1
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
2
|
Singhal P, Senecal JMM, Nagy JI. Expression of the gap junction protein connexin36 in small intensely fluorescent (SIF) cells in cardiac parasympathetic ganglia of rodents. Neurosci Lett 2023; 793:136989. [PMID: 36471528 DOI: 10.1016/j.neulet.2022.136989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022]
Abstract
In mammals, several endocrine cell types are electrically coupled by connexin36 (Cx36)-containing gap junctions, which mediate intercellular communication and allow regulated and synchronized cellular activity through exchange of ions and small metabolites via formation of intercellular channels that link plasma membranes of apposing cells. One cell type thought to be endocrine-like in nature are small intensely fluorescent (SIF) cells that store catecholamines in their dense-core vesicles and reside in autonomic ganglia. Here, using immunofluorescence approaches, we examined whether SIF cells located specifically in cardiac parasympathetic ganglia of adult and neonatal mice and adult rats follow patterns of Cx36 expression seen in other endocrine cells. In these ganglia, SIF cells were identified by their distinct small soma size, autofluorescence at 475 nm, and immunolabelling for their markers tyrosine hydroxylase and vesicular monoamine transporter-1. SIF cells were often found in pairs or clusters among principal cholinergic neurons. Immunofluorescence labelling of Cx36 occurred exclusively as fine puncta that appeared at contacts between SIF cell processes and somata or at somato-somatic appositions of SIF cells. These puncta were absent in cardiac parasympathetic ganglia of Cx36 null mice. Transgenic mice expressing enhanced green fluorescent protein reporter for Cx36 expression displayed labelling for the reporter in SIF cells. The results suggest that Cx36-containing gap junctions electrically couple SIF cells, which is consistent with previous suggestions that these may be classified as endocrine-type cells that secrete catecholamines into the bloodstream in a regulated manner.
Collapse
Affiliation(s)
- P Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
3
|
Humanized substitutions of Vmat1 in mice alter amygdala-dependent behaviors associated with the evolution of anxiety. iScience 2022; 25:104800. [PMID: 35992083 PMCID: PMC9385864 DOI: 10.1016/j.isci.2022.104800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/29/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
|
4
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Abstract
Introduction: Though many unanswered questions about the pathophysiology of Tourette Syndrome remain, several pharmacotherapies for tics have been studied, with varying results in terms of efficacy and the strength of evidence.Areas covered: This literature review encompasses pharmacotherapies for tics. The pharmacotherapies discussed in this review include: alpha agonists, antipsychotics, topiramate, botulinum toxin, and dopamine depleters.Expert opinion: Once the presence of tics is confirmed and psychoeducation and support are provided to patients and caregivers, one must examine the degree of tic-related impairment and the presence of psychiatric comorbidities. These factors influence treatment decisions as the presence of comorbidity and related impairment may shift the treatment target. When selecting a medication for tics, the presence of ADHD (the most frequent comorbidity) strengthens the case for choosing an alpha agonist. The case for antipsychotic medications is strongest when tic-related impairment is severe and/or the tics are refractory to more conservative measures. All medications require drug safety monitoring procedures and reevaluation over time.
Collapse
Affiliation(s)
- Nicholas Cothros
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alex Medina
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Foothills Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Kato K, Yokoyama T, Kusakabe T, Hata K, Fushuku S, Nakamuta N, Yamamoto Y. Differences in the expression of catecholamine-synthesizing enzymes between vesicular monoamine transporter 1- and 2-immunoreactive glomus cells in the rat carotid body. Acta Histochem 2020; 122:151507. [PMID: 31955909 DOI: 10.1016/j.acthis.2020.151507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Vesicular monoamine transporters (VMAT) 1 and 2 are responsible for monoamine transportation into secretary vesicles and are tissue-specifically expressed in central and peripheral monoaminergic tissues, including the carotid body (CB). The aim of the present study was to examine the expression of catecholamine-synthesizing enzymes in VMAT1- and VMAT2-immunoreactive glomus cells in the rat CB using multiple immunolabeling. The expression of VMAT1 and VMAT2 mRNA in the CB was confirmed by RT-PCR. Immunohistochemistry revealed that VMAT1 immunoreactivity was predominant in glomus cells rather than VMAT2 immunoreactivity. Glomus cells with VMAT1 immunoreactivity exhibited weak/negative VMAT2 immunoreactivity, and vice versa. Immunoreactivities for VMAT1 and tyrosine hydroxylase, the rate-limiting enzyme for catecholamine biosynthesis, were co-localized in the same glomus cells and a positive correlation was confirmed between the two immunoreactivities (Spearman's coefficient = 0.82; p < 0.05). Although some glomus cells showed co-localization of VMAT2 and dopamine β-hydroxylase immunoreactivity, the biosynthetic enzyme for noradrenaline, VMAT2 immunoreactivity appeared to be less associated with both catecholamine-synthesizing enzymes as indicated by a correlation analysis (TH: Spearman's coefficient = 0.38, DBH: Spearman's coefficient = 0.26). These results indicate that heterogeneity on functional role would exist among glomus cells in terms of VMAT isoform and catecholamine-synthesizing enzymes expression.
Collapse
Affiliation(s)
- Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Tatsumi Kusakabe
- Laboratory for Anatomy and Physiology, Department of Sport and Medical Science, Kokushikan University, 7-3-1 Nagayama, Tama, Tokyo 206-8515, Japan
| | - Katsuhiko Hata
- Laboratory for Anatomy and Physiology, Department of Sport and Medical Science, Kokushikan University, 7-3-1 Nagayama, Tama, Tokyo 206-8515, Japan
| | - Seigo Fushuku
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
7
|
Coordinate expression of pan-neuronal and functional signature genes in sympathetic neurons. Cell Tissue Res 2017; 370:227-241. [PMID: 28936781 DOI: 10.1007/s00441-017-2688-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
Neuron subtypes of the mature nervous system differ in the expression of characteristic marker genes while they share the expression of generic neuronal genes. The regulatory logic that maintains subtype-specific and pan-neuronal genes is not well understood. To begin to address this issue, we analyze RNA sequencing results from whole sympathetic ganglia and single sympathetic neurons in the mouse. We focus on gene products involved in the neuronal cytoskeleton, neurotransmitter synthesis and storage, transmitter release and reception and electrical information processing. We find a particular high correlation in the expression of stathmin 2 and several members of the tubulin beta family, classical pan-neuronal markers. Noradrenergic transmitter-synthesizing enzymes and transporters are also well correlated in their cellular transcript levels. In addition, noradrenergic marker transcript levels correlate well with selected pan-neuronal markers. Such a correlation in transcript levels is also seen between a number of selected ion channel, receptor and synaptic protein genes. These results provide the foundation for the analyses of the coordinated expression of downstream target genes in nerve cells.
