1
|
Lim D, Tapella L, Dematteis G, Genazzani AA, Corazzari M, Verkhratsky A. The endoplasmic reticulum stress and unfolded protein response in Alzheimer's disease: a calcium dyshomeostasis perspective. Ageing Res Rev 2023; 87:101914. [PMID: 36948230 DOI: 10.1016/j.arr.2023.101914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Protein misfolding is prominent in early cellular pathology of Alzheimer's disease (AD), implicating pathophysiological significance of endoplasmic reticulum stress/unfolded protein response (ER stress/UPR) and highlighting it as a target for drug development. Experimental data from animal AD models and observations on human specimens are, however, inconsistent. ER stress and associated UPR are readily observed in in vitro AD cellular models and in some AD model animals. In the human brain, components and markers of ER stress as well as UPR transducers are observed at Braak stages III-VI associated with severe neuropathology and neuronal death. The picture, however, is further complicated by the brain region- and cell type-specificity of the AD-related pathology. Terms 'disturbed' or 'non-canonical' ER stress/UPR were used to describe the discrepancies between experimental data and the classic ER stress/UPR cascade. Here we discuss possible 'disturbing' or 'interfering' factors which may modify ER stress/UPR in the early AD pathogenesis. We focus on the dysregulation of the ER Ca2+ homeostasis, store-operated Ca2+ entry, and the interaction between the ER and mitochondria. We suggest that a detailed study of the CNS cell type-specific alterations of Ca2+ homeostasis in early AD may deepen our understanding of AD-related dysproteostasis.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale "Amedeo Avogadro"
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Schulte A, Blum R. Shaped by leaky ER: Homeostatic Ca2+ fluxes. Front Physiol 2022; 13:972104. [PMID: 36160838 PMCID: PMC9491824 DOI: 10.3389/fphys.2022.972104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
At any moment in time, cells coordinate and balance their calcium ion (Ca2+) fluxes. The term ‘Ca2+ homeostasis’ suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca2+ imaging shows that resting Ca2+ levels are maintained by surprisingly dynamic Ca2+ fluxes between the ER Ca2+ store, the cytosol, and the extracellular space. The data show that the ER Ca2+ leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca2+ dynamics. Based on simplistic Ca2+ toolkit models, we discuss how the ER Ca2+ leak could contribute to evolutionarily conserved Ca2+ phenomena such as Ca2+ entry, ER Ca2+ release, and Ca2+ oscillations.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: Robert Blum,
| |
Collapse
|
3
|
Reiche MA, Aaron JS, Boehm U, DeSantis MC, Hobson CM, Khuon S, Lee RM, Chew TL. When light meets biology - how the specimen affects quantitative microscopy. J Cell Sci 2022; 135:274812. [PMID: 35319069 DOI: 10.1242/jcs.259656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging. Here, we consider how the interplay between light and a sample can cause common experimental pitfalls and unanticipated errors when drawing biological conclusions. Although some of these discrepancies can be minimized or controlled for, others require more pragmatic considerations when interpreting image data. Ultimately, the power lies in the hands of the experimenter. The goal of this Review is therefore to survey how biological samples can skew quantification and interpretation of microscopy data. Furthermore, we offer a perspective on how to manage many of these potential pitfalls.
Collapse
Affiliation(s)
- Michael A Reiche
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Ulrike Boehm
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Michael C DeSantis
- Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA.,Light Microscopy Facility, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147,USA
| |
Collapse
|
4
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
5
|
Preissler S, Rato C, Yan Y, Perera LA, Czako A, Ron D. Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising BiP-substrate complexes. eLife 2020; 9:62601. [PMID: 33295873 PMCID: PMC7758071 DOI: 10.7554/elife.62601] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
The metazoan endoplasmic reticulum (ER) serves both as a hub for maturation of secreted proteins and as an intracellular calcium storage compartment, facilitating calcium-release-dependent cellular processes. ER calcium depletion robustly activates the unfolded protein response (UPR). However, it is unclear how fluctuations in ER calcium impact organellar proteostasis. Here, we report that calcium selectively affects the dynamics of the abundant metazoan ER Hsp70 chaperone BiP, by enhancing its affinity for ADP. In the calcium-replete ER, ADP rebinding to post-ATP hydrolysis BiP-substrate complexes competes with ATP binding during both spontaneous and co-chaperone-assisted nucleotide exchange, favouring substrate retention. Conversely, in the calcium-depleted ER, relative acceleration of ADP-to-ATP exchange favours substrate release. These findings explain the rapid dissociation of certain substrates from BiP observed in the calcium-depleted ER and suggest a mechanism for tuning ER quality control and coupling UPR activity to signals that mobilise ER calcium in secretory cells.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Perera
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Aron Czako
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
High-Throughput Fluorescence Assays for Ion Channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:27-72. [DOI: 10.1007/978-3-030-12457-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Okubo Y, Iino M. Visualization of astrocytic intracellular Ca 2+ mobilization. J Physiol 2019; 598:1671-1681. [PMID: 30825213 DOI: 10.1113/jp277609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/06/2019] [Indexed: 11/08/2022] Open
Abstract
Astrocytes generate robust intracellular Ca2+ concentration changes (Ca2+ signals), which are assumed to regulate astrocytic functions that play crucial roles in the regulation of brain functions. One frequently used strategy for exploring the role of astrocytic Ca2+ signalling is the use of mice deficient in the type 2 inositol 1,4,5-trisphosphate receptor (IP3 R2). These IP3 R2-knockout (KO) mice are reportedly devoid of Ca2+ mobilization from the endoplasmic reticulum (ER) in astrocytes. However, they have shown no functional deficits in several studies, causing a heated debate as to the functional relevance of ER-mediated Ca2+ signalling in astrocytes. Recently, the assumption that Ca2+ mobilization from the ER is absent in IP3 R2-KO astrocytes has been re-evaluated using intraorganellar Ca2+ imaging techniques. The new results indicated that IP3 R2-independent Ca2+ release may generate Ca2+ nanodomains around the ER, which may help explain the absence of functional deficits in IP3 R2-KO mice.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 133-0033, Japan
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| |
Collapse
|
9
|
