1
|
Yasar TB, Gombkoto P, Vyssotski AL, Vavladeli AD, Lewis CM, Wu B, Meienberg L, Lundegardh V, Helmchen F, von der Behrens W, Yanik MF. Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes. Nat Commun 2024; 15:4822. [PMID: 38844769 PMCID: PMC11156863 DOI: 10.1038/s41467-024-49226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.
Collapse
Affiliation(s)
- Tansel Baran Yasar
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Peter Gombkoto
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Angeliki D Vavladeli
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Christopher M Lewis
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Bifeng Wu
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linus Meienberg
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Valter Lundegardh
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Mahmoudian B, Dalal H, Lau J, Corrigan B, Abbas M, Barker K, Rankin A, Chen ECS, Peters T, Martinez-Trujillo JC. A method for chronic and semi-chronic microelectrode array implantation in deep brain structures using image guided neuronavigation. J Neurosci Methods 2023; 397:109948. [PMID: 37572883 DOI: 10.1016/j.jneumeth.2023.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Accurate targeting of brain structures for in-vivo electrophysiological recordings is essential for basic as well as clinical neuroscience research. Although methodologies for precise targeting and recording from the cortical surface are abundant, such protocols are scarce for deep brain structures. NEW METHOD We have incorporated stable fiducial markers within a custom cranial cap for improved image-guided neuronavigation targeting of subcortical structures in macaque monkeys. Anchor bolt chambers allowed for a minimally invasive entrance into the brain for chronic recordings. A 3D-printed microdrive allowed for semi-chronic applications. RESULTS We achieved an average Euclidean targeting error of 1.6 mm and a radial error of 1.2 mm over three implantations in two animals. Chronic and semi-chronic implantations allowed for recording of extracellular neuronal activity, with single-neuron activity examples shown from one macaque monkey. COMPARISON WITH EXISTING METHOD(S) Traditional stereotactic methods ignore individual anatomical variability. Our targeting approach allows for a flexible, subject-specific surgical plan with targeting errors lower than what is reported in humans, and equal to or lower than animal models using similar methods. Utilizing an anchor bolt as a chamber reduced the craniotomy size needed for electrode implantation, compared to conventional large access chambers which are prone to infection. Installation of an in-house, 3D-printed, screw-to-mount mechanical microdrive is in contrast to existing semi-chronic methods requiring fabrication, assembly, and installation of complex parts. CONCLUSIONS Leveraging commercially available tools for implantation, our protocol decreases the risk of infection from open craniotomies, and improves the accuracy of chronic electrode implantations targeting deep brain structures in large animal models.
Collapse
Affiliation(s)
- Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Hitarth Dalal
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Jonathan Lau
- Department of Clinical Neurological Sciences, Division of Neurosurgery, London Health Sciences Centre, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Benjamin Corrigan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Mohamad Abbas
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, London Health Sciences Centre, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | | | - Adam Rankin
- Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Elvis C S Chen
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, ON N6C2R5, Canada; Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Terry Peters
- Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Center for Functional and Metabolic Mapping, Robarts Research Institute, Department of Medical Biophysics and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, ON N6C2R5, Canada.
| |
Collapse
|
3
|
Jendritza P, Klein FJ, Fries P. Multi-area recordings and optogenetics in the awake, behaving marmoset. Nat Commun 2023; 14:577. [PMID: 36732525 PMCID: PMC9895452 DOI: 10.1038/s41467-023-36217-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The common marmoset has emerged as a key model in neuroscience. Marmosets are small in size, show great potential for genetic modification and exhibit complex behaviors. Thus, it is necessary to develop technology that enables monitoring and manipulation of the underlying neural circuits. Here, we describe a novel approach to record and optogenetically manipulate neural activity in awake, behaving marmosets. Our design utilizes a light-weight, 3D printed titanium chamber that can house several high-density silicon probes for semi-chronic recordings, while enabling simultaneous optogenetic stimulation. We demonstrate the application of our method in male marmosets by recording multi- and single-unit data from areas V1 and V6 with 192 channels simultaneously, and show that optogenetic activation of excitatory neurons in area V6 can influence behavior in a detection task. This method may enable future studies to investigate the neural basis of perception and behavior in the marmoset.
