1
|
Lee SH, Jung EM. Adverse effects of early-life stress: focus on the rodent neuroendocrine system. Neural Regen Res 2024; 19:336-341. [PMID: 37488887 PMCID: PMC10503627 DOI: 10.4103/1673-5374.377587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders, attention-deficit/hyperactivity disorder, schizophrenia, and anxiety or depressive behavior, which constitute major public health problems. In the early stages of brain development after birth, events such as synaptogenesis, neuron maturation, and glial differentiation occur in a highly orchestrated manner, and external stress can cause adverse long-term effects throughout life. Our body utilizes multifaceted mechanisms, including neuroendocrine and neurotransmitter signaling pathways, to appropriately process external stress. Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism; however, in adulthood, early-life stress induces apoptosis of mature neurons, activation of immune responses, and reduction of neurotrophic factors, leading to anxiety, depression, and cognitive and memory dysfunction. This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system, including norepinephrine, dopamine, and serotonin. The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment. This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Kennedy C, van Onselen R, Downing TG. β-N-methylamino-l-alanine is a non-competitive inhibitor of vesicular monoamine transporter 2. Toxicon 2023; 222:106978. [PMID: 36410456 DOI: 10.1016/j.toxicon.2022.106978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
The neurotoxic, non-proteinogenic amino acid β-N-methylamino-l-alanine (BMAA) has been implicated in the development of neurodegenerative diseases; however, the mechanism(s) and mode(s) of toxicity remain unclear. Similarities in the neuropathology and behavioural deficits of neonatal rats exposed to either BMAA or reserpine, a known vesicular monoamine transporter 2 (VMAT2) inhibitor, suggest a similar mode of action. The aims of this study were therefore to determine if BMAA could prevent the uptake of serotonin into dense granules via inhibition of VMAT2, and, if so, the type of inhibition caused by BMAA. Exposing platelet dense granules to BMAA resulted in a concentration-dependent reduction in serotonin uptake. The inhibition of VMAT2 was non-competitive. The findings from this study support previous reports that BMAA-associated neuropathologies in a neonatal rat model may be due to VMAT2 inhibition during critical periods of neurogenesis.
Collapse
Affiliation(s)
- Chanté Kennedy
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6021, South Africa.
| | - Rianita van Onselen
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6021, South Africa; Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.
| | - Tim G Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6021, South Africa.
| |
Collapse
|
3
|
Baudat M, de Kort AR, van den Hove DLA, Joosten EA. Early-life exposure to selective serotonin reuptake inhibitors: Long-term effects on pain and affective comorbidities. Eur J Neurosci 2021; 55:295-317. [PMID: 34841582 PMCID: PMC9299880 DOI: 10.1111/ejn.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
A growing body of evidence indicates that early‐life exposure to selective serotonin reuptake inhibitor has long‐term consequences on the offspring's pain in addition to affective disorders like anxiety disorder and major depression. Serotonin, besides its role in regulating pain and emotions, promotes neuronal network formation. The prefrontal cortex and the amygdala are two key brain regions involved in the modulation of pain and its affective comorbidities. Thus, the aim of this review is to understand how early‐life selective serotonin reuptake inhibitor exposure alters the developing prefrontal cortex and amygdala and thereby underlies the long‐term changes in pain and its affective comorbidities in later life. While there is still limited data on the effects of early‐life selective serotonin reuptake inhibitor exposure on pain, there is a substantial body of evidence on its affective comorbidities. From this perspective paper, four conclusions emerged. First, early‐life selective serotonin reuptake inhibitor exposure results in long‐term nociceptive effects, which needs to be consistently studied to clarify. Second, it results in enhanced depressive‐like behaviour and diminished exploratory behaviour in adult rodents. Third, early‐life selective serotonin reuptake inhibitor exposure alters serotonergic levels, transcription factors expression, and brain‐derived neurotrophic factor levels, resulting in hyperconnectivity within the amygdala and the prefrontal cortex. Finally, it affects antinociceptive inputs of the prefrontal cortex and the amygdala in the spinal cord. We conclude that early‐life selective serotonin reuptake inhibitor exposure affects the maturation of prefrontal cortex and amygdala circuits and thereby enhances their antinociceptive inputs in the spinal cord.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anne R de Kort