Collapse
|
8
|
Schütz B, Schäfer MKH, Gördes M, Eiden LE, Weihe E. Satb2-independent acquisition of the cholinergic sudomotor phenotype in rodents. Cell Mol Neurobiol 2014; 35:205-16. [PMID: 25239161 DOI: 10.1007/s10571-014-0113-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
Expression of Satb2 (Special AT-rich sequence-binding protein-2) elicits expression of the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) in cultured rat sympathetic neurons exposed to soluble differentiation factors. Here, we determined whether or not Satb2 plays a similar role in cholinergic differentiation in vivo, by comparing the postnatal profile of Satb2 expression in the rodent stellate ganglion to that of VAChT and ChAT. Throughout postnatal development, VAChT and ChAT were found to be co-expressed in a numerically stable subpopulation of rat stellate ganglion neurons. Nerve fibers innervating rat forepaw sweat glands on P1 were VAChT immunoreactive, while ChAT was detectable at this target only after P5. The postnatal abundance of VAChT transcripts in the stellate ganglion was at maximum already on P1, whereas ChAT mRNA levels increased from low levels on P1 to reach maximum levels between P5 and P21. Satb2 mRNA was detected in cholinergic neurons in the stellate ganglion beginning with P8, thus coincident with the onset of unequivocal detection of ChAT immunoreactivity in forepaw sweat gland endings. Satb2 knockout mice exhibited no change in the P1 cholinergic VAChT/ChAT co-phenotype in stellate ganglion neurons. Thus, cholinergic phenotype maturation involves first, early target (sweat-gland)-independent expression and trafficking of VAChT, and later, potentially target- and Satb2-dependent elevation of ChAT mRNA and protein transport into sweat gland endings. In rat sudomotor neurons that, unlike mouse sudomotor neurons, co-express calcitonin gene-related peptide (CGRP), Satb2 may also be related to the establishment of species-specific neuropeptide co-phenotypes during postnatal development.
Collapse
Affiliation(s)
- Burkhard Schütz
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Straße 8, 35037, Marburg, Germany,
| | | | | | | | | |
Collapse
|
9
|
Tlx3 controls cholinergic transmitter and Peptide phenotypes in a subset of prenatal sympathetic neurons. J Neurosci 2013; 33:10667-75. [PMID: 23804090 DOI: 10.1523/jneurosci.0192-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The embryonic sympathetic nervous system consists of predominantly noradrenergic neurons and a very small population of cholinergic neurons. Postnatal development further allows target-dependent switch of a subset of noradrenergic neurons into cholinergic phenotype. How embryonic cholinergic neurons are specified at the prenatal stages remains largely unknown. In this study, we found that the expression of transcription factor Tlx3 was progressively restricted to a small population of embryonic sympathetic neurons in mice. Immunostaining for vesicular acetylcholine transporter (VAChT) showed that Tlx3 was highly expressed in cholinergic neurons at the late embryonic stage E18.5. Deletion of Tlx3 resulted in the loss of Vacht expression at E18.5 but not E12.5. By contrast, Tlx3 was required for expression of the cholinergic peptide vasoactive intestinal polypeptide (VIP), and somatostatin (SOM) at both E12.5 and E18.5. Furthermore, we found that, at E18.5 these putative cholinergic neurons expressed glial cell line-derived neurotrophic factor family coreceptor Ret but not tyrosine hydroxylase (Ret(+)/TH(-)). Deletion of Tlx3 also resulted in disappearance of high-level Ret expression. Last, unlike Tlx3, Ret was required for the expression of VIP and SOM at E18.5 but not E12.5. Together, these results indicate that transcription factor Tlx3 is required for the acquisition of cholinergic phenotype at the late embryonic stage as well as the expression and maintenance of cholinergic peptides VIP and SOM throughout prenatal development of mouse sympathetic neurons.
Collapse
|
10
|
Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol 2013; 170:4-16. [PMID: 23347064 PMCID: PMC3764843 DOI: 10.1111/bph.12109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies.
Collapse
Affiliation(s)
- F Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Spain.
| | | | | | | |
Collapse
|
11
|
Schafer MKH, Weihe E, Eiden LE. Localization and expression of VMAT2 aross mammalian species: a translational guide for its visualization and targeting in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:319-34. [PMID: 24054151 DOI: 10.1016/b978-0-12-411512-5.00015-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
VMAT2 is the vesicular monoamine transporter that allows DA, NE, Epi, His, and 5-HT uptake into neurons and endocrine cells. A second isoform, VMAT1, has similar structure and function, but does not recognize histamine as a substrate. VMAT1 is absent from neurons, and its major function appears to be in endocrine cells, that is, enterochromaffin cells, which scavenge 5-HT, but not histamine, from dietary sources. This chapter provides an update on the neuroanatomical distribution of VMAT2 across various mammalian species, including human, primate, pig, rat, and mouse. When necessary, VMAT1 expression is provided as a contrast. The main purpose of this chapter is to allow clinicians, in particular endocrinologists and diagnosing neuroradiologists and neuropathologists, an acquaintanceship with the possibilities for VMAT2 as a target for in vivo imaging, and drug development, based on this updated information.
Collapse
Affiliation(s)
- Martin K-H Schafer
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | | | | |
Collapse
|
12
|
Abstract
Autonomic neuron development is controlled by a network of transcription factors, which is induced by bone morphogenetic protein signalling in neural crest progenitor cells. This network intersects with a transcriptional program in migratory neural crest cells that pre-specifies autonomic neuron precursor cells. Recent findings demonstrate that the transcription factors acting in the initial specification and differentiation of sympathetic neurons are also important for the proliferation of progenitors and immature neurons during neurogenesis. Elimination of Phox2b, Hand2 and Gata3 in differentiated neurons affects the expression of subtype-specific and/or generic neuronal properties or neuron survival. Taken together, transcription factors previously shown to act in initial neuron specification and differentiation display a much broader spectrum of functions, including control of neurogenesis and the maintenance of subtype characteristics and survival of mature neurons.
