1
|
Matsumoto Y, Matsumoto CS, Mizunami M. Critical roles of nicotinic acetylcholine receptors in olfactory memory formation and retrieval in crickets. Front Physiol 2024; 15:1345397. [PMID: 38405118 PMCID: PMC10884312 DOI: 10.3389/fphys.2024.1345397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket Gryllus bimaculatus is one of the useful insects for studying the molecular mechanisms in olfactory learning and memory. However, the roles of nAChRs in olfactory learning and memory of the cricket are still unknown. In the present study, to investigate whether nAChRs are involved in cricket olfactory learning and memory, we tested the effects of two different AChR antagonists on long-term memory (LTM) formation and retrieval in a behavioral assay. The two AChR antagonists that we used are mecamylamine (MEC), an α-BGT-insensitive nAChR antagonist, and methyllycaconitine (MLA), an α-BGT-sensitive nAChR antagonist. In crickets, multiple-trial olfactory conditioning induced 1-day memory (LTM), whereas single-trial olfactory conditioning induced 1-h memory (mid-term memory, MTM) but not 1-day memory. Crickets injected with MEC 20 min before the retention test at 1 day after the multiple-trial conditioning exhibited no memory retrieval. This indicates that α-BGT-insensitive nAChRs participate in memory retrieval. In addition, crickets injected with MLA before the multiple-trial conditioning exhibited MTM but not LTM, indicating that α-BGT-sensitive nAChRs participate in the formation of LTM. Moreover, injection of nicotine (an nAChR agonist) before the single-trial conditioning induced LTM. Finally, the nitric oxide (NO)-cGMP signaling pathway is known to participate in the formation of LTM in crickets, and we conducted co-injection experiments with an agonist or inhibitor of the nAChR and an activator or inhibitor of the NO-cGMP signaling pathway. The results suggest that nAChR works upstream of the NO-cGMP signaling system in the LTM formation process.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Institute of Education, Liberal Arts and Sciences Division, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| | | | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Houchat JN, Cartereau A, Taillebois E, Thany SH. Calmidazolium induces a decrease in nicotine-induced currents and intracellular calcium levels after pulse application of nicotine onto insect neurosecretory cells. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104385. [PMID: 35315336 DOI: 10.1016/j.jinsphys.2022.104385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Dorsal unpaired median (DUM) neurons, are a class of insect neurosecretory cells, which are involved in the control of several functions, such as excretion and reproduction, or the release of neurohormones. Previous studies demonstrated that they express different nicotinic acetylcholine receptor subtypes, in particular α-bungarotoxin-insensitive receptors, with nAChR1 and nAChR2 subtypes. Here, we demonstrated that pulse application of 1 mM nicotine (300 ms pulse duration) induced inward currents which were reduced under bath application of 15 µM calmidazolium, a calmodulin inhibitor. Bath application of 0.5 µM α-bungarotoxin had no effect on calmidazolium action, suggesting that it could have an indirect effect through α-bungarotoxin-insensitive receptors. Indeed, nicotine-evoked currents were reduced by 10 µM d-tubocurarine, and completely blocked by 5 µM mecamylamine, which affected nAChR1 and nAChR2 subtypes, respectively. Our results demonstrated that nAChR2 subtypes are involved in the indirect effect of calmidazolium. Moreover, we found that this calmidazolium effect was associated to a strong reduction in intracellular calcium levels after pulse application of 1 mM nicotine. Thus, compared to previous studies on mammalian cells, calmidazolium did not cause an increase in intracellular calcium levels in DUM neurons, suggesting that different calcium mechanisms are involved in the calmidazolium effect.
Collapse
Affiliation(s)
- Jean-Noël Houchat
- Université d'Orléans, LBLGC USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France
| | - Alison Cartereau
- Université d'Orléans, LBLGC USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France
| | - Emiliane Taillebois
- Université d'Orléans, LBLGC USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France
| | - Steeve H Thany
- Université d'Orléans, LBLGC USC-INRAE 1328, 1 rue de Chartres, Orléans 45067, France.
| |
Collapse
|
3
|
Elementary calcium release events in the skeletal muscle cells of the honey bee Apis mellifera. Sci Rep 2021; 11:16731. [PMID: 34408196 PMCID: PMC8373864 DOI: 10.1038/s41598-021-96028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Calcium sparks are involved in major physiological and pathological processes in vertebrate muscles but have never been characterized in invertebrates. Here, dynamic confocal imaging on intact skeletal muscle cells isolated enzymatically from the adult honey bee legs allowed the first spatio-temporal characterization of subcellular calcium release events (CREs) in an insect species. The frequency of CREs, measured in x–y time lapse series, was higher than frequencies usually described in vertebrates. Honey bee CREs had a larger spatial spread at half maximum than their vertebrate counterparts and a slightly ellipsoidal shape, two characteristics that may be related to ultrastructural features specific to invertebrate cells. In line-scan experiments, the histogram of CREs’ duration followed a bimodal distribution, supporting the existence of both sparks and embers. Unlike in vertebrates, embers and sparks had similar amplitudes, a difference that could be related to genomic differences and/or excitation–contraction coupling specificities in honey bee skeletal muscle fibres. The first characterization of CREs from an arthropod which shows strong genomic, ultrastructural and physiological differences with vertebrates may help in improving the research field of sparkology and more generally the knowledge in invertebrates cell Ca2+ homeostasis, eventually leading to a better understanding of their roles and regulations in muscles but also the myotoxicity of new insecticides targeting ryanodine receptors.
Collapse
|
4
|
Kadala A, Charreton M, Collet C. Flubendiamide, the first phthalic acid diamide insecticide, impairs neuronal calcium signalling in the honey bee's antennae. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104086. [PMID: 32628959 DOI: 10.1016/j.jinsphys.2020.104086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Calcium is an important intracellular second messenger involved in several processes such as the transduction of odour signals and neuronal excitability. Despite this critical role, relatively little information is available with respect to the impact of insecticides on the dynamics of intracellular calcium homeostasis in olfactory neurons. For the first time here, physiological stimuli (depolarizing current or pheromone) were shown to elicit calcium transients in peripheral neurons from the honey bee antenna. In addition, neurotoxic xenobiotics (the first synthetic phthalic diamide insecticide flubendiamide or botanical alkaloids ryanodine and caffeine) do interfere with normal calcium homeostasis. Our in vitro experiments show that these three xenobiotics can induce sustained abnormal calcium transients in antennal neurons. The present results provide a new insight into the toxicity of diamides, showing that flubendiamide drastically impairs calcium homeostasis in antennal neurons. We propose that a calcium imaging assay should provide an efficient tool dedicated to the modern assessment strategies of insecticides toxicity.
Collapse
Affiliation(s)
- Aklesso Kadala
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France
| | - Mercédès Charreton
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France
| | - Claude Collet
- INRAE, UR406 Abeilles et Environnement, 84914 Avignon, France; UMT PRADE, Protection des Abeilles dans l'Environnement, 84914 Avignon, France.
| |
Collapse
|
5
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
6
|
Wedd L, Ashby R, Foret S, Maleszka R. Developmental and loco-like effects of a swainsonine-induced inhibition of α-mannosidase in the honey bee, Apis mellifera. PeerJ 2017; 5:e3109. [PMID: 28321369 PMCID: PMC5357340 DOI: 10.7717/peerj.3109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
Background Deficiencies in lysosomal a-mannosidase (LAM) activity in animals, caused either by mutations or by consuming toxic alkaloids, lead to severe phenotypic and behavioural consequences. Yet, epialleles adversely affecting LAM expression exist in the honey bee population suggesting that they might be beneficial in certain contexts and cannot be eliminated by natural selection. Methods We have used a combination of enzymology, molecular biology and metabolomics to characterise the catalytic properties of honey bee LAM (AmLAM) and then used an indolizidine alkaloid swainsonine to inhibit its activity in vitro and in vivo. Results We show that AmLAM is inhibited in vitro by swainsonine albeit at slightly higher concentrations than in other animals. Dietary exposure of growing larvae to swainsonine leads to pronounced metabolic changes affecting not only saccharides, but also amino acids, polyols and polyamines. Interestingly, the abundance of two fatty acids implicated in epigenetic regulation is significantly reduced in treated individuals. Additionally, swainsonie causes loco-like symptoms, increased mortality and a subtle decrease in the rate of larval growth resulting in a subsequent developmental delay in pupal metamorphosis. Discussion We consider our findings in the context of cellular LAM function, larval development, environmental toxicity and colony-level impacts. The observed developmental heterochrony in swainsonine-treated larvae with lower LAM activity offer a plausible explanation for the existence of epialleles with impaired LAM expression. Individuals carrying such epialleles provide an additional level of epigenetic diversity that could be beneficial for the functioning of a colony whereby more flexibility in timing of adult emergence might be useful for task allocation.
