 87:4322-9. [PMID: 23365453 DOI: 10.1128/jvi.03208-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian retrovirus type 4 (SRV-4), a simian type D retrovirus, naturally infects cynomolgus monkeys, usually without apparent symptoms. However, some infected monkeys presented with an immunosuppressive syndrome resembling that induced by simian immunodeficiency virus infection. Antiretrovirals with inhibitory activity against SRV-4 are considered to be promising agents to combat SRV-4 infection. However, although some antiretrovirals have been reported to have inhibitory activity against SRV-1 and SRV-2, inhibitors with anti-SRV-4 activity have not yet been studied. In this study, we identified antiretroviral agents with anti-SRV-4 activity from a panel of anti-human immunodeficiency virus (HIV) drugs using a robust in vitro luciferase reporter assay. Among these, two HIV reverse transcriptase inhibitors, zidovudine (AZT) and tenofovir disoproxil fumarate (TDF), potently inhibited SRV-4 infection within a submicromolar to nanomolar range, which was similar to or higher than the activities against HIV-1, Moloney murine leukemia virus, and feline immunodeficiency virus. In contrast, nonnucleoside reverse transcriptase inhibitors and protease inhibitors did not exhibit any activities against SRV-4. Although both AZT and TDF effectively inhibited cell-free SRV-4 transmission, they exhibited only partial inhibitory activities against cell-to-cell transmission. Importantly, one HIV integrase strand transfer inhibitor, raltegravir (RAL), potently inhibited single-round infection as well as cell-free and cell-to-cell SRV-4 transmission. These findings indicate that viral expansion routes impact the inhibitory activity of antiretrovirals against SRV-4, while only RAL is effective in suppressing both the initial SRV-4 infection and subsequent SRV-4 replication.
Collapse
|
9
|
Eid AA, Koubeissi A, Bou-Mjahed R, Khalil NA, Farah M, Maalouf R, Nasser N, Bouhadir KH. Novel carbocyclic nucleoside analogs suppress glomerular mesangial cells proliferation and matrix protein accumulation through ROS-dependent mechanism in the diabetic milieu. Bioorg Med Chem Lett 2012. [PMID: 23199883 DOI: 10.1016/j.bmcl.2012.10.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of a series of novel 3,4-cis- and 3,4-trans-substituted carbocyclic nucleoside analogs from protected uracil and thymine is described. The key reaction in the followed synthetic protocols utilized the Mitsunobu reaction to couple 3,4-substituted cyclopentanols to (3)N-benzoyl uracil or (3)N-benzoyl thymine. These molecules were evaluated with regard to their ability to treat diabetic nephropathy. Our results show that two analogs significantly reduced high-glucose induced glomerular mesangial cells proliferation and matrix protein accumulation in vitro and, more interestingly, exhibited an anti-oxidative effect suggesting that the activity may be mediated through ROS-dependent mechanism.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Association of thymidylate synthase gene polymorphisms with stavudine triphosphate intracellular levels and lipodystrophy. Antimicrob Agents Chemother 2011; 55:1428-35. [PMID: 21282454 DOI: 10.1128/aac.01589-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The antiviral activity and toxicity of stavudine (d4T) depend on its triphosphate metabolite, stavudine triphosphate (d4T-TP). Therefore, modifications in intracellular levels of d4T-TP may change the toxicity profile of stavudine. d4T-TP intracellular levels in peripheral blood mononuclear cells were determined with a prominence liquid chromatograph connected to a triple-quadruple mass spectrometer. Polymorphisms in the thymidylate synthase (TS), methylenetetrahydrofolate reductase (MTHFR), dihydrofolate reductase (DHFR), reduced folate carrier 1 (RFC1; SLC19A1), and cyclin D1 (CCND1) genes were determined by direct sequencing using an ABI Prism 3100 genetic analyzer or Fluidigm's Biomark system. The Mann-Whitney test, rank analysis of variance (with Bonferroni's adjusted post hoc comparisons), and logistic regression were used for the inferential analyses. Thirty-three stavudine-treated patients were enrolled in this cross-sectional study. d4T-TP intracellular levels were 11.50 fmol/10(6) cells (interquartile range [IQR] = 8.12 to 13.87 fmol/10(6) cells) in patients with a high-expression TS genotype (2/3G, 3C/3G, and 3G/3G), whereas in those with a low-expression TS genotype (2/2, 2/3C, and 3C/3C), they were 21.40 fmol/10(6) cells (IQR = 18.90 to 27.0 fmol/10(6) cells) (P < 0.0001). Polymorphisms in the MTHFR, DHFR, RFC1, and CCND1 genes did not influence the intracellular concentration of d4T-TP. d4T-TP levels were independently associated with the TS genotype (low versus high expression; odds ratio [OR] = 86.22; 95% confidence interval [CI] = 8.48 to nonestimable; P = 0.0023). The low-expression TS genotype was associated with the development of HIV/highly active antiretroviral therapy-associated lypodystrophy syndrome (HALS) (OR = 14.0; 95% CI = 2.09 to 108.0; P = 0.0032). Our preliminary data show that polymorphisms in the thymidylate synthase gene are strongly associated with d4T-TP intracellular levels and with development of HALS.