Collapse
Affiliation(s)
- Hermann Rohrer
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
13
|
Goldberg NR, Fields V, Pflibsen L, Salvatore MF, Meshul CK. Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis 2012; 45:1051-67. [DOI: 10.1016/j.nbd.2011.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/29/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022] Open
|
14
|
Eiden LE, Weihe E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 2011; 1216:86-98. [PMID: 21272013 DOI: 10.1111/j.1749-6632.2010.05906.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The monoaminergic neuron, in particular the dopaminergic neuron, is central to mediating the hedonic and addictive properties of drugs of abuse. The effects of amphetamine (AMPH) and cocaine (COC), for example, depend on the ability to increase dopamine in the synapse, by effects on either the plasma membrane transporter DAT or the vesicular transporter for monoamine storage, VMAT2. The potential role of DAT as a target for AMPH and COC has been reviewed extensively. Here, we present VMAT2 as a target that enables the rewarding and addictive actions of these drugs, based on imaging, neurochemical, biochemical, cell biological, genetic, and immunohistochemical evidence. The presence of VMAT2 in noradrenergic, serotoninergic, histaminergic, and potentially trace aminergic neurons invites consideration of a wider role for aminergic neurotransmission in AMPH and COC abuse and addiction.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
15
|
Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL. Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 2010; 30:1459-65. [PMID: 21046458 DOI: 10.1007/s10571-010-9575-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.
Collapse
Affiliation(s)
- Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | |
Collapse
|
16
|
Apostolova G, Dechant G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 2009; 151:30-8. [DOI: 10.1016/j.autneu.2009.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Generating diversity: Mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 2009; 151:17-29. [PMID: 19819195 DOI: 10.1016/j.autneu.2009.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic and parasympathetic postganglionic neurons innervate a wide range of target tissues. The subpopulation of neurons innervating each target tissue can express unique combinations of neurotransmitters, neuropeptides, ion channels and receptors, which together comprise the chemical phenotype of the neurons. The target-specific chemical phenotype shown by autonomic postganglionic neurons arises during development. In this review, we examine the different mechanisms that generate such a diversity of neuronal phenotypes from the pool of apparently homogenous neural crest progenitor cells that form the sympathetic ganglia. There is evidence that the final chemical phenotype of autonomic postganglionic neurons is generated by both signals at the level of the cell body that trigger cell-autonomous programs, as well as signals from the target tissues they innervate.
Collapse
|
18
|
Hwang DY, Hong S, Jeong JW, Choi S, Kim H, Kim J, Kim KS. Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J Neurochem 2009; 111:1202-12. [PMID: 19780901 DOI: 10.1111/j.1471-4159.2009.06404.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.
Collapse
Affiliation(s)
- Dong-Youn Hwang
- Molecular Neurobiology Laboratory, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fligny C, Hatia S, Amireault P, Mallet J, Côté F. Mammalian prenatal development: the influence of maternally derived molecules. Bioessays 2009; 31:935-43. [DOI: 10.1002/bies.200800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Ghai K, Zelinka C, Fischer AJ. Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina. J Neurochem 2009; 111:1-14. [PMID: 19619137 DOI: 10.1111/j.1471-4159.2009.06270.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurotransmitter serotonin is synthesized in the retina by one type of amacrine neuron but accumulates in bipolar neurons in many vertebrates. The mechanisms, functions and purpose underlying serotonin accumulation in bipolar cells remain unknown. Here, we demonstrate that exogenous serotonin transiently accumulates in a distinct type of bipolar neuron. KCl-mediated depolarization causes the depletion of serotonin from amacrine neurons and, subsequently, serotonin is taken-up by bipolar neurons. The accumulation of endogenous and exogenous serotonin by bipolar neurons is blocked by selective reuptake inhibitors. Exogenous serotonin is specifically taken-up by bipolar neurons even when serotonin-synthesizing amacrine neurons are destroyed; excluding the possibility that serotonin diffuses through gap junctions from amacrine into bipolar neurons. Further, inhibition of monoamine oxidase A prevents the degradation of serotonin in bipolar neurons, suggesting that monoamine oxidase A is present in these neurons. However, the vesicular monoamine transporter 2 is present only in amacrine cells suggesting that serotonin is not transported into synaptic vesicles and reused as a transmitter in the bipolar neurons. We conclude that the serotonin-accumulating bipolar neurons perform glial functions in the retina by actively transporting and degrading serotonin that is synthesized in neighboring amacrine cells.
Collapse
Affiliation(s)
- Kanika Ghai
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
21
|
Brunk I, Höltje M, von Jagow B, Winter S, Sternberg J, Blex C, Pahner I, Ahnert-Hilger G. Regulation of vesicular monoamine and glutamate transporters by vesicle-associated trimeric G proteins: new jobs for long-known signal transduction molecules. Handb Exp Pharmacol 2007:305-25. [PMID: 16722242 DOI: 10.1007/3-540-29784-7_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters of neurons and neuroendocrine cells are concentrated first in the cytosol and then in either small synaptic vesicles ofpresynaptic terminals or in secretory vesicles by the activity of specific transporters of the plasma and the vesicular membrane, respectively. In the central nervous system the postsynaptic response depends--amongst other parameters-on the amount of neurotransmitter stored in a given vesicle. Neurotransmitter packets (quanta) vary over a wide range which may be also due to a regulation of vesicular neurotransmitter filling. Vesicular filling is regulated by the availability of transmitter molecules in the cytoplasm, the amount of transporter molecules and an electrochemical proton-mediated gradient over the vesicular membrane. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq. Galphao2 and Galphaq regulate vesicular monoamine transporter (VMAT) activities in brain and platelets, respectively. Galphao2 also regulates vesicular glutamate transporter (VGLUT) activity by changing its chloride dependence. It appears that the vesicular content activates the G protein, suggesting a signal transduction from the luminal site which might be mediated by a vesicular G protein-coupled receptor or as an alternative possibility by the transporter itself. Thus, G proteins control transmitter storage and thereby probablylink the regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- I Brunk
- AG Funktionelle Zellbiologie, Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Raab M, Neuhuber WL. Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:223-75. [PMID: 17241909 DOI: 10.1016/s0074-7696(07)56007-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate has been identified as the main transmitter of primary afferent neurons. This was established based on biochemical, electrophysiological, and immunohistochemical data from studies on glutamatergic receptors and their agonists/antagonists. The availability of specific antibodies directed against glutamate and, more recently, vesicular glutamate transporters corroborated this and led to significant new discoveries. In particular, peripheral endings of various classes of afferents contain vesicular glutamate transporters, suggesting vesicular storage in and exocytotic release of glutamate from peripheral afferent endings. This suggests that autocrine mechanisms regulate sensory transduction processes. However, glutamate release from peripheral sensory terminals could also enable afferent neurons to influence various cells associated with them. This may be particularly relevant for vagal intraganglionic laminar endings, which could represent glutamatergic sensor-effector components of intramural reflex arcs in the gastrointestinal tract. Thus, morphological analysis of the relationships of putative glutamatergic primary afferents with associated tissues may direct forthcoming studies on their functions.