Ashhad S, Narayanan R. Stores, Channels, Glue, and Trees: Active Glial and Active Dendritic Physiology. Mol Neurobiol 2019; 56:2278-2299. [PMID: 30014322 PMCID: PMC6394607 DOI: 10.1007/s12035-018-1223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Glial cells and neuronal dendrites were historically assumed to be passive structures that play only supportive physiological roles, with no active contribution to information processing in the central nervous system. Research spanning the past few decades has clearly established this assumption to be far from physiological realities. Whereas the discovery of active channel conductances and their localized plasticity was the turning point for dendritic structures, the demonstration that glial cells release transmitter molecules and communicate across the neuroglia syncytium through calcium wave propagation constituted path-breaking discoveries for glial cell physiology. An additional commonality between these two structures is the ability of calcium stores within their endoplasmic reticulum (ER) to support active propagation of calcium waves, which play crucial roles in the spatiotemporal integration of information within and across cells. Although there have been several demonstrations of regulatory roles of glial cells and dendritic structures in achieving common physiological goals such as information propagation and adaptability through plasticity, studies assessing physiological interactions between these two active structures have been few and far. This lacuna is especially striking given the strong connectivity that is known to exist between these two structures through several complex and tightly intercoupled mechanisms that also recruit their respective ER structures. In this review, we present brief overviews of the parallel literatures on active dendrites and active glial physiology and make a strong case for future studies to directly assess the strong interactions between these two structures in regulating physiology and pathophysiology of the brain.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
10
|
A Colorimetric Selective Sensing Probe for Calcium Ions with Tunable Dynamic Ranges Using Glutathione Modified Gold Nanoparticles. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang H, Zhai N, Chen Y, Xu H, Huang K. Cadmium induces Ca 2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells. J Inorg Biochem 2017; 172:16-22. [DOI: 10.1016/j.jinorgbio.2017.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/15/2023]
|
12
|
Tang J, Guo YS, Yu XL, Huang W, Zheng M, Zhou YH, Nan G, Wang JC, Yang HJ, Yu JM, Jiang JL, Chen ZN. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma. Oncotarget 2016; 6:34831-45. [PMID: 26498680 PMCID: PMC4741493 DOI: 10.18632/oncotarget.5225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022] Open
Abstract
Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+ refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.
Collapse
Affiliation(s)
- Juan Tang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yun-Shan Guo
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Ling Yu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Wan Huang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ming Zheng
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ying-Hui Zhou
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Gang Nan
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jian-Chao Wang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Hai-Jiao Yang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jing-Min Yu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jian-Li Jiang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder that has no known cure, nor is there a clear mechanistic understanding of the disease process itself. Although amyloid plaques, neurofibrillary tangles, and cognitive decline are late-stage markers of the disease, it is unclear how they are initially generated, and if they represent a cause, effect, or end phase in the pathology process. Recent studies in AD models have identified marked dysregulations in calcium signaling and related downstream pathways, which occur long before the diagnostic histopathological or cognitive changes. Under normal conditions, intracellular calcium signals are coupled to effectors that maintain a healthy physiological state. Consequently, sustained up-regulation of calcium may have pathophysiological consequences. Indeed, upon reviewing the current body of literature, increased calcium levels are functionally linked to the major features and risk factors of AD: ApoE4 expression, presenilin and APP mutations, beta amyloid plaques, hyperphosphorylation of tau, apoptosis, and synaptic dysfunction. In turn, the histopathological features of AD, once formed, are capable of further increasing calcium levels, leading to a rapid feed-forward acceleration once the disease process has taken hold. The views proposed here consider that AD pathogenesis reflects long-term calcium dysregulations that ultimately serve an enabling role in the disease process. Therefore, “Calcinists” do not necessarily reject βAptist or Tauist doctrine, but rather believe that their genesis is associated with earlier calcium signaling dysregulations. NEUROSCIENTIST 13(5):546—559, 2007.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
14
|
Ca2+ Diffusion through Endoplasmic Reticulum Supports Elevated Intraterminal Ca2+ Levels Needed to Sustain Synaptic Release from Rods in Darkness. J Neurosci 2015; 35:11364-73. [PMID: 26269643 DOI: 10.1523/jneurosci.0754-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In addition to vesicle release at synaptic ribbons, rod photoreceptors are capable of substantial slow release at non-ribbon release sites triggered by Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores. To maintain CICR as rods remain depolarized in darkness, we hypothesized that Ca(2+) released into the cytoplasm from terminal endoplasmic reticulum (ER) can be replenished continuously by ions diffusing within the ER from the soma. We measured [Ca(2+)] changes in cytoplasm and ER of rods from Ambystoma tigrinum retina using various dyes. ER [Ca(2+)] changes were measured by loading ER with fluo-5N and then washing dye from the cytoplasm with a dye-free patch pipette solution. Small dye molecules diffused within ER between soma and terminal showing a single continuous ER compartment. Depolarization of rods to -40 mV depleted Ca(2+) from terminal ER, followed by a decline in somatic ER [Ca(2+)]. Local activation of ryanodine receptors in terminals with a spatially confined puff of ryanodine caused a decline in terminal ER [Ca(2+)], followed by a secondary decrease in somatic ER. Localized photolytic uncaging of Ca(2+) from o-nitrophenyl-EGTA in somatic ER caused an abrupt Ca(2+) increase in somatic ER, followed by a slower Ca(2+) increase in terminal ER. These data suggest that, during maintained depolarization, a soma-to-terminal [Ca(2+)] gradient develops within the ER that promotes diffusion of Ca(2+) ions to resupply intraterminal ER Ca(2+) stores and thus sustain CICR-mediated synaptic release. The ability of Ca(2+) to move freely through the ER may also promote bidirectional communication of Ca(2+) changes between soma and terminal. SIGNIFICANCE STATEMENT Vertebrate rod and cone photoreceptors both release vesicles at synaptic ribbons, but rods also exhibit substantial slow release at non-ribbon sites triggered by Ca(2+)-induced Ca(2+) release (CICR). Blocking CICR inhibits >50% of release from rods in darkness. How do rods maintain sufficiently high [Ca(2+)] in terminal endoplasmic reticulum (ER) to support sustained CICR-driven synaptic transmission? We show that maintained depolarization creates a [Ca(2+)] gradient within the rod ER lumen that promotes soma-to-terminal diffusion of Ca(2+) to replenish intraterminal ER stores. This mechanism allows CICR-triggered synaptic release to be sustained indefinitely while rods remain depolarized in darkness. Free diffusion of Ca(2+) within the ER may also communicate synaptic Ca(2+) changes back to the soma to influence other critical cell processes.
