1
|
Chen Y, Zheng YX, Li YZ, Jia Z, Yuan Y. GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats. Brain Res Bull 2024; 217:111078. [PMID: 39270804 DOI: 10.1016/j.brainresbull.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Jia
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Abdallah SM, Muhammed RE, Mohamed RE, Khalil WKB, Taha DA, Shalaby MB, Elgohary I, Abdallah AA, Habib HM, El-Yazbi AF. Integrated Biomarker Response Emphasizing Neuronal Oxidative Stress and Genotoxicity Induced by Oxamyl in Sprague Dawley Rats: Ameliorative Effect of Ginseng as a Neuroprotective Agent. TOXICS 2024; 12:655. [PMID: 39330583 PMCID: PMC11435561 DOI: 10.3390/toxics12090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Climate change has led to increased and varying pest infestation patterns, triggering a rise in pesticide usage and exposure. The effects of oxamyl, a widely used nematicide in Egypt, encompasses typical signs of carbamate intoxication; nevertheless, long-term effects of oxamyl exposure, particularly on the nervous system, require further elucidation. This study systematically investigated the mechanism and manifestations of repeated subacute exposure to sublethal doses of oxamyl in male SD rats. Data showed a dose-dependent genotoxic effect, manifested as increased bone marrow micronuclei and decreased brain expression of key genes involved in neurogenesis and neuronal development. Coincidently, brain histopathology showed dose-dependent neurodegeneration in various regions, associated with a significant increase in GFAP immunoreactivity, indicative of neuroinflammation. Biochemical examination revealed a typical pattern of cholinesterase inhibition by carbamates in serum and brain tissue, as well as increased oxidative stress markers in the brain such as SOD activity reduction, alongside an increase in NO and MDA. The ability of Ginseng at a 100 mg/Kg dose to ameliorate the effects of oxamyl exposure was investigated. Ginseng use, either as a protective or therapeutic regimen, attenuated the observed genotoxic, neuroinflammatory, and biochemical alterations. Our results indicate that repeated exposure to oxamyl triggers an integrative neurotoxic response, driven by genotoxicity, oxidative stress, and neuroinflammation, that could trigger an increase in neurological and cognitive disorders. These findings emphasize the urgent need for confirmatory translational studies in human subjects to assess these changes and inform policy decisions regarding safe levels of usage and appropriate agricultural and public health practices.
Collapse
Affiliation(s)
- Salwa M. Abdallah
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Reham E. Muhammed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Reda E. Mohamed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Wagdy K. B. Khalil
- Department of Cell Biology, National Research Centre, El-Bohouth, Cairo 12262, Egypt; (W.K.B.K.); (D.A.T.)
| | - Dalia A. Taha
- Department of Cell Biology, National Research Centre, El-Bohouth, Cairo 12262, Egypt; (W.K.B.K.); (D.A.T.)
| | - Mohamed B. Shalaby
- Department of Toxicology Research, Research Institute of Medical Entomology (RIME), General Organization of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP), Dokki, Cairo 12311, Egypt;
| | - Islam Elgohary
- Department of Pathology, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt;
| | - Amr A. Abdallah
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt; (S.M.A.); (R.E.M.); (R.E.M.)
| | - Hosam M. Habib
- Research & Innovation Hub, Alamein International University, Alamein 51718, Egypt
| | - Ahmed F. El-Yazbi
- Research & Innovation Hub, Alamein International University, Alamein 51718, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
3
|
Maytalman E, Nemutlu Samur D. Neuroendocrine modulation by metamizole and indomethacin: investigating the impact on neuronal markers and GnRH release. Endocrine 2024; 85:1327-1336. [PMID: 38625503 DOI: 10.1007/s12020-024-03822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Some evidence that non-steroidal anti-inflammatory drugs have neuroprotective effects indicates their potential for use in a new field. However, their effects on hormone secretion have yet to be adequately discovered. Therefore, we aimed to evaluate the effects of metamizole and indomethacin on neuronal markers as well as the GnRH expression in the GT1-7 cell line. METHODS The effects of these drugs on proliferation were evaluated by MTT analysis. The effect of 10-50-250 µM concentrations of the drugs also on the expression of neuronal factors and markers, including NGF, nestin and βIII Tubulin, and additionally GnRH, was determined by the RT-qPCR method. RESULTS NGF and nestin mRNA expressions were increased in all concentrations of both metamizole and indomethacin. No changes were detected in βIII Tubulin. While metamizole showed an increase in GnRH mRNA expression, there was no change at 10 and 50 µM concentrations of indomethacin, but a remarkable decrease was observed at 250 µM concentrations. CONCLUSIONS The results of our study showing an increase in the expression of neuronal factors reveal that metamizole and indomethacin may have possible neuroprotective effects. Moreover, the effects on the GnRH expression appear to be different. Animal models are required to confirm these effects of NSAIDs on neurons.
Collapse
Affiliation(s)
- Erkan Maytalman
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey.
| | - Dilara Nemutlu Samur
- Department of Pharmacology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
4
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
6
|
Hautakangas H, Palotie A, Pirinen M. Fine-mapping a genome-wide meta-analysis of 98,374 migraine cases identifies 181 sets of candidate causal variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307608. [PMID: 39371129 PMCID: PMC11451805 DOI: 10.1101/2024.05.20.24307608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Migraine is a highly prevalent neurovascular disorder for which genome-wide association studies (GWAS) have identified over one hundred risk loci, yet the causal variants and genes remain mostly unknown. Here, we meta-analyzed three migraine GWAS including 98,374 cases and 869,160 controls and identified 122 independent risk loci of which 35 were new. Fine-mapping of a meta-analysis is challenging because some variants may be missing from some participating studies and accurate linkage disequilibrium (LD) information of the variants is often not available. Here, using the exact in-sample LD, we first investigated which statistics could reliably capture the quality of fine-mapping when only reference LD was available. We observed that the posterior expected number of causal variants best distinguished between the high- and low-quality results. Next, we performed fine-mapping for 102 autosomal risk regions using FINEMAP. We produced high-quality fine-mapping for 93 regions and defined 181 distinct credible sets. Among the high-quality credible sets were 7 variants with very high posterior inclusion probability (PIP > 0.9) and 2 missense variants with PIP > 0.5 (rs6330 in NGF and rs1133400 in INPP5A). For 35 association signals, we managed to narrow down the set of potential risk variants to at most 5 variants.
Collapse
Affiliation(s)
- Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | | | | | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Ospondpant D, Lai QWS, Dong TT, Tsim KWK. Synergy of botanical drug extracts from Dracaena cochinchinensis stemwood and Ardisia elliptica fruit in multifunctional effects on neuroprotection and anti-inflammation. Front Pharmacol 2024; 15:1399549. [PMID: 38751783 PMCID: PMC11094215 DOI: 10.3389/fphar.2024.1399549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Combination therapy is one of the promising approaches in developing therapeutics to cure complex diseases, such as Alzheimer's disease (AD). In Thai traditional medicines, the clinical application often comprises multiple botanical drugs as a formulation. The synergistic interactions between botanical drugs in combination therapies are proposed to have several advantages, including increased therapeutic efficacy, and decreased toxicity and/or adverse effects. This study aimed to explore the therapeutic functions of a botanical hybrid preparation (BHP) of two botanical drugs within a traditional multi-herbal formulation. The synergistic actions of BHP of Dracaena cochinchinensis stemwood (DCS) and Ardisia elliptica fruit (AEF) at a specific ratio of 1:9 w/w were illustrated in neuroprotection and anti-inflammation. In cultured PC12 cells, BHP of DCS and AEF showed synergistic functions in inducing neuronal differentiation, characterized by neurofilament expression and neurite outgrowth. In addition, BHP of DCS and AEF exhibited a synergistic effect in inhibiting the aggregation of Aβ, a hallmark of AD pathology. The activated BV2 microglial cells induced by LPS were synergistically suppressed by the BHP of DCS and AEF, as evaluated by the expression of pro-inflammatory markers, including TNF-α, IL-1β, and iNOS, as well as the morphological change of microglial cells. The findings suggested that the effects of BHP of DCS and AEF were greater than individual botanical drugs in a specific ratio of 1:9 w/w to enhance neuroprotective and anti-inflammatory functions.