Collapse
Affiliation(s)
- Marion Raab
- Institut für Anatomie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
23
|
Weihe E, Depboylu C, Schütz B, Schäfer MKH, Eiden LE. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cell Mol Neurobiol 2006; 26:659-78. [PMID: 16741673 PMCID: PMC4183211 DOI: 10.1007/s10571-006-9053-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 03/10/2006] [Indexed: 11/25/2022]
Abstract
1. We investigate here for the first time in primate brain the combinatorial expression of the three major functionally relevant proteins for catecholaminergic neurotransmission tyrosine hydroxylase (TH), aromatic acid acid decarboxylase (AADC), and the brain-specific isoform of the vesicular monoamine transporter, VMAT2, using highly specific antibodies and immunofluorescence with confocal microscopy to visualize combinatorial expression of these proteins. 2. In addition to classical TH, AADC, and VMAT2-copositive catecholaminergic neurons, two unique kinds of TH-positive neurons were identified based on co-expression of AADC and VMAT2. 3. TH and AADC co-positive, but VMAT2-negative neurons, are termed "nonexocytotic catecholaminergic TH neurons." These were found in striatum, olfactory bulb, cerebral cortex, area postrema, nucleus tractus solitarius, and in the dorsal motor nucleus of the vagus. 4. TH-positive neurons expressing neither AADC nor VMAT2 are termed "dopaergic TH neurons." We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord. We were unable to identify any dopaergic (TH-positive, AADC-negative) neurons that expressed VMAT2, suggesting that regulatory mechanisms exist for shutting off VMAT2 expression in neurons that fail to biosynthesize its substrates. 5. In several cases, the corresponding TH phenotypes were identified in the adult rat, suggesting that this rodent is an appropriate experimental model for further investigation of these TH-positive neuronal cell groups in the adult central nervous system. Thus, no examples of TH and VMAT2 co-positive neurons lacking AADC expression were found in rodent adult nervous system. 6. In conclusion, the adult mammalian nervous system contains in addition to classical catecholaminergic neurons, cells that can synthesize dopamine, but cannot transport and store it in synaptic vesicles, and neurons that can synthesize only L-dopa and lack VMAT2 expression. The presence of these additional populations of TH-positive neurons in the adult primate CNS has implications for functional catecholamine neurotransmission, its derangement in disease and drug abuse, and its rescue by gene therapeutic maneuvers in neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Eberhard Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Candan Depboylu
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Burkhard Schütz
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Martin K.-H. Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Rockville Pike, Bethesda, Maryland
- To whom correspondence should be addressed at Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Building 49, Room 5A-68, 9000 Rockville Pike, Bethesda, Maryland 20892;
| |
Collapse
|
24
|
Weihe E, Schütz B, Hartschuh W, Anlauf M, Schäfer MK, Eiden LE. Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol 2006; 492:370-9. [PMID: 16217790 PMCID: PMC2593918 DOI: 10.1002/cne.20745] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species and that, during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents but that lack of expression of the vesicular monoamine transporter renders these cells functionally nonnoradrenergic. Adult human sweat gland innervation, however, is not only cholinergic but coexpresses all of the proteins required for full noradrenergic function as well, including tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine beta-hydroxylase, and the vesicular monoamine transporter VMAT2. Thus, cholinergic/noradrenergic cotransmission is apparently a unique feature of the primate autonomic sympathetic nervous system. Furthermore, sympathetic neurons innervating specifically the cutaneous arteriovenous anastomoses (Hoyer-Grosser organs) in humans also possess a full cholinergic/noradrenergic cophenotype. Cholinergic/noradrenergic coexpression is absent from other portions of the human sympathetic nervous system but is extended in the parasympathetic nervous system to intrinsic neurons innervating the heart. These observations suggest a mode of autonomic regulation, based on corelease of norepinephrine and acetylcholine at parasympathocardiac, sudomotor, and selected vasomotor neuroeffector junctions, that is unique to the primate peripheral nervous system.
Collapse
Affiliation(s)
- Eberhard Weihe
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35033 Marburg, Germany
| | - Burkhard Schütz
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35033 Marburg, Germany
| | - Wolfgang Hartschuh
- Department of Dermatology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Anlauf
- Institute for Pathology, University of Kiel, 24105 Kiel, Germany
| | - Martin K. Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35033 Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, NIMH, NIH, Bethesda, MD 20892-4090, USA
| |
Collapse
|
25
|
Fernandez-Espejo E, Armengol JA, Flores JA, Galan-Rodriguez B, Ramiro S. Cells of the sympathoadrenal lineage: Biological properties as donor tissue for cell-replacement therapies for Parkinson's disease. ACTA ACUST UNITED AC 2005; 49:343-54. [PMID: 16111561 DOI: 10.1016/j.brainresrev.2005.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/28/2004] [Accepted: 01/14/2005] [Indexed: 01/22/2023]
Abstract
Sympathoadrenal (SA) cell lineage encompasses neural crest derivatives such as sympathetic neurons, small intensely fluorescent (SIF) cells of sympathetic ganglia and adrenal medulla, and chromaffin cells of adrenal medulla and extra-adrenal paraganglia. SA autografts have been used for transplantation in Parkinson's disease (PD) for three reasons: (i) as autologous donor tissue avoids graft rejection and the need for immunosuppressant therapy, (ii) SA cells express dopaminotrophic factors such as GNDF and TGFbetas, and (iii) although most of SA cells release noradrenaline, some of them are able to produce and release dopamine. Adrenal chromaffin cells were the first SA transplanted cells in both animal models of PD and PD patients. However, these autografts have met limited success because long-term cell survival is very poor, and this approach is no longer pursued clinically. Sympathetic neurons from the superior cervical ganglion have been also grafted in PD animal models and PD patients. Poor survival into brain parenchyma of grafted tissue is a serious disadvantage for its clinical application. However, cultured sympathetic cell grafts present a better survival rate, and they reduce the need for levodopa medication in PD patients by facilitating the conversion of exogenous levodopa. SA extra-adrenal chromaffin cells are located on paraganglia (i.e., the Zuckerkandl's organ), and have been used for grafting in a rodent model of PD. Preliminary results indicate that long-term survival of these cells is better than for other SA cells, exerting a more prolonged restorative neurotrophic action on denervated host striatum. The ability of SA extra-adrenal cells to respond to hypoxia, differently to SA sympathetic neurons or adrenal medulla cells, could explain their good survival rate after brain transplantation.