Collapse
Affiliation(s)
- Patrick Jendritza
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany.
| | - Frederike J Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Astrocytic Response to Acutely- and Chronically-Implanted Microelectrode Arrays in the Marmoset ( Callithrix jacchus) Brain. Brain Sci 2019; 9:brainsci9020019. [PMID: 30678038 PMCID: PMC6406890 DOI: 10.3390/brainsci9020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 11/27/2022] Open
Abstract
Microelectrode implants are an important tool in neuroscience research and in developing brain–machine interfaces. Data from rodents have consistently shown that astrocytes are recruited to the area surrounding implants, forming a glial scar that increases electrode impedance and reduces chronic utility. However, studies in non-human primates are scarce, with none to date in marmosets. We used glial fibrillary acidic protein (GFAP) immunostaining to characterize the acute and chronic response of the marmoset brain to microelectrodes. By using densitometry, we showed that marmoset astrocytes surround brain implants and that a glial scar is formed over time, with significant increase in the chronic condition relative to the acute condition animal.
Collapse
|
5
|
Ferrea E, Suriya-Arunroj L, Hoehl D, Thomas U, Gail A. Implantable computer-controlled adaptive multielectrode positioning system. J Neurophysiol 2018; 119:1471-1484. [DOI: 10.1152/jn.00504.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute neuronal recordings performed with metal microelectrodes in nonhuman primates allow investigating the neural substrate of complex cognitive behaviors. Yet the daily reinsertion and positioning of the electrodes prevents recording from many neurons simultaneously, limiting the suitability of these types of recordings for brain-computer interface applications or for large-scale population statistical methods on a trial-by-trial basis. In contrast, chronically implanted multielectrode arrays offer the opportunity to record from many neurons simultaneously, but immovable electrodes prevent optimization of the signal during and after implantation and cause the tissue response to progressively impair the transduced signal quality, thereby limiting the number of different neurons that can be recorded over the lifetime of the implant. Semichronically implanted matrices of electrodes, instead, allow individually movable electrodes in depth and achieve higher channel count compared with acute methods, hence partially overcoming these limitations. Existing semichronic systems with higher channel count lack computerized control of electrode movements, leading to limited user-friendliness and uncertainty in depth positioning. Here we demonstrate a chronically implantable adaptive multielectrode positioning system with detachable drive for computerized depth adjustment of individual electrodes over several millimeters. This semichronic 16-channel system is designed to optimize the simultaneous yield of units in an extended period following implantation since the electrodes can be independently depth adjusted with minimal effort and their signal quality continuously assessed. Importantly, the electrode array is designed to remain within a chronic recording chamber for a prolonged time or can be used for acute recordings with high signal-to-noise ratio in the cerebral cortex of nonhuman primates. NEW & NOTEWORTHY We present a 16-channel motorized, semichronic multielectrode array with individually depth-adjustable electrodes to record in the cerebral cortex of nonhuman primates. Compared with fixed-geometry arrays, this system allows repeated reestablishing of single neuron isolation. Compared with manually adjustable arrays it benefits from computer-controlled positioning. Compared with motorized semichronic systems it allows higher channel counts due to a robotic single actuator approach. Overall the system is designed to optimize the simultaneous yield of units over the course of implantation.
Collapse
Affiliation(s)
- E. Ferrea
- German Primate Center, Sensorimotor Group, Goettingen, Germany
| | | | - D. Hoehl
- Thomas RECORDING, Giessen, Germany
| | | | - A. Gail
- German Primate Center, Sensorimotor Group, Goettingen, Germany
- University of Goettingen, Georg-Elias-Mueller Institute of Psychology, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| |
Collapse
|
6
|
Visual Interhemispheric and Striate-Extrastriate Cortical Connections in the Rabbit: A Multiple Tracer Study. Neurol Res Int 2015; 2015:591245. [PMID: 26435850 PMCID: PMC4578745 DOI: 10.1155/2015/591245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Previous studies in rabbits identified an array of extrastriate cortical areas anatomically connected with V1 but did not describe their internal topography. To address this issue, we injected multiple anatomical tracers into different regions in V1 of the same animal and analyzed the topography of resulting extrastriate labeled fields with reference to the patterns of callosal connections and myeloarchitecture revealed in tangential sections of the flattened cortex. Our results extend previous studies and provide further evidence that rabbit extrastriate areas resemble the visual areas in rats and mice not only in their general location with respect to V1 but also in their internal topography. Moreover, extrastriate areas in the rabbit maintain a constant relationship with myeloarchitectonic borders and features of the callosal pattern. These findings highlight the rabbit as an alternative model to rats and mice for advancing our understanding of cortical visual processing in mammals, especially for projects benefiting from a larger brain.