Collapse
Affiliation(s)
- Dusadee Ospondpant
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Queenie Wing Sze Lai
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Tina Tingxia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
9
|
Kim S, Choi J, Kwon J. Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106-126) via Neurotrophic Factor Signaling. Molecules 2023; 28:molecules28093920. [PMID: 37175330 PMCID: PMC10180446 DOI: 10.3390/molecules28093920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Prion protein peptide (PrP) has demonstrated neurotoxicity in brain cells, resulting in the progression of prion diseases with spongiform degenerative, amyloidogenic, and aggregative properties. Thymosin beta 4 (Tβ4) plays a role in the nervous system and may be related to motility, axonal enlargement, differentiation, neurite outgrowth, and proliferation. However, no studies about the effects of Tβ4 on prion disease have been performed yet. In the present study, we investigated the protective effect of Tβ4 against synthetic PrP (106-126) and considered possible mechanisms. Hippocampal neuronal HT22 cells were treated with Tβ4 and PrP (106-126) for 24 h. Tβ4 significantly reversed cell viability and reactive oxidative species (ROS) affected by PrP (106-126). Apoptotic proteins induced by PrP (106-126) were reduced by Tβ4. Interestingly, a balance of neurotrophic factors (nerve growth factor and brain-derived neurotrophic factor) and receptors (nerve growth factor receptor p75, tropomyosin related kinase A and B) were competitively maintained by Tβ4 through receptors reacting to PrP (106-126). Our results demonstrate that Tβ4 protects neuronal cells against PrP (106-126) neurotoxicity via the interaction of neurotrophic factors/receptors.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
- Knotus Co., Ltd., Incheon 22014, Republic of Korea
| | - Jihye Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
10
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
11
|
Naguib AM, Apparoo Y, Xiong C, Phan CW. Maitake Medicinal Mushroom, Grifola frondosa (Agaricomycetes), and Its Neurotrophic Properties: A Mini-Review. Int J Med Mushrooms 2023; 25:11-22. [PMID: 36749053 DOI: 10.1615/intjmedmushrooms.2022046849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurodegeneration is one of the most common manifestations in an aging population. The occurrence of oxidative stress and neuroinflammation are the main contributors to the phenomenon. Neurologic conditions such as Alzheimer's disease (AD) and Parkinson's disease (PD) are challenging to treat due to their irreversible manner as well as the lack of effective treatment. Grifola frondosa (Dicks.: Fr.) S.F. Gray, or maitake mushroom, is believed to be a potential choice as a therapeutic agent for neurodegenerative diseases. G. frondosa is known to be a functional food that has a wide variety of medicinal purposes. Thus, this review emphasizes the neuroprotective effects and the chemical composition of G. frondosa. Various studies have described that G. frondosa can protect and proliferate neuronal cells through neurogenesis, antioxidative, anti-inflammatory, and anti-β-amyloid activities. The mechanism of action behind these therapeutic findings in various in vitro and in vivo models has also been intensively studied. In this mini review, we also summarized the chemical composition of G. frondosa to provide a better understanding of the presence of nutritional compounds in G. frondosa.
Collapse
Affiliation(s)
- Adrina Mohamad Naguib
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, P.R. China
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Investigation Centre, 5th Floor, East Tower, University Malaya Medical Centre, 59100 Lembah Pantai Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Bashir DJ, Manzoor S, Sarfaraj M, Afzal SM, Bashir M, Nidhi, Rastogi S, Arora I, Samim M. Magnoflorine-Loaded Chitosan Collagen Nanocapsules Ameliorate Cognitive Deficit in Scopolamine-Induced Alzheimer's Disease-like Conditions in a Rat Model by Downregulating IL-1β, IL-6, TNF-α, and Oxidative Stress and Upregulating Brain-Derived Neurotrophic Factor and DCX Expressions. ACS OMEGA 2023; 8:2227-2236. [PMID: 36687096 PMCID: PMC9850486 DOI: 10.1021/acsomega.2c06467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/12/2022] [Indexed: 08/19/2023]
Abstract
Dementia or the loss of cognitive functioning is one of the major health issues in elderly people. Alzheimer's disease (AD) is one of the common forms of dementia. Treatment chiefly involves the use of acetylcholinesterase (AChE) inhibitors in AD. However, oxidative stress has also been found to be involved in the proliferation of the disease. Magnoflorine is one of the active compounds of Coptidis Rhizoma and has high anti-oxidative properties. Active principle-loaded nanoparticles have shown increased efficiency for neurodegenerative diseases due to their ability to cross the blood-brain barrier more easily. An in vitro study involving magnoflorine-loaded chitosan collagen nanocapsules (MF-CCNc) has shown them to possess inhibitory effects against oxidative stress and to some extent on AChE as well. In the current study, both nootropic and anti-amnesic effects of magnoflorine and MF-CCNc on scopolamine-induced amnesia in rats were evaluated. The treatment was done intraperitoneally (i.p.) once daily for 17 consecutive days with MF-CCNc (0.25, 0.5, and 1 mg), magnoflorine (1 mg), and donepezil (1 mg). To induce amnesia, hence, cognitive deficit rats were induced with scopolamine (1 mg/kg) daily for the last 9 days. Novel object recognition (NOR) and elevated plus maze (EPM) behavioral analysis were done to assess memory functioning. Hippocampal tissues were extracted to study the effect on biochemicals (AChE, MDA, SOD, and CAT), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and immunohistochemistry (brain-derived neurotrophic factor (BDNF) and DCX). MF-CCNc showed memory-enhancing effects in nootropic as well as chronic scopolamine-treated rats in NOR and an increase in inflexion ratio in EPM. MF-CCNc reduced the levels of AChE and MDA while increasing SOD and CAT levels in the hippocampus. MF-CCNc further lowered the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These nanocapsules further increased the expression of BDNF and DCX that are necessary for adult neurogenesis. From the research findings, it can be concluded that MF-CCNc has high anti-amnesic properties and could be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Dar Junaid Bashir
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saliha Manzoor
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Sarfaraj
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shekh Mohammad Afzal
- Department
of Medical Elementology & Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Masarat Bashir
- COTS,
Mirgund, Shalimar, SKUAST Kashmir, Srinagar, Jammu and Kashmir 193121, India
| | - Nidhi
- Centre
for Translational and Clinical Research, Jamia Hamdard, New Delhi 110062, India
| | - Shweta Rastogi
- Hansraj
College, Delhi University, New Delhi, Delhi 110007, India
| | - Indu Arora
- Shaheed
Rajguru College of Applied Sciences for Women, Vasundhara Enclave, New
Delhi, Delhi 110096, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
13
|
Senger KPS, Kesavadas C. Imaging in Pediatric Epilepsy. Semin Roentgenol 2023; 58:28-46. [PMID: 36732009 DOI: 10.1053/j.ro.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - C Kesavadas
- Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
14
|
Highet B, Wiseman JA, Mein H, Parker R, Ryan B, Turner CP, Jing Y, Singh-Bains MK, Liu P, Dragunow M, Faull RLM, Murray HC, Curtis MA. PSA-NCAM Regulatory Gene Expression Changes in the Alzheimer's Disease Entorhinal Cortex Revealed with Multiplexed in situ Hybridization. J Alzheimers Dis 2023; 92:371-390. [PMID: 36744342 DOI: 10.3233/jad-220986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia and is characterized by a substantial reduction of neuroplasticity. Our previous work demonstrated that neurons involved in memory function may lose plasticity because of decreased protein levels of polysialylated neural cell adhesion molecule (PSA-NCAM) in the entorhinal cortex (EC) of the human AD brain, but the cause of this decrease is unclear. OBJECTIVE To investigate genes involved in PSA-NCAM regulation which may underlie its decrease in the AD EC. METHODS We subjected neurologically normal and AD human EC sections to multiplexed fluorescent in situ hybridization and immunohistochemistry to investigate genes involved in PSA-NCAM regulation. Gene expression changes were sought to be validated in both human tissue and a mouse model of AD. RESULTS In the AD EC, a cell population expressing a high level of CALB2 mRNA and a cell population expressing a high level of PST mRNA were both decreased. CALB2 mRNA and protein were not decreased globally, indicating that the decrease in CALB2 was specific to a sub-population of cells. A significant decrease in PST mRNA expression was observed with single-plex in situ hybridization in middle temporal gyrus tissue microarray cores from AD patients, which negatively correlated with tau pathology, hinting at global loss in PST expression across the AD brain. No significant differences in PSA-NCAM or PST protein expression were observed in the MAPT P301S mouse brain at 9 months of age. CONCLUSION We conclude that PSA-NCAM dysregulation may cause subsequent loss of structural plasticity in AD, and this may result from a loss of PST mRNA expression. Due PSTs involvement in structural plasticity, intervention for AD may be possible by targeting this disrupted plasticity pathway.