Collapse
Affiliation(s)
- Laura Wedd
- Research School of Biology, Australian National University , Canberra , Australia
| | - Regan Ashby
- Research School of Biology, Australian National University, Canberra, Australia; Centre for Research in Therapeutic Solutions, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Sylvain Foret
- Research School of Biology, Australian National University , Canberra , Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University , Canberra , Australia
| |
Collapse
|
7
|
Matsumoto Y, Matsumoto CS, Takahashi T, Mizunami M. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets. Front Behav Neurosci 2016; 10:166. [PMID: 27616985 PMCID: PMC4999442 DOI: 10.3389/fnbeh.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- College of Liberal Arts and Science, Tokyo Medical and Dental UniversityIchikawa, Japan; Graduate School of Life Science, Hokkaido UniversitySapporo, Japan
| | | | | | - Makoto Mizunami
- Graduate School of Life Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
8
|
Wheeler MM, Ament SA, Rodriguez-Zas SL, Southey B, Robinson GE. Diet and endocrine effects on behavioral maturation-related gene expression in the pars intercerebralis of the honey bee brain. ACTA ACUST UNITED AC 2015; 218:4005-14. [PMID: 26567353 DOI: 10.1242/jeb.119420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023]
Abstract
Nervous and neuroendocrine systems mediate environmental conditions to control a variety of life history traits. Our goal was to provide mechanistic insights as to how neurosecretory signals mediate division of labor in the honey bee (Apis mellifera). Worker division of labor is based on a process of behavioral maturation by individual bees, which involves performing in-hive tasks early in adulthood, then transitioning to foraging for food outside the hive. Social and nutritional cues converge on endocrine factors to regulate behavioral maturation, but whether neurosecretory systems are central to this process is not known. To explore this, we performed transcriptomic profiling of a neurosecretory region of the brain, the pars intercerebralis (PI). We first compared PI transcriptional profiles for bees performing in-hive tasks and bees engaged in foraging. Using these results as a baseline, we then performed manipulative experiments to test whether the PI is responsive to dietary changes and/or changes in juvenile hormone (JH) levels. Results reveal a robust molecular signature of behavioral maturation in the PI, with a subset of gene expression changes consistent with changes elicited by JH treatment. In contrast, dietary changes did not induce transcriptomic changes in the PI consistent with behavioral maturation or JH treatment. Based on these results, we propose a new verbal model of the regulation of division of labor in honey bees in which the relationship between diet and nutritional physiology is attenuated, and in its place is a relationship between social signals and nutritional physiology that is mediated by JH.
Collapse
Affiliation(s)
| | - Seth A Ament
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Bruce Southey
- Department of Animal Sciences, UIUC, Urbana, IL 61801, USA
| | - Gene E Robinson
- Department of Entomology, UIUC, Urbana, IL 61801, USA Institute for Genomic Biology, UIUC, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Contrasting Effects of Histone Deacetylase Inhibitors on Reward and Aversive Olfactory Memories in the Honey Bee. INSECTS 2014; 5:377-98. [PMID: 26462690 PMCID: PMC4592598 DOI: 10.3390/insects5020377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/12/2014] [Accepted: 05/19/2014] [Indexed: 11/17/2022]
Abstract
Much of what we have learnt from rodent models about the essential role of epigenetic processes in brain plasticity has made use of aversive learning, yet the role of histone acetylation in aversive memory in the honey bee, a popular invertebrate model for both memory and epigenetics, was previously unknown. We examined the effects of histone deacetylase (HDAC) inhibition on both aversive and reward olfactory associative learning in a discrimination proboscis extension reflex (PER) assay. We report that treatment with the HDAC inhibitors APHA compound 8 (C8), phenylbutyrate (PB) or sodium butyrate (NaB) impaired discrimination memory due to impairment of aversive memory in a dose-dependent manner, while simultaneously having no effect on reward memory. Treatment with C8 1 h before training, 1 h after training or 1 h before testing, impaired aversive but not reward memory at test. C8 treatment 1 h before training also improved aversive but not reward learning during training. PB treatment only impaired aversive memory at test when administered 1 h after training, suggesting an effect on memory consolidation specifically. Specific impairment of aversive memory (but not reward memory) by HDAC inhibiting compounds was robust, reproducible, occurred following treatment with three drugs targeting the same mechanism, and is likely to be genuinely due to alterations to memory as sucrose sensitivity and locomotion were unaffected by HDAC inhibitor treatment. This pharmacological dissection of memory highlights the involvement of histone acetylation in aversive memory in the honey bee, and expands our knowledge of epigenetic control of neural plasticity in invertebrates.
Collapse
|
10
|
Terazima E, Yoshino M. Modulatory action of acetylcholine on the Na+-dependent action potentials in Kenyon cells isolated from the mushroom body of the cricket brain. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1746-1754. [PMID: 20637212 DOI: 10.1016/j.jinsphys.2010.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
Kenyon cells, intrinsic neurons of the insect mushroom body, have been assumed to be a site of conditioning stimulus (CS) and unconditioned stimulus (US) association in olfactory learning and memory. Acetylcholine (ACh) has been implicated to be a neurotransmitter mediating CS reception in Kenyon cells, causing rapid membrane depolarization via nicotinic ACh receptors. However, the long-term effects of ACh on the membrane excitability of Kenyon cells are not fully understood. In this study, we examined the effects of ACh on Na(+) dependent action potentials (Na(+) spikes) elicited by depolarizing current injection and on net membrane currents under the voltage clamp condition in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Current-clamp studies using amphotericin B perforated-patch recordings showed that freshly dispersed cricket Kenyon cells could produce repetitive Na(+) spikes in response to prolonged depolarizing current injection. Bath application of ACh increased both the instantaneous frequency and the amplitudes of Na(+) spikes. This excitatory action of ACh on Kenyon cells is attenuated by the pre-treatment of the cells with the muscarinic receptor antagonists, atropine and scopolamine, but not by the nicotinic receptor antagonist mecamylamine. Voltage-clamp studies further showed that bath application of ACh caused an increase in net inward currents that are sensitive to TTX, whereas outward currents were decreased by this treatment. These results indicate that in order to mediate CS, ACh may modulate the firing properties of Na(+) spikes of Kenyon cells through muscarinic receptor activation, thus increasing Na conductance and decreasing K conductance.