Collapse
|
7
|
McMahon DBT, Bondar IV, Afuwape OAT, Ide DC, Leopold DA. One month in the life of a neuron: longitudinal single-unit electrophysiology in the monkey visual system. J Neurophysiol 2014; 112:1748-62. [PMID: 24966298 DOI: 10.1152/jn.00052.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Conventional recording methods generally preclude following the activity of the same neurons in awake animals across days. This limits our ability to systematically investigate the principles of neuronal specialization, or to study phenomena that evolve over multiple days such as experience-dependent plasticity. To redress this shortcoming, we developed a drivable, chronically implanted microwire recording preparation that allowed us to follow visual responses in inferotemporal (IT) cortex in awake behaving monkeys across multiple days, and in many cases across months. The microwire bundle and other implanted components were MRI compatible and thus permitted in the same animals both functional imaging and long-term recording from multiple neurons in deep structures within a region the approximate size of one voxel (<1 mm). The distinct patterns of stimulus selectivity observed in IT neurons, together with stable features in spike waveforms and interspike interval distributions, allowed us to track individual neurons across weeks and sometimes months. The long-term consistency of visual responses shown here permits large-scale mappings of neuronal properties using massive image libraries presented over the course of days. We demonstrate this possibility by screening the visual responses of single neurons to a set of 10,000 stimuli.
Collapse
Affiliation(s)
- David B T McMahon
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland;
| | - Igor V Bondar
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - Olusoji A T Afuwape
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - David C Ide
- Section on Instrumentation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; Neurophysiology Imaging Facility, National Institute of Mental Health, National Eye Institute, and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Abstract
The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of ; the visualization itself can be done with a complexity of and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with ms. The current 64-bit implementation theoretically supports datasets with up to bytes, on the x86_64 architecture currently up to bytes are supported, and benchmarks have been conducted with bytes/1 TiB or double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments.
Collapse
Affiliation(s)
- Michael Riss
- Department of ETSEIB, Technical University of Catalonia (UPC), Barcelona, Spain
- * E-mail:
| |
Collapse
|
9
|
Bansal AK, Singer JM, Anderson WS, Golby A, Madsen JR, Kreiman G. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes. J Neurophysiol 2012; 108:3073-86. [PMID: 22956795 DOI: 10.1152/jn.00458.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces.
Collapse
Affiliation(s)
- Arjun K Bansal
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Subcortical neuronal ensembles: an analysis of motor task association, tremor, oscillations, and synchrony in human patients. J Neurosci 2012; 32:8620-32. [PMID: 22723703 DOI: 10.1523/jneurosci.0750-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) has expanded as an effective treatment for motor disorders, providing a valuable opportunity for intraoperative recording of the spiking activity of subcortical neurons. The properties of these neurons and their potential utility in neuroprosthetic applications are not completely understood. During DBS surgeries in 25 human patients with either essential tremor or Parkinson's disease, we acutely recorded the single-unit activity of 274 ventral intermediate/ventral oralis posterior motor thalamus (Vim/Vop) neurons and 123 subthalamic nucleus (STN) neurons. These subcortical neuronal ensembles (up to 23 neurons sampled simultaneously) were recorded while the patients performed a target-tracking motor task using a cursor controlled by a haptic glove. We observed that modulations in firing rate of a substantial number of neurons in both Vim/Vop and STN represented target onset, movement onset/direction, and hand tremor. Neurons in both areas exhibited rhythmic oscillations and pairwise synchrony. Notably, all tremor-associated neurons exhibited synchrony within the ensemble. The data further indicate that oscillatory (likely pathological) neurons and behaviorally tuned neurons are not distinct but rather form overlapping sets. Whereas previous studies have reported a linear relationship between power spectra of neuronal oscillations and hand tremor, we report a nonlinear relationship suggestive of complex encoding schemes. Even in the presence of this pathological activity, linear models were able to extract motor parameters from ensemble discharges. Based on these findings, we propose that chronic multielectrode recordings from Vim/Vop and STN could prove useful for further studying, monitoring, and even treating motor disorders.