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Elbert A Joosten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
4
|
Stereological Investigation of the Rat Ventral Thalamic Nuclei Following Developmental Hyperserotonemia. Neuroscience 2019; 411:202-210. [DOI: 10.1016/j.neuroscience.2019.05.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/19/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
|
5
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Shehabeldin R, Lutz D, Karsak M, Frotscher M, Krieglstein K, Sharaf A. Reelin controls the positioning of brainstem serotonergic raphe neurons. PLoS One 2018; 13:e0200268. [PMID: 30001399 PMCID: PMC6042745 DOI: 10.1371/journal.pone.0200268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/23/2018] [Indexed: 11/20/2022] Open
Abstract
Serotonin (5-HT) acts as both a morphogenetic factor during early embryonic development and a neuromodulator of circuit plasticity in the mature brain. Dysregulation of serotonin signaling during critical periods is involved in developmental neurological disorders, such as schizophrenia and autism. In this study we focused on the consequences of defect reelin signaling for the development of the brainstem serotonergic raphe system. We observed that reelin signaling components are expressed by serotonergic neurons during the critical period of their lateral migration. Further, we found that reelin signaling is important for the normal migration of rostral, but not caudal hindbrain raphe nuclei and that reelin deficiency results in the malformation of the paramedian raphe nucleus and the lateral wings of the dorsal raphe nuclei. Additionally, we showed that serotonergic neurons projections to laminated brain structures were severely altered. With this study, we propose that the perturbation of canonical reelin signaling interferes with the orientation of tangentially, but not radially, migrating brainstem 5-HT neurons. Our results open the window for further studies on the interaction of reelin and serotonin and the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Reham Shehabeldin
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - David Lutz
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Meliha Karsak
- Research Group Neuronal and Cellular Signal Transduction, ZMNH, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Ahmed Sharaf
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-Universität, Freiburg, Germany
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Research Group Neuronal and Cellular Signal Transduction, ZMNH, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- * E-mail:
| |
Collapse
|
7
|
Howes OD, Rogdaki M, Findon JL, Wichers RH, Charman T, King BH, Loth E, McAlonan GM, McCracken JT, Parr JR, Povey C, Santosh P, Wallace S, Simonoff E, Murphy DG. Autism spectrum disorder: Consensus guidelines on assessment, treatment and research from the British Association for Psychopharmacology. J Psychopharmacol 2018; 32:3-29. [PMID: 29237331 PMCID: PMC5805024 DOI: 10.1177/0269881117741766] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An expert review of the aetiology, assessment, and treatment of autism spectrum disorder, and recommendations for diagnosis, management and service provision was coordinated by the British Association for Psychopharmacology, and evidence graded. The aetiology of autism spectrum disorder involves genetic and environmental contributions, and implicates a number of brain systems, in particular the gamma-aminobutyric acid, serotonergic and glutamatergic systems. The presentation of autism spectrum disorder varies widely and co-occurring health problems (in particular epilepsy, sleep disorders, anxiety, depression, attention deficit/hyperactivity disorder and irritability) are common. We did not recommend the routine use of any pharmacological treatment for the core symptoms of autism spectrum disorder. In children, melatonin may be useful to treat sleep problems, dopamine blockers for irritability, and methylphenidate, atomoxetine and guanfacine for attention deficit/hyperactivity disorder. The evidence for use of medication in adults is limited and recommendations are largely based on extrapolations from studies in children and patients without autism spectrum disorder. We discuss the conditions for considering and evaluating a trial of medication treatment, when non-pharmacological interventions should be considered, and make recommendations on service delivery. Finally, we identify key gaps and limitations in the current evidence base and make recommendations for future research and the design of clinical trials.