Collapse
Affiliation(s)
- E Terazima
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | | |
Collapse
|
11
|
An inexpensive and portable microvolumeter for rapid evaluation of biological samples. Biotechniques 2010; 49:566-72. [DOI: 10.2144/000113464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe an improved microvolumeter (MVM) for rapidly measuring volumes of small biological samples, including live zooplankton, embryos, and small animals and organs. Portability and low cost make this instrument suitable for widespread use, including at remote field sites. Beginning with Archimedes' principle, which states that immersing an arbitrarily shaped sample in a fluid-filled container displaces an equivalent volume, we identified procedures that maximize measurement accuracy and repeatability across a broad range of absolute volumes. Crucial steps include matching the overall configuration to the size of the sample, using reflected light to monitor fluid levels precisely, and accounting for evaporation during measurements. The resulting precision is at least 100 times higher than in previous displacement-based methods. Volumes are obtained much faster than by traditional histological or confocal methods and without shrinkage artifacts due to fixation or dehydration. Calibrations using volume standards confirmed accurate measurements of volumes as small as 0.06 µL. We validated the feasibility of evaluating soft-tissue samples by comparing volumes of freshly dissected ant brains measured with the MVM and by confocal reconstruction.
Collapse
|
12
|
State of the Art on Insect Nicotinic Acetylcholine Receptor Function in Learning and Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 683:97-115. [DOI: 10.1007/978-1-4419-6445-8_9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Matsumoto Y, Hatano A, Unoki S, Mizunami M. Stimulation of the cAMP system by the nitric oxide-cGMP system underlying the formation of long-term memory in an insect. Neurosci Lett 2009; 467:81-5. [PMID: 19818830 DOI: 10.1016/j.neulet.2009.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/29/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
The nitric oxide (NO)-cGMP signaling system and cAMP system play critical roles in the formation of multiple-trial induced, protein synthesis-dependent long-term memory (LTM) in many vertebrates and invertebrates. The relationship between the NO-cGMP system and cAMP system, however, remains controversial. In honey bees, the two systems have been suggested to converge on protein kinase A (PKA), based on the finding in vitro that cGMP activates PKA when sub-optimal dose of cAMP is present. In crickets, however, we have suggested that NO-cGMP pathway operates on PKA via activation of adenylyl cyclase and production of cAMP for LTM formation. To resolve this issue, we compared the effect of multiple-trial conditioning against the effect of an externally applied cGMP analog for LTM formation in crickets, in the presence of sub-optimal dose of cAMP analog and in condition in which adenylyl cyclase was inhibited. The obtained results suggest that an externally applied cGMP analog activates PKA when sub-optimal dose of cAMP analog is present, as is suggested in honey bees, but cGMP produced by multiple-trial conditioning cannot activate PKA even when sub-optimal dose of cAMP analog is present, thus indicating that cGMP produced by multiple-trial conditioning is not accessible to PKA. We conclude that the NO-cGMP system stimulates the cAMP system for LTM formation. We propose that LTM is formed by an interplay of two classes of neurons, namely, NO-producing neurons regulating LTM formation and NO-receptive neurons that are more directly involved in the formation of long-term synaptic plasticity underlying LTM formation.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
14
|
In vivo labeling and in vitro characterisation of central complex neurons involved in the control of sound production. J Neurosci Methods 2009; 183:202-12. [PMID: 19583981 DOI: 10.1016/j.jneumeth.2009.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/23/2009] [Accepted: 06/27/2009] [Indexed: 11/22/2022]
Abstract
Injection of muscarine into the central complex of the grasshopper brain can stimulate species-specific sound production through activation of the phospholipase C-initiated transduction pathway. We introduce a strategy, to label central complex interneurons that are directly stimulated by the injected muscarine and to study their physiology in dissociated primary cell culture. Fluorescent dextranes, co-injected to brain sites where muscarine stimulates sound production, are incorporated from the extracellular space by 3-14 central complex neurons. Most labeled neurons are columnar neurons that express muscarinic acetylcholine receptors. An average of 3-4 dextrane-labeled central complex neurons per brain can be recognised by their fluorescence in dissociated cell cultures. Their function as potential direct targets of previous in vivo pharmacological stimulation of the intact brain was supported by expression of muscarinic receptors in cytomembranes of isolated neuronal cell bodies and muscarine-stimulated calcium responses in vitro. Pharmacological inhibition of phospholipase C function and removal of extracellular calcium indicated that release from inositolphosphate-regulated internal stores mediates the increase of cytosolic calcium concentrations. The experimental procedures described in this study can be applied to any preparation in which focal drug application elicits, terminates or modulates behavior in order to label and physiologically analyse those interneurons within the circuit that serve as direct targets of the injected drug.
Collapse
|
15
|
Velarde RA, Robinson GE, Fahrbach SE. Coordinated responses to developmental hormones in the Kenyon cells of the adult worker honey bee brain (Apis mellifera L.). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:59-69. [PMID: 19013465 DOI: 10.1016/j.jinsphys.2008.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 05/27/2023]
Abstract
The brains of experienced forager honey bees exhibit predictable changes in structure, including significant growth of the neuropil of the mushroom bodies. In vertebrates, members of the superfamily of nuclear receptors function as key regulators of neuronal structure. The adult insect brain expresses many members of the nuclear receptor superfamily, suggesting that insect neurons are also likely important targets of developmental hormones. The actions of developmental hormones (the ecdysteroids and the juvenile hormones) in insects have been primarily explored in the contexts of metamorphosis and vitellogenesis. The cascade of gene expression activated by 20-hydroxyecdysone and modulated by juvenile hormone is strikingly conserved in these different physiological contexts. We used quantitative RT-PCR to measure, in the mushroom bodies of the adult worker honey bee brain, relative mRNA abundances of key members of the nuclear receptor superfamily (EcR, USP, E75, Ftz-f1, and Hr3) that participate in the metamorphosis/vitellogenesis cascade. We measured responses to endogenous peaks of hormones experienced early in adult life and to exogenous hormones. Our studies demonstrate that a population of adult insect neurons is responsive to endocrine signals through the use of conserved portions of the canonical ecdysteroid transcriptional cascade previously defined for metamorphosis and vitellogenesis.
Collapse
Affiliation(s)
- Rodrigo A Velarde
- Department of Biology, Wake Forest University, Box 7325, Winston-Salem, NC 27109, USA.
| | | | | |
Collapse
|
16
|
Involvement of NO-synthase and nicotinic receptors in learning in the honey bee. Physiol Behav 2008; 95:200-7. [PMID: 18599094 DOI: 10.1016/j.physbeh.2008.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 01/10/2023]
Abstract
Restrained worker honey bees (Apis mellifera) are one of the main models for the comparative study of learning and memory processes. Bees easily learn to associate a sucrose reward to antennal tactile scanning of a small metal plate (associative learning). Their proboscis extension response can also be habituated through repeated sucrose stimulations (non-associative learning). We studied the role of nitric oxide synthase and nicotinic acetylcholine receptors in these two forms of learning. The nicotinic antagonist MLA or the nitric oxide synthase inhibitor l-NAME impaired the formation of tactile associative long-term memory that specifically occurs during multiple-trial training; however these drugs had no effect on single-trial training. None of the drugs affected retrieval processes. These pharmacological results are consistent with data previously obtained with olfactory conditioning and indicate that MLA-sensitive nicotinic receptors and NO-synthase are specifically involved in long-term memory. MLA and l-NAME both reduced the number of trials required for habituation to occur. This result suggests that a reduction of cholinergic nicotinic neurotransmission promotes PER habituation in the honey bee.
Collapse
|
17
|
Barbara GS, Grünewald B, Paute S, Gauthier M, Raymond-Delpech V. Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. INVERTEBRATE NEUROSCIENCE 2007; 8:19-29. [PMID: 18004599 DOI: 10.1007/s10158-007-0062-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/25/2007] [Indexed: 12/21/2022]
Abstract
In insects, acetylcholine (ACh) is the main neurotransmitter, and nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee, nAChRs are expressed in diverse structures including the primary olfactory centres of the brain, the antennal lobes (AL) and the mushroom bodies. Whole-cell, voltage-clamp recordings were used to characterize the nAChRs present on cultured AL cells from adult honeybee, Apis mellifera. In 90% of the cells, applications of ACh induced fast inward currents that desensitized slowly. The classical nicotinic agonists nicotine and imidacloprid elicited respectively 45 and 43% of the maximum ACh-induced currents. The ACh-elicited currents were blocked by nicotinic antagonists methyllycaconitine, dihydroxy-beta-erythroidine and alpha-bungarotoxin. The nAChRs on adult AL cells are cation permeable channels. Our data indicate the existence of functional nAChRs on adult AL cells that differ from nAChRs on pupal Kenyon cells from mushroom bodies by their pharmacological profile and ionic permeability, suggesting that these receptors could be implicated in different functions.