Collapse
|
15
|
Henderson MJ, Baldwin HA, Werley CA, Boccardo S, Whitaker LR, Yan X, Holt GT, Schreiter ER, Looger LL, Cohen AE, Kim DS, Harvey BK. A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store. PLoS One 2015; 10:e0139273. [PMID: 26451944 PMCID: PMC4599735 DOI: 10.1371/journal.pone.0139273] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum calcium homeostasis is critical for cellular functions and is disrupted in diverse pathologies including neurodegeneration and cardiovascular disease. Owing to the high concentration of calcium within the ER, studying this subcellular compartment requires tools that are optimized for these conditions. To develop a single-fluorophore genetically encoded calcium indicator for this organelle, we targeted a low affinity variant of GCaMP3 to the ER lumen (GCaMPer (10.19)). A set of viral vectors was constructed to express GCaMPer in human neuroblastoma cells, rat primary cortical neurons, and human induced pluripotent stem cell-derived cardiomyocytes. We observed dynamic changes in GCaMPer (10.19) fluorescence in response to pharmacologic manipulations of the ER calcium store. Additionally, periodic calcium efflux from the ER was observed during spontaneous beating of cardiomyocytes. GCaMPer (10.19) has utility in imaging ER calcium in living cells and providing insight into luminal calcium dynamics under physiologic and pathologic states.
Collapse
Affiliation(s)
- Mark J. Henderson
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland, 21224, United States of America
- * E-mail: (MJH); (BKH)
| | - Heather A. Baldwin
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland, 21224, United States of America
| | - Christopher A. Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States of America
| | - Stefano Boccardo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States of America
| | - Leslie R. Whitaker
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland, 21224, United States of America
| | - Xiaokang Yan
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland, 21224, United States of America
| | - Graham T. Holt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, United States of America
| | - Eric R. Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, United States of America
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, United States of America
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, 02138, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02138, United States of America
| | - Douglas S. Kim
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, United States of America
| | - Brandon K. Harvey
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, Maryland, 21224, United States of America
- * E-mail: (MJH); (BKH)
| |
Collapse
|
16
|
Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies. Cell Calcium 2014; 56:362-71. [PMID: 25149565 DOI: 10.1016/j.ceca.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/14/2022]
Abstract
Peripheral sensory nervous system is comprised of neurones with their axons and neuroglia that includes satellite glial cells in sensory ganglia, myelinating, non-myelinating and perisynaptic Schwann cells. Pathogenesis of peripheral diabetic polyneuropathies is associated with aberrant function of both neurones and glia. Deregulated Ca(2+) homoeostasis and aberrant Ca(2+) signalling in neuronal and glial elements contributes to many forms of neuropathology and is fundamental to neurodegenerative diseases. In diabetes both neurones and glia experience metabolic stress and mitochondrial dysfunction which lead to deregulation of Ca(2+) homeostasis and Ca(2+) signalling, which in their turn lead to pathological cellular reactions contributing to development of diabetic neuropathies. Molecular cascades responsible for Ca(2+) homeostasis and signalling, therefore, can be regarded as potential therapeutic targets.
Collapse
|
17
|
Kuang XL, Liu F, Chen H, Li Y, Liu Y, Xiao J, Shan G, Li M, Snider BJ, Qu J, Barger SW, Wu S. Reductions of the components of the calreticulin/calnexin quality-control system by proteasome inhibitors and their relevance in a rodent model of Parkinson's disease. J Neurosci Res 2014; 92:1319-29. [PMID: 24860980 DOI: 10.1002/jnr.23413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 12/14/2022]
Abstract
Evidence indicates that the ubiquitin-proteasome system and the endoplasmic retculum (ER) quality-control system work in concert to ensure that proteins are correctly folded in the ER and that misfolded proteins are retrotransported to the cytosol for degradation by proteasomes. Dysfunction of either system results in developmental abnormalities and even death in animals. This study investigates whether and how proteasome inhibition impacts the components of the calreticulin (CRT)/calnexin (CNX) glycoprotein folding machinery, a typical ER protein quality-control system, in the context of early neuronal injury. Here we report that proteasome inhibitor treatments, at nonlethal levels, reduced protein levels of CRT and ERp57 but not of CNX. These treatments increased protein levels of CRT in culture media, an effect blocked by brefeldin A, an inhibitor of protein trafficking; by contrast, ERp57 was not detected in culture media. Knockdown of CRT levels alone increased the vulnerability of SH-SY5Y, a neuronal cell line, to 6-hydroxydopamine (6-OHDA) toxicity. In a rat model of Parkinson's disease, intrastriatal 6-OHDA lesions resulted in decreased levels of CRT and ERp57 in the midbrain. These findings suggest that reduction of the components of CRT/CNX glycoprotein quality-control system may play a role in neuronal injury in Parkinson's disease and other neurodegenerative disorders associated with dysfunction of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Xiu-Li Kuang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen M, Križaj D, Thoreson WB. Intracellular calcium stores drive slow non-ribbon vesicle release from rod photoreceptors. Front Cell Neurosci 2014; 8:20. [PMID: 24550779 PMCID: PMC3910126 DOI: 10.3389/fncel.2014.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023] Open
Abstract
Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca2+-induced Ca2+ release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy as a tool for visualizing terminals of isolated rods loaded with fluorescent Ca2+ indicator dyes and synaptic vesicles loaded with dextran-conjugated pH-sensitive rhodamine. We found that rather than simply facilitating release, activation of CICR by ryanodine triggered release directly in rods, independent of plasma membrane Ca2+ channel activation. Ryanodine-evoked release occurred mostly at non-ribbon sites and release evoked by sustained depolarization at non-ribbon sites was mostly due to CICR. Unlike release at ribbon-style active zones, non-ribbon release did not occur at fixed locations. Fluorescence recovery after photobleaching of endoplasmic reticulum (ER)-tracker dye in rod terminals showed that ER extends continuously from synapse to soma. Release of Ca2+ from terminal ER by lengthy depolarization did not significantly deplete Ca2+ from ER in the perikaryon. Collectively, these results indicate that CICR-triggered release at non-ribbon sites is a major mechanism for maintaining vesicle release from rods and that CICR in terminals may be sustained by diffusion of Ca2+ through ER from other parts of the cell.