Collapse
Affiliation(s)
- Oliver D Howes
- 1 MRC London Institute of Medical Sciences, London, UK
- 2 Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- 1 MRC London Institute of Medical Sciences, London, UK
| | - James L Findon
- 3 Sackler Institute for Translational Neurodevelopment, King's College London, London, UK
| | - Robert H Wichers
- 3 Sackler Institute for Translational Neurodevelopment, King's College London, London, UK
| | - Tony Charman
- 4 Department of Psychology, King's College London, London UK
| | - Bryan H King
- 5 Department of Psychiatry, University of California at San Francisco, San Francisco, USA
| | - Eva Loth
- 3 Sackler Institute for Translational Neurodevelopment, King's College London, London, UK
| | - Gráinne M McAlonan
- 6 The Sackler Centre and Forensic and Neurodevelopmental Science Behavioural and Developmental Psychiatry, Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
- 7 NIHR-BRC for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - James T McCracken
- 8 Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, USA
| | - Jeremy R Parr
- 9 Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Carol Povey
- 10 The National Autistic Society, London, UK
| | - Paramala Santosh
- 11 Department of Child Psychiatry, King's College London, London, UK
| | | | - Emily Simonoff
- 13 Department of Child and Adolescent Psychiatry, King's College London, London, UK
| | - Declan G Murphy
- 6 The Sackler Centre and Forensic and Neurodevelopmental Science Behavioural and Developmental Psychiatry, Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
- 7 NIHR-BRC for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Collins SM, Belagodu AP, Reed SL, Galvez R. SHANK1 is differentially expressed during development in CA1 hippocampal neurons and astrocytes. Dev Neurobiol 2017; 78:363-373. [PMID: 29218848 DOI: 10.1002/dneu.22564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023]
Abstract
Recent studies have strongly suggested a role for the synaptic scaffolding protein SHANK1 in normal synaptic structure and signaling. Global SHANK1 knockout (SHANK1-/-) mice demonstrate reduced dendritic spine density, an immature dendritic spine phenotype and impairments in various cognitive tasks. SHANK1 overexpression is associated with increased dendritic spine size and impairments in fear conditioning. These studies suggest proper regulation of SHANK1 is crucial for appropriate synaptic structure and cognition. However, little is known regarding SHANK1's developmental expression in brain regions critical for learning. The current study quantified cell specific developmental expression of SHANK1 in the hippocampus, a brain region critically involved in various learning paradigms shown to be disrupted by SHANK1 dysregulation. Consistent with prior studies, SHANK1 was found to be strongly co-expressed with dendritic markers, with significant increased co-expression at postnatal day (P) 15, an age associated with increased synaptogenesis in the hippocampus. Interestingly, SHANK1 was also found to be expressed in astrocytes and microglia. To our knowledge, this is the first demonstration of glial SHANK1 localization; therefore, these findings were further examined via a glial purified primary cell culture fraction using magnetic cell sorting. This additional analysis further demonstrated that SHANK1 was expressed in glial cells, supporting our immunofluorescence co-expression findings. Developmentally, astroglial SHANK1 co-expression was found to be significantly elevated at P5 with a reduction into adulthood, while SHANK1 microglial co-expression did not significantly change across development. These data collectively implicate a more global role for SHANK1 in mediating normal cellular signaling in the brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 363-373, 2018.
Collapse
Affiliation(s)
- Sean M Collins
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Amogh P Belagodu
- Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Samantha L Reed
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Roberto Galvez
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801.,Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| |
Collapse
|
9
|
Perinatal reduction of functional serotonin transporters results in developmental delay. Neuropharmacology 2016; 109:96-111. [PMID: 27208789 DOI: 10.1016/j.neuropharm.2016.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/25/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
While there is strong evidence from rodent and human studies that a reduction in serotonin transporter (5-HTT) function in early-life can increase the risk for several neuropsychiatric disorders in adulthood, the effects of reduced 5-HTT function on behavior across developmental stages are underinvestigated. To elucidate how perinatal pharmacological and lifelong genetic inactivation of the 5-HTT affects behavior across development, we conducted a battery of behavioral tests in rats perinatally exposed to fluoxetine or vehicle and in 5-HTT(-/-) versus 5-HTT(+/+) rats. We measured motor-related behavior, olfactory function, grooming behavior, sensorimotor gating, object directed behavior and novel object recognition in the first three postnatal weeks and if possible the tests were repeated in adolescence and adulthood. We also measured developmental milestones such as eye opening, reflex development and body weight. We observed that both pharmacological and genetic inactivation of 5-HTT resulted in a developmental delay. Except for hypo-locomotion, most of the observed early-life effects were normalized later in life. In adolescence and adulthood we observed object directed behavior and decreased novel object recognition in the 5-HTT(-/-) rats, which might be related to the lifelong inactivation of 5-HTT. Together, these data provide an important contribution to the understanding of the effects of perinatal and lifelong 5-HTT inactivation on behavior across developmental stages.
Collapse
|
10
|
Hough LH, Segal S. Effects of developmental hyperserotonemia on the morphology of rat dentate nuclear neurons. Neuroscience 2016; 322:178-94. [PMID: 26892293 DOI: 10.1016/j.neuroscience.2016.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social cognition, disordered communication, restricted interests and repetitive behaviors. Furthermore, abnormalities in basic motor control, skilled motor gestures, and motor learning, are common in ASD. These characteristics have been attributed to a possible defect in the pre- and postnatal development of specific neural networks including the dentate-thalamo-cortical pathway, which is involved in motor learning, automaticity of movements, and higher cognitive functions. The current study utilized custom diolistic labeling and unbiased stereology to characterize morphological alterations in neurons of the dentate nucleus of the cerebellum in developing rat pups exposed to abnormally high levels of the serotonergic agonist 5-methyloxytryptamine (5-MT) pre-and postnatally. Occurring in as many as 30% of autistic subjects, developmental hyperserotonemia (DHS) is the most consistent neurochemical finding reported in autism and has been implicated in the pathophysiology of ASD. This exposure produced dramatic changes in dendritic architecture and synaptic features. We observed changes in the dendritic branching morphology which did not lead to significant differences (p>0.5) in total dendritic length. Instead, DHS groups presented with dendritic trees that display changes in arborescence, that appear to be short reaching with elaborately branched segments, presenting with significantly fewer (p>0.001) dendritic spines and a decrease in numeric density when compared to age-matched controls. These negative changes may be implicated in the neuropathological and functional/behavioral changes observed in ASD, such as delays in motor learning, difficulties in automaticity of movements, and deficits in higher cognitive functions.