Collapse
Affiliation(s)
- Guillaume Stéphane Barbara
- Centre de Recherches sur la Cognition Animale-CNRS, Université Paul Sabatier, 118 rte de Narbonne, 31062, Toulouse, France
| | | | | | | | | |
Collapse
|
18
|
Kucharski R, Mitri C, Grau Y, Maleszka R. Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. INVERTEBRATE NEUROSCIENCE 2007; 7:99-108. [PMID: 17372777 DOI: 10.1007/s10158-007-0045-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/23/2007] [Indexed: 11/30/2022]
Abstract
G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee.
Collapse
Affiliation(s)
- R Kucharski
- Visual Sciences and ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
19
|
Barron AB, Maleszka J, Vander Meer RK, Robinson GE, Maleszka R. Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:187-94. [PMID: 17270208 DOI: 10.1016/j.jinsphys.2006.11.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 05/13/2023]
Abstract
Entomologists have used a range of techniques to treat insects with neuroactive compounds, but it is not always clear whether different treatment methods are equally effective in delivering a compound to a target organ. Here, we used five different techniques to treat honeybees with 3H-octopamine (3H-OA), and analysed the distribution of the 3H radiolabelled compound within different tissues and how it changed over time. All treatment methods, including injection of the median ocellus, resulted in 3H-OA detection in all parts of the honeybee. Injection through the median ocellus was the most effective method for delivering 3H-OA to the brain. Topical application of 3H-OA dissolved in dimethylformamide (dMF) to the thorax was as effective as thoracic injections of 3H-OA in delivering 3H-OA to the brain, but topical applications to the abdomen were less so. Most of the 3H-OA applied topically remained associated with the cuticle and the tissues of the body segment to which it had been applied. For all treatment methods, 3H-OA was rapidly lost from the brain and head capsule, and accumulated in the abdomen. Our findings demonstrate the value of thoracic topical treatment with compounds dissolved in dMF as an effective non-invasive method for short-term, systemic pharmacological treatments.
Collapse
Affiliation(s)
- Andrew B Barron
- Visual Sciences and ARC Centre for Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | |
Collapse
|
20
|
Maleszka J, Forêt S, Saint R, Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 2007; 217:189-96. [PMID: 17216269 DOI: 10.1007/s00427-006-0127-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 11/30/2006] [Indexed: 11/25/2022]
Abstract
Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood, protein family found in insects and other arthropods. They exhibit both broad and restricted expression patterns during development. In this paper, we used a combination of genome annotation, transcriptional profiling and RNA interference to unravel the functional significance of a honeybee gene (csp5) belonging to the CSP family. We show that csp5 expression resembles the maternal-zygotic pattern that is characterized by the initiation of transcription in the ovary and the replacement of maternal mRNA with embryonic mRNA. Blocking the embryonic expression of csp5 with double-stranded RNA causes abnormalities in all body parts where csp5 is highly expressed. The treated embryos show a "diffuse", often grotesque morphology, and the head skeleton appears to be severely affected. They are 'unable-to-hatch' and cannot progress to the larval stages. Our findings reveal a novel, essential role for this gene family and suggest that csp5 (unable-to-hatch) is an ectodermal gene involved in embryonic integument formation. Our study confirms the utility of an RNAi approach to functional characterization of novel developmental genes uncovered by the honeybee genome project and provides a starting point for further studies on embryonic integument formation in this insect.
Collapse
Affiliation(s)
- J Maleszka
- ARC Centre for the Molecular Genetics of Development and Visual Sciences, Research School of Biological Sciences, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
21
|
Forêt S, Wanner KW, Maleszka R. Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:19-28. [PMID: 17175443 DOI: 10.1016/j.ibmb.2006.09.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/18/2006] [Accepted: 09/23/2006] [Indexed: 05/13/2023]
Abstract
Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood protein family that has been implicated in transporting chemical stimuli within insect sensilla. However, their expression patterns suggest that these molecules are also critical for other functions including early development. Here we used both bioinformatics and experimental approaches to characterize the CSP gene family in a social insect, the Western honey bee Apis mellifera, and then compared its members to CSPs in other arthropods. The number of CSPs in the honey bee genome (six) is similar to that found in the sequenced dipteran species (four-seven), but is much lower than the number of CSPs in the moth or in the beetle (around 20 each). These differences seem to be the result of lineage specific expansions. Our analysis of CSPs in a number of arthropods reveals a conserved gene family found in both Mandibulates and Chelicerates. Expressional profiling in diverse tissues and throughout development reveals broader than expected patterns of expression with none of the CSPs restricted to the antennae and one found only in the queen ovaries and in embryos. We conclude that CSPs are multifunctional context-dependent proteins involved in diverse cellular processes ranging from embryonic development to chemosensory signal transduction. Some CSPs may function in cuticle synthesis, consistent with their evolutionary origins in the arthropods.
Collapse
Affiliation(s)
- Sylvain Forêt
- ARC Centre for the Molecular Genetics of Development, Visual Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
22
|
Campusano JM, Su H, Jiang SA, Sicaeros B, O'Dowd DK. nAChR-mediated calcium responses and plasticity inDrosophila Kenyon cells. Dev Neurobiol 2007; 67:1520-32. [PMID: 17525989 DOI: 10.1002/dneu.20527] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Drosophila, nicotinic acetylcholine receptors (nAChRs) mediate fast excitatory synaptic transmission in mushroom body Kenyon cells, a neuronal population involved in generation of complex behaviors, including responses to drugs of abuse. To determine whether activation of nAChRs can induce cellular changes that contribute to functional plasticity in these neurons, we examined nicotine-evoked responses in cells cultured from brains of late stage OK107-GAL4 pupae. Kenyon cells can be identified by expression of green fluorescent protein (GFP+). Nicotine activates alpha-bungarotoxin-sensitive nAChRs, causing a rapid increase in intracellular calcium levels in over 95% of the Kenyon cells. The nicotine-evoked calcium increase has a voltage-gated calcium channel (VGCC) dependent component and a VGCC-independent component that involves calcium influx directly through nAChRs. Thapsigargin treatment reduces the nicotine response consistent with amplification by calcium release from intracellular stores. The response to nicotine is experience-dependent: a short conditioning pulse of nicotine causes a transient 50% reduction in the magnitude of the response to a test pulse of nicotine when the interpulse interval is 4 h. This cellular plasticity is dependent on activation of the VGCC-component of the nicotine response and on cAMP-signaling, but not on protein synthesis. These data demonstrate that activation of nAChRs induces a calcium-dependent plasticity in Kenyon cells that could contribute to adult behaviors involving information processing in the mushroom bodies including responses to nicotine.