Collapse
Affiliation(s)
- Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - James A Wiseman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Hannah Mein
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Remai Parker
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Brigid Ryan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Clinton P Turner
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand.,Department of Anatomical Pathology, LabPlus, Auckland City Hospital, New Zealand
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Malvindar K Singh-Bains
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, New Zealand
| |
Collapse
|
15
|
Effects of Subchronic Aluminum Exposure on Learning, Memory, and Neurotrophic Factors in Rats. Neurotox Res 2022; 40:2046-2060. [PMID: 36342585 DOI: 10.1007/s12640-022-00599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Aluminum (Al) is a neurotoxin that gradually accumulates in the brain in human life, resulting in oxidative brain injury related to Alzheimer's disease (AD) and other diseases. In this study, the learning and memory of rats exposed to different aluminum concentrations (0.0 g/L, 2.0 g/L, 4.0 g/L, and 8.0 g/L) were studied, and the learning and memory of rats were observed by shuttle box experiment. With hematoxylin and eosin staining, Western blot, immunofluorescence, and RT-PCR, the morphology of nerve cells in the hippocampus of rat brain were observed, and the levels of activator protein-1 (AP-1) gene and protein, nerve growth factor (NGF), neurotrophin-3 (NT3), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) gene and protein level, etc. The experimental results showed that subchronic aluminum exposure damaged learning and memory in rats. The cognitive function damage in rats was more evident after increasing the aluminum intake dose. The more aluminum intake, the more pronounced the histological changes in the hippocampus will be. The expression level and protein content of neurotrophic factors in the hippocampus of rats showed a negative correlation with aluminum intake. In this experiment, we explored the mechanism of aluminum exposure in learning and memory disorders, and provided some data reference for further elucidation of the damage mechanism of aluminum on the nervous system and subsequent preventive measures.
Collapse
|
16
|
Stapelberg NJC, Bui TA, Mansour V, Johnson S, Branjerdporn G, Adhikary S, Ashton K, Taylor N, Headrick JP. The pathophysiology of major depressive disorder through the lens of systems biology: Network analysis of the psycho-immune-neuroendocrine physiome. J Neuroimmunol 2022; 372:577959. [PMID: 36095861 DOI: 10.1016/j.jneuroim.2022.577959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The psycho-immune-neuroendocrine (PINE) network is a predominantly physiological (metabolomic) model constructed from the literature, inter-linking multiple biological processes associated with major depressive disorder (MDD), thereby integrating putative mechanistic pathways for MDD into a single network. MATERIAL AND METHODS Previously published metabolomic pathways for the PINE network based on literature searches conducted in 1991-2021 were used to construct an edge table summarizing all physiological pathways in pairs of origin nodes and target nodes. The Gephi software program was used to calculate network metrics from the edge table, including total degree and centrality measures, to ascertain key network nodes and construct a directed network graph. RESULTS An edge table and directional network graph of physiological relationships in the PINE network is presented. The network has properties consistent with complex biological systems, with analysis yielding key network nodes comprising pro-inflammatory cytokines (TNF- α, IL6 and IL1), glucocorticoids and corticotropin releasing hormone (CRH). These may represent central structural and regulatory elements in the context of MDD. CONCLUSION The identified hubs have a high degree of connection and are known to play roles in the progression from health to MDD. These nodes represent strategic targets for therapeutic intervention or prevention. Future work is required to build a weighted and dynamic simulation of the network PINE.
Collapse
Affiliation(s)
- Nicolas J C Stapelberg
- Bond University, Faculty of Health Sciences and Medicine, Robina, Australia; Gold Coast Health, Southport, Australia
| | | | - Verena Mansour
- Bond University, Faculty of Health Sciences and Medicine, Robina, Australia
| | | | - Grace Branjerdporn
- Gold Coast Health, Southport, Australia; Mater Young Adult Health Service, Mater Hospital, South Brisbane, Australia.
| | - Sam Adhikary
- Mater Young Adult Health Service, Mater Hospital, South Brisbane, Australia
| | - Kevin Ashton
- Bond University, Faculty of Health Sciences and Medicine, Robina, Australia
| | | | | |
Collapse
|
17
|
Cesari V, Vallefuoco A, Agrimi J, Gemignani A, Paolocci N, Menicucci D. Intimate partner violence: psycho-physio-pathological sequelae for defining a holistic enriched treatment. Front Behav Neurosci 2022; 16:943081. [PMID: 36248029 PMCID: PMC9561850 DOI: 10.3389/fnbeh.2022.943081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intimate partner violence (IPV) is a health priority, which worldwide, mainly affects women. The consequences of IPV include several psychophysiological effects. These range from altered levels of hormones and neurotrophins to difficulties in emotion regulation and cognitive impairment. Mounting evidence from preclinical studies has shown that environmental enrichment, a form of sensory-motor, cognitive, and social stimulation, can induce a wide range of neuroplastic processes in the brain which consistently improve recovery from a wide variety of somatic and psychiatric diseases. To support IPV survivors, it is essential to ensure a safe housing environment, which can serve as a foundation for environmental enrichment-based interventions. However, some concerns have been raised when supportive housing interventions focus on the economic aspects of survivors’ lives instead of the emotional ones. We thus propose a holistic intervention in which supportive housing is integrated with evidenced-based psychotherapies which could constitute an enriched therapeutic approach for IPV survivors.
Collapse
Affiliation(s)
- Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Vallefuoco
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Clinical Psychology branch, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Nazareno Paolocci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Comitato Unico di Garanzia, University of Pisa, Pisa, Italy
- *Correspondence: Danilo Menicucci
| |
Collapse
|
18
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
19
|
Wuest M, Bailey JJ, Dufour J, Glubrecht D, Omana V, Johnston TH, Brotchie JM, Schirrmacher R. Toward in vivo proof of binding of 18F-labeled inhibitor [ 18F]TRACK to peripheral tropomyosin receptor kinases. EJNMMI Res 2022; 12:46. [PMID: 35907096 PMCID: PMC9339071 DOI: 10.1186/s13550-022-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tropomyosin receptor kinases (TrkA, TrkB, TrkC) are a family of tyrosine kinases primarily expressed in neuronal cells of the brain. Identification of oncogenic alterations in Trk expression as a driver in multiple tumor types has increased interest in their role in human cancers. Recently, first- and second-generation 11C and 18F-labeled Trk inhibitors, e.g., [18F]TRACK, have been developed. The goal of the present study was to analyze the direct interaction of [18F]TRACK with peripheral Trk receptors in vivo to prove its specificity for use as a functional imaging probe. METHODS In vitro uptake and competition experiments were carried out using the colorectal cancer cell line KM12. Dynamic PET experiments were performed with [18F]TRACK, either alone or in the presence of amitriptyline, an activator of Trk, entrectinib, a Trk inhibitor, or unlabeled reference compound TRACK in KM12 tumor-bearing athymic nude mice as well as B6129SF2/J and corresponding B6;129S2-Ntrk2tm1Bbd/J mice. Western blot and immunohistochemistry experiments were done with KM12 tumors, brown adipose tissue (BAT), and brain tissue samples. RESULTS Uptake of [18F]TRACK was increasing over time reaching 208 ± 72% radioactivity per mg protein (n = 6/2) after 60 min incubation time. Entrectinib and TRACK competitively blocked [18F]TRACK uptake in vitro (IC50 30.9 ± 3.6 and 29.4 ± 9.4 nM; both n = 6/2). [18F]TRACK showed uptake into KM12 tumors (SUVmean,60 min 0.43 ± 0.03; n = 6). Tumor-to-muscle ratio reached 0.9 (60 min) and 1.2 (120 min). In TrkB expressing BAT, [18F]TRACK uptake reached SUVmean,60 min 1.32 ± 0.08 (n = 7). Activation of Trk through amitriptyline resulted in a significant radioactivity increase of 21% in KM12 tumor (SUVmean,60 min from 0.53 ± 0.01 to 0.43 ± 0.03; n = 6; p < 0.05) and of 21% in BAT (SUVmean,60 min from 1.32 ± 0.08; n = 5 to 1.59 ± 0.07; n = 6; p < 0.05) respectively. Immunohistochemistry showed TrkB > TrkA expression on BAT fat cells, but TrkA > TrkB in whole brain. WB analysis showed sevenfold higher TrkB expression in BAT versus KM12 tumor tissue. CONCLUSION The present data show that radiotracer [18F]TRACK can target peripheral Trk receptors in human KM12 colon cancer as well as brown adipose tissue as confirmed through in vitro and in vivo blocking experiments. Higher TrkB versus TrkA protein expression was detected in brown adipose tissue of mice confirming a peripheral functional role of brain-derived neurotrophic factor in adipose tissue.