Collapse
Affiliation(s)
- L H Hough
- Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA.
| | - S Segal
- Department of Surgery, Center for Anatomical Sciences and Education, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Stagni F, Giacomini A, Guidi S, Ciani E, Bartesaghi R. Timing of therapies for Down syndrome: the sooner, the better. Front Behav Neurosci 2015; 9:265. [PMID: 26500515 PMCID: PMC4594009 DOI: 10.3389/fnbeh.2015.00265] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), with a heavy impact on public health. Accumulating evidence shows that DS is characterized by numerous neurodevelopmental alterations among which the reduction of neurogenesis, dendritic hypotrophy and connectivity alterations appear to play a particularly prominent role. Although the mechanisms whereby gene triplication impairs brain development in DS have not been fully clarified, it is theoretically possible to correct trisomy-dependent defects with targeted pharmacotherapies. This review summarizes what we know about the effects of pharmacotherapies during different life stages in mouse models of DS. Since brain alterations in DS start to be present prenatally, the prenatal period represents an optimum window of opportunity for therapeutic interventions. Importantly, recent studies clearly show that treatment during the prenatal period can rescue overall brain development and behavior and that this effect outlasts treatment cessation. Although late therapies are unlikely to exert drastic changes in the brain, they may have an impact on the hippocampus, a brain region where neurogenesis continues throughout life. Indeed, treatment at adult life stages improves or even rescues hippocampal neurogenesis and connectivity and hippocampal-dependent learning and memory, although the duration of these effects still remains, in the majority of cases, a matter of investigation. The exciting discovery that trisomy-linked brain abnormalities can be prevented with early interventions gives us reason to believe that treatments during pregnancy may rescue brain development in fetuses with DS. For this reason we deem it extremely important to expedite the discovery of additional therapies practicable in humans in order to identify the best treatment/s in terms of efficacy and paucity of side effects. Prompt achievement of this goal is the big challenge for the scientific community of researchers interested in DS.
Collapse
Affiliation(s)
| | | | | | | | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
12
|
Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice. Neurosci Res 2015; 101:15-23. [PMID: 26163770 DOI: 10.1016/j.neures.2015.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022]
Abstract
Environmental factors during perinatal period have various effects on behavior. The present study examined the effects of prenatal stress and neonatal handling on anxiety and spatial learning of offspring. Prenatal stress increased anxiety-related behavior of adult offspring, whereas neonatal handling had no effect. In contrast, spatial learning was not affected by prenatal stress, but improved by neonatal handling in both prenatally stressed and non-stressed mice. Next, to elucidate possible brain mechanisms mediating effects of environmental factors on behavior, we focused on serotonin (5-HT) system in the frontal cortex and hippocampus which is involved in anxiety and learning. We examined effects of environmental factors on the mRNA expression of 5-HT1A, 5-HT2A and 5-HT2C receptors in the frontal cortex and hippocampus during postnatal period and adulthood. Both prenatal stress and neonatal handling altered the mRNA expression of 5-HT receptors. These effects were dependent on environmental factors, brain regions and developmental stages. In summary, the present study revealed that prenatal stress and neonatal handling had differential effects on anxiety and spatial learning of offspring, and concomitantly the expression of 5-HT receptors. It was also shown that the effects of prenatal stress on 5-HT system were recovered partially by neonatal handling.
Collapse
|
13
|
Oyamada Y, Horiguchi M, Rajagopal L, Miyauchi M, Meltzer HY. Combined serotonin (5-HT)1A agonism, 5-HT2A and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behav Brain Res 2015; 285:165-75. [DOI: 10.1016/j.bbr.2014.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
|
14
|
Kepser LJ, Homberg JR. The neurodevelopmental effects of serotonin: A behavioural perspective. Behav Brain Res 2015; 277:3-13. [DOI: 10.1016/j.bbr.2014.05.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023]
|
15
|
Guidi S, Stagni F, Bianchi P, Ciani E, Giacomini A, De Franceschi M, Moldrich R, Kurniawan N, Mardon K, Giuliani A, Calzà L, Bartesaghi R. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. ACTA ACUST UNITED AC 2013; 137:380-401. [PMID: 24334313 DOI: 10.1093/brain/awt340] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.