Collapse
|
11
|
Guimarães NN, de Andrade HHR, Lehmann M, Dihl RR, Cunha KS. The genetic toxicity effects of lamivudine and stavudine antiretroviral agents. Expert Opin Drug Saf 2011; 9:771-81. [PMID: 20377473 DOI: 10.1517/14740331003702384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD The nucleoside reverse transcriptase inhibitors (NRTIs) are used in antiretroviral therapy worldwide for the treatment of HIV infections. These drugs act by blocking reverse transcriptase enzyme activity, causing pro-viral DNA chain termination. As a consequence, NRTIs could cause genomic instability and loss of heterozygosity. AREAS COVERED IN THIS REVIEW This review highlights the toxic and genotoxic effects of NRTIs, particularly lamivudine (3TC) and stavudine (d4T) analogues. In addition, a battery of short-term in vitro and in vivo systems are described to explain the potential genotoxic effects of these NRTIs as a single drug or a complexity of highly active antiretroviral therapy. WHAT THE READER WILL GAIN The readers will gain an understanding of a secondary effect that could be induced by 3TC and d4T treatments. TAKE HOME MESSAGE Considering that AIDS has become a chronic disease, more comprehensive toxic genetic studies are needed, with particular attention to the genetic alterations induced by NRTIs. These alterations play a primary role in carcinogenesis and are also involved in secondary and subsequent steps of carcinogenesis.
Collapse
Affiliation(s)
- Nilza Nascimento Guimarães
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e Biologia Molecular (DBBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil
| | | | | | | | | |
Collapse
|
12
|
Inhibition of allogeneic inflammatory responses by the Ribonucleotide Reductase Inhibitors, Didox and Trimidox. JOURNAL OF INFLAMMATION-LONDON 2010; 7:43. [PMID: 20718971 PMCID: PMC2933664 DOI: 10.1186/1476-9255-7-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/18/2010] [Indexed: 01/24/2023]
Abstract
Background Graft-versus-host disease is the single most important obstacle facing successful allogeneic stem cell transplantation (SCT). Even with current immunosuppressive therapies, morbidity and mortality rates are high. Current therapies including cyclosporine A (CyA) and related compounds target IL-2 signaling. However, although these compounds offer great benefit, they are also associated with multiple toxicities. Therefore, new compounds with a greater efficacy and reduced toxicity are needed to enable us to overcome this hurdle. Methods The allogeneic mixed lymphocyte reaction (MLR) is a unique ex vivo method to study a drug's action on the initial events resulting in T-cell activation and proliferation, synonymous to the initial stages of tissue and organ destruction by T-cell responses in organ rejection and Graft-versus-host disease. Using this approach, we examined the effectiveness of two ribonucleotide reductase inhibitors (RRI), Didox and Trimidox, to inhibit T-cell activation and proliferation. Results The compounds caused a marked reduction in the proliferative responses of T-cells, which is also accompanied by decreased secretion of cytokines IL-6, IFN-γ, TNF-α, IL-2, IL-13, IL-10 and IL-4. Conclusions In conclusion, these data provide critical information to justify further investigation into the potential use of these compounds post allogeneic bone marrow transplantation to alleviate graft-versus-host disease thereby achieving better outcomes.