Collapse
Affiliation(s)
- Melinda Wuest
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Justin J. Bailey
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Jennifer Dufour
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Darryl Glubrecht
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada
| | - Vanessa Omana
- grid.14709.3b0000 0004 1936 8649The Neuro - Montreal Neurological Institute-Hospital, McGill University, Montreal, QC Canada
| | - Tom H. Johnston
- grid.231844.80000 0004 0474 0428Krembil Research Institute, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc., Toronto, ON Canada
| | - Jonathan M. Brotchie
- grid.231844.80000 0004 0474 0428Krembil Research Institute, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc., Toronto, ON Canada
| | - Ralf Schirrmacher
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2 Canada ,grid.17089.370000 0001 2190 316XDepartment of Oncology, Medical Isotope Cyclotron Facility, University of Alberta, 6820-116 St, South Campus, Edmonton, AB T6H 2V8 Canada
| |
Collapse
|
20
|
Ramaswamy P, Christopher R, Kumar Pal P, Debnath M, Yadav R. Plasma microRNAs as a Potential Biomarker for Identification of Progressive Supranuclear Palsy. Diagnostics (Basel) 2022; 12:diagnostics12051204. [PMID: 35626359 PMCID: PMC9139891 DOI: 10.3390/diagnostics12051204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is the second most common Parkinsonian disorder with complex etiology. The underlying molecular mechanism of PSP pathogenesis remains unclear. The present study aims to find the feasibility of using plasma miRNAs as novel biomarkers. Plasma-focused qPCR panels were used for microRNA profiling and identified differentially expressed microRNAs in PSP compared to controls. The DIANA-miRPath v3.0 was used to perform KEGG pathway analysis. We then confirmed the expression of selected candidates by RT-qPCR and their clinical utility was assessed by ROC analysis. Profiling data revealed 28 differentially expressed microRNAs in PSP. Five overexpressed miRNAs were selected for further analysis. The KEGG pathway analysis revealed 48 high-risk pathways. The study revealed that as a single marker—miR-19b-3p, miR-33a-5p, miR-130b-3p, miR-136-3p, and miR-210-3p had a specificity of 64.71%, 82.35%, 68.75%, 82.35%, and 70.59% at sensitivity 77.78%, 77.78%, 66.67%, 73.33%, and 66.67%, respectively. The result suggests that circulating plasma miRNAs were altered in PSP compared to control. The findings of this study may provide potential biomarkers and pathways associated with PSP. Further large-scale validation studies are required to confirm the same.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India; (P.R.); (P.K.P.)
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India;
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India; (P.R.); (P.K.P.)
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India;
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India; (P.R.); (P.K.P.)
- Correspondence:
| |
Collapse
|
21
|
Ahmed SH, El Ghareeb AEWA, El-Rahman HAA, Almaaty AHA. Impact of maternal desvenlafaxine exposure on brain development in pregnant albino rats and their fetuses. J Biochem Mol Toxicol 2022; 36:e23062. [PMID: 35363936 DOI: 10.1002/jbt.23062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Depression during pregnancy adversely affects fetal development. Desvenlafaxine drug is used for the treatment of gestational depression. In light of the well-established role of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in regulating neurogenesis and neural survival, the role of S100b in nerve cell energetic metabolism, differentiation of neurons and glial cells, an aberrant increase in NGF, BDNF and S100b expression in the fetal brain may contribute to desvenlafaxine cognitive disorders by altering brain development. This study is trying to determine the effect of desvenlafaxine on brain development. Thirty timed pregnant rats (from the 5th to the 20th day) were divided into three groups: control, low dose (5.14 mg/kg/day) and high dose (10.28 mg/kg/day) of desvenlafaxine where all animals received the corresponding doses by gavage. Maternal and fetal brain samples were fixed for histological, immunohistochemical (IHC) study of NGF and evaluated for BDNF and S100b genes expression. Desvenlafaxine induced some of the histopathological alterations in maternal and fetal rat brains. Moreover, IHC analysis of maternal and fetal rat brains showed that groups treated with desvenlafaxine demonstrated a significant increase of NGF protein immunoreactivity compared with that in the controls. Gene expression results revealed upregulation of messenger RNA BDNF and S100B expression. According to developmental changes in the brain, desvenlafaxine affects neonatal growth during pregnancy, which may lead to delay of brain development. So, it is essential to survey the roles of antidepressant drugs on neonatal development during pregnancy.
Collapse
Affiliation(s)
- Sarah H Ahmed
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| | | | | | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
22
|
Neurite Outgrowth-Promoting Compounds from Cockscomb Hydrolysate. Nutrients 2022; 14:nu14071422. [PMID: 35406035 PMCID: PMC9002945 DOI: 10.3390/nu14071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cockscomb hydrolysate was found to have neurite outgrowth-promoting activity in PC12 cells. To investigate the neurite outgrowth-promoting compounds derived from cockscomb hydrolysate, bioassay-guided purification was carried out. Purified active fractions were obtained by liquid–liquid partition, followed by column chromatography. High-performance liquid chromatography and proton nuclear magnetic resonance analyses of the purified active fractions clarified that the main compounds are threonine, alanine, valine, and methionine. By screening for 20 kinds of amino acids, it was shown that valine and methionine, but not threonine and alanine, have neurite outgrowth-promoting activity. The results of activity evaluation of the mixture of amino acids indicated that alanine enhanced the activity of valine and that the mixture of valine and methionine showed a higher ratio of neurite formation than did each of them alone. On the other hand, dipeptides formed by valine and methionine showed weak neurite outgrowth-promoting activity. A mixture of threonine, alanine, valine, and methionine at the same concentrations as those in cockscomb hydrolysate showed neurite outgrowth-promoting activity comparable to that of cockscomb hydrolysate although threonine, alanine, valine, and methionine alone did not show activity at their concentrations in cockscomb hydrolysate. Therefore, the strong neurite outgrowth-promoting activity of cockscomb hydrolysate was considered to be due to the synergistic effect of threonine, alanine, valine, and methionine.
Collapse
|
23
|
Ebrahimnejad M, Azizi P, Alipour V, Zarrindast MR, Vaseghi S. Complicated Role of Exercise in Modulating Memory: A Discussion of the Mechanisms Involved. Neurochem Res 2022; 47:1477-1490. [PMID: 35195832 DOI: 10.1007/s11064-022-03552-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Evidence has shown the beneficial effects of exercise on learning and memory. However, many studies have reported controversial results, indicating that exercise can impair learning and memory. In this article, we aimed to review basic studies reporting inconsistent complicated effects of exercise on memory in rodents. Also, we discussed the mechanisms involved in the effects of exercise on memory processes. In addition, we tried to find scientific answers to justify the inconsistent results. In this article, the role of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (involved in synaptic plasticity and neurogenesis), and vascular endothelial growth factor, nerve growth factor, insulin-like growth factor 1, inflammatory markers, apoptotic factors, and antioxidant system was discussed in the modulation of exercise effects on memory. The role of intensity and duration of exercise, and type of memory task was also investigated. We also mentioned to the interaction of exercise with the function of neurotransmitter systems, which complicates the prediction of exercise effect via altering the level of BDNF. Eventually, we suggested that changes in the function of neurotransmitter systems following different types of exercise (depending on exercise intensity or age of onset) should be investigated in further studies. It seems that exercise-induced changes in the function of neurotransmitter systems may have a stronger role than age, type of memory task, or exercise intensity in modulating memory. Importantly, high levels of interactions between neurotransmitter systems and BDNF play a critical role in the modulation of exercise effects on memory performance.