Collapse
Affiliation(s)
- Sandra Guidi
- 1 Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guidi S, Stagni F, Bianchi P, Ciani E, Ragazzi E, Trazzi S, Grossi G, Mangano C, Calzà L, Bartesaghi R. Early pharmacotherapy with fluoxetine rescues dendritic pathology in the Ts65Dn mouse model of down syndrome. Brain Pathol 2012; 23:129-43. [PMID: 22817700 DOI: 10.1111/j.1750-3639.2012.00624.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022] Open
Abstract
Down syndrome DS is a genetic pathology characterized by brain hypotrophy and severe cognitive impairment. Although defective neurogenesis is an important determinant of mental disability, a severe dendritic pathology appears to be an equally important factor. A previous study showed that fluoxetine, a selective serotonin reuptake inhibitor, fully restores neurogenesis in the Ts65Dn mouse model of DS. The goal of the current study was to establish whether fluoxetine also restores dendritic development. In mice aged 45 days, treated with fluoxetine in the postnatal period P3-P15, we examined the dendritic arbor of the granule cells of the dentate gyrus (DG). The granule cells of trisomic mice had a severely hypotrophic dendritic arbor, fewer spines and a reduced innervation than euploid mice. Treatment with fluoxetine fully restored all these defects. In Ts65Dn mice, we found reduced levels of serotonin that were restored by treatment. Results show that a pharmacotherapy with fluoxetine is able to rescue not only the number of granule neurons but also their "quality" in terms of correct maturation and connectivity. These findings strongly suggest that fluoxetine may be a drug of choice for the improvement of the major defects in the DS brain and, possibly, of mental retardation.
Collapse
Affiliation(s)
- Sandra Guidi
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kudryashov IE. Effects of tryptophan on evoked responses in hippocampal slices of adult and 3-week-old rats. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Hadjighassem MR, Galaraga K, Albert PR. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene. Eur J Neurosci 2010; 33:214-23. [PMID: 21155902 DOI: 10.1111/j.1460-9568.2010.07498.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE.
Collapse
Affiliation(s)
- Mahmoud R Hadjighassem
- Ottawa Hospital Research Institute (Neuroscience) and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
19
|
Soumier A, Banasr M, Kerkerian-Le Goff L, Daszuta A. Region- and phase-dependent effects of 5-HT(1A) and 5-HT(2C) receptor activation on adult neurogenesis. Eur Neuropsychopharmacol 2010; 20:336-45. [PMID: 20022222 DOI: 10.1016/j.euroneuro.2009.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 10/26/2009] [Accepted: 11/18/2009] [Indexed: 11/28/2022]
Abstract
Adult neurogenesis and serotoninergic transmission are associated to mood disorders and their treatments. The present study focused on the effects of chronic activation of 5-HT(1A) and 5-HT(2C) receptors on newborn cell survival in the dentate gyrus (DG) and olfactory bulb (OB), and examined whether potential neurogenic zones as the prefrontal cortex (PFC) and striatum (ST) are reactive to these treatments. Administration of 8-OH-DPAT, but not RO600,175 increases neurogenesis and survival of late differentiating cells (15-21days) in the DG. Both 8-OH-DPAT and RO600,175 increase neurogenesis in the OB, but only 8-OH-DPAT affected cell survival, inducing a parallel decrease in the number of BrdU cells in the OB and increase in the SVZ, which suggests an impaired migration. In the PFC and ST, 8-OH-DPAT and R0600,175 increase gliogenesis (NG2-labeled cells). This study provides new insights on the serotonergic regulation of critical phases of neurogenesis helpful to understand the neurogenic and gliogenic effects of antidepressant treatments in different brain regions.