Collapse
|
11
|
Chah E, Hok V, O'Mara SM, Reilly RB. A waveform independent cell identification method to study long-term variability of spike recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2558-61. [PMID: 22254863 DOI: 10.1109/iembs.2011.6090707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Extracellular potential recordings are important in neuroscience; however the variability of spike waveforms has not been extensively studied to date. This study examines the variability of spike recordings within and between sessions. Place cell recordings were used in order to identify the cells across successive sessions. Place cells allow neuron spike recordings to be identified across different sessions using place fields, which are independent of the cell's spike waveform. The results show that the distribution of the residues within a session does not follow a normal distribution, a t-distribution is more suitable. The results also show that the amplitude of the spikes can vary largely between successive sessions (up to 47%), this is an important factor to be considered in long term spike recording systems.
Collapse
Affiliation(s)
- Ehsan Chah
- Trinity Centre for Bioengineering and Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| | | | | | | |
Collapse
|
12
|
Tseng WT, Yen CT, Tsai ML. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods 2011; 201:368-76. [PMID: 21889539 DOI: 10.1016/j.jneumeth.2011.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Wan-Ting Tseng
- Institute of Zoology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
13
|
Krüger J, Caruana F, Volta RD, Rizzolatti G. Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode. FRONTIERS IN NEUROENGINEERING 2010; 3:6. [PMID: 20577628 PMCID: PMC2889715 DOI: 10.3389/fneng.2010.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 04/30/2010] [Indexed: 12/04/2022]
Abstract
A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than 7 years in about one-third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage to the recording area. Advantages and problems related to long-term recording are discussed.
Collapse
Affiliation(s)
- Jürgen Krüger
- Dipartimento di Neuroscienze, Università di Parma Parma, Italy
| | | | | | | |
Collapse
|
14
|
Bondar IV, Leopold DA, Richmond BJ, Victor JD, Logothetis NK. Long-term stability of visual pattern selective responses of monkey temporal lobe neurons. PLoS One 2009; 4:e8222. [PMID: 20011035 PMCID: PMC2784294 DOI: 10.1371/journal.pone.0008222] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/03/2009] [Indexed: 11/18/2022] Open
Abstract
Many neurons in primate inferotemporal (IT) cortex respond selectively to complex, often meaningful, stimuli such as faces and objects. An important unanswered question is whether such response selectivity, which is thought to arise from experience-dependent plasticity, is maintained from day to day, or whether the roles of individual cells are continually reassigned based on the diet of natural vision. We addressed this question using microwire electrodes that were chronically implanted in the temporal lobe of two monkeys, often allowing us to monitor activity of individual neurons across days. We found that neurons maintained their selectivity in both response magnitude and patterns of spike timing across a large set of visual images throughout periods of stable signal isolation from the same cell that sometimes exceeded two weeks. These results indicate that stimulus-selectivity of responses in IT is stable across days and weeks of visual experience.
Collapse
Affiliation(s)
- Igor V Bondar
- Max Planck Institut für Biologische Kybernetik, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Long-Term Recordings of Multiple, Single-Neurons for Clinical Applications: The Emerging Role of the Bioactive Microelectrode. MATERIALS 2009. [PMCID: PMC5525202 DOI: 10.3390/ma2041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 1999 we reported an important demonstration of a working brain-machine interface (BMI), in which recordings from multiple, single neurons in sensorimotor cortical areas of rats were used to directly control a robotic arm to retrieve a water reward. Subsequent studies in monkeys, using a similar approach, demonstrated that primates can use a BMI device to control a cursor on a computer screen and a robotic arm. Recent studies in humans with spinal cord injuries have shown that recordings from multiple, single neurons can be used by the patient to control the cursor on a computer screen. The promise is that one day it will be possible to use these control signals from neurons to re-activate the patient’s own limbs. However, the ability to record from large populations of single neurons for long periods of time has been hampered because either the electrode itself fails or the immunological response in the tissue surrounding the microelectrode produces a glial scar, preventing single-neuron recording. While we have largely solved the problem of mechanical or electrical failure of the electrode itself, much less is known about the long term immunological response to implantation of a microelectrode, its effect on neuronal recordings and, of greatest importance, how it can be reduced to allow long term single neuron recording. This article reviews materials approaches to resolving the glial scar to improve the longevity of recordings. The work to date suggests that approaches utilizing bioactive interventions that attempt to alter the glial response and attract neurons to the recording site are likely to be the most successful. Importantly, measures of the glial scar alone are not sufficient to assess the effect of interventions. It is imperative that recordings of single neurons accompany any study of glial activation because, at this time, we do not know the precise relationship between glial activation and loss of neuronal recordings. Moreover, new approaches to immobilize bioactive molecules on microelectrode surfaces while maintaining their functionality may open new avenues for very long term single neuron recording. Finally, it is important to have quantitative measures of glial upregulation and neuronal activity in order to assess the relationship between the two. These types of studies will help rationalize the study of interventions to improve the longevity of recordings from microelectrodes.