Collapse
|
13
|
Fromentin E, Gavegnano C, Obikhod A, Schinazi RF. Simultaneous quantification of intracellular natural and antiretroviral nucleosides and nucleotides by liquid chromatography-tandem mass spectrometry. Anal Chem 2010; 82:1982-9. [PMID: 20143781 DOI: 10.1021/ac902737j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTI) require intracellular phosphorylation, which involves multiple enzymatic steps to inhibit the human immunodeficiency virus type 1 (HIV-1). NRTI-triphosphates (NRTI-TP) compete with endogenous 2'-deoxyribonucleosides-5'-triphosphates (dNTP) for incorporation by the HIV-1 reverse transcriptase (RT). Thus, a highly sensitive analytical methodology capable of quantifying at the low femtomoles/10(6) cells level was necessary to understand the intracellular metabolism and antiviral activity of NRTIs in human peripheral blood mononuclear (PBM) cells and in macrophages. A novel, rapid, and a reproducible ion-pair chromatography-tandem mass spectrometry (MS/MS) method was developed to simultaneously quantify the intracellular phosphorylated metabolites of abacavir, emtricitabine, tenofovir disoproxil fumarate, amdoxovir, and zidovudine, as well as four natural endogenous dNTP. Positive or negative electrospray ionization was chosen with specific MS/MS transitions for improved selectivity on all the compounds studied. The sample preparation, the ion-pair reagent concentration, and buffer composition were optimized, resulting in the simultaneous quantification of 13 different nucleotides in a total run time of 30 min. This novel method demonstrated optimal sensitivity (limit of detection 1-10 nM for various analytes), specificity, and reproducibility to successfully measure NRTI-TP and dNTP in human PBM cells and macrophages.
Collapse
Affiliation(s)
- Emilie Fromentin
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
14
|
Mutagenic and recombinagenic effects of lamivudine and stavudine antiretrovirals in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2009; 47:578-82. [DOI: 10.1016/j.fct.2008.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 11/18/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
|
15
|
Pastor-Anglada M, Cano-Soldado P, Errasti-Murugarren E, Casado FJ. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica 2008; 38:972-94. [PMID: 18668436 DOI: 10.1080/00498250802069096] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The human concentrative nucleoside transporter (hCNT) protein family has three members, hCNT1, 2, and 3, encoded by SLC28A1, A2, and A3 genes, respectively. hCNT1 and hCNT2 translocate pyrimidine- and purine-nucleosides, respectively, by a sodium-dependent mechanism, whereas hCNT3 shows broad substrate selectivity and the unique ability of translocating nucleosides both in a sodium- and a proton-coupled manner. hCNT proteins are also responsible for the uptake of most nucleoside-derived antiviral and anticancer drugs. Thus, hCNTs are key pharmacological targets. This review focuses on several crucial aspects of hCNT biology and pharmacology: protein structure-function, structural determinants for transportability, pharmacogenetics of hCNT-encoding genes, role of hCNT proteins in nucleoside-based therapeutics, and finally hCNT physiology.
Collapse
Affiliation(s)
- M Pastor-Anglada
- Facultat de Biologia, Departament de Bioquimica i Biologia Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
16
|
Guimarães NN, de Castro Pereira K, de Andrade HHR, Lehmann M, Silva Cunha K. Comparative analysis of genetic toxicity of AZT and ddI antiretrovirals in somatic cells of Drosophila melanogaster. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:312-317. [PMID: 18366095 DOI: 10.1002/em.20389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Antiretroviral therapies based on nucleoside reverse transcriptase inhibitors, like zidovudine (3'-azido-3'-deoxythymidine; AZT) and didanosine (2',3'-dideoxyinosine; ddI), markedly reduce human immunodeficiency virus loads. The Somatic Mutation And Recombination Test in Drosophila melanogaster (wing SMART), in its standard version, was applied to compare AZT and ddI genetic toxicity expressed as point and chromosomal mutation as well as homologous mitotic recombination. The present findings provide evidence that the mechanistic basis underlying the genetic toxicity of these antiretrovirals is mainly related to mitotic recombination. However, a genotoxic pattern can correspondingly be discerned: AZT is able to induce recombination ( approximately 85%) and mutation ( approximately 15%), and ddI causes only homologous recombination (100%) in the wing SMART assay. Another point to be considered is the fact that ddI is 3.8 times less active to induce mutant clones per mg/ml unit as compared to AZT. The clinical significance of these observations has to be interpreted in the light of data obtained from long-term toxicity in patients treated with the above mentioned agents.