Collapse
Affiliation(s)
- Amélie Soumier
- IBDML, UMR, CNRS-Université de la Mediterranée, Marseille, France
| | | | | | | |
Collapse
|
20
|
Layer II/III of the prefrontal cortex: Inhibition by the serotonin 5-HT1A receptor in development and stress. J Neurosci 2009; 29:10094-103. [PMID: 19675243 DOI: 10.1523/jneurosci.1960-09.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modulation of the prefrontal cortex by the neurotransmitter serotonin (5-HT) is thought to play a key role in determining adult anxiety levels. Layer II/III of the prefrontal cortex, which mediates communication across cortical regions, displays a high level of 5-HT(1A) receptor binding in normal individuals and a significantly lower level in patients with mood and anxiety disorders. Here, we examine how serotonin modulates pyramidal neurons in layer II/III of the rat prefrontal cortex throughout postnatal development and in adulthood. Using whole cell recordings in brain slices of the rat medial prefrontal cortex, we observed that serotonin directly inhibits layer II/III pyramidal neurons through 5-HT(1A) receptors across postnatal development (postnatal days 6-96). In adulthood, a sex difference in these currents emerges, consistent with human imaging studies of 5-HT(1A) receptor binding. We examined the effects of early life stress on the 5-HT(1A) receptor currents in layer II/III. Surprisingly, animals subjected to early life stress displayed significantly larger 5-HT(1A)-mediated outward currents throughout the third and fourth postnatal weeks after elevated 5-HT(1A) expression during the second postnatal week. Subsequent exposure to social isolation in adulthood resulted in the almost-complete elimination of 5-HT(1A) currents in layer II/III neurons suggesting an interaction between early life events and adult experiences. These data represent the first examination of functional 5-HT(1A) receptors in layer II/III of the prefrontal cortex during normal development as well as after stress.
Collapse
|
21
|
Paterson DS, Hilaire G, Weese-Mayer DE. Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome. Respir Physiol Neurobiol 2009; 168:133-43. [PMID: 19481178 PMCID: PMC2737726 DOI: 10.1016/j.resp.2009.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/13/2009] [Accepted: 05/18/2009] [Indexed: 11/27/2022]
Abstract
Sudden infant death syndrome (SIDS) is defined as the sudden and unexpected death of an infant less than 12 months of age that occurs during sleep and remains unexplained after a complete autopsy, death scene investigation, and review of the clinical history. It is the leading cause of postneonatal mortality in the developed world. The cause of SIDS is unknown, but is postulated to involve impairment of brainstem-mediated homeostatic control. Extensive evidence from animal studies indicates that serotonin (5-HT) neurons in the medulla oblongata play a role in the regulation of multiple aspects of respiratory and autonomic function. A subset of SIDS infants have several abnormalities in medullary markers of 5-HT function and genetic polymorphisms impacting the 5-HT system, informing the hypothesis that SIDS results from a defect in 5-HT brainstem-mediated control of respiratory (and autonomic) regulation. Here we review the evidence from postmortem human studies and animal studies to support this hypothesis and discuss how the pathogenesis of SIDS is likely to originate in utero during fetal development.
Collapse
Affiliation(s)
- David S Paterson
- Department of Pathology, Enders Building Room 1109, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
22
|
McNamara IM, Borella AW, Bialowas LA, Whitaker-Azmitia PM. Further studies in the developmental hyperserotonemia model (DHS) of autism: Social, behavioral and peptide changes. Brain Res 2008; 1189:203-14. [DOI: 10.1016/j.brainres.2007.10.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/19/2023]
|
23
|
Akhavan MM, Emami-Abarghoie M, Safari M, Sadighi-Moghaddam B, Vafaei AA, Bandegi AR, Rashidy-Pour A. Serotonergic and noradrenergic lesions suppress the enhancing effect of maternal exercise during pregnancy on learning and memory in rat pups. Neuroscience 2007; 151:1173-83. [PMID: 18207332 DOI: 10.1016/j.neuroscience.2007.10.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/15/2007] [Accepted: 01/13/2008] [Indexed: 10/22/2022]
Abstract
The beneficial effects of exercise on learning and memory are well documented but the effects of prenatal exposure to maternal exercise on offspring are not clear yet. Using a two-trial-per-day Morris water maze for five consecutive days, succeeded by a probe trial 2 days later we showed that maternal voluntary exercise (wheel running) by pregnant rats increased the acquisition phase of the pups' learning. Maternal forced swimming by pregnant rats increased both acquisition and retention phases of the pups' learning. Also we found that the rat pups whose mother was submitted to forced-swimming during pregnancy had significantly higher brain, liver, heart and kidney weights compared with their sedentary counterparts. On the other hand we estimated the cell number of different regions of the hippocampus in the rat pups. We found that both exercise models during pregnancy increased the cell number in cornus ammonis subregion 1 (CA1) and dentate gyrus of the hippocampus in rat pups. To determine the role that noradrenergic and serotonergic neurotransmission and N-methyl-D-aspartate (NMDA) receptors hold in mediation of the maternal exercise in offspring, we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), p-chloroamphetamine (PCA) and MK-801 to eliminate or block the above systems, respectively. Blocking the NMDA receptors, significantly abolished learning and memory in rat pups from all three experimental groups. Elimination of noradrenergic or serotonergic input did not significantly attenuate the learning and memory in rat pups whose mothers were sedentary, while it significantly reversed the positive effects of maternal exercise during pregnancy on rat pups' learning and memory. The presented results suggest that noradrenergic and serotonergic systems in offspring brain seem to have a crucial specific role in mediating the effects of maternal physical activity during pregnancy on rat pups' cognitive function in both models of voluntary and forced exercise.