Collapse
Affiliation(s)
- Jorge M Campusano
- Department of Anatomy and Neurobiology, University of California-Irvine, Irvine, CA 92697-1280, USA
| | | | | | | | | |
Collapse
|
23
|
Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 2006; 16:1404-13. [PMID: 17065610 PMCID: PMC1626642 DOI: 10.1101/gr.5075706] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The remarkable olfactory power of insect species is thought to be generated by a combinatorial action of two large protein families, G protein-coupled olfactory receptors (ORs) and odorant binding proteins (OBPs). In olfactory sensilla, OBPs deliver hydrophobic airborne molecules to ORs, but their expression in nonolfactory tissues suggests that they also may function as general carriers in other developmental and physiological processes. Here we used bioinformatic and experimental approaches to characterize the OBP-like gene family in a highly social insect, the Western honey bee. Comparison with other insects shows that the honey bee has the smallest set of these genes, consisting of only 21 OBPs. This number stands in stark contrast to the more than 70 OBPs in Anopheles gambiae and 51 in Drosophila melanogaster. In the honey bee as in the two dipterans, these genes are organized in clusters. We show that the evolution of their structure involved frequent intron losses. We describe a monophyletic subfamily of OBPs where the diversification of some amino acids appears to have been accelerated by positive selection. Expression profiling under a wide range of conditions shows that in the honey bee only nine OBPs are antenna-specific. The remaining genes are expressed either ubiquitously or are tightly regulated in specialized tissues or during development. These findings support the view that OBPs are not restricted to olfaction and are likely to be involved in broader physiological functions.
Collapse
Affiliation(s)
- Sylvain Forêt
- Visual Sciences and ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University,Canberra ACT 0200, Australia
| | - Ryszard Maleszka
- Visual Sciences and ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University,Canberra ACT 0200, Australia
- Corresponding author.E-mail ; fax (612) 6125 8294
| |
Collapse
|
24
|
Gauthier M, Dacher M, Thany SH, Niggebrügge C, Déglise P, Kljucevic P, Armengaud C, Grünewald B. Involvement of α-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 2006; 86:164-74. [PMID: 16616529 DOI: 10.1016/j.nlm.2006.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/16/2006] [Accepted: 02/22/2006] [Indexed: 11/18/2022]
Abstract
In the honeybee Apis mellifera, multiple-trial olfactory conditioning of the proboscis extension response specifically leads to long-term memory (LTM) which can be retrieved more than 24 h after learning. We studied the involvement of nicotinic acetylcholine receptors in the establishment of LTM by injecting the nicotinic antagonists mecamylamine (1 mM), alpha-bungarotoxin (alpha-BGT, 0.1 mM) or methyllycaconitine (MLA, 0.1 mM) into the brain through the median ocellus 20 min before or 20 min after multiple-trial learning. The retention tests were performed 1, 3, and 24 h after learning. Pre-training injections of mecamylamine induced a lower performance during conditioning but had no effect on LTM formation. Post-training injections of mecamylamine did not affect honeybees' performances. Pre-training injections of MLA or post-training injection of alpha-BGT specifically induced LTM impairment whereas acquisition as well as memory retrieval tested 1 or 3 h after learning was normal. This indicates that brain injections of alpha-BGT and MLA did not interfere with learning or medium-term memory. Rather, these blockers affect the LTM. To explain these results, we advance the hypothesis that honeybee alpha-BGT-sensitive acetylcholine receptors are also sensitive to MLA. These receptors could be essential for triggering intracellular mechanisms involved in LTM. By contrast, medium-term memory is not dependent upon these receptors but is affected by mecamylamine.
Collapse
Affiliation(s)
- Monique Gauthier
- Centre de Recherches sur la Cognition Animale, CNRS/Université Paul Sabatier Toulouse III, 4R3, 118 route de Narbonne, 31062 Toulouse Cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Beadle DJ. Insect neuronal cultures: an experimental vehicle for studies of physiology, pharmacology and cell interactions. INVERTEBRATE NEUROSCIENCE 2006; 6:95-103. [PMID: 16874504 DOI: 10.1007/s10158-006-0024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/26/2006] [Indexed: 10/25/2022]
Abstract
The current status of insect neuronal cultures is discussed and their contribution to our understanding of the insect nervous system is explored. Neuronal cultures have been developed from a wide range of insect species and from all developmental stages. These have been used to study the morphological development of insect neurones and some of the extrinsic factors that affect this process. In addition, they have been used to investigate the physiology of sodium, potassium and calcium channels and the pharmacology of acetylcholine and GABA receptors. Insect neurones have also been grown in culture with muscle and glial cells to study cell interactions.
Collapse
Affiliation(s)
- D J Beadle
- School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
26
|
D'yakonova VE, Krushinskii AL. Effects of an NO synthase inhibitor on aggressive and sexual behavior in male crickets. ACTA ACUST UNITED AC 2006; 36:565-71. [PMID: 16645775 DOI: 10.1007/s11055-006-0057-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Indexed: 10/24/2022]
Abstract
The mechanisms of the effects of some types of behavior on others have received little study. The present investigation addresses the phenomenon present in male crickets of the species Gryllus bimaculatus, consisting of the powerful activation by transient flight (3 min) of aggression to another male and of the female courtship program. We found that flight did not evoke these behavioral changes in males injected with the NO synthase inhibitor LNNA. The intensity and duration of fights with another male, the frequency of ritual singing by the victor, and the intensity with which the victor pursued the vanquished only increased significantly after flight in control male crickets injected with Ringer's solution, but not in experimental crickets. Similarly, flown males injected with LNNA were no different from unflown males in terms of the intensity of female courtship (the latent period and relative duration of courtship singing); in controls, the latent period was significantly shorter and the duration of singing was significantly greater in flown crickets. LNNA had no effect on aggressive or sexual behavior in unflown males. These results demonstrate that flight may increase NO synthesis, making a significant contribution to the formation of the flight-evoked behavioral state.
Collapse
Affiliation(s)
- V E D'yakonova
- NK Kol'tsov Institute of Developmental Biology, Russian Academy of Science, Moscow
| | | |
Collapse
|
27
|
Abstract
Behavioral and genetic studies in Drosophila have contributed to our understanding of molecular mechanisms that underlie the complex processes of learning and memory. Use of this model organism for exploration of the cellular mechanisms of memory formation requires the ability to monitor synaptic activity in the underlying neural networks, a challenging task in the tiny adult fly. Here, we describe an isolated whole-brain preparation in which it is possible to obtain in situ whole-cell recordings from adult Kenyon cells, key members of a neural circuit essential for olfactory associative learning in Drosophila. The presence of sodium action potential (AP)-dependent synaptic potentials and synaptic currents in >50% of the Kenyon cells shows that these neurons are members of a spontaneously active neural circuit in the isolated brain. The majority of sodium AP-dependent synaptic transmission is blocked by curare and by alpha-bungarotoxin (alpha-BTX). This demonstrates that nicotinic acetylcholine receptors (nAChRs) are responsible for most of the spontaneous excitatory drive in this circuit in the absence of normal sensory input. Furthermore, analysis of sodium AP-independent synaptic currents provides the first direct demonstration that alpha-BTX-sensitive nAChRs mediate fast excitatory synaptic transmission in Kenyon cells in the adult Drosophila brain. This new preparation, in which whole-cell recordings and pharmacology can be combined with genetic approaches, will be critical in understanding the contribution of nAChR-mediated fast synaptic transmission to cellular plasticity in the neural circuits underlying olfactory associative learning.
Collapse
Affiliation(s)
- Huaiyu Gu
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-1280, USA
| | | |
Collapse
|
28
|
Mannucci C, Catania MA, Adamo EB, Bellomo M, Caputi AP, Calapai G. Long-Term Effects of High Doses of Nicotine on Feeding Behavior and Brain Nitric Oxide Synthase Activity in Female Mice. J Pharmacol Sci 2005; 98:232-8. [PMID: 15988129 DOI: 10.1254/jphs.fpe05001x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We studied the long-term effects of repeated doses of nicotine, causing dependence, 120 days after its withdrawal on feeding behavior and on brain nitric oxide (NO) formation in female mice. Nicotine dependence was induced by subcutaneous (s.c.) nicotine injection (2 mg/kg, four injections daily) for 14 days. Daily food intake was evaluated for the entire observational period (120 days). Moreover, 30, 60, and 120 days after nicotine withdrawal, we evaluated food intake, nitrite/nitrate levels, and nitric oxide synthase (NOS) activity and expression in the hypothalamus after food deprivation (24 h). In animals in which nicotine dependence was induced (NM), daily food intake was similar to that of controls (M). However, following food deprivation, NM mice showed i) a significant increase in food intake, ii) changes in weight gain and in hypothalamic nitrite/nitrate levels, and iii) enhancement of hypothalamic neuronal NOS (nNOS) activity. Results indicate that high doses of nicotine producing dependence induce long-term changes in feeding behavior consequent to food deprivation associated to alterations in the brain nitrergic system.