Collapse
Affiliation(s)
- Nilza Nascimento Guimarães
- Laboratório de Genética Toxicológica, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brasil
| | | | | | | | | |
Collapse
|
17
|
Wu J, Lin Q, Lim TK, Liu T, Hew CL. White spot syndrome virus proteins and differentially expressed host proteins identified in shrimp epithelium by shotgun proteomics and cleavable isotope-coded affinity tag. J Virol 2007; 81:11681-9. [PMID: 17715220 PMCID: PMC2168766 DOI: 10.1128/jvi.01006-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shrimp subcuticular epithelial cells are the initial and major targets of white spot syndrome virus (WSSV) infection. Proteomic studies of WSSV-infected subcuticular epithelium of Penaeus monodon were performed through two approaches, namely, subcellular fractionation coupled with shotgun proteomics to identify viral and host proteins and a quantitative time course proteomic analysis using cleavable isotope-coded affinity tags (cICATs) to identify differentially expressed cellular proteins. Peptides were analyzed by offline coupling of two-dimensional liquid chromatography with matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. We identified 27, 20, and 4 WSSV proteins from cytosolic, nuclear, and membrane fractions, respectively. Twenty-eight unique WSSV proteins with high confidence (total ion confidence interval percentage [CI%], >95%) were observed, 11 of which are reported here for the first time, and 3 of these novel proteins were shown to be viral nonstructural proteins by Western blotting analysis. A first shrimp protein data set containing 1,999 peptides (ion score, > or =20) and 429 proteins (total ion score CI%, >95%) was constructed via shotgun proteomics. We also identified 10 down-regulated proteins and 2 up-regulated proteins from the shrimp epithelial lysate via cICAT analysis. This is the first comprehensive study of WSSV-infected epithelia by proteomics. The 11 novel viral proteins represent the latest addition to our knowledge of the WSSV proteome. Three proteomic data sets consisting of WSSV proteins, epithelial cellular proteins, and differentially expressed cellular proteins generated in the course of WSSV infection provide a new resource for further study of WSSV-shrimp interactions.
Collapse
Affiliation(s)
- Jinlu Wu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
18
|
Chaperon DN. Construction and complementation of in-frame deletions of the essential Escherichia coli thymidylate kinase gene. Appl Environ Microbiol 2006; 72:1288-94. [PMID: 16461678 PMCID: PMC1392977 DOI: 10.1128/aem.72.2.1288-1294.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.
Collapse
Affiliation(s)
- David-Nicolas Chaperon
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, CH-1211 Geneva, Switzerland.
| |
Collapse
|
19
|
Pereira S, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Computational studies on class I ribonucleotide reductase: understanding the mechanisms of action and inhibition of a cornerstone enzyme for the treatment of cancer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:125-35. [PMID: 16261381 DOI: 10.1007/s00249-005-0026-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 09/21/2005] [Accepted: 09/28/2005] [Indexed: 11/26/2022]
Abstract
This review provides a synthesis of recent work, using computational methods, on the action and inhibition mechanisms of class I ribonucleotide reductase (RNR). This enzyme catalyzes the rate-limiting step of the pathway for the synthesis of DNA monomers and, therefore, has long been regarded as an important target for therapies aiming to control pathologies that depend strongly on DNA replication. In fact, over the last years, several molecules, which are able to impair RNR activity by different mechanisms, have been applied effectively in anti-cancer, anti-viral and anti-parasite therapies. A better understanding of the chemical mechanisms involved in normal catalysis and in inhibition of the enzyme is important for the rational design of more specific and effective inhibitor compounds. To achieve this goal, computational methods, particularly quantum chemical calculations, have been used more and more frequently. The ever-growing capabilities of these methods together with undeniable advantages make it a stimulating area for research purposes.