Collapse
|
16
|
Abstract
Repositioning microelectrodes post-implantation is emerging as a promising approach to achieve long-term reliability in single neuronal recordings. The main goal of this study was to (a) assess glial reaction in response to movement of microelectrodes in the brain post-implantation and (b) determine an optimal window of time post-implantation when movement of microelectrodes within the brain would result in minimal glial reaction. Eleven Sprague-Dawley rats were implanted with two microelectrodes each that could be moved in vivo post-implantation. Three cohorts were investigated: (1) microelectrode moved at day 2 (n = 4 animals), (2) microelectrode moved at day 14 (n = 5 animals) and (3) microelectrode moved at day 28 (n = 2 animals). Histological evaluation was performed in cohorts 1-3 at four-week post-movement (30 days, 42 days and 56 days post-implantation, respectively). In addition, five control animals were implanted with microelectrodes that were not moved. Control animals were implanted for (1) 30 days (n = 1), (2) 42 days (n = 2) and (3) 56 days (n = 2) prior to histological evaluation. Quantitative assessment of glial fibrillary acidic protein (GFAP) around the tip of the microelectrodes demonstrated that GFAP levels were similar around microelectrodes moved at day 2 when compared to the 30-day controls. However, GFAP expression levels around microelectrode tips that moved at day 14 and day 28 were significantly less than those around control microelectrodes implanted for 42 and 56 days, respectively. Therefore, we conclude that moving microelectrodes after implantation is a viable strategy that does not result in any additional damage to brain tissue. Further, moving the microelectrode downwards after 14 days of implantation may actually reduce the levels of GFAP expression around the tips of the microelectrodes in the long term.
Collapse
Affiliation(s)
- Paula Stice
- Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | | |
Collapse
|
17
|
Wolf MT, Cham JG, Branchaud EA, Mulliken GH, Burdick JW, Andersen RA. A Robotic Neural Interface for Autonomous Positioning of Extracellular Recording Electrodes. Int J Rob Res 2009. [DOI: 10.1177/0278364908103788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper we describe a set of algorithms and a novel miniature device that together can autonomously position electrodes in neural tissue to obtain high-quality extracellular recordings. This robotic system moves each electrode to detect the signals of individual neurons, optimize the signal quality of a target neuron, and then maintain this signal over time. Such neuronal signals provide the key inputs for emerging neuroprosthetic medical devices and serve as the foundation of basic neuroscientific and medical research. Experimental results from extensive use of the robotic electrodes in macaque parietal cortex are presented to validate the method and to quantify its effectiveness.
Collapse
Affiliation(s)
- Michael T. Wolf
- Department of Mechanical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91106, USA,
| | - Jorge G. Cham
- Department of Mechanical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91106, USA
| | - Edward A. Branchaud
- Department of Mechanical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91106, USA
| | - Grant H. Mulliken
- Department of Mechanical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91106, USA
| | - Joel W. Burdick
- Department of Mechanical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91106, USA
| | - Richard A. Andersen
- Division of Biology California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91106, USA
| |
Collapse
|
18
|
Cox DD, Papanastassiou AM, Oreper D, Andken BB, Dicarlo JJ. High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging. J Neurophysiol 2008; 100:2966-76. [PMID: 18815345 DOI: 10.1152/jn.90672.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Much of our knowledge of brain function has been gleaned from studies using microelectrodes to characterize the response properties of individual neurons in vivo. However, because it is difficult to accurately determine the location of a microelectrode tip within the brain, it is impossible to systematically map the fine three-dimensional spatial organization of many brain areas, especially in deep structures. Here, we present a practical method based on digital stereo microfocal X-ray imaging that makes it possible to estimate the three-dimensional position of each and every microelectrode recording site in "real time" during experimental sessions. We determined the system's ex vivo localization accuracy to be better than 50 microm, and we show how we have used this method to coregister hundreds of deep-brain microelectrode recordings in monkeys to a common frame of reference with median error of <150 microm. We further show how we can coregister those sites with magnetic resonance images (MRIs), allowing for comparison with anatomy, and laying the groundwork for more detailed electrophysiology/functional MRI comparison. Minimally, this method allows one to marry the single-cell specificity of microelectrode recording with the spatial mapping abilities of imaging techniques; furthermore, it has the potential of yielding fundamentally new kinds of high-resolution maps of brain function.