Collapse
Affiliation(s)
- Carmen Mannucci
- Department of Clinical and Experimental Medicine and Pharmacology, Section of Pharmacology, School of Medicine, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Dacher M, Lagarrigue A, Gauthier M. Antennal tactile learning in the honeybee: Effect of nicotinic antagonists on memory dynamics. Neuroscience 2005; 130:37-50. [PMID: 15561423 DOI: 10.1016/j.neuroscience.2004.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
Restrained worker honeybees (Apis mellifera L.) are able to learn to associate antennal-scanning of a metal plate with a sucrose reinforcement delivered to the mouthparts. Learning occurs reliably in a single association of the two sensory stimuli. The involvement of nicotinic pathways in memory formation and retrieval processes was tested by injecting, into the whole brain through the median ocellus, either mecamylamine (0.6 microg per bee) or alpha-bungarotoxin (2.4 ng per bee). Saline served as a control. Mecamylamine injected 10 min before the retrieval test impairs the retention level tested 3 h and 24 h after single- or multi-trial learning. Retrieval tests performed at various times after the injection show that the blocking effect of mecamylamine lasts about 1 h. The drug has no effect on the reconsolidation or extinction processes. Mecamylamine injected 10 min before conditioning impairs single-trial learning but has no effect on five-trial learning and on the consolidation process. By contrast, alpha-bungarotoxin only impairs the formation of long-term memory (24 h) induced by the five-trial learning and has no effect on medium-term memory (3 h), on single-trial learning or on the retrieval process. Hence, owing to previous data, at least two kinds of nicotinic receptors seem to be involved in honeybee memory, an alpha-bungarotoxin-sensitive and an alpha-bungarotoxin-insensitive receptor. Our results extend to antennal mechanosensory conditioning the role of the cholinergic system that we had previously described for olfactory conditioning in the honeybee. Moreover, we describe here in this insect a pharmacological dissociation between alpha-bungarotoxin sensitive long-term memory and alpha-bungarotoxin insensitive medium-term memory, the last one being affected by mecamylamine.
Collapse
Affiliation(s)
- M Dacher
- Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université Paul Sabatier, Bât 4R3, 118 route de Narbonne, 31062 Toulouse, Cedex 04, France.
| | | | | |
Collapse
|
30
|
Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G. Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene 2005; 344:125-32. [PMID: 15656979 DOI: 10.1016/j.gene.2004.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 09/06/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Acetylcholine is the principal excitatory neurotransmitter in the central nervous system of insects. Nicotinic acetylcholine receptors, which belong to the ligand-gated ion channel family, constitute important targets for insecticides. In the honeybee Apis mellifera, pharmacological evidence supports the existence of several nicotinic acetylcholine receptors. In this paper, we report the identification of three new genes that encode nicotinic acetylcholine receptor alpha-subunits in the honeybee. Phylogenetic comparisons with other ligand-gated ion channel subunit sequences support their classification as Apisalpha2, Apisalpha7-1 and Apisalpha7-2 subunits. Based on in situ hybridization experiments, we determined their expression patterns in the different brain regions of pupae and adult honeybees. Our results show that these nicotinic acetylcholine receptor subunits are differently expressed among the brain regions and that they appear at different stages of honeybee development.
Collapse
Affiliation(s)
- S H Thany
- Centre de Recherches sur la Cognition Animale, CNRS, UMR 5169, Université Paul Sabatier Bât 4R3, 118 route de narbonne, 31062 Toulouse, France.
| | | | | | | | | |
Collapse
|
31
|
Wüstenberg DG, Boytcheva M, Grünewald B, Byrne JH, Menzel R, Baxter DA. Current- and Voltage-Clamp Recordings and Computer Simulations of Kenyon Cells in the Honeybee. J Neurophysiol 2004; 92:2589-603. [PMID: 15190098 DOI: 10.1152/jn.01259.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mushroom body of the insect brain is an important locus for olfactory information processing and associative learning. The present study investigated the biophysical properties of Kenyon cells, which form the mushroom body. Current- and voltage-clamp analyses were performed on cultured Kenyon cells from honeybees. Current-clamp analyses indicated that Kenyon cells did not spike spontaneously in vitro. However, spikes could be elicited by current injection in approximately 85% of the cells. Of the cells that produced spikes during a 1-s depolarizing current pulse, approximately 60% exhibited repetitive spiking, whereas the remaining approximately 40% fired a single spike. Cells that spiked repetitively showed little frequency adaptation. However, spikes consistently became broader and smaller during repetitive activity. Voltage-clamp analyses characterized a fast transient Na+current ( INa), a delayed rectifier K+current ( IK,V), and a fast transient K+current ( IK,A). Using the neurosimulator SNNAP, a Hodgkin–Huxley-type model was developed and used to investigate the roles of the different currents during spiking. The model led to the prediction of a slow transient outward current ( IK,ST) that was subsequently identified by reevaluating the voltage-clamp data. Simulations indicated that the primary currents that underlie spiking are INaand IK,V, whereas IK,Aand IK,STprimarily determined the responsiveness of the model to stimuli such as constant or oscillatory injections of current.
Collapse
Affiliation(s)
- Daniel G Wüstenberg
- Department of Neurobiology and Anatomy, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Si A, Helliwell P, Maleszka R. Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol Biochem Behav 2004; 77:191-7. [PMID: 14751445 DOI: 10.1016/j.pbb.2003.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In contrast to vertebrates the involvement of glutamate and N-methyl-D-aspartate (NMDA) receptors in brain functions in insects is both poorly understood and somewhat controversial. Here, we have examined the behavioural effects of two noncompetitive NMDA receptor antagonists, memantine (low affinity) and MK-801 (high affinity), on learning and memory in honeybees (Apis mellifera) using the olfactory conditioning of the proboscis extension reflex (PER). We induced memory deficit by injecting harnessed individuals with a glutamate transporter inhibitor, L-trans-2,4-PDC (L-trans-2,4-pyrrolidine dicarboxylate), that impairs long-term (24 h), but not short-term (1 h), memory in honeybees. We show that L-trans-2,4-PDC-induced amnesia is 'rescued' by memantine injected either before training, or before testing, suggesting that memantine restores memory recall rather than memory formation or storage. When injected alone memantine has a mild facilitating effect on memory. The effects of MK-801 are similar to those of L-trans-2,4-PDC. Both pretraining and pretesting injections lead to an impairment of long-term (24 h) memory, but have no effect on short-term (1 h) memory of an olfactory task. The implications of our results for memory processes in the honeybee are discussed.
Collapse
Affiliation(s)
- Aung Si
- Visual Sciences, Research School of Biological Sciences, Australian National University, ACT 0200, Canberra, Australia
| | | | | |
Collapse
|
33
|
Abstract
Camgaroos are yellow fluorescent protein derivatives that hold promise as transgenically encoded calcium sensors in behaving animals. We expressed two versions of camgaroo in Drosophila mushroom bodies using the galactosidase-4 (GAL4) system. Potassium depolarization of brains expressing the reporters produces a robust increase in fluorescence that is blocked by removing extracellular calcium or by antagonists of voltage-dependent calcium channels. The fluorescence increase is not attributable to cytoplasmic alkalization; depolarization induces a slight acidification of the cytoplasm of mushroom body neurons. Acetylcholine applied near the dendrites of the mushroom body neurons induces a rapid and ipsilateral-specific fluorescence increase in the mushroom body axons that is blocked by antagonists of calcium channels or nicotinic acetylcholine receptors. Fluorescence was observed to increase in all three classes of mushroom body neurons, indicating that all types respond to cholinergic innervation.