Collapse
Affiliation(s)
- Susana Pereira
- REQUIMTE/Departamento de Química, Faculdade de Ciências do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | | | | | |
Collapse
|
20
|
|
21
|
|
22
|
4,4-Disubstituted-3,4-dihydro-2(1H)-quinazolinones as HIV reverse transcriptase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.8.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Benzophenones as inhibitors of reverse transcriptase. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.10.1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Mayhew CN, Sumpter R, Inayat M, Cibull M, Phillips JD, Elford HL, Gallicchio VS. Combination of inhibitors of lymphocyte activation (hydroxyurea, trimidox, and didox) and reverse transcriptase (didanosine) suppresses development of murine retrovirus-induced lymphoproliferative disease. Antiviral Res 2005; 65:13-22. [PMID: 15652967 DOI: 10.1016/j.antiviral.2004.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
The ribonucleotide reductase inhibitor hydroxyurea (HU) has demonstrated some benefit as a component of drug cocktails for the treatment of HIV-1 infection. However, HU is notoriously myelosuppressive and often administered only as salvage therapy to patients with late-stage disease, potentially exacerbating the bone marrow toxicity of HU. In this report we have compared the antiviral effects of HU and two novel RR inhibitors trimidox (3,4,5-trihydroxybenzamidoxime) and didox (3,4-dihydroxybenzohydroxamic acid) in combination with didanosine (2,3-didoxyinosine; ddI) in the LPBM5 MuLV retrovirus model (murine AIDS). We also evaluated the effects of these drug combinations on the hematopoietic tissues of LPBM5 MuLV-infected animals. The combination of RR inhibitors and ddI was extremely effective (DX>TX>HU) in inhibiting development of retrovirus-induced disease (splenomegaly, hypergammaglobulinemia, activated B-splenocytes and loss of splenic architecture). In addition, relative levels of proviral DNA were significantly lower in combination drug-treated animals compared to infected controls. Evaluation of femur cellularity, numbers of marrow-derived myeloid progenitor cells (CFU-GM and BFU-E) and peripheral blood indices revealed that TX and DX in combination with ddI were well-tolerated. However, treatment with HU and ddI induced moderate myelosuppression. These data demonstrate that RR inhibitors in combination with ddI provide significant protection against retroviral disease in murine AIDS. Moreover, the novel RR inhibitors TX and DX appear to be more effective and less myelosuppressive than HU when administered with ddI in this model.
Collapse
Affiliation(s)
- Christopher N Mayhew
- Department of Clinical Sciences, University of Kentucky Medical Center, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chemokine receptor antagonists as HIV entry inhibitors. Expert Opin Ther Pat 2004. [DOI: 10.1517/13543776.14.2.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Stuyver LJ, McBrayer TR, Tharnish PM, Hassan AEA, Chu CK, Pankiewicz KW, Watanabe KA, Schinazi RF, Otto MJ. Dynamics of subgenomic hepatitis C virus replicon RNA levels in Huh-7 cells after exposure to nucleoside antimetabolites. J Virol 2003; 77:10689-94. [PMID: 12970456 PMCID: PMC228517 DOI: 10.1128/jvi.77.19.10689-10694.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment with antimetabolites results in chemically induced low nucleoside triphosphate pools and cell cycle arrest in exponentially growing cells. Since steady-state levels of hepatitis C virus (HCV) replicon RNA were shown to be dependent on exponential growth of Huh-7 cells, the effects of antimetabolites for several nucleoside biosynthesis pathways on cell growth and HCV RNA levels were investigated. A specific anti-HCV replicon effect was defined as (i). minimal interference with the exponential cell growth, (ii). minimal reduction in cellular host RNA levels, and (iii). reduction of the HCV RNA copy number per cell compared to that of the untreated control. While most antimetabolites caused a cytostatic effect on cell growth, only inhibitors of the de novo pyrimidine ribonucleoside biosynthesis mimicked observations seen in confluent replicon cells, i.e., cytostasis combined with a sharp decrease in replicon copy number per cell. These results suggest that high levels of CTP and UTP are critical parameters for maintaining the steady-state level replication of HCV replicon in Huh-7 cells.
Collapse
|
27
|
Henneré G, Becher F, Pruvost A, Goujard C, Grassi J, Benech H. Liquid chromatography-tandem mass spectrometry assays for intracellular deoxyribonucleotide triphosphate competitors of nucleoside antiretrovirals. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 789:273-81. [PMID: 12742119 DOI: 10.1016/s1570-0232(03)00099-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was aimed to apply an LC-MS-MS method previously developed for intracellular nucleoside reverse transcriptase inhibitors-triphosphate (NRTI-TPs) to the determination of natural deoxyribonucleotides (dNTPs) in human peripheral blood mononuclear cells. The LC-MS-MS method was directly used in assay of dATP and dTTP. Interferences by ribonucleotides (rNTPs) prevented direct application to the two other analytes: dGTP and dCTP. A periodate oxidation procedure was therefore optimized to remove rNTPs from the cell medium in order to quantitate dCTP and dGTP. The determination of the intracellular ratio of NRTI-TP/dNTP in HIV-infected patients now involves use of the same chromatographic system for simultaneous assay of several analytes.