Collapse
Affiliation(s)
- M M Akhavan
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | | | | | | | | | | | |
Collapse
|
24
|
Konno K, Matsumoto M, Togashi H, Yamaguchi T, Izumi T, Watanabe M, Iwanaga T, Yoshioka M. Early postnatal stress affects the serotonergic function in the median raphe nuclei of adult rats. Brain Res 2007; 1172:60-6. [PMID: 17825274 DOI: 10.1016/j.brainres.2007.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Recent studies have focused on the serotonergic mechanism mediated via serotonin (5-HT) receptors underlying regulation of emotional stress during the developmental period. The present study was undertaken to elucidate whether early postnatal stress affects rat brain development and influences the serotonergic function in the midbrain median raphe nuclei (MRN) and dorsal raphe nuclei (DRN) in the adult, focusing on the response to unconditioned fear stress. Rats received aversive foot shock (FS) stimuli at the third week of the postnatal period (3wFS), but not those at the second week (2wFS), had increased percentage of time spent on open arms, estimated by the elevated plus maze test, at the postadolescent period (10-12 weeks old). The anxiolytic behavior observed in 3wFS was similar to that in rats having electrolytic lesion of the MRN, but not the DRN. In addition, the number of MRN 5-HT-immunoreactive cells in 3wFS remarkably was reduced compared to the non-FS control and 2wFS groups. These data suggest that aversive stress at the third week is attributable to the serotonergic function in the MRN underlying regulation of unconditioned fear stress. In other words, the "critical period" appears to be the time of neural circuit development of the MRN serotonergic system, which may be implicated in lifelong susceptibility to emotional stress.
Collapse
Affiliation(s)
- Kohtarou Konno
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Morphogenic Signaling in Neurons Via Neurotransmitter Receptors and Small GTPases. Mol Neurobiol 2007; 35:278-87. [DOI: 10.1007/s12035-007-0023-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/30/1999] [Accepted: 12/08/2006] [Indexed: 01/21/2023]
|
26
|
Abstract
Major depressive disorder (MDD) is a debilitating and complex psychiatric disorder that involves multiple neural circuits and genetic and non-genetic risk factors. In the quest for elucidating the neurobiological basis of MDD, hippocampal neurogenesis has emerged as a candidate substrate, both for the etiology as well as treatment of MDD. This chapter critiques the advances made in the study of hippocampal neurogenesis as they relate to the neurogenic hypothesis of MDD. While an involvement of neurogenesis in the etiology of depression remains highly speculative, preclinical studies have revealed a novel and previously unrecognized role for hippocampal neurogenesis in mediating some of the behavioral effects of antidepressants. The implications of these findings are discussed to reevaluate the role of hippocampal neurogenesis in MDD.
Collapse
Affiliation(s)
- Amar Sahay
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
27
|
Roda E, Avella D, Pisu MB, Bernocchi G. Monoamine receptors and immature cerebellum cytoarchitecture after cisplatin injury. J Chem Neuroanat 2007; 33:42-52. [PMID: 17156972 DOI: 10.1016/j.jchemneu.2006.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/02/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The experimental model of cisplatin treatment provides the opportunity to identify the precise function of the neurotransmitters in some crucial events of brain development, and their interactions or modulatory roles. The serotonin and noradrenaline monoamines influence the formation of the cerebellar cortex circuitry. In this study we found changes in the expression of the serotonin and noradrenaline receptors after a single injection of cisplatin in 10-day-old rats. The growth of Pc dendrites was early altered in lobules VI-VIII of cerebellum vermis. In these lobules, at postnatal day (PD) 17, the cisplatin-induced increase of the serotoninergic receptor 5-HT2AR, a factor that inhibits Pc dendrite growth by acting post-synaptically, occurred in all cerebellar layers, suggesting also alteration of granule cell proliferation and migration. The decreased labelling of beta l adrenergic receptor (beta1AR) in the soma of some Pc at PD11 can be correlated with the altered expression of glutamate receptors and GAD65 (glutamic acid decarboxylase) of and on Pc we have previously described [Pisu, M.B., Guioli, S., Conforti, E., Bernocchi, G., 2003. Signal molecules and receptors in the differential development of cerebellum lobules. Acute effects of cisplatin on nitric oxide and glutamate system in Purkinje cell population. Dev. Brain Res. 145, 229-240; Pisu, M.B., Roda, E., Avella, D., Bernocchi, G., 2004. Developmental plasticity of rat cerebellar cortex after cisplatin injury: inhibitory synapses and differentiating Purkinje neurons. Neuroscience 129, 655-664]. Moreover, beta1AR seems to be the key factor in the cerebellar reorganization between PD17 and PD30. The expression of this receptor was maintained in the molecular layer (ML), in particular in the inhibitory interneurons, despite their different distributions. The labelling of 5-HT1AR in the ML areas lacking Pc dendrite branches could contribute to the recovery phase of the cerebellar cytoarchitecture in cisplatin-treated rats. In general these findings should be taken into consideration in therapeutic interventions for developmental CNS disorders with a morphological basis.