Collapse
Affiliation(s)
- Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Paniz Azizi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
24
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
25
|
Bahmani E, Hoseini R, Amiri E. Home-based Aerobic Training and Vitamin D Improve Neurotrophins and Inflammatory Biomarkers in MS Patients. Mult Scler Relat Disord 2022; 60:103693. [DOI: 10.1016/j.msard.2022.103693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022]
|
26
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
27
|
Begenisic T, Pavese C, Aiachini B, Nardone A, Rossi D. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair. Restor Neurol Neurosci 2021; 39:339-366. [PMID: 34657853 DOI: 10.3233/rnn-211169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.
Collapse
Affiliation(s)
- Tatjana Begenisic
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Beatrice Aiachini
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
28
|
Yu W, Yu W, Yang Y, Lü Y. Exploring the Key Genes and Identification of Potential Diagnosis Biomarkers in Alzheimer's Disease Using Bioinformatics Analysis. Front Aging Neurosci 2021; 13:602781. [PMID: 34194312 PMCID: PMC8236887 DOI: 10.3389/fnagi.2021.602781] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is one of the major threats of the twenty-first century and lacks available therapy. Identification of novel molecular markers for diagnosis and treatment of AD is urgently demanded, and genetic biomarkers show potential prospects. Method We identify and intersected differentially expressed genes (DEGs) from five microarray datasets to detect consensus DEGs. Based on these DEGs, we conducted Gene Ontology (GO), performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, constructed a protein—protein interaction (PPI) network, and utilized Cytoscape to identify hub genes. The least absolute shrinkage and selection operator (LASSO) logistic regression was applied to identify potential diagnostic biomarkers. Gene set enrichment analysis (GSEA) was performed to investigate the biological functions of the key genes. Result We identified 608 consensus DEGs, several dysregulated pathways, and 18 hub genes. Sixteen hub genes dysregulated as AD progressed. The diagnostic model of 35 genes was constructed, which has a high area under the curve (AUC) value in both the validation dataset and combined dataset (AUC = 0.992 and AUC = 0.985, respectively). The model can also differentiate mild cognitive impairment and AD patients from controls in two blood datasets. Brain-derived neurotrophic factor (BDNF) and WW domain-containing transcription regulator protein 1 (WWTR1), which are associated with the Braak stage, Aβ 42 levels, and β-secretase activity, were identified as critical genes of AD. Conclusion Our study identified 16 hub genes correlated to the neuropathological stage and 35 potential biomarkers for the diagnosis of AD. WWTR1 were identified as candidate genes for future studies. This study deepens our understanding of the transcriptomic and functional features and provides new potential diagnostic biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yan Yang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, College of Electrical Engineering, Chongqing University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Ali MA, Bhuiyan MH. Types of biomaterials useful in brain repair. Neurochem Int 2021; 146:105034. [PMID: 33789130 DOI: 10.1016/j.neuint.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials. This chapter will define and discuss the various types of biomaterials, their structures, and their function-properties features which would enable the development of next-generation biomaterials useful in brain repair.
Collapse
Affiliation(s)
- M Azam Ali
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| | - Mozammel Haque Bhuiyan
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
30
|
Evidence of p75 Neurotrophin Receptor Involvement in the Central Nervous System Pathogenesis of Classical Scrapie in Sheep and a Transgenic Mouse Model. Int J Mol Sci 2021; 22:ijms22052714. [PMID: 33800240 PMCID: PMC7962525 DOI: 10.3390/ijms22052714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurotrophins constitute a group of growth factor that exerts important functions in the nervous system of vertebrates. They act through two classes of transmembrane receptors: tyrosine-kinase receptors and the p75 neurotrophin receptor (p75NTR). The activation of p75NTR can favor cell survival or apoptosis depending on diverse factors. Several studies evidenced a link between p75NTR and the pathogenesis of prion diseases. In this study, we investigated the distribution of several neurotrophins and their receptors, including p75NTR, in the brain of naturally scrapie-affected sheep and experimentally infected ovinized transgenic mice and its correlation with other markers of prion disease. No evident changes in infected mice or sheep were observed regarding neurotrophins and their receptors except for the immunohistochemistry against p75NTR. Infected mice showed higher abundance of p75NTR immunostained cells than their non-infected counterparts. The astrocytic labeling correlated with other neuropathological alterations of prion disease. Confocal microscopy demonstrated the co-localization of p75NTR and the astrocytic marker GFAP, suggesting an involvement of astrocytes in p75NTR-mediated neurodegeneration. In contrast, p75NTR staining in sheep lacked astrocytic labeling. However, digital image analyses revealed increased labeling intensities in preclinical sheep compared with non-infected and terminal sheep in several brain nuclei. This suggests that this receptor is overexpressed in early stages of prion-related neurodegeneration in sheep. Our results confirm a role of p75NTR in the pathogenesis of classical ovine scrapie in both the natural host and in an experimental transgenic mouse model.
Collapse
|
31
|
Tiwari V, Mishra A, Singh S, Mishra SK, Sahu KK, Parul, Kulkarni MJ, Shukla R, Shukla S. Protriptyline improves spatial memory and reduces oxidative damage by regulating NFκB-BDNF/CREB signaling axis in streptozotocin-induced rat model of Alzheimer's disease. Brain Res 2021; 1754:147261. [PMID: 33422534 DOI: 10.1016/j.brainres.2020.147261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Antidepressants are well known to exert their role via upregulation of brain derived neurotrophic factor (BDNF). BDNF has been reported to exerts its neuroprotective effect in rodent and primate models as well as in patients of Alzheimer's disease (AD). The aim of our study was to evaluate the effect of protriptyline (PRT), a tricyclic antidepressant, in streptozotocin (STZ)- induced rat model of AD. Total 10 µl of STZ was injected into each ventricle (1 mg/kg). PRT (10 mg/kg, i.p.) treatment was started 3-day post STZ administration and continued till 21 days. We found that STZ treatment significantly increased pTau, Aβ42 and BACE-1 expression, oxidative stress and neurodegeneration in hippocampus and cortex of adult rats. STZ induced impairment in spatial learning and retention memory was associated with increased NFκB and reduced CREB and BDNF expression in cortex and hippocampus. Interestingly, PRT treatment significantly reduced pTau, Aβ42 and BACE-1 levels, neurodegeneration, oxidative stress and glial activation, contributing to the improved spatial learning and retention memory in STZ treated rats. Moreover, PRT treatment significantly improved p-ERK/ERK ratio and enhanced BDNF and CREB levels by reducing NFκB and GFAP expression in STZ treated rats. Our data suggest that impaired NFκB and CREB signaling potentially contribute in AD pathogenesis by elevating oxidative stress and neuroinflammation mediated neurodegeneration. Our study has established protriptyline as a multi target molecule in pre-clinical model of AD and further investigations on PRT like molecules could pave way for further development of effective new treatments in neurodegenerative disorders.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Mishra
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Sonu Singh
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Neuroscience, School of Medicine, University of Connecticut (Uconn) Health Center, 263 Farmington Avenue, L-4078, Farmington, CT 06030, USA
| | - Sandeep Kumar Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U. P, India
| | - Kiran Kumari Sahu
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Rakesh Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U. P, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
32
|
Ötzkan S, Muller WE, Gibson Wood W, Eckert GP. Effects of 7,8-Dihydroxyflavone on Lipid Isoprenoid and Rho Protein Levels in Brains of Aged C57BL/6 Mice. Neuromolecular Med 2020; 23:130-139. [PMID: 33377988 PMCID: PMC7929957 DOI: 10.1007/s12017-020-08640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Synaptic impairment may be the main cause of cognitive dysfunction in brain aging that is probably due to a reduction in synaptic contact between the axonal buttons and dendritic spines. Rho proteins including the small GTPase Rac1 have become key regulators of neuronal morphogenesis that supports synaptic plasticity. Small Rho- and Ras-GTPases are post-translationally modified by the isoprenoids geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), respectively. For all GTPases, anchoring in the plasma membrane is essential for their activation by guanine nucleotide exchange factors (GEFs). Rac1-specific GEFs include the protein T lymphoma invasion and metastasis 1 (Tiam1). Tiam1 interacts with the TrkB receptor to mediate the brain-derived neurotrophic factor (BDNF)-induced activation of Rac1, resulting in cytoskeletal rearrangement and changes in cellular morphology. The flavonoid 7,8-dihydroxyflavone (7,8-DHF) acts as a highly affine-selective TrkB receptor agonist and causes the dimerization and autophosphorylation of the TrkB receptor and thus the activation of downstream signaling pathways. In the current study, we investigated the effects of 7,8-DHF on cerebral lipid isoprenoid and Rho protein levels in male C57BL/6 mice aged 3 and 23 months. Aged mice were daily treated with 100 mg/kg b.w. 7,8-DHF by oral gavage for 21 days. FPP, GGPP, and cholesterol levels were determined in brain tissue. In the same tissue, the protein content of Tiam1 and TrkB in was measured. The cellular localization of the small Rho-GTPase Rac1 and small Rab-GTPase Rab3A was studied in total brain homogenates and membrane preparations. We report the novel finding that 7,8-DHF restored levels of the Rho proteins Rac1 and Rab3A in membrane preparations isolated from brains of treated aged mice. The selective TrkB agonist 7,8-DHF did not affect BDNF and TrkB levels, but restored Tiam1 levels that were found to be reduced in brains of aged mice. FPP, GGPP, and cholesterol levels were significantly elevated in brains of aged mice but not changed by 7,8-DHF treatment. Hence, 7,8-DHF may be useful as pharmacological tool to treat age-related cognitive dysfunction although the underlying mechanisms need to be elucidated in detail.