Collapse
Affiliation(s)
- Minghui Chen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA ; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center Omaha, NE, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine Salt Lake City, UT, USA
| | - Wallace B Thoreson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA ; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
19
|
Zhang Y, Reddish F, Tang S, Zhuo Y, Wang YF, Yang JJ, Weber IT. Structural basis for a hand-like site in the calcium sensor CatchER with fast kinetics. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2309-19. [PMID: 24311573 PMCID: PMC3852649 DOI: 10.1107/s0907444913021306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022]
Abstract
Calcium ions, which are important signaling molecules, can be detected in the endoplasmic reticulum by an engineered mutant of green fluorescent protein (GFP) designated CatchER with a fast off-rate. High resolution (1.78-1.20 Å) crystal structures were analyzed for CatchER in the apo form and in complexes with calcium or gadolinium to probe the binding site for metal ions. While CatchER exhibits a 1:1 binding stoichiometry in solution, two positions were observed for each of the metal ions bound within the hand-like site formed by the carboxylate side chains of the mutated residues S147E, S202D, Q204E, F223E and T225E that may be responsible for its fast kinetic properties. Comparison of the structures of CatchER, wild-type GFP and enhanced GFP confirmed that different conformations of Thr203 and Glu222 are associated with the two forms of Tyr66 of the chromophore which are responsible for the absorbance wavelengths of the different proteins. Calcium binding to CatchER may shift the equilibrium for conformational population of the Glu222 side chain and lead to further changes in its optical properties.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Florence Reddish
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Shen Tang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - You Zhuo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Centre for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
20
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
21
|
Deletion in the N-terminal half of olfactomedin 1 modifies its interaction with synaptic proteins and causes brain dystrophy and abnormal behavior in mice. Exp Neurol 2013; 250:205-18. [PMID: 24095980 DOI: 10.1016/j.expneurol.2013.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/24/2022]
Abstract
Olfactomedin 1 (Olfm1) is a secreted glycoprotein that is preferentially expressed in neuronal tissues. Here we show that deletion of exons 4 and 5 from the Olfm1 gene, which encodes a 52 amino acid long region in the N-terminal part of the protein, increased neonatal death and reduced body weight of surviving homozygous mice. Magnetic resonance imaging analyses revealed reduced brain volume and attenuated size of white matter tracts such as the anterior commissure, corpus callosum, and optic nerve. Adult Olfm1 mutant mice demonstrated abnormal behavior in several tests including reduced marble digging, elevated plus maze test, nesting activity and latency on balance beam tests as compared with their wild-type littermates. The olfactory system was both structurally and functionally disturbed by the mutation in the Olfm1 gene as shown by functional magnetic resonance imaging analysis and a smell test. Deficiencies of the olfactory system may contribute to the neonatal death and loss of body weight of Olfm1 mutant. Shotgun proteomics revealed 59 candidate proteins that co-precipitated with wild-type or mutant Olfm1 proteins in postnatal day 1 brain. Olfm1-binding targets included GluR2, Cav2.1, teneurin-4 and Kidins220. Modified interaction of Olfm1 with binding targets led to an increase in intracellular Ca(2+) concentration and activation of ERK1/2, MEK1 and CaMKII in the hippocampus and olfactory bulb of Olfm1 mutant mice compared with their wild-type littermates. Excessive activation of the CaMKII and Ras-ERK pathways in the Olfm1 mutant olfactory bulb and hippocampus by elevated intracellular calcium may contribute to the abnormal behavior and olfactory activity of Olfm1 mutant mice.
Collapse
|
22
|
Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A 2013; 110:15091-6. [PMID: 23918386 DOI: 10.1073/pnas.1304171110] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin (PS) plays a central role in the pathogenesis of Alzheimer's disease, and loss of PS causes progressive memory impairment and age-related neurodegeneration in the mouse cerebral cortex. In hippocampal neurons, PS is essential for neurotransmitter release, NMDA receptor-mediated responses, and long-term potentiation. PS is also involved in the regulation of calcium homeostasis, although the precise site of its action is less clear. Here we investigate the mechanism by which PS regulates synaptic function and calcium homeostasis using acute hippocampal slices from PS conditional knockout mice and primary cultured postnatal hippocampal neurons, in which PS is inducibly inactivated. Using two different calcium probes, Fura-2 and Mag-Fura-2, we found that inactivation of PS in primary hippocampal neurons does not affect calcium concentration in the endoplasmic reticulum. Rather, in the absence of PS, levels of ryanodine receptor (RyR) are reduced in the hippocampus, measured by Western analysis and radioligand binding assay, although the mRNA expression is unaffected. RyR-mediated function is also impaired, as indicated by reduced RyR agonist-induced calcium release from the ER and RyR-mediated synaptic responses in the absence of PS. Furthermore, knockdown of RyR expression in wild-type hippocampal neurons by two independent shRNAs to levels comparable with the RyR protein reduction in PS-deficient hippocampal neurons mimics the defects exhibited in calcium homeostasis and presynaptic function. Collectively, our findings show that PS regulates calcium homeostasis and synaptic function via RyR and suggest that disruption of intracellular calcium homeostasis may be an early pathogenic event leading to presynaptic dysfunction in Alzheimer's disease.
Collapse
|
23
|
Samtleben S, Jaepel J, Fecher C, Andreska T, Rehberg M, Blum R. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED). J Vis Exp 2013:e50317. [PMID: 23685703 PMCID: PMC3679584 DOI: 10.3791/50317] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Collapse
|
24
|
Gruppi F, Liang J, Bartelle BB, Royzen M, Turnbull DH, Canary JW. Supramolecular metal displacement allows on-fluorescence analysis of manganese(II) in living cells. Chem Commun (Camb) 2012; 48:10778-80. [PMID: 23023093 PMCID: PMC3722360 DOI: 10.1039/c2cc34742c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the importance of Mn(2+) ions in biological processes, it is of growing interest to develop protocols for analysis of Mn(2+) uptake and distribution in cells. A supramolecular metal displacement assay can provide ratiometric fluorescence detection of Mn(2+), allowing for quantitative and longitudinal analysis of Mn(2+) uptake in living cells.