Collapse
Affiliation(s)
- Emilio Fernandez-Espejo
- Department of Medical Physiology and Biophysics, University of Seville, Av. Sanchez Pizjuan 4, E-41009 Seville, Spain.
| | | | | | | | | |
Collapse
|
26
|
Anlauf M, Schäfer MKH, Schwark T, von Wurmb-Schwark N, Brand V, Sipos B, Horny HP, Parwaresch R, Hartschuh W, Eiden LE, Klöppel G, Weihe E. Vesicular monoamine transporter 2 (VMAT2) expression in hematopoietic cells and in patients with systemic mastocytosis. J Histochem Cytochem 2005; 54:201-13. [PMID: 16116033 DOI: 10.1369/jhc.5a6739.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uptake of monoamines into secretory granules is mediated by the vesicular monoamine transporters VMAT1 and VMAT2. In this study, we analyzed their expression in inflammatory and hematopoietic cells and in patients suffering from systemic mastocytosis (SM) and chronic myelogenous leukemia (CML). Normal human and monkey tissue specimens and tissues from patients suffering from SM and CML were analyzed by means of immunohistochemistry, radioactive in situ hybridization, real time RT-PCR, double fluorescence confocal laser scanning microscopy, and immunoelectron microscopy. In normal tissue specimens, VMAT2, but not VMAT1, was expressed in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells. Further hematopoietic and lymphoid cells showed no expression of VMATs. VMAT2 was expressed in all types of SM, as indicated by coexpression with the mast cell marker tryptase. In CML, VMAT2 expression was retained in neoplastic megakaryocytes and basophil granulocytes. In conclusion, the identification of VMAT2 in mast cells, megakaryocytes, thrombocytes, basophil granulocytes, and cutaneous Langerhans cells provides evidence that these cells possess molecular mechanisms for monoamine storage and handling. VMAT2 identifies normal and neoplastic mast cells, megakaryocytes, and basophil granulocytes and may therefore become a valuable tool for the diagnosis of mastocytosis and malignant systemic diseases involving megakaryocytes and basophil granulocytes.
Collapse
MESH Headings
- Animals
- Basophils/metabolism
- Biomarkers, Tumor/biosynthesis
- Blood Platelets/metabolism
- Bone Marrow Cells/metabolism
- Hematopoiesis
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Langerhans Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macaca mulatta
- Mast Cells/metabolism
- Mastocytosis, Systemic/blood
- Mastocytosis, Systemic/metabolism
- Mastocytosis, Systemic/pathology
- Megakaryocytes/metabolism
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Organ Specificity
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Vesicular Monoamine Transport Proteins/biosynthesis
- Vesicular Monoamine Transport Proteins/genetics
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Pathology, University of Kiel, Michaelisstr. 11, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Berse B, Szczecinska W, Lopez-Coviella I, Madziar B, Zemelko V, Kaminski R, Kozar K, Lips KS, Pfeil U, Blusztajn JK. Expression of high affinity choline transporter during mouse development in vivo and its upregulation by NGF and BMP-4 in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:132-40. [PMID: 15885806 DOI: 10.1016/j.devbrainres.2005.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 11/29/2022]
Abstract
An important feature of cholinergic neurons is high-affinity choline transport, which allows them to reuse choline for the synthesis of ACh needed to support cholinergic neurotransmission. The choline transporter, designated CHT, was recently cloned. We applied RT/PCR to monitor the expression of CHT in the developing mouse CNS from embryonic day 14 (E14) to postnatal day 30 (P30). We found that CHT was expressed early in development, predominantly in the regions containing cholinergic neurons. In the spinal cord, CHT mRNA was present at close to adult levels at the earliest time point examined (E14) and showed almost no changes after birth. In the striatum and the septum, CHT mRNA increased steadily during embryonic stages and leveled off after birth. Surprisingly, CHT mRNA expression was also detected in other brain regions, notably in the cerebellum, where it peaked on E19, and then rapidly declined during postnatal development. CHT protein was detected by Western blotting as a band of apparent molecular weight of 70 kDa. The accumulation of this protein during development lagged behind mRNA accumulation in all tissues. We also examined the effects of NGF and BMP-4, the potent inducers of choline acetyltransferase and vesicular acetylcholine transporter genes, on CHT expression. Both factors increased CHT mRNA accumulation in primary septal cultures. The effect of NGF was dependent on the PI3K signaling, as it was abolished by the PI3K inhibitor LY294002. This result indicates that some of the signals regulating other cholinergic-specific genes also control CHT expression.
Collapse
Affiliation(s)
- Brygida Berse
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 715 Albany Street, Room L-808C, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Burau K, Stenull I, Huber K, Misawa H, Berse B, Unsicker K, Ernsberger U. c-ret regulates cholinergic properties in mouse sympathetic neurons: evidence from mutant mice. Eur J Neurosci 2004; 20:353-62. [PMID: 15233745 DOI: 10.1111/j.1460-9568.2004.03500.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The search for signalling systems regulating development of noradrenergic and cholinergic sympathetic neurons is a classical problem of developmental neuroscience. While an essential role of bone morphogenetic proteins for induction of noradrenergic properties is firmly established, factors involved in the development of cholinergic traits in vivo are still enigmatic. Previous studies have shown that the c-ret receptor and cholinergic properties are coexpressed in chick sympathetic neurons. Using in situ hybridization we show now that a loss-of-function mutation of the c-ret receptor in mice dramatically reduces numbers of cells positive for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) in stellate ganglia of homozygous newborn animals. The number of neurons positive for tyrosine hydroxylase (TH) mRNA, the rate-limiting enzyme of noradrenaline synthesis, is reduced to a smaller degree and expression levels are not detectably altered. Already at embryonic day 16 (E16), ChAT and VAChT-positive cells are affected by the c-ret mutation. At E14, however, ChAT and VAChT mRNAs are detectable at low levels and no difference is observed between wildtype and mutant mice. Our data suggest that c-ret signalling is necessary for the maturation of cholinergic sympathetic neurons but dispensable for de novo induction of ChAT and VAChT expression.