Collapse
Affiliation(s)
- David D Cox
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
19
|
Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 18:1263-81. [PMID: 17939885 DOI: 10.1163/156856207782177882] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many different types of microelectrodes have been developed for use as a direct brain-machine interface (BMI) to chronically recording single-neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only on the order of months. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes, but most likely due to damage to surrounding tissue that results in the formation of non-conductive glial scar. Since the extracellular matrix consists of nanostructured fibrous protein assemblies, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. This porous structure could then act as a drug-delivery reservoir to deliver bioactive agents to aid in the repair or survival of cells around the microelectrode, further reducing the glial scar. We, therefore, investigated the suitability of a nanoporous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In vitro testing demonstrated increased extension of neurites from PC12 pheochromocytoma cells on porous silicon surfaces compared to smooth silicon surfaces. Moreover, the size of the pores and the pore coverage did not interfere with this bioactive surface property, suggesting that large highly porous nanostructured surfaces can be used for drug delivery. The most porous nanoporous surfaces were then tested in vivo and found to be more biocompatible than smooth surface, producing less glial activation and allowing more neurons to remain close to the device. Collectively, these results support our hypothesis that nanoporous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. The next step in this work will be to apply these surfaces to active microelectrodes, use them to deliver bioactive agents, and test that they do improve neural recordings.
Collapse
Affiliation(s)
- K A Moxon
- Drexel, University, School of Biomedical Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
20
|
Shao X, Zhang H, Zheng X. Recognition of Chewing Behavior from Electroencephalogram Recorded in the Rat's Nucleus Accumbens. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:2107-9. [PMID: 17282644 DOI: 10.1109/iembs.2005.1616875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nucleus accumbens is used to be considered as the interface to motor nerve system. In this paper, our object is to study the relationship between the electro-activity of neurons in nucleus accumbens and the rat-behavior. We recorded neurons action potentials with multichannel microelectrodes, which were chronically implanted in a rat's nucleus accumbens, during rats-chewing behavior. Through digital signal processing, we found significant features associated with the chewing activity and we could recognize the chewing behavior easily from the electroencephalogram with these features. This study suggests that neurons action potentials in a nucleus accumbens are activated by specific animal actions.
Collapse
Affiliation(s)
- Xiaozhuo Shao
- Dept. of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | | | | |
Collapse
|
21
|
Stice P, Gilletti A, Panitch A, Muthuswamy J. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. J Neural Eng 2007; 4:42-53. [PMID: 17409479 DOI: 10.1088/1741-2560/4/2/005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to test the hypothesis that neural implants with reduced cross-sectional areas will have less glial scarring associated with implantation injury in long-term experiments. In this study, we implanted nine adult rats with two different implants of 12 microm (n = 6), and 25 microm (n = 6) diameters (cross-sectional areas of 68 microm(2), 232 microm(2) respectively) and the expression of glial fibrilliary acidic protein (GFAP) was assessed after 2 weeks and 4 weeks of implantation. In order to facilitate implantation, the 12 microm diameter implants were coated with poly-glycolic acid (PGA), a biodegradable polymer that degraded within minutes of implantation. In n = 3 animals, 25 microm diameter implants also coated with PGA were implanted and assessed for GFAP expression at the end of 4 weeks of implantation. Statistical analysis of the GFAP expression around the different implants demonstrated that after 2 weeks of implantation there is no statistically significant difference in GFAP expression between the 12 microm and the 25 microm diameter implants. However, after 4 weeks of implantation the implant site of 12 microm diameter implants exhibited a statistically significant reduction in GFAP expression when compared to the implant sites of the 25 microm diameter implants (both with and without the PGA coating). We conclude that in neural implants that are tethered to the skull, implant cross-sectional areas of 68 microm(2) and smaller could lead to a reduced glial scarring under chronic conditions. Future studies with longer implant durations can confirm if this observation remains consistent beyond 4 weeks.