Collapse
Affiliation(s)
- Francesca Gruppi
- Department of Chemistry, New York University, New York, NY 10003. Fax: 212-995-4367; Tel: 212-998-8422
| | - Jian Liang
- Department of Chemistry, New York University, New York, NY 10003. Fax: 212-995-4367; Tel: 212-998-8422
| | - Benjamin B. Bartelle
- Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Radiology, New York University School of Medicine, New York, NY 10016
| | - Maksim Royzen
- Department of Chemistry, New York University, New York, NY 10003. Fax: 212-995-4367; Tel: 212-998-8422
| | - Daniel H. Turnbull
- Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, and Department of Radiology, New York University School of Medicine, New York, NY 10016
| | - James W. Canary
- Department of Chemistry, New York University, New York, NY 10003. Fax: 212-995-4367; Tel: 212-998-8422
| |
Collapse
|
25
|
Schuiki I, Zhang L, Volchuk A. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells. PLoS One 2012; 7:e48626. [PMID: 23144914 PMCID: PMC3493583 DOI: 10.1371/journal.pone.0048626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 01/16/2023] Open
Abstract
Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER) causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR) in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor) and mCherry protein driven by a GRP78 promoter (UPR-sensor). Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.
Collapse
Affiliation(s)
- Irmgard Schuiki
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Liling Zhang
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Allen Volchuk
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Verkhratsky A, Rodríguez JJ, Parpura V. Calcium signalling in astroglia. Mol Cell Endocrinol 2012; 353:45-56. [PMID: 21945602 DOI: 10.1016/j.mce.2011.08.039] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/28/2011] [Accepted: 08/31/2011] [Indexed: 12/15/2022]
Abstract
Astroglia possess excitability based on movements of Ca(2+) ions between intracellular compartments and plasmalemmal Ca(2+) fluxes. This "Ca(2+) excitability" is controlled by several families of proteins located in the plasma membrane, within the cytosol and in the intracellular organelles, most notably in the endoplasmic reticulum (ER) and mitochondria. Accumulation of cytosolic Ca(2+) can be caused by the entry of Ca(2+) from the extracellular space through ionotropic receptors and store-operated channels expressed in astrocytes. Plasmalemmal Ca(2+) ATP-ase and sodium-calcium exchanger extrude cytosolic Ca(2+) to the extracellular space; the exchanger can also operate in reverse, depending of the intercellular Na(+) concentration, to deliver Ca(2+) to the cytosol. The ER internal store possesses inositol 1,4,5-trisphosphate receptors which can be activated upon stimulation of astrocytes through a multiple plasma membrane metabotropic G-protein coupled receptors. This leads to release of Ca(2+) from the ER and its elevation in the cytosol, the level of which can be modulated by mitochondria. The mitochondrial uniporter takes up Ca(2+) into the matrix, while free Ca(2+) exits the matrix through the mitochondrial Na(+)/Ca(2+) exchanger as well as via transient openings of the mitochondrial permeability transition pore. One of the prominent consequences of astroglial Ca(2+) excitability is gliotransmission, a release of transmitters from astroglia which can lead to signalling to adjacent neurones.
Collapse
|
27
|
Papp B, Brouland JP, Arbabian A, Gélébart P, Kovács T, Bobe R, Enouf J, Varin-Blank N, Apáti A. Endoplasmic reticulum calcium pumps and cancer cell differentiation. Biomolecules 2012; 2:165-86. [PMID: 24970132 PMCID: PMC4030869 DOI: 10.3390/biom2010165] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major intracellular calcium storage pool and a multifunctional organelle that accomplishes several calcium-dependent functions involved in many homeostatic and signaling mechanisms. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA)-type calcium pumps. SERCA activity can determine ER calcium content available for intra-ER functions and for calcium release into the cytosol, and can shape the spatiotemporal characteristics of calcium signals. SERCA function therefore constitutes an important nodal point in the regulation of cellular calcium homeostasis and signaling, and can exert important effects on cell growth, differentiation and survival. In several cell types such as cells of hematopoietic origin, mammary, gastric and colonic epithelium, SERCA2 and SERCA3-type calcium pumps are simultaneously expressed, and SERCA3 expression levels undergo significant changes during cell differentiation, activation or immortalization. In addition, SERCA3 expression is decreased or lost in several tumor types when compared to the corresponding normal tissue. These observations indicate that ER calcium homeostasis is remodeled during cell differentiation, and may present defects due to decreased SERCA3 expression in tumors. Modulation of the state of differentiation of the ER reflected by SERCA3 expression constitutes an interesting new aspect of cell differentiation and tumor biology.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Jean-Philippe Brouland
- Service d'Anatomie et Cytologie Pathologique, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Atousa Arbabian
- Inserm UMR U 940, IUH Université Paris 7-Paris Diderot, 16, rue de la Grange aux Belles, 75010 Paris, France.
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Tünde Kovács
- Semmelweis University, Department of Medical Biochemistry, Tűzoltó u. 37-47, H-1094-Budapest, Hungary.
| | - Régis Bobe
- Inserm UMR U770, Université Paris-Sud 11. 80, rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
| | - Jocelyne Enouf
- Inserm UMR U689, Université Paris 7-Paris Diderot, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Agota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Diószegi út 64, H-1113-Budapest, Hungary.
| |
Collapse
|
28
|
Sensory neurons derived from diabetic rats have diminished internal Ca2+ stores linked to impaired re-uptake by the endoplasmic reticulum. ASN Neuro 2012; 4:AN20110038. [PMID: 22168362 PMCID: PMC3260471 DOI: 10.1042/an20110038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3-5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1-2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeostasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.