Collapse
Affiliation(s)
- Sarah Ötzkan
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany
| | - Walter E Muller
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany
| | - W Gibson Wood
- Department of Pharmacology, Geriatric Research, Education and Clinical Center, University of Minnesota School of Medicine, VAMC, Minneapolis, MN, 55417, USA
| | - Gunter P Eckert
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany.
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
33
|
Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem Neurosci 2020; 11:4073-4091. [PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Nurken Berdigaliyev
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yuin Chang
- Faculty of Applied Sciences, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Peripheral blood levels of brain-derived neurotrophic factor in patients with post-traumatic stress disorder (PTSD): A systematic review and meta-analysis. PLoS One 2020; 15:e0241928. [PMID: 33152026 PMCID: PMC7644072 DOI: 10.1371/journal.pone.0241928] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) plays a crucial role in the survival, differentiation, growth, and plasticity of the central nervous system (CNS). Post-traumatic stress disorder (PTSD) is a complex syndrome that affects CNS function. Evidence indicates that changes in peripheral levels of BDNF may interfere with stress. However, the results are mixed. This study investigates whether blood levels of BDNF in patients with post-traumatic stress disorder (PTSD) are different. METHODS We conducted a systematic search in the major electronic medical databases from inception through September 2019 and identified Observational studies that measured serum levels of BDNF in patients with PTSD compared to controls without PTSD. RESULTS 20 studies were eligible to be included in the present meta-analysis. Subjects with PTSD (n = 909) showed lower BDNF levels compared to Non-PTSD controls (n = 1679) (SMD = 0.52; 95% confidence interval: 0.18 to 0.85). Subgroup meta-analyses confirmed higher levels of BDNF in patients with PTSD compared to non-PTSD controls in plasma, not serum, and in studies that used sandwich ELISA, not ELISA, for BDNF measurement. Meta-regressions showed no significant effect of age, gender, NOS, and sample size. CONCLUSIONS PTSD patients had increased serum BDNF levels compared to healthy controls. Our finding of higher BDNF levels in patients with PTSD supports the notion that PTSD is a neuroplastic disorder.
Collapse
|
35
|
Terashima T, Kobashi S, Watanabe Y, Nakanishi M, Honda N, Katagi M, Ohashi N, Kojima H. Enhancing the Therapeutic Efficacy of Bone Marrow-Derived Mononuclear Cells with Growth Factor-Expressing Mesenchymal Stem Cells for ALS in Mice. iScience 2020; 23:101764. [PMID: 33251493 PMCID: PMC7677706 DOI: 10.1016/j.isci.2020.101764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Several treatments have been attempted in amyotrophic lateral sclerosis (ALS) animal models and patients. Recently, transplantation of bone marrow-derived mononuclear cells (MNCs) was investigated as a regenerative therapy for ALS, but satisfactory treatments remain to be established. To develop an effective treatment, we focused on mesenchymal stem cells (MSCs) expressing hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor using human artificial chromosome vector (HAC-MSCs). Here, we demonstrated the transplantation of MNCs with HAC-MSCs in ALS mice. As per our results, the progression of motor dysfunction was significantly delayed, and their survival was prolonged dramatically. Additional analysis revealed preservation of motor neurons, suppression of gliosis, engraftment of numerous MNCs, and elevated chemotaxis-related cytokines in the spinal cord of treated mice. Therefore, growth factor-expressing MSCs enhance the therapeutic effects of bone marrow-derived MNCs for ALS and have a high potential as a novel cell therapy for patients with ALS. MNCs with growth factor-expressing MSCs is an effective cell therapy for ALS mice The MSCs enhance therapeutic effects by migration of MNCs into ALS mice spinal cord This cell therapy suppresses neuronal loss and gliosis in ALS mice spinal cord This cell therapy induces several cytokines expression in ALS mice spinal cord
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yasuhiro Watanabe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Mami Nakanishi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Naoto Honda
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
36
|
Zhang J, Chen Z, Luo X, Yang Z. TrkC Overexpression Protects Sevoflurane-Induced Neurotoxicity in Human Induced Pluripotent Stem Cell-Derived Neurons. Dev Neurosci 2020; 42:105-113. [PMID: 33105134 DOI: 10.1159/000510326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inhaled anesthetic sevoflurane (SEVO) may induce cortical neurotoxicity and memory dysfunction in both animals and humans. In this study, we investigated the toxic effects of SEVO on human induced pluripotent stem cell (iPS)-derived neurons. METHODS Human iPS-derived neurons were exposed to SEVO in vitro. SEVO-induced toxic effects were examined with the viability, live caspase 3/7, and neurite density assays, respectively. The effects of SEVO on the receptors of the tyrosine kinases TrkA, TrkB, and TrkC were assessed by qRT-PCR. TrkA, TrkB, and TrkC were ectopically overexpressed in human iPS-derived neurons. Their functional effects on SEVO-induced human iPS-derived neuron toxicity were further investigated. RESULTS SEVO induced dose-dependent cell death, caspase 3/7 elevation, neurite degeneration, and the downregulation of Trk receptors in human iPS-derived neurons. Adenovirus-mediated Trk receptor overexpression selectively upregulated endogenous TrkA, TrkB, or TrkC gene expressions in human iPS-derived neurons. Specifically, TrkC overexpression, but not TrkA or TrkB overexpression was found to overcome the neurotoxic effects of SEVO in human iPS-derived neurons. CONCLUSIONS SEVO may induce neurotoxicity in human iPS-derived neurons, and its neurotoxic damage could be protected by the overexpression of TrkC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, Xianyang Rainbow Hospital, Xianyang, China
| | - Zhifu Chen
- Department of Anesthesiology, Baoji People's Hospital, Baoji, China
| | - Xiaoyan Luo
- Department of Anesthesiology, Yangling Demonstration Zone Hospital, Xianyang, China
| | - Zhoujing Yang
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China,
| |
Collapse
|
37
|
Neurite Outgrowth-Promoting Activity of Compounds in PC12 Cells from Sunflower Seeds. Molecules 2020; 25:molecules25204748. [PMID: 33081156 PMCID: PMC7587564 DOI: 10.3390/molecules25204748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
In the current super-aging society, the establishment of methods for prevention and treatment of Alzheimer’s disease (AD) is an urgent task. One of the causes of AD is thought to be a decrease in the revel of nerve growth factor (NGF) in the brain. Compounds showing NGF-mimicking activity and NGF-enhancing activity have been examined as possible agents for improving symptoms. In the present study, sunflower seed extract was found to have neurite outgrowth-promoting activity, which is an NGF-enhancing activity, in PC12 cells. To investigate neurite outgrowth-promoting compounds from sunflower seed extract, bioassay-guided purification was carried out. The purified active fraction was obtained by liquid-liquid partition followed by some column chromatographies. Proton nuclear magnetic resonance and gas chromatography-mass spectrometry analyses of the purified active fraction indicated that the fraction was a mixture of β-sitosterol, stigmasterol and campesterol, with β-sitosterol being the main component. Neurite outgrowth-promoting activities of β-sitosterol, stigmasterol, campesterol and cholesterol were evaluated in PC12 cells. β-Sitosterol and stigmasterol showed the strongest activity of the four sterol compounds (β-sitosterol ≈ stigmasterol > campesterol > cholesterol), and cholesterol did not show any activity. The results indicated that β-sitosterol was the major component responsible for the neurite outgrowth-promoting activity of sunflower seeds. Results of immunostaining also showed that promotion by β-sitosterol of neurite formation induced by NGF was accompanied by neurofilament expression. β-Sitosterol, which showed NGF-enhancing activity, might be a candidate ingredient in food for prevention of AD.