Collapse
Affiliation(s)
- Gaëlle Henneré
- CEA, Service de Pharmacologie et d'Immunologie, DSV/DRM, CEA/Saclay, 91191 Gif-Sur-Yvette, Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Tran TT, Robbins BL, Pinkerton FH, Ferrua B, Grassi J, Fridland A. A new sensitive cartridge-RIA method for determination of stavudine (D4T) triphosphate in human cells in vivo. Antiviral Res 2003; 58:125-9. [PMID: 12742572 DOI: 10.1016/s0166-3542(02)00192-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe a simple and sensitive method to determine stavudine triphosphate, the active intracellular anabolite of stavudine (D4T). Quantification of D4T triphosphate was performed with a combined cartridge-radioimmunoassay (cartridge-RIA) which enabled us to measure concentrations of D4T triphosphate as low as 0.5 ng/ml, or an intracellular concentration which corresponds to 20 fmol/10(6) cells if diluted like our previously published zidovudine (ZDV) assay. The only alternate methodology at present employs liquid chromatography mass spectroscopy (LC-MS/MS). The use of the cartridge-RIA methodology provides a cost-effective alternative for the determination of in vivo cellular pharmacokinetics studies of D4T in human immunodeficiency virus (HIV)-infected persons.
Collapse
Affiliation(s)
- Thu T Tran
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
29
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
30
|
Hoggard PG, Back DJ. Intracellular pharmacology of nucleoside analogues and protease inhibitors: role of transporter molecules. Curr Opin Infect Dis 2002; 15:3-8. [PMID: 11964899 DOI: 10.1097/00001432-200202000-00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antiretroviral agents target HIV replication within infected cells. It is therefore important to focus on the pharmacology of these drugs at their site of action rather than just in plasma. Activation of nucleoside analogues to a triphosphate is essential for antiretroviral activity. Following activation, by intracellular kinases, drug triphosphates compete with endogenous triphosphates for HIV reverse transcriptase. Methodologies to measure triphosphates in peripheral blood mononuclear cells from HIV patients have been described. This has allowed investigation of once-daily dosing regimens, drug interactions, modulation of intracellular activation and the bypassing of initial phosphorylation steps. Drug accumulation within a cell is a balance between influx and efflux. There is a growing body of evidence indicating that transport proteins are vitally important in regulating intracellular concentrations of antiretroviral drugs. Allelic variants, inhibition (or induction) are all potentially critical determinants of active drug present in the cell. It is hoped that understanding the intracellular pharmacology will improve long-term therapy and reduce the likelihood of cellular resistance in therapeutic failure.
Collapse
Affiliation(s)
- Patrick G Hoggard
- Department of Pharmacology and Therapeutics, New Medical Building, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | | |
Collapse
|
31
|
Peters GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman AM, Ackland SP. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther 2000; 87:227-53. [PMID: 11008002 DOI: 10.1016/s0163-7258(00)00086-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most current chemotherapy regimens for cancer consist of empirically designed combinations, based on efficacy and lack of overlapping toxicity. In the development of combinations, several aspects are often overlooked: (1) possible metabolic and biological interactions between drugs, (2) scheduling, and (3) different pharmacokinetic profiles. Antimetabolites are used widely in chemotherapy combinations for treatment of various leukemias and solid tumors. Ideally, the combination of two or more agents should be more effective than each agent separately (synergism), although additive and even antagonistic combinations may result in a higher therapeutic efficacy in the clinic. The median-drug effect analysis method is one of the most widely used methods for in vitro evaluation of combinations. Several examples of classical effective antimetabolite-(anti)metabolite combinations are discussed, such as that of methotrexate with 6-mercaptopurine or leucovorin in (childhood) leukemia and 5-fluorouracil (5FU) with leucovorin in colon cancer. More recent combinations include treatment of acute-myeloid leukemia with fludarabine and arabinosylcytosine. Other combinations, currently frequently used in the treatment of solid malignancies, include an antimetabolite with a DNA-damaging agent, such as gemcitabine with cisplatin and 5FU with the cisplatin analog oxaliplatin. The combination of 5FU and the topoisomerase inhibitor irinotecan is based on decreased repair of irinotecan-induced DNA damage. These combinations may increase induction of apoptosis. The latter combinations have dramatically changed the treatment of incurable cancers, such as lung and colon cancer, and have demonstrated that rationally designed drug combinations offer new possibilities to treat solid malignancies.
Collapse
Affiliation(s)
- G J Peters
- Department of Medical Oncology, University Hospital Vrije Universiteit, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|