Collapse
|
29
|
Vetter I. Development and optimization of FLIPR high throughput calcium assays for ion channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:45-82. [PMID: 22453938 DOI: 10.1007/978-94-007-2888-2_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ca(2+) permeable ion channels and GPCRs linked to Ca(2+) release are important drug targets, with modulation of Ca(2+) signaling increasingly recognized as a valid therapeutic strategy in a range of diseases. The FLIPR is a high throughput imaging plate reader that has contributed substantially to drug discovery efforts and pharmacological characterization of receptors and ion channels coupled to Ca(2+). Now in its fourth generation, the FLIPR(TETRA) is an industry standard for high throughput Ca(2+) assays. With an increasing number of excitation LED banks and emission filter sets available; FLIPR Ca(2+) assays are becoming more versatile. This chapter describes general methods for establishing robust FLIPR Ca(2+) assays, incorporating practical aspects as well as suggestions for assay optimization, to guide the reader in the development and optimization of high throughput FLIPR assays for ion channels and GPCRs.
Collapse
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
30
|
Abstract
The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K(+) ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca(2+) and Na(+). Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca(2+) and Na(+) signalling.
Collapse
|
31
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
32
|
Kim S, Kim J, Lee NH, Jang HH, Han MS. A colorimetric selective sensing probe for calcium ions with tunable dynamic ranges using cytidine triphosphate stabilized gold nanoparticles. Chem Commun (Camb) 2011; 47:10299-301. [PMID: 21858364 DOI: 10.1039/c1cc13489b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytidine triphosphate (CTP) stabilized-Au nanoparticles (CTP-AuNPs) allow a quantitative assay of Ca(2+) down to a concentration of 10(-4) M with high selectivity towards Ca(2+) ions over various metal ions including Mg(2+) and the detection range of this probe also can be easily tuned by changing the concentration of CTP.
Collapse
Affiliation(s)
- Sudeok Kim
- Department of Chemistry, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 2011; 63:700-27. [PMID: 21737534 DOI: 10.1124/pr.110.003814] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca(2+) in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca(2+) ATPases and two types of ER membrane Ca(2+) channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca(2+) uptake and release, respectively. There are also direct and indirect interactions of ER Ca(2+) stores with plasma membrane and mitochondrial Ca(2+)-regulating systems. Pharmacological agents that selectively modify ER Ca(2+) release or uptake have enabled studies that revealed many different physiological roles for ER Ca(2+) signaling. Several inherited diseases are caused by mutations in ER Ca(2+)-regulating proteins, and perturbed ER Ca(2+) homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca(2+) handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | |
Collapse
|
34
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
35
|
Jaepel J, Blum R. Capturing ER calcium dynamics. Eur J Cell Biol 2011; 90:613-9. [PMID: 21561683 DOI: 10.1016/j.ejcb.2011.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 12/22/2022] Open
Abstract
The lumen of the endoplasmic reticulum (ER) contributes to the dynamics of Ca(2+) signaling by acting as a source or sink of signal Ca(2+). Despite its relevance for the understanding of the cell biology and pathophysiology of the luminal calcium store, the direct measurement of luminal Ca(2+) release and uptake is still critical when Ca(2+) homeostasis is analyzed in neural cells. For the analysis of Ca(2+)-dependent signaling, synthetic Ca(2+) indicators have become popular. The properties of these indicators allow only limited targeting to subcellular structures such as the ER. Recently, we introduced a new strategy for the targeting of synthetic Ca(2+) indicators to the lumen of the ER. The method, termed Targeted-Esterase-induced Dye loading (TED) is based on the targeted recombinant expression of a high carboxylesterase (CES) activity in the lumen of the ER, which is needed to trap synthetic indicators. The method combines the selectivity of protein targeting with the biochemical advantages of low-affinity synthetic Ca(2+) indicators. TED permits direct and non-disruptive measurement and imaging of Ca(2+)-store dynamics. Here, we summarize major topics in the cell biology of ER Ca(2+) signaling and discuss the perspectives of the TED method for the morphological and physiological analysis of temporal and spatial Ca(2+)-dynamics in neural cells.
Collapse
Affiliation(s)
- Juliane Jaepel
- Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
36
|
Parpura V, Grubišić V, Verkhratsky A. Ca(2+) sources for the exocytotic release of glutamate from astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:984-91. [PMID: 21118669 DOI: 10.1016/j.bbamcr.2010.11.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/07/2010] [Accepted: 11/10/2010] [Indexed: 01/26/2023]
Abstract
Astrocytes can exocytotically release the gliotransmitter glutamate from vesicular compartments. Increased cytosolic Ca(2+) concentration is necessary and sufficient for this process. The predominant source of Ca(2+) for exocytosis in astrocytes resides within the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate and ryanodine receptors of the ER provide a conduit for the release of Ca(2+) to the cytosol. The ER store is (re)filled by the store-specific Ca(2+)-ATPase. Ultimately, the depleted ER is replenished by Ca(2+) which enters from the extracellular space to the cytosol via store-operated Ca(2+) entry; the TRPC1 protein has been implicated in this part of the astrocytic exocytotic process. Voltage-gated Ca(2+) channels and plasma membrane Na(+)/Ca(2+) exchangers are additional means for cytosolic Ca(2+) entry. Cytosolic Ca(2+) levels can be modulated by mitochondria, which can take up cytosolic Ca(2+) via the Ca(2+) uniporter and release Ca(2+) into cytosol via the mitochondrial Na(+)/Ca(2+) exchanger, as well as by the formation of the mitochondrial permeability transition pore. The interplay between various Ca(2+) sources generates cytosolic Ca(2+) dynamics that can drive Ca(2+)-dependent exocytotic release of glutamate from astrocytes. An understanding of this process in vivo will reveal some of the astrocytic functions in health and disease of the brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham 35294-0021, USA.