Collapse
|
38
|
Darweesh AE, Agban M, Mohammed MH, Gabra RH. Association between opioid use disorder (tramadol) and serum level of interleukin-2. MIDDLE EAST CURRENT PSYCHIATRY 2020. [DOI: 10.1186/s43045-020-00037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tramadol hydrochloride is a centrally acting analgesic drug that has turned out to be a drug of growing interest due to its success in the management of pain in humans. By considering the twin mechanism of action of tramadol, as the activation of the opioid and of the monoaminergic systems, the potential immunological effects of this drug should be considered and be evaluated. Studies show that Tramadol induces an improvement of postoperative immune suppression and increases NK cell activity, lymphocyte proliferation, and IL-2 production which may be linked to its addictive potentiality. The present study aims to investigate the possible association between opioid use disorder (tramadol) and the serum level of interleukin-2 (IL-2).
An observational cross sectional study conducted at the Outpatient Clinic and Inpatient Unit of the Addiction Management Unit of the Neurology and Psychiatry Department of Assiut University Hospital. Assessment of serum level of IL-2 for 59 male patients diagnosed with opioid use disorder (tramadol) according to DSM-5 compared to 32 cross-matched male individuals as a control group.
Results
Comparing the serum level of IL-2 in patients with opioid use disorder (tramadol) with that of the controls, it was found that the patients with opioid use disorder (tramadol) have significantly higher serum level of IL-2 (318.69 ± 35.89) than that of controls (260.45 ± 30.08) (P = 0.01). Patients with tramadol urine assay (> 200 ng/ml) have significantly higher serum level of IL-2.
Conclusion
The current study found that patients with opioid use disorder (tramadol) have significantly elevated serum levels of IL-2 than healthy controls. Also, this elevation was dose related.
Collapse
|
39
|
Botanical Therapeutics for Parkinson’s Disease. Chin J Integr Med 2020; 26:405-411. [DOI: 10.1007/s11655-020-3096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
40
|
Woo Y, Lim JS, Oh J, Lee JS, Kim JS. Neuroprotective Effects of Euonymus alatus Extract on Scopolamine-Induced Memory Deficits in Mice. Antioxidants (Basel) 2020; 9:antiox9050449. [PMID: 32456069 PMCID: PMC7278771 DOI: 10.3390/antiox9050449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Euonymus alatus is considered to elicit various beneficial effects against cancer, hyperglycemia, menstrual discomfort, diabetic complications, and detoxification. The young leaves of this plant are exploited as food and also utilized for traditional medicine in East Asian countries, including Korea and China. Our preliminary study demonstrated that ethanolic extract from the Euonymus alatus leaf (EAE) exhibited the strongest antioxidant enzyme-inducing activity among more than 100 kinds of edible tree leaf extracts. This study investigated whether EAE could attenuate the cognitive deficits caused by oxidative stress in mice. Oral intubation of EAE at 100 mg/kg bw or higher resulted in significant improvements to the memory and behavioral impairment induced via i.p. injection of scopolamine. Furthermore, EAE enhanced the expression levels of hippocampal neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor in mice, activated the Nrf2, and the downstream heme oxygenase-1 (HO-1) a quintessential antioxidant enzyme. As rutin (quercetin-3-O-rutinose) was abundantly present in EAE and free quercetin was able to induce defensive antioxidant enzymes in an Nrf2-dependent manner, our findings suggested that quercetin derived from rutin via the intestinal microflora played a significant role in the protection of the mouse hippocampus from scopolamine-induced damage through BDNF-mediated Nrf2 activation, thereby dampening cognitive decline.
Collapse
Affiliation(s)
- Yunju Woo
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Ji Sun Lim
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Jisun Oh
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| | - Jeong Soon Lee
- Forest Resources Development Institute of Gyeongsangbuk-do, Andong 36605, Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 plus) and Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
41
|
Lejri I, Grimm A, Eckert A. Ginkgo biloba extract increases neurite outgrowth and activates the Akt/mTOR pathway. PLoS One 2019; 14:e0225761. [PMID: 31790465 PMCID: PMC6886765 DOI: 10.1371/journal.pone.0225761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Standardized Ginkgo biloba extract (GBE) has demonstrated efficacy in the cognitive functional neuropsychiatric symptoms of patients with Alzheimer's disease (AD). With regard to its underlying molecular mode of action, first evidence was provided that GBE was able to modulate neuronal outgrowth in vitro, but the mechanisms underlying GBE effects on neuroplasticity remain unclear. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the effect of GBE on neurite outgrowth using SH-SY5Y neuroblastoma cells in a 2D and 3D surface culture. The effects of the GBE LI1370 on neuroplasticity and neurite outgrowth were compared to those of nerve growth factor (NGF, 50 ng/ml) which was used as a positive control. We evaluated several parameters of neurite outgrowth such as the neurite number, total neurite length and extend of branching. Our findings showed that GBE (10 and 100 μg/ml) significantly increased neurite outgrowth in the 2D as well as 3D culture model after 3 days of treatment with a comparable effect than that NGF. The use of the 3D cell culture allowed us to better reproduce the in vivo neuronal microenvironment for the evaluation the neurite formation after GBE treatment. In addition, we assessed the effects of GBE on the Akt/mTOR pathway, which is known to promote neuroplasticity induced by nerve growth factors. We showed that GBE treatment induced an increase of phosphorylated IGF1R (Tyr1135/Tyr1136), Akt (Ser473), TSC2 (Ser939), mTOR (Ser2448), PTEN (Ser380) and GSK3β (Ser9). CONCLUSION Together, these findings indicate that GBE promotes neurite growth and activates the PI3K/Akt/mTOR pathway suggesting that this plant extract supports neuronal plasticity.
Collapse
Affiliation(s)
- Imane Lejri
- University of Basel, Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- University of Basel, Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Anne Eckert
- University of Basel, Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Psychiatric University Clinics, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Front Neurosci 2019; 13:790. [PMID: 31427916 PMCID: PMC6688532 DOI: 10.3389/fnins.2019.00790] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions.