Collapse
Affiliation(s)
- K Burau
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, INF 307, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Anlauf M, Schafer MKH, Depboylu C, Hartschuh W, Eiden LE, Kloppel G, Weihe E. The vesicular monoamine transporter 2 (VMAT2) is expressed by normal and tumor cutaneous mast cells and Langerhans cells of the skin but is absent from Langerhans cell histiocytosis. J Histochem Cytochem 2004; 52:779-88. [PMID: 15150286 DOI: 10.1369/jhc.4a6264.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Monoamine storage in secretory granules is mediated by the vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2). The aim of our study was to identify monoamine-handling normal and neoplastic inflammatory cells in the skin by their expression of VMAT1 and VMAT2. Normal skin from various parts of the body, as well as 21 cases of cutaneous mastocytosis and 10 cases of cutaneous Langerhans cell histiocytosis were analyzed by immunohistochemistry, radioactive in situ hybridization, and double-fluorescence confocal microscopy. VMAT2-positive cells in the subepidermal layer were identified as mast cells by their expression of tryptase. Neoplastic mast cells in all cases of cutaneous mastocytosis retained their VMAT2 positivity. The intraepidermal VMAT2-expressing cells were identified as Langerhans cells by their CD1a positivity. VMAT2 was absent from Langerhans cell histiocytosis. VMAT2 is an excellent marker for normal and neoplastic mast cells. The expression of VMAT2 demonstrates the capacity of mast cells for monoamine storage and handling. The presence of VMAT2 in epidermal Langerhans cells revealed a previously unrecognized monoamine-handling phenotype of these cells and indicates possible involvement of amine storage and release associated with antigen presentation. Absence of VMAT2 in neoplastic Langerhans cells indicates a loss of monoamine handling capacity of these cells during tumorigenesis.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 2004; 150:140-60. [PMID: 14517724 DOI: 10.1007/s10254-003-0020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Institut für Anatomie und Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstr. 12, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Eiden LE, Schäfer MKH, Weihe E, Schütz B. The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 2004; 447:636-40. [PMID: 12827358 DOI: 10.1007/s00424-003-1100-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 04/28/2003] [Accepted: 04/28/2003] [Indexed: 12/25/2022]
Abstract
The vesicular amine transporters (VATs) are expressed as integral proteins of the lipid bilayer membrane of secretory vesicles in neuronal and endocrine cells. Their function is to allow the transport of acetylcholine (by the vesicular acetylcholine transporter VAChT; SLC18A3) and biogenic amines (by the vesicular monoamine transporters VMAT1 and VMAT2; SLC18A1 and SLC18A2) into secretory vesicles, which then discharge them into the extracellular space by exocytosis. Transport of positively charged amines by members of the SLC18 family in all cases utilizes an electrochemical gradient across the vesicular membrane established by proton pumping into the vesicle via a vacuolar ATPase; the amine is accumulated in the vesicle at the expense of the proton gradient, at a ratio of one translocated amine per two translocated protons. The members of the SLC18 family have become important histochemical markers for chemical coding in neuroendocrine tissues and cells. The structural basis of their remarkable ability to transport positively charged amines against a very large concentration gradient, as well as potential disease association with impaired transporter function and expression, are under intense investigation.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Building 36, Room 2A-11, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
32
|
Gauda EB, Cooper R, Johnson SM. Autonomic ganglion cells: likely source of acetylcholine in the rat carotid body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 536:505-15. [PMID: 14635706 DOI: 10.1007/978-1-4419-9280-2_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
33
|
Fukui R, Svenningsson P, Matsuishi T, Higashi H, Nairn AC, Greengard P, Nishi A. Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J Neurochem 2003; 87:1391-401. [PMID: 14713295 DOI: 10.1046/j.1471-4159.2003.02101.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14-15- and 21-22-day-old) and adult (6-8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release.
Collapse
Affiliation(s)
- Ryuichi Fukui
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Anlauf M, Eissele R, Schäfer MKH, Eiden LE, Arnold R, Pauser U, Klöppel G, Weihe E. Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 2003; 51:1027-40. [PMID: 12871984 DOI: 10.1177/002215540305100806] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The uptake of monoamines into the secretory granules of monoamine-storing neuroendocrine cells is mediated by vesicular monoamine transporter protein 1 or 2 (VMAT1 or VMAT2). This study analyzed the expression of VMAT1 and VMAT2 in endocrine cells of normal human and monkey pancreas. The expression of VMAT1 and VMAT2 was also examined in infants with hyperinsulinemic hypoglycemia and in adults with pancreatic endocrine tumors (PETs). Using immunohistochemistry (IHC) and in situ hybridization (ISH), we demonstrated the mutually exclusive expression of VMAT1 in endocrine cells of the duct system and of VMAT2 in many cells of the islets of Langerhans. By confocal laser scanning microscopy, VMAT1-positive cells were identified as enterochromaffin (EC) cells and VMAT2-positive cells as beta-cells. In PETs, VMAT1 was found exclusively in all serotonin-containing tumors. In contrast, VMAT2 expression was lost in many insulinomas, independent of their biological behavior. VMAT2 was expressed by some non-insulin-producing tumors. The mutually exclusive expression of VMAT1 in EC cells and of VMAT2 in beta-cells suggests that both cell types store monoamines. Monoamine storage mediated by VMAT1 in EC cells is apparently maintained in EC cell tumors. In contrast, many insulinomas appear to lose their ability to accumulate monoamines via VMAT2.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Anlauf M, Schäfer MKH, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459:90-111. [PMID: 12629668 DOI: 10.1002/cne.10599] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this investigation was to identify the proportional neurochemical codes of enteric neurons and to determine the specific terminal fields of chemically defined nerve fibers in all parts of the human gastrointestinal (GI) tract. For this purpose, antibodies against the vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), serotonin (5-HT), vasoactive intestinal peptide (VIP), and protein gene product 9.5 (PGP 9.5) were used. For in situ hybridization (35)S-labeled VMAT1, VMAT2, and VAChT riboprobes were used. In all regions of the human GI tract, 50-70% of the neurons were cholinergic, as judged by staining for VAChT. The human gut unlike the rodent gut exhibits a cholinergic innervation, which is characterized by an extensive overlap with VIPergic innervation. Neurons containing VMAT2 constituted 14-20% of all intrinsic neurons in the upper GI tract, and there was an equal number of TH-positive neurons. In contrast, DBH was absent from intrinsic neurons. Cholinergic and monoaminergic phenotypes proved to be completely distinct phenotypes. In conclusion, the chemical coding of human enteric neurons reveals some similarities with that of other mammalian species, but also significant differences. VIP is a cholinergic cotransmitter in the intrinsic innervation of the human gut. The substantial overlap between VMAT2 and TH in enteric neurons indicates that the intrinsic catecholaminergic innervation is a stable component of the human GI tract throughout life. The absence of DBH from intrinsic catecholaminergic neurons indicates that these neurons have a dopaminergic phenotype.