| | | | | |
Collapse
|
37
|
Verkhratsky A. Physiology of neuronal–glial networking. Neurochem Int 2010; 57:332-43. [DOI: 10.1016/j.neuint.2010.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/05/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
38
|
Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics 2010; 7:399-412. [PMID: 20880504 PMCID: PMC5084302 DOI: 10.1016/j.nurt.2010.05.017] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/25/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022] Open
Abstract
The circuitry of the human brain is formed by neuronal networks embedded into astroglial syncytia. The astrocytes perform numerous functions, providing for the overall brain homeostasis, assisting in neurogenesis, determining the micro-architecture of the grey matter, and defending the brain through evolutionary conserved astrogliosis programs. Astroglial cells are engaged in neurological diseases by determining the progression and outcome of neuropathological process. Astrocytes are specifically involved in various neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and various forms of dementia. Recent evidence suggest that early stages of neurodegenerative processes are associated with atrophy of astroglia, which causes disruptions in synaptic connectivity, disbalance in neurotransmitter homeostasis, and neuronal death through increased excitotoxicity. At the later stages, astrocytes become activated and contribute to the neuroinflammatory component of neurodegeneration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
- grid.11480.3c0000000121671098Ikerbasque, Basque Foundation for Science, Department of Neuroscience, The University of the Basque Country UPV/EHU, Technological Park, Bldg. 205, Floor-1, Laida Bidea, 48170 Zamudio, Vizcaya Spain
| | - Markel Olabarria
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
| | - Harun N. Noristani
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
| | - Chia-Yu Yeh
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
| | - Jose Julio Rodriguez
- grid.418095.10000000110153316Institute of Experimental Medicine, ASCR, 142 20 Prague, Czech Republic
- grid.424810.b0000000404672314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- grid.11480.3c0000000121671098Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
39
|
Verkhratsky A, Parpura V. Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin 2010; 31:1044-54. [PMID: 20694024 DOI: 10.1038/aps.2010.108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our view of astrocytes in the operation of the brain is changing dramatically over the last 3 decades. Astroglial calcium excitability controls the release of gliotransmitters, which can occur at the tripartite synapse. Astrocytes not only modulate synaptic transmission by releasing and taking up transmitters, but also receiving neuronal signals that act upon astrocytic plasma membrane receptors. This process represents the bidirectional neurone-glia communication. Additionally, astrocytes play role in the regulation of blood flow as well as ion and water homeostasis. Many of the brain dysfunctions are primary astropathies, including hepatic encephalopathy and Alexander disease, while other brain malfunctions, such as epilepsy and Alzheimer disease, may have substantial astrocytic contribution. Thus, these star-shaped cells by their roles in (patho)physiology of the brain seem to live up to the expectation one can have from their given name - astrocyte.
Collapse
|
40
|
Scullin CS, Partridge LD. Contributions of SERCA pump and ryanodine-sensitive stores to presynaptic residual Ca2+. Cell Calcium 2010; 47:326-38. [PMID: 20153896 DOI: 10.1016/j.ceca.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/31/2009] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
The presynaptic Ca2+ signal, which triggers vesicle release, disperses to a broadly distributed residual [Ca2+] ([Ca2+](res)) that plays an important role in synaptic plasticity. We have previously reported a slowing in the decay timecourse of [Ca2+](res) during the second of paired pulses. In this study, we investigated the contributions of organelle and plasma membrane Ca2+ flux pathways to the reduction of effectiveness of [Ca2+](res) clearance during short-term plasticity in Schaffer collateral terminals in the CA1 field of the hippocampus. We show that the slowed decay timecourse is mainly the result of a transport-dependent Ca2+ clearance process; that presynaptic caffeine-sensitive Ca2+ stores are not functionally loaded in the unstimulated terminal, but that these stores can effectively take up Ca2+ even during high frequency trains of stimuli; and that a rate limiting step of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) kinetics following the first pulse is responsible for a large portion of the observed slowing of [Ca2+](res) clearance during the second pulse. We were able to accurately fit our [Ca2+](res) data with a kinetic model based on these observations and this model predicted a reduction in availability of unbound SERCA during paired pulses, but no saturation of Ca2+ buffer in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Chessa S Scullin
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
41
|
Solovyova N, Verkhratsky A. Measurement of free Ca2+ concentration in the lumen of neuronal endoplasmic reticulum. Cold Spring Harb Protoc 2010; 2010:pdb.prot4783. [PMID: 20150106 DOI: 10.1101/pdb.prot4783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONThis protocol describes a technique for the simultaneous monitoring of free calcium concentrations in the cytosol ([Ca2+]i) and within the lumen of the endoplasmic reticulum (ER) ([Ca2+]L) of cultured/freshly isolated dorsal root ganglia (DRG) neurons. The method uses two synthetic fluorescent Ca2+ probes (fluo-3 and mag-fura-2) in combination with fluorescence microscopy and a whole-cell patch-clamp technique. This approach has been used successfully in acutely isolated/cultured DRG neurons, in Purkinje neurons, acutely isolated from cerebellar slices, and in cultured astrocytes. In this protocol, isolated neurons are first loaded with the membrane-permeant, low-affinity Ca2+ indicator, mag-fura-2, which preferentially, though not exclusively, accumulates in the ER. Cells are then loaded with the membrane-impermeant, high-affinity calcium indicator fluo-3 using the whole-cell patch-clamp configuration. This second loading removes the majority of cytosolic mag-fura-2, replacing it with fluo-3. Mag-fura-2 and fluo-3 signals can be separated by virtue of their distinct excitation properties (340 nm and 380 nm for mag-fura-2, and 488 nm for fluo-3). An equation is provided to determine [Ca2+]L values using the 340/380 nm ratio.
Collapse
|
42
|
Abstract
Small, fluorescent, calcium-sensing molecules have been enormously useful in mapping intracellular calcium signals in time and space, as chapters in this volume attest. Despite their widespread adoption and utility, they suffer some disadvantages. Genetically encoded calcium sensors that can be expressed inside cells by transfection or transgenesis are desirable. The last 10 years have been marked by a rapid evolution in the laboratory of genetically encoded calcium sensors both figuratively and literally, resulting in 11 distinct configurations of fluorescent proteins and their attendant calcium sensor modules. Here, the design logic and performance of this abundant collection of sensors and their in vitro and in vivo use and performance are described. Genetically encoded calcium sensors have proved valuable in the measurement of calcium concentration in cellular organelles, for the most part in single cells in vitro. Their success as quantitative calcium sensors in tissues in vitro and in vivo is qualified, but they have proved valuable in imaging the pattern of calcium signals within tissues in whole animals. Some branches of the calcium sensor evolutionary tree continue to evolve rapidly and the steady progress in optimizing sensor parameters leads to the certain hope that these drawbacks will eventually be overcome by further genetic engineering.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences Medical School, Newcastle University, Framlington Place Newcastle upon Tyne, United Kingdom
| |
Collapse
|
43
|
Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 2009; 47:130-9. [PMID: 20034667 DOI: 10.1016/j.ceca.2009.11.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/17/2009] [Indexed: 01/02/2023]
Abstract
Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.