Collapse
Affiliation(s)
- Josh Houlton
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simon F. R. Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Petone, New Zealand
| | - Andrew N. Clarkson
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
43
|
Kumar B, Murali A, Giri S. Upconversion Nanoplatform for FRET‐Based Sensing of Dopamine and pH. ChemistrySelect 2019. [DOI: 10.1002/slct.201803966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Balmiki Kumar
- Department of ChemistryNational Institute of Technology, Rourkela Odisha- 769008 India
| | - Aparna Murali
- Department of Biotechnology and Medical EngineeringNational Institute of Technology, Rourkela Odisha- 769008 India
| | - Supratim Giri
- Department of ChemistryNational Institute of Technology, Rourkela Odisha- 769008 India
| |
Collapse
|
44
|
Yurteri N, Şahin İE, Tufan AE. Altered serum levels of vascular endothelial growth factor and glial-derived neurotrophic factor but not fibroblast growth factor-2 in treatment-naive children with attention deficit/hyperactivity disorder. Nord J Psychiatry 2019; 73:302-307. [PMID: 31170860 DOI: 10.1080/08039488.2019.1625437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background and aim: Recent evidence suggests that growth factors might be involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The aim of this study was to determine whether serum levels of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF) were altered in children with ADHD. Methods: Serum levels of BDNF, GDNF, NT-3, NGF, VEGF and FGF-2 were analyzed in 49 treatment- naive children with ADHD and age, gender matched 36 healthy controls using enzyme-linked immunosorbent assay. ADHD symptoms were scored by Du Paul ADHD Rating Scale and Strengths and Difficulties Questionnaire. Results: We found that serum VEGF levels were significantly lower (p < 0.001) and GDNF levels were significantly higher in ADHD group compared to control group (p = 0.003). However, we found no correlations between ADHD symptoms and serum VEGF or GDNF levels. Furthermore, we observed no significant alterations in serum BDNF, NT-3, NGF, FGF-2 levels in children with ADHD. Conclusion: To our knowledge, the present study is the first to examine serum VEGF and FGF-2 levels in children with ADHD. Our results indicate that VEGF and GDNF might be involved in the etiology of ADHD. Further studies are required to determine the role of growth factors in the etiology and consequently in the treatment of ADHD.
Collapse
Affiliation(s)
- Nihal Yurteri
- a Department of Child and Adolescent Psychiatry , Düzce University Medical Faculty , Düzce , Turkey
| | - İbrahim Ethem Şahin
- b Department of Clinical Biochemistry , Düzce University Medical Faculty , Düzce , Turkey
| | - Ali Evren Tufan
- c Department of Child and Adolescent Psychiatry , Acıbadem Mehmet Ali Aydinlar University Medical Faculty , İstanbul , Turkey
| |
Collapse
|
45
|
Auti ST, Kulkarni YA. Neuroprotective Effect of Cardamom Oil Against Aluminum Induced Neurotoxicity in Rats. Front Neurol 2019; 10:399. [PMID: 31114535 PMCID: PMC6502995 DOI: 10.3389/fneur.2019.00399] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase (AChE) is an enzyme involved in the progression of Alzheimer's disease (AD). Cardamom oil (CO) has been reported to have acetylcholinesterase inhibitory, antioxidant and anti-anxiety effects. Hence, we studied the effect of cardamom oil in aluminum chloride induced neurotoxicity in rats. AD like symptoms were induced in Wistar rats with aluminum chloride (100 mg/kg, p.o.). Cardamom oil was administered concomitantly by oral route at doses of 100 and 200 mg/kg for 42 days. Behavioral parameters like Morris water maze, elevated plus maze, passive avoidance test and locomotor activity were evaluated on day 21 and 42. AChE activity, oxidative stress parameters, histopathological studies and immunohistochemistry studies were carried out in hippocampus and cortex. Cardamom oil treatment showed significant improvement in behavioral parameters, inhibition of AChE activity (p < 0.001) and reduction in oxidative stress in the brain. Histopathological studies of hippocampus and cortex by hematoxylin & eosin (H. & E.) and congo red stain showed inhibition of neuronal damage and amyloid β plaque formation with cardamom oil treatment. Immunohistochemistry showed, CO treatment inhibited amyloid β expression and upregulated brain-derived neurotrophic factor (BDNF). The present study showed that, cardamom oil has neuroprotective effect in aluminum chloride induced neurotoxicity linked with inhibition of AChE activity and reduction in oxidative damage. This effect of cardamom oil may be useful in management of Alzheimer's disease.
Collapse
Affiliation(s)
- Sandip T Auti
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
46
|
Meng J, Zhang Q, Yang C, Xiao L, Xue Z, Zhu J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front Pharmacol 2019; 10:365. [PMID: 31024320 PMCID: PMC6465602 DOI: 10.3389/fphar.2019.00365] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe, toxic side effect that frequently occurs in anticancer treatment and may result in discontinuation of treatment as well as a serious reduction in life quality. The CIPN incidence rate is as high as 85–90%. Unfortunately, there is currently no standard evidence-based CIPN treatment. In several clinical trials, it has been reported that duloxetine can improve CIPN pain induced by oxaliplatin (OXA) and paclitaxel (PTX); thus, The American Society of Clinical Oncology (ASCO) recommends duloxetine as the only potential treatment for CIPN. However, this guidance lacks the support of sufficient evidence. Our study shows that duloxetine markedly reduces neuropathic pain evoked by OXA or PTX. Duloxetine acts by inhibiting the activation of p38 phosphorylation, thus preventing the activation and nuclear translocation of the NF-κB transcription factor, reducing the inflammatory response and inhibiting nerve injury by regulating nerve growth factor (NGF). Furthermore, in this study, it is shown that duloxetine does not affect the antitumor activity of OXA or PTX. This study not only provides biological evidence to support the use of duloxetine as the first standard CIPN drug but will also lead to potential new targets for CIPN drug development.
Collapse
Affiliation(s)
- Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Xiao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenzhen Xue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
47
|
Wang H, Wang G, Zhu LD, Xu X, Diao B, Zhang HY. Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model. QUANTITATIVE BIOLOGY 2018. [DOI: 10.1007/s40484-018-0159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
de Frutos-Lucas J, López-Sanz D, Zuluaga P, Rodríguez-Rojo IC, Luna R, López ME, Delgado-Losada ML, Marcos A, Barabash A, López-Higes R, Maestú F, Fernández A. Physical activity effects on the individual alpha peak frequency of older adults with and without genetic risk factors for Alzheimer’s Disease: A MEG study. Clin Neurophysiol 2018; 129:1981-1989. [DOI: 10.1016/j.clinph.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 11/30/2022]
|
49
|
Kalinowska-Łyszczarz A, Pawlak MA, Wyciszkiewicz A, Osztynowicz K, Kozubski W, Michalak S. Immune-cell BDNF expression in treatment-naïve relapsing-remitting multiple sclerosis patients and following one year of immunomodulation therapy. Neurol Neurochir Pol 2018; 52:483-489. [PMID: 29643001 DOI: 10.1016/j.pjnns.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Although neurons are the main source of neurotrophins in the healthy brain, neurotrophins can also be expressed in the immune system. We have previously shown that in relapsing-remitting multiple sclerosis (RRMS) lower immune-cell neurotrophin levels are associated with brain atrophy and cognitive impairment. The aim of the present study was to assess if immune-cell neurotrophin expression is impaired in MS as compared with the healthy controls, and to describe if these levels change in treatment-naïve RRMS patients, following one year of immunomodulation. Fifty treatment-naïve RRMS patients were assessed at baseline and after one year of immunomodulation (beta-interferons/glatiramer acetate). The control group included 39 healthy subjects matched according to age and gender. Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized blood using Ficoll-Histopaque gradient. The levels of brain-derived-neurotrophic-factor (BDNF), beta-nerve-growth-factor (beta-NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) were measured in PBMC lysates with ELISA. BDNF levels were significantly lower in MS than in the healthy controls (median 613 vs. 1657pg/mg protein, p<0.001). After one year of immunomodulation, BDNF expression did not change significantly (p=0.06) on the group level. In 70% of patients there was no increase in BDNF level, and in 30% it increased. We observed no differences between treatment groups. Other neurotrophins were detected in a minority of MS samples (as opposed to the controls). To conclude, we have shown that immune-cell production of neurotrophins is impaired in MS patients. In our MS cohort standard immunomodulation failed to restore normal BDNF levels in PBMCs within one year of therapy.
Collapse
Affiliation(s)
- Alicja Kalinowska-Łyszczarz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences, 34 Dojazd Street, 60-631 Poznan, Poland.
| | - Aleksandra Wyciszkiewicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Krystyna Osztynowicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Sławomir Michalak
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| |
Collapse
|
50
|
From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|