Collapse
Affiliation(s)
- Martin Anlauf
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, Marburg, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1). dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2). substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3). adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity.
Collapse
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Institutions, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
37
|
Vitalis T, Fouquet C, Alvarez C, Seif I, Price D, Gaspar P, Cases O. Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. J Comp Neurol 2002; 442:331-47. [PMID: 11793338 DOI: 10.1002/cne.10093] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases A (MAOA) and B (MAOB) are key players in the inactivation pathway of biogenic amines. Their cellular localization has been well established in the mature brain, but nothing is known concerning the localization of both enzymes during development. We have combined in situ hybridization and histochemistry to localize MAOA and MAOB in the developing nervous system of mice. Our observations can be summarized as five key features. (1) MAOA is tightly linked to catecholaminergic traits. MAOA is expressed in all noradrenergic and adrenergic neurons early on, and in several dopaminergic cell groups such as the substantia nigra. MAOA is also expressed in all the neurons that display a transient tyrosine hydroxylase expression in the brainstem and the amygdala and in neurons with transient dopamine-beta-hydroxylase expression in the cranial sensory ganglia. (2) MAOA and MAOB are coexpressed in the serotoninergic neurons of the raphe from E12 to P7. During postnatal life, MAOA expression declines, whereas MAOB expression remains stable. (3) MAOA is transiently expressed in the cholinergic motor nuclei of the hindbrain, and MAOB is expressed in the forebrain cholinergic neurons. (4) MAOA- and MAOB-expressing neurons are also detected in structures that do not contain aminergic neurons, such as the thalamus, hippocampus, and claustrum. (5) Starting at birth, MAOB expression is found in a variety of nonneuronal cells, the choroid plexus, the ependyma, and astrocytes. These localizations are of importance for understanding the effects of monoaminergic transmission during development.
Collapse
Affiliation(s)
- Tania Vitalis
- Department of Biomedical Sciences, Edinburgh EH8 9XD, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Hisano S, Nogami H. Transporters in the neurohypophysial neuroendocrine system, with special reference to vesicular glutamate transporters (BNPI and DNPI): a review. Microsc Res Tech 2002; 56:122-31. [PMID: 11810715 DOI: 10.1002/jemt.10014] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in gene technology have helped to identify novel proteins and allowed study of their distribution and functions in the mammalian brain. One class of these proteins is that of transporters, which exist in plasma and organellar membranes of neurons and other cells to move substances selectively across membranes. These transporters can be categorized further into subclasses by their structural property, substrate selectivity, and site of action. Some of them have been identified in the hypothalamus, which is the only brain site where a neural signal is converted to a humoral one, namely, a hormone for a target organ. This unique neural mechanism has long attracted attention as the neuroendocrine system, part of which has been extensively studied as the hypothalamic-neurohypophysial system involved in secretion of vasopressin and oxytocin. However, transporters in this system have been less well studied. A morphological examination of novel transporters would give us cues to a better understanding of the neuronal organization and function of the system. In this review, we first summarize recent findings on expression of transporter gene and immunoreactivity in the hypothalamus. In the second part, we explain our observations on two vesicular glutamate (inorganic phosphate) transporters (BNPI and DNPI) in the supraoptic and paraventricular nuclei and neurohypophysis. Further study of these and other transporters will provide a basis on which to reevaluate the organization and function of the hypothalamic-neurohypophysial system.
Collapse
Affiliation(s)
- Setsuji Hisano
- Laboratory of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan.
| | | |
Collapse
|
39
|
Abstract
Methamphetamine is a popular drug of abuse that is neurotoxic to dopamine (DA) terminals when administered to laboratory animals. Studies in methamphetamine abusers have also documented significant loss of DA transporters (used as markers of the DA terminal) that are associated with slower motor function and decreased memory. The extent to which the loss of DA transporters predisposes methamphetamine abusers to neurodegenerative disorders such as Parkinsonism is unclear and may depend in part on the degree of recovery. Here we assessed the effects of protracted abstinence on the loss of DA transporters in striatum, in methamphetamine abusers using positron emission tomography and [(11)C]d-threo-methylphenidate (DA transporter radioligand). Brain DA transporters in five methamphetamine abusers evaluated during short abstinence (<6 months) and then retested during protracted abstinence (12-17 months) showed significant increases with protracted abstinence (caudate, +19%; putamen, +16%). Although performance in some of the tests for which we observed an association with DA transporters showed some improvement, this effect was not significant. The DA transporter increases with abstinence could indicate that methamphetamine-induced DA transporter loss reflects temporary adaptive changes (i.e., downregulation), that the loss reflects DA terminal damage but that terminals can recover, or that remaining viable terminals increase synaptic arborization. Because neuropsychological tests did not improve to the same extent, this suggests that the increase of the DA transporters was not sufficient for complete function recovery. These findings have treatment implications because they suggest that protracted abstinence may reverse some of methamphetamine-induced alterations in brain DA terminals.
Collapse
|
40
|
The Vesicular Monoamine Transporters (VMATs): Role in the Chemical Coding of Neuronal Transmission and Monoamine Storage in Amine-Handling Immune and Inflammatory Cells. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/978-1-4757-3538-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Pifl C, Zezula J, Spittler A, Kattinger A, Reither H, Caron MG, Hornykiewicz O. Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter. FASEB J 2001; 15:1607-9. [PMID: 11427501 DOI: 10.1096/fj.00-0738fje] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C Pifl
- Brain Research Institute, Pharmacological Institute and. Department of Surgery, University of Vienna, 1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Acetylcholine, catecholamines, serotonin, and histamine are classical neurotransmitters. These small molecules also play important roles in the endocrine and immune/inflammatory systems. Serotonin secreted from enterochromaffin cells of the gut epithelium regulates gut motility; histamine secreted from basophils and mast cells is a major regulator of vascular permeability and skin inflammatory responses; epinephrine is a classical hormone released from the adrenal medulla. Each of these molecules is released from neural, endocrine, or immune/inflammatory cells only in response to specific physiological stimuli. Regulated secretion is possible because amines are stored in secretory vesicles and released via a stimulus-dependent exocytotic event. Amine storage-at concentrations orders of magnitude higher than in the cytoplasm-is accomplished in turn by specific secretory vesicle transporters that recognize the amines and move them from the cytosol into the vesicle. Immunohistochemical visualization of specific vesicular amine transporters (VATs) in neuronal, endocrine, and inflammatory cells provides important new information about how amine-handling cell phenotypes arise during development and how vesicular transport is regulated during homeostatic response events. Comparison of the chemical neuroanatomy of VATs and amine biosynthetic enzymes has also revealed cell groups that express vesicular transporters but not enzymes for monoamine synthesis, and vice versa: their function and regulation is a new topic of investigation in mammalian neurobiology. The chemical neuroanatomy of the vesicular amine transporters is reviewed here. These and similar data emerging from the study of the localization of the recently characterized vesicular inhibitory and excitatory amino acid transporters will contribute to understanding chemically coded synaptic circuitry in the brain, and amine-handling neuroendocrine and immune/inflammatory cell regulation.