Collapse
Affiliation(s)
- Paul Fernyhough
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E0T6.
| | | |
Collapse
|
44
|
|
45
|
Rigaud M, Gemes G, Weyker PD, Cruikshank JM, Kawano T, Wu HE, Hogan QH. Axotomy depletes intracellular calcium stores in primary sensory neurons. Anesthesiology 2009; 111:381-92. [PMID: 19602958 PMCID: PMC2891519 DOI: 10.1097/aln.0b013e3181ae6212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca signaling in primary sensory neurons after injury. The authors examined the effect of injury on intracellular Ca stores of the endoplasmic reticulum, which critically regulate the Ca signal and neuronal function. METHODS Intracellular Ca levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats after L5 spinal nerve ligation, compared to neurons from control animals. RESULTS Endoplasmic reticulum Ca stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca-free bath solution, which removes the contribution of store-operated membrane Ca channels, and after blockade of the mitochondrial, sarco-endoplasmic Ca-ATPase and the plasma membrane Ca ATPase pathways. Ca released by the sarco-endoplasmic Ca-ATPase blocker thapsigargin and by the Ca-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca stores in axotomized neurons were not expanded by neuronal activation by K depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca-ATPase was normal. Luminal Ca concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. CONCLUSIONS Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca stores and a reduced luminal Ca concentration. Depletion of Ca stores may contribute to the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Marcel Rigaud
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Resident, Department of Anesthesiology, Medical University of Graz, Graz, Austria
| | - Geza Gemes
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Resident, Department of Anesthesiology, Medical University of Graz, Graz, Austria
| | - Paul D. Weyker
- Medical Student, University of Wisconsin, Madison, Wisconsin
| | - James M. Cruikshank
- Research Assistant, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takashi Kawano
- Research Fellow, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hsiang-En Wu
- Assistant Professor, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Quinn H. Hogan
- Professor, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Anesthesiologist, Zablocki VA Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Alonso MT, Manjarrés IM, García-Sancho J. Modulation of calcium signalling by intracellular organelles seen with targeted aequorins. Acta Physiol (Oxf) 2009; 195:37-49. [PMID: 18983457 DOI: 10.1111/j.1748-1716.2008.01920.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytosolic Ca(2+) signals that trigger cell responses occur either as localized domains of high Ca(2+) concentration or as propagating Ca(2+) waves. Cytoplasmic organelles, taking up or releasing Ca(2+) to the cytosol, shape the cytosolic signals. On the other hand, Ca(2+) concentration inside organelles is also important in physiology and pathophysiology. Comprehensive study of these matters requires to measure [Ca(2+)] inside organelles and at the relevant cytosolic domains. Aequorins, the best-known chemiluminescent Ca(2+) probes, are excellent for this end as they do not require stressing illumination, have a large dynamic range and a sharp Ca(2+)-dependence, can be targeted to the appropriate location and engineered to have the proper Ca(2+) affinity. Using this methodology, we have evidenced the existence in chromaffin cells of functional units composed by three closely interrelated elements: (1) plasma membrane Ca(2+) channels, (2) subplasmalemmal endoplasmic reticulum and (3) mitochondria. These Ca(2+)-signalling triads optimize Ca(2+) microdomains for secretion and prevent propagation of the Ca(2+) wave towards the cell core. Oscillatory cytosolic Ca(2+) signals originate also oscillations of mitochondrial Ca(2+) in several cell types. The nuclear envelope slows down the propagation of the Ca(2+) wave to the nucleus and filters high frequencies. On the other hand, inositol-trisphosphate may produce direct release of Ca(2+) to the nucleoplasm in GH(3) pituitary cells, thus providing mechanisms for selective nuclear signalling. Aequorins emitting at different wavelengths, prepared by fusion either with green or red fluorescent protein, permit simultaneous and independent monitorization of the Ca(2+) signals in different subcellular domains within the same cell.
Collapse
Affiliation(s)
- M T Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | | | | |
Collapse
|
47
|
HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One 2008; 3:e3731. [PMID: 19009018 PMCID: PMC2579580 DOI: 10.1371/journal.pone.0003731] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/23/2008] [Indexed: 01/12/2023] Open
Abstract
Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1) is ultimately refractory to highly active antiretroviral therapy (HAART) because of failure of complete virus eradication in the central nervous system (CNS), and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR), followed by the unfolded protein response (UPR) and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER) in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.
Collapse
|
48
|
A new non-disruptive strategy to target calcium indicator dyes to the endoplasmic reticulum. Cell Calcium 2008; 44:386-99. [DOI: 10.1016/j.ceca.2008.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
|
50
|
Burdakov D, Petersen OH, Verkhratsky A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 2008; 38:303-10. [PMID: 16076486 DOI: 10.1016/j.ceca.2005.06.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The concentration of Ca2+ inside the lumen of endoplasmic reticulum (ER) regulates a vast array of spatiotemporally distinct cellular processes, from intracellular Ca2+ signals to intra-ER protein processing and cell death. This review summarises recent data on the mechanisms of luminal Ca2+-dependent regulation of Ca2+ release and uptake as well as ER regulation of cellular adaptive processes. In addition we discuss general biophysical properties of the ER membrane, as trans-endomembrane Ca2+ fluxes are subject to basic electrical forces, determined by factors such as the membrane potential of the ER and the ease with which Ca2+ fluxes are able to change this potential (i.e. the resistance of the ER membrane). Although these electrical forces undoubtedly play a fundamental role in shaping [Ca2+](ER) dynamics, at present there is very little direct experimental information about the biophysical properties of the ER membrane. Further studies of how intraluminal [Ca2+] is regulated, best carried out with direct measurements, are vital for understanding how Ca2+ orchestrates cell function. Direct monitoring of [Ca2+](ER) under conditions where the cytosolic [Ca2+] is known may also help to capture elusive biophysical information about the ER, such as the potential difference across the ER membrane.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|