Collapse
|
34
|
Rohrbough J, O'Dowd DK, Baines RA, Broadie K. Cellular bases of behavioral plasticity: establishing and modifying synaptic circuits in the Drosophila genetic system. JOURNAL OF NEUROBIOLOGY 2003; 54:254-71. [PMID: 12486708 DOI: 10.1002/neu.10171] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, Tennessee 37235-1634, USA.
| | | | | | | |
Collapse
|
35
|
Zayas RM, Qazi S, Morton DB, Trimmer BA. Nicotinic-acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons. J Neurochem 2002; 83:421-31. [PMID: 12423252 DOI: 10.1046/j.1471-4159.2002.01147.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to their ionotropic role, neuronal nicotinic acetylcholine receptors (nAChRs) can influence second messenger levels, transmitter release and gene transcription. In this study, we show that nAChRs in an insect CNS control cGMP levels by coupling to NO production. In conditions that inhibit spiking, nicotine induced cGMP synthesis. This increase in cGMP was blocked by nicotinic antagonists, and by inhibitors of both nitric oxide synthase and soluble guanylyl cyclase. The nicotinic-evoked increase in cGMP was localized to specific NO-sensitive neurons in the CNS, several of which are identified motoneurons. Because NO production requires Ca2+, we investigated the effect of nicotinic stimulation on [Ca2+]i in cultured neurons. We found that activation of nAChRs increased [Ca2+]i, which was blocked by nAChR antagonists. Nicotinic stimulation of neurons in the isolated CNS in low-Na+, also evoked increases in [Ca2+]i independent of fast changes in voltage. In addition, approximately 10% of the nicotinic-evoked [Ca2+]i increase in cultured neurons persisted when voltage-gated Ca2+ channels were blocked by Ni2+. Under the same conditions, nicotinic stimulation of cGMP in the CNS was unaffected. These combined results suggest that nicotinic stimulation is coupled to NOS potentially by directly gating Ca2+.
Collapse
Affiliation(s)
- Ricardo M Zayas
- Department of Biology, Dana Laboratory, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
36
|
Vermehren A, Qazi S, Trimmer BA. The nicotinic alpha subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons. Neurosci Lett 2001; 313:113-6. [PMID: 11682140 DOI: 10.1016/s0304-3940(01)02228-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The functional contribution of cloned subunits to insect nicotinic acetylcholine (ACh) receptors has been difficult to determine using heterologous expression. Instead, in this study we explore the subunit composition of naturally expressed functional receptors in an insect using RNA interference. The nicotinic alpha subunit, Manduca ACh Receptor Alpha 1 (MARA1) can be detected in neuronal cultures isolated from the ventral nerve cord of fifth instar larvae of Manduca sexta by in situ hybridization. It's presence correlates with large ACh induced, nicotinic Ca2+ responses. The expression of MARA1 is downregulated by treatment with dsRNA which significantly reduced both the number of responding cells and the amplitude of remaining Ca2+ responses. These results suggest that MARA1 is part of a nicotinic receptor functionally coupled to Ca2+ entry.
Collapse
Affiliation(s)
- A Vermehren
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
37
|
Rosay P, Armstrong JD, Wang Z, Kaiser K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 2001; 30:759-70. [PMID: 11430809 DOI: 10.1016/s0896-6273(01)00323-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mushroom bodies are key features of the brain circuitry for insect associative learning, especially when evoked by olfactory cues. Mushroom bodies are also notable for the close-packed parallel architecture of their many intrinsic neuronal elements, known as Kenyon cells. Here, we report that Kenyon cells of adult Drosophila exhibit synchronous oscillation of intracellular calcium concentration, with a mean period of approximately 4 min. Robust oscillation within a dissected brain persists for hours in insect saline and is strongly modulated in amplitude by the product(s) of the memory consolidation gene, amnesiac. It is also sensitive to pharmacological agents specific for several classes of ion channel and for acetylcholine and GABA receptors. A role in memory consolidation involving transcriptionally mediated synaptic strengthening is proposed.
Collapse
Affiliation(s)
- P Rosay
- IBLS Division of Molecular Genetics, Anderson College Complex, University of Glasgow, G11 6NU, Scotland, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
38
|
Armengaud C, Aït-Oubah J, Causse N, Gauthier M. Nicotinic acetylcholine receptor ligands differently affect cytochrome oxidase in the Honeybee brain. Neurosci Lett 2001; 304:97-101. [PMID: 11335064 DOI: 10.1016/s0304-3940(01)01735-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine if nicotinic receptor antagonists known for their ability to impair memory in the honeybee could induce changes in brain metabolism. We tested the effect of antagonists [hexamethonium, mecamylamine, alpha-bungarotoxin (alpha-BTX)] and agonist (nicotine) brain injections on cytochrome oxidase (CO) histochemistry. Within as little as 30 min following nicotine injection, an increase of the staining was observed in almost all the structures analyzed. The increase was limited to the alpha-lobe after alpha-BTX injection. In contrast, the antagonists hexamethonium and mecamylamine reduced CO staining in this structure that seems to be involved in information retrieval. These results suggest that the decrease of metabolism in the alpha-lobe obtained with hexamethonium and mecamylamine injections could be related to the impairment of retrieval processes previously observed with these drugs.
Collapse
Affiliation(s)
- C Armengaud
- Laboratoire de Neurobiologie de l'Insecte, Université de Toulouse III, 118 route de Narbonne, 31062 Cedex, Toulouse, France.
| | | | | | | |
Collapse
|
39
|
Pogun S, Demirgoren S, Taskiran D, Kanit L, Yilmaz O, Koylu EO, Balkan B, London ED. Nicotine modulates nitric oxide in rat brain. Eur Neuropsychopharmacol 2000; 10:463-72. [PMID: 11115736 DOI: 10.1016/s0924-977x(00)00116-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotine exerts its central actions by regulating cationic fluxes through nicotinic acetylcholine receptors (nAChRs). By this effect, the drug likely also modifies events occurring beyond the nAChR, including the regulation of nitric oxide (NO) synthesis. The present study was undertaken to assess the effects of acute and chronic nicotine administration (0.4 mg/kg, s.c.) on levels of NO(-)(2)+NO(-)(3), stable metabolites of NO, in brain regions of male and female rats. Nicotine increased levels of the metabolites, and therefore presumably of NO, with sex differences in the degree of stimulation, the brain regions affected, and the variance between the effects of acute and chronic administration. Prior inhibition of NO synthase eliminated the effect of nicotine in all regions studied. While nicotine appeared to increase NO indirectly via glutamate receptors in the cortex and hippocampus, this was not true of the corpus striatum, where blocking NMDA-type glutamate receptors with MK-801 had no effect. The findings support the view that NO is likely involved in some of the central effects of nicotine.