Collapse
Affiliation(s)
- Paula Stice
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | | | | | | |
Collapse
|
22
|
Sharp AA, Panchawagh HV, Ortega A, Artale R, Richardson-Burns S, Finch DS, Gall K, Mahajan RL, Restrepo D. Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng 2006; 3:L23-30. [PMID: 17124327 DOI: 10.1088/1741-2560/3/4/l02] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The widespread application of neuronal probes for chronic recording of brain activity and functional stimulation has been slow to develop partially due to long-term biocompatibility problems with existing metallic and ceramic probes and the tissue damage caused during probe insertion. Stiff probes are easily inserted into soft brain tissue but cause astrocytic scars that become insulating sheaths between electrodes and neurons. In this communication, we explore the feasibility of a new approach to the composition and implantation of chronic electrode arrays. We demonstrate that softer polymer-based probes can be inserted into the olfactory bulb of a mouse and that slow insertion of the probes reduces astrocytic scarring. We further present the development of a micromachined shape memory polymer probe, which provides a vehicle to self-deploy an electrode at suitably slow rates and which can provide sufficient force to penetrate the brain. The deployment rate and composition of shape memory polymer probes can be tailored by polymer chemistry and actuator design. We conclude that it is feasible to fabricate shape memory polymer-based electrodes that would slowly self-implant compliant conductors into the brain, and both decrease initial trauma resulting from implantation and enhance long-term biocompatibility for long-term neuronal measurement and stimulation.
Collapse
Affiliation(s)
- Andrew A Sharp
- Rocky Mountain Taste and Smell Center, Neuroscience Program and Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rennaker RL, Ruyle AM, Street SE, Sloan AM. An economical multi-channel cortical electrode array for extended periods of recording during behavior. J Neurosci Methods 2005; 142:97-105. [PMID: 15652622 DOI: 10.1016/j.jneumeth.2004.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/02/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
We report the development of a low-cost chronic multi-channel microwire electrode array for recording multi-unit cortical responses in behaving rodents. The design was motivated by three issues. First, standard connector systems tended to disconnect from the head-stage during extended periods of behavior. Disconnections resulted in a loss of data and an interruption of the animals' behavior. Second, the use of low insertion force connectors with locking mechanisms was cost prohibitive. Finally, connecting the head-stage to a skull-mounted connector on an unrestrained animal was highly stressful for both the researcher and animal. The design developed uses a high insertion force DIP socket separated from the skullcap that prevents inadvertent disconnects, is inexpensive, and simplifies connecting unrestrained rodents. Electrodes were implanted in layer IV of primary auditory cortex in 11 Sprague-Dawley rats. Performance of the electrodes was monitored for 6 weeks. None of the behaving animals became disconnected from the recording system during recording sessions lasting 6 h. The mean signal-to-noise ratio on all channels (154) following surgery was 3.9+/-0.2. Of the 154 channels implanted, 130 exhibited driven activity following surgery. Forty percent of the arrays continued to exhibit driven neural activity at 6 weeks.
Collapse
Affiliation(s)
- R L Rennaker
- Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave Felgar Hall 210, Norman, OK 73019, USA.