Collapse
Affiliation(s)
- E Weihe
- Department of Molecular Neuroimmunology, Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany.
| | | |
Collapse
|
43
|
Eiden LE. The vesicular neurotransmitter transporters: current perspectives and future prospects. FASEB J 2000; 14:2396-400. [PMID: 11099457 DOI: 10.1096/fj.00-0817rev] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
44
|
Schütz B, Chen L, Schäfer MK, Weihe E, Eiden LE. Somatomotor neuron-specific expression of the human cholinergic gene locus in transgenic mice. Neuroscience 2000; 96:707-22. [PMID: 10727789 DOI: 10.1016/s0306-4522(99)00587-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the expression pattern of the vesicular acetylcholine transporter in the mouse nervous system, using rodent-specific riboprobes and antibodies, prior to comparing it with the distribution of vesicular acetylcholine transporter expressed from a human transgene in the mouse, using riboprobes and antibodies specific for human. Endogenous vesicular acetylcholine transporter expression was high in spinal and brainstem somatomotor neurons, vagal visceromotor neurons, and postganglionic parasympathetic neurons, moderate in basal forebrain and brainstem projection neurons and striatal interneurons, and low in intestinal intrinsic neurons. Vesicular acetylcholine transporter expression in intrinsic cortical neurons was restricted to the entorhinal cortex. The sequence of the mouse cholinergic gene locus to 5.1kb upstream of the start of transcription of the vesicular acetylcholine transporter gene was determined and compared with the corresponding region of the human gene. Cis-regulatory domains implicated previously in human or rat cholinergic gene regulation are highly conserved in mouse, indicating their probable relevance to the regulation of the mammalian cholinergic gene locus in vivo. Mouse lines were established containing a human transgene that included the vesicular acetylcholine transporter gene and sequences spanning 5kb upstream and 1.8kb downstream of the vesicular acetylcholine transporter open reading frame. In this transgene, the intact human vesicular acetylcholine transporter was able to act as its own reporter. This allowed elements within the vesicular acetylcholine transporter open reading frame itself, shown previously to affect transcription in vitro, to be assessed in vivo with antibodies and riboprobes that reliably distinguished between human and mouse vesicular acetylcholine transporters and their messenger RNAs. Expression of the human vesicular acetylcholine transporter was restricted to mouse cholinergic somatomotor neurons in the spinal cord and brainstem, but absent from other central and peripheral cholinergic neurons. The mouse appears to be an appropriate model for the study of the genetic regulation of the cholinergic gene locus, and the physiology and neurochemistry of the mammalian cholinergic nervous system, although differences exist in the distribution of cortical cholinergic neurons between the mouse and other mammals. The somatomotor neuron-specific expression pattern of the transgenic human vesicular acetylcholine transporter suggests a mosaic model for cholinergic gene locus regulation in separate subdivisions of the mammalian cholinergic nervous system.
Collapse
Affiliation(s)
- B Schütz
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Stanke M, Geissen M, Götz R, Ernsberger U, Rohrer H. The early expression of VAChT and VIP in mouse sympathetic ganglia is not induced by cytokines acting through LIFRbeta or CNTFRalpha. Mech Dev 2000; 91:91-6. [PMID: 10704834 DOI: 10.1016/s0925-4773(99)00275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sympathetic ganglia consist of noradrenergic and cholinergic neurons. The cholinergic marker protein vesicular acetylcholine transporter (VAChT) and the neuropeptide vasoactive intestinal peptide (VIP), co-expressed in mature cholinergic sympathetic neurons, are first detectable during embryonic development of rat sympathetic ganglia. However, the subpopulation of cholinergic sympathetic neurons which innervates sweat glands in mammalian footpads starts to express VAChT and VIP during the first postnatal weeks, under the influence of sweat gland-derived signals. In vitro evidence suggests that the sweat gland-derived cholinergic differentiation factor belongs to a group of neuropoietic cytokines, including LIF, CNTF and CT-1, that act through a LIFRbeta-containing cytokine receptor. To investigate whether the embryonic expression of cholinergic properties is elicited by a related cytokine, the expression of VAChT and VIP was analyzed in stellate ganglia of mice deficient for the cytokine receptor subunits LIFRbeta or CNTFRalpha. The density of VAChT- and VIP-immunoreactive cells in stellate ganglia of new-born animals was not different in LIFRbeta(-/-) and CNTFRalpha(-/-) ganglia as compared to ganglia from wild-type mice. These results demonstrate that the early, embryonic expression of VAChT and VIP is not induced by cytokines acting through LIFRbeta- or CNTFRalpha-containing receptors.
Collapse
Affiliation(s)
- M Stanke
- Max-Planck-Institut für Hirnforschung, Abt. Neurochemie, Deutschordenstrasse 46, 60528, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
46
|
Schütz B, Schäfer MK, Eiden LE, Weihe E. VIP and NPY expression during differentiation of cholinergic and noradrenergic sympathetic neurons. Ann N Y Acad Sci 1998; 865:537-41. [PMID: 9928065 DOI: 10.1111/j.1749-6632.1998.tb11232.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B Schütz
- Institute of Anatomy & Cell Biology, Philipps University, Marburg, Germany.
| | | | | | | |
Collapse
|
47
|
Weihe E, Schäfer MK, Schütz B, Anlauf M, Depboylu C, Brett C, Chen L, Eiden LE. From the cholinergic gene locus to the cholinergic neuron. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:385-8. [PMID: 9789842 DOI: 10.1016/s0928-4257(99)80010-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The cholinergic gene locus (CGL) was first identified in 1994 as the site (human chromosome 10q11.2) at which choline acetyltransferase and a functional vesicular acetylcholine transporter are co-localized. Here, we present recent neuroanatomical, developmental, and evolutionary insights into the chemical coding of cholinergic neurotransmission that have been gleaned from the study of the CGL, and its protein products VAChT and ChAT, which comprise a synthesis-sequestration pathway that functionally defines the cholinergic phenotype.
Collapse
Affiliation(s)
- E Weihe
- Department of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|