Collapse
Affiliation(s)
- S Pogun
- Ege University Center for Brain Research and TUBITAK Basic Neuroscience Research Unit, 35100, Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Maleszka R, Helliwell P, Kucharski R. Pharmacological interference with glutamate re-uptake impairs long-term memory in the honeybee, apis mellifera. Behav Brain Res 2000; 115:49-53. [PMID: 10996407 DOI: 10.1016/s0166-4328(00)00235-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of glutamate in the central nervous system of invertebrates is poorly understood. In the present study we examined the effects of a glutamate transporter inhibitor, L-trans-2,4-pyrrolidine dicarboxylate (L-trans-2,4-PDC), on memory formation in the honeybee following a three-trial classical conditioning of the proboscis extension reflex (PER). Pre-training injections of the drug have no effect on acquisition and short-term (1 h) memory, but impair long-term (24 h), associative olfactory memory in a dose-dependent manner. This effect is transient and the amnesiac individuals can be re-trained successfully 48 h after injections. Our results suggest that glutamatergic neurons in the honeybee brain, in particular those found in the mushroom bodies (MBs), may be part of the circuitry involved in processing of long-term olfactory memory. Such a role for this neurotransmitter is consistent with our previous results showing that glutamate and glutamate transporter(s) are localised in regions of the honeybee brain implicated in higher order processing.
Collapse
Affiliation(s)
- R Maleszka
- Visual Sciences, Research School of Biological Sciences, The Australian National University, GPO Box 475, ACT 0200, Canberra, Australia.
| | | | | |
Collapse
|
41
|
Watanabe Y, Morimatsu M, Syuto B. The evaluation of the potential of botulinum C3 enzyme as an exogenous differentiation inducing factor to neurons. J Vet Med Sci 2000; 62:473-8. [PMID: 10852394 DOI: 10.1292/jvms.62.473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Botulinum C3 enzyme produced by Clostridium botulinum type C and D strains modifies Rho proteins. In a previous study, we observed that the LDH isozyme pattern of neurons treated with C3 enzyme was different from that induced with endogenous growth factor of neurons such as NGF [21]. This type of change is considered to have an advantage in the medical use of C3 enzyme for neural disorder. To determine the functional similarity of C3-treated neurons to control and NGF-treated neurons, we examined the responses of C3-treated neurons to various drugs, including some neurotransmitters, by measuring the rise of intracellular Ca ions into the neurons. The time course of the rise of intracellular Ca ions induced by high concentration of potassium in the C3-treated neurons was similar to that in the NGF-treated neurons. The C3-treated neurons responded to glutamic acid, aspartic acid, kainic acid, gamma-aminobutylic acid, muscarine and ACh with similar time courses and magnitudes as the control neurons. These results suggest that the C3 enzyme induces the functional differentiation of neurons, and that C3 enzyme has the potential for the medical use as an exogenous differentiation-inducing factor of neurons.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Veterinary Medicine, Faculty ofAgriculture, Iwate University, Morioka, Japan
| | | | | |
Collapse
|
42
|
Armengaud C, Causse N, Aït-Oubah J, Ginolhac A, Gauthier M. Functional cytochrome oxidase histochemistry in the honeybee brain. Brain Res 2000; 859:390-3. [PMID: 10719093 DOI: 10.1016/s0006-8993(00)02016-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The variations of neural metabolism induced by surgical and chemical treatments were studied in the honeybee brain by the means of cytochrome oxidase (CO) histochemistry. CO staining is considerably reduced in the alpha-lobe by antennal input deprivation. Chemical stimulation (50 mM K(+)) was linked to an increase of CO staining in antennal lobes (AL) and to a decrease in the basal ring of calyces (Cal). Application of the nicotinic ligand imidacloprid (10(-4) M) resulted in increased CO labelling within 30 min in all the structures analysed. Treatment with a lower concentration (10(-8) M) resulted in reduced staining in Cal and central body (CB). We conclude that CO histochemistry can be used to identify the target structures of cholinergic ligands in the honeybee brain.
Collapse
Affiliation(s)
- C Armengaud
- Laboratoire de Neurobiologie de l'Insecte, Université de Toulouse III, 118 route de Narbonne, 31062, Toulouse, France.
| | | | | | | | | |
Collapse
|
43
|
Abstract
This paper summarizes histochemical and immunocytochemical investigations of cholinergic, GABAergic, and glutamatergic pathways in the central brain and suboesophageal ganglion of the honeybee. Acetylcholinesterase histochemistry, immunocytochemical staining for nicotinic acetylcholine receptors, and mapping for alpha-bungarotoxin binding sites indicate cholinergic synaptic interactions in the antennal lobe and a cholinergic pathway via a subset of olfactory projection neurons into the mushroom bodies. Calcium imaging experiments in cell cultures prepared from mushroom bodies demonstrate the expression of nicotinic cholinergic receptors on Kenyon cells. Neurons synthesizing GABA and glutamate are stained with well-defined polyclonal antisera against the amino acids. GABA-immunoreactivity is mainly localized in local interneurons of the antennal lobe and in extrinsic neurons innervating the mushroom bodies. High levels of glutamate-immunoreactivity are found in motoneurons of the suboesophageal ganglion, the dorsal lobe, and also in interneurons. A subgroup of the Kenyon cells shows distinct but weaker levels of glutamate-immunoreactivity. The detailed knowledge about the chemical neuroanatomy of the bee provides a framework for behavioral pharmacological approaches, which implicate the involvement of cholinergic mechanisms in olfactory learning and GABAergic mechanisms in odor discrimination.
Collapse
Affiliation(s)
- G Bicker
- Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Germany.
| |
Collapse
|
44
|
Pichon Y, Guillet JC, Le Guen J, Tiaho F, Van Eyseren I. Effects of nicotinic and muscarinic ligands on embryonic neurones of Periplaneta americana in primary culture: a whole cell clamp study. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:227-240. [PMID: 12769957 DOI: 10.1016/s0022-1910(97)00165-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The pharmacological properties of acetylcholine (ACh) receptors of cultured neurones from embryonic cockroach brains were studied using the whole-cell configuration of the patch-clamp technique. More than 90% of the studied neurones responded to ACh by a monophasic inward current, the intensity of which varied from cell to cell. The sequence of potency of the five tested agonists was ACh > nicotine=carbamylcholine > suberyldicholine=oxotremorine. The dose-response relationship was complex, suggesting the existence of two populations of receptors: high-affinity receptors (extrapolated K(d) around 10(-7) M) and low-affinity receptors (extrapolated K(d) around 5x10(-5) M). The current-voltage relationship of the induced current was linear between -80 and -40 mV and the extrapolated reversal potential was not significantly different from 0 mV. The sequence of decreasing potency of the antagonists of the ACh response was: methyllycaconitine > alpha-bungarotoxin > mecamylamine > curare > strychnine > bicuculline > atropine > picrotoxin. These results show: (1) that, in embryonic brain neurones, the response to ACh corresponds to the opening of non-selective cationic channels; and (2) that the pharmacology of the ACh receptors is mainly but not solely nicotinic. The nature of the single events which underlie this response, as well as the structure of the channels (homo or hetero-oligomeric) remain to be investigated.
Collapse
Affiliation(s)
- Y Pichon
- Groupe de neurobiologie, Equipe C.R.M., UPRES-A CNRS 6026, Université de Rennes, Campus de Beaulieu, F-35042, Rennes, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
Nitric oxide (NO) is considered an important signaling molecule implied in different physiological processes, including nervous transmission, vascular regulation, immune defense, and in the pathogenesis of several diseases. The presence of NO is well demonstrated in all vertebrates. The recent data on the presence and roles of NO in the main invertebrate groups are reviewed here, showing the widespread diffusion of this signaling molecule throughout the animal kingdom, from higher invertebrates down to coelenterates and even to prokaryotic cells. In invertebrates, the main functional roles described for mammals have been demonstrated, whereas experimental evidence suggests the presence of new NOS isoforms different from those known for higher organisms. Noteworthy is the early appearance of NO throughout evolution and striking is the role played by the nitrergic pathway in the sensorial functions, from coelenterates up to mammals, mainly in olfactory-like systems. All literature data here reported suggest that future research on the biological roles of early signaling molecules in lower living forms could be important for the understanding of the nervous-system evolution.
Collapse
Affiliation(s)
- M Colasanti
- Department of Biology, University of Rome III, Italy
| | | |
Collapse
|