| | | | | | | |
Collapse
|
24
|
Rennaker RL, Street S, Ruyle AM, Sloan AM. A comparison of chronic multi-channel cortical implantation techniques: manual versus mechanical insertion. J Neurosci Methods 2005; 142:169-76. [PMID: 15698656 DOI: 10.1016/j.jneumeth.2004.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 10/26/2022]
Abstract
High-density multi-channel intra-cortical electrode arrays allow researchers to record simultaneously from populations of neurons for the purpose of understanding neural coding and plasticity. These devices have tens to hundreds of electrodes spaced within a few square millimeters. During insertion, the high-density probes can compress the cortex several millimeters prior to breaking through the pia. Compression of cortical tissue has been demonstrated to result in traumatic brain injury (TBI) which may be a major contributor to low electrode yield and decreased recording longevity. Two insertion techniques for chronically implanting multi-wire electrode arrays in layer IV of primary auditory cortex were compared. A mechanical insertion device, capable of rapidly inserting the electrode array without visible compression of the brain, was constructed. The neural responses to broadband clicks and pure tones recorded from the arrays inserted with the mechanical device were compared to the results from a manual insertion method using a micromanipulator. Both techniques result in a similar number of active channels directly following surgery with a mean signal-to-noise ratio of approximately 4.5. Over 60% of the animals implanted with the mechanical insertion device had driven activity at week 6 whereas none of the animals with manually inserted arrays exhibited functional responses after 3 weeks. This report provides initial evidence that mechanical insertion devices, which prevent cortical compression, increase electrode recording longevity.
Collapse
Affiliation(s)
- R L Rennaker
- Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| | | | | | | |
Collapse
|
25
|
Swadlow HA, Bereshpolova Y, Bezdudnaya T, Cano M, Stoelzel CR. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes. J Neurophysiol 2004; 93:2959-65. [PMID: 15601730 DOI: 10.1152/jn.01141.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arrays of closely spaced quartz-insulated, platinum-tungsten microelectrodes are widely used to obtain acute recordings from chronically prepared subjects. These electrodes have excellent recording characteristics and can be fabricated to a wide variety of tip specifications. Typically, in such experiments, electrodes are introduced into, and removed from, the brain on a daily basis and, over many months of study, hundreds of penetrations may be made through an intact dura. This procedure has benefits as well as problems and risks. For some experimental aims, it might be desirable to leave the microelectrodes within the brain so that the penetrations could be continued on subsequent days. This would allow a more thorough and systematic exploration of the neurons that lie along the trajectory of each of the closely aligned electrodes and would minimize risks and preparation time associated with daily electrode insertions. Here we present a means for achieving this aim using arrays of sharp, flexible Reitboeck electrodes of extremely fine diameter (40-microm shaft diameter, pulled and ground to a fine tip). We show that these electrodes retain their excellent recording characteristics and can remain under microdrive control within the brain for periods of many months and, in one remarkable case, for >4 years.
Collapse
Affiliation(s)
- Harvey A Swadlow
- Department of Psychology, The University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
26
|
Krüger J, Hauser J. Evoking defined gaze directions in untrained awake monkeys. J Neurosci Methods 2004; 137:185-92. [PMID: 15262060 DOI: 10.1016/j.jneumeth.2004.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 01/28/2004] [Accepted: 02/16/2004] [Indexed: 11/27/2022]
Abstract
Monkeys were partially surrounded by opaque screens except for some distant small holes through which they observed various stimuli or actions, or well-defined background patterns. Gaze direction was measured by an infrared cornea reflection method. Without training or reward, the animal's gaze was directed through one of the holes for 10-30% of the total time. With holes of appropriately small diameter, the gaze direction can be defined within a range of about 1 degree. Durations of individual glances through the holes, and dependencies on the nature of the displays are reported. The procedure is suited for the electrophysiological investigation of natural, especially foveal vision.
Collapse
Affiliation(s)
- Jürgen Krüger
- AG Hirnforschung, Institut für Anatomie I, Hansastr. 9a, D 79104 Freiburg, Germany.
| | | |
Collapse
|
27
|
Cham JG, Branchaud EA, Nenadic Z, Greger B, Andersen RA, Burdick JW. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials. J Neurophysiol 2004; 93:570-9. [PMID: 15229215 DOI: 10.1152/jn.00369.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A system was developed that can autonomously position recording electrodes to isolate and maintain optimal quality extracellular signals. The system consists of a novel motorized miniature recording microdrive and a control algorithm. The microdrive was designed for chronic operation and can independently position four glass-coated Pt-Ir electrodes with micrometer precision over a 5-mm range using small (3 mm diam) piezoelectric linear actuators. The autonomous positioning algorithm is designed to detect, align, and cluster action potentials and then command the microdrive to optimize and maintain the neural signal. This system is shown to be capable of autonomous operation in monkey cortical tissue.
Collapse
Affiliation(s)
- Jorge G Cham
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | |
Collapse
|