Collapse
Affiliation(s)
- E Roda
- Dipartimento di Biologia Animale, Laboratorio di Biologia Cellulare e Neurobiologia, Università di Pavia, Italy
| | | | | | | |
Collapse
|
28
|
Ferri P, Cecchini T, Ambrogini P, Betti M, Cuppini R, Del Grande P, Ciaroni S. alpha-Tocopherol affects neuronal plasticity in adult rat dentate gyrus: the possible role of PKCdelta. ACTA ACUST UNITED AC 2006; 66:793-810. [PMID: 16673395 DOI: 10.1002/neu.20255] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that alpha-tocopherol increased the PSA-NCAM-positive granule cell number in adult rat DG, suggesting that alpha-tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under alpha-tocopherol supplementation conditions. PSA-NCAM expression was evaluated by Western blotting, evaluation of PSA-NCAM-positive granule cell density, and morphometric analysis of PSA-NCAM-positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA-NCAM expression has been found to be related to PKCdelta activity and alpha-tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA-NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in alpha-tocopherol-treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho-PKC Pan and phospho-PKCdelta, demonstrating that alpha-tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCdelta was lower in alpha-tocopherol-treated rats than in controls, while no changes were found in PKCdelta expression. These results demonstrate that alpha-tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCdelta inhibition.
Collapse
Affiliation(s)
- Paola Ferri
- Institute of Morphological Sciences, University of Urbino Carlo Bo, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 2006; 81:47-63. [PMID: 16226876 DOI: 10.1016/j.schres.2005.08.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 08/12/2005] [Accepted: 08/15/2005] [Indexed: 01/11/2023]
Abstract
The cortical neuropathology of schizophrenia includes neuronal atrophy, decreased neuropil, and alterations in neuronal density. Taken together with evidence of decreased synaptic markers and dendritic spines, the data suggest that synaptic circuitry is altered. Recent neuroimaging studies also indicate that a progressive loss of cortical gray matter occurs early in the course of schizophrenia. Although the mechanisms underlying these deficits are largely unknown, recent postmortem data implicate a role for altered neuronal apoptosis. Apoptosis, a form of programmed cell death, is regulated by a complex cascade of pro- and anti-apoptotic proteins. Apoptotic activation can lead to rapid neuronal death. However, emerging data also indicate that sub-lethal apoptotic activity can lead to a limited form of apoptosis in terminal neurites and individual synapses to cause synaptic elimination without cell death. For example, in Alzheimer's disease, a localized apoptotic mechanism is thought to contribute to early neurite and synapse loss leading to the initial cognitive decline. Recent studies indicate that apoptotic regulatory proteins and DNA fragmentation patterns are altered in several cortical regions in schizophrenia. This paper will review converging lines of data that implicate synaptic deficits in the pathophysiology of schizophrenia and propose an underlying role for apoptotic dysregulation.
Collapse
Affiliation(s)
- Leisa A Glantz
- Department of Psychiatry, University of North Carolina-Chapel Hill, CB# 7160, Chapel Hill, NC 27599-7160, USA
| | | | | | | |
Collapse
|
30
|
Kinney HC. Abnormalities of the brainstem serotonergic system in the sudden infant death syndrome: a review. Pediatr Dev Pathol 2005; 8:507-24. [PMID: 16222475 DOI: 10.1007/s10024-005-0067-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston, Enders Building 1112, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
31
|
Patel TD, Zhou FC. Ontogeny of 5-HT1A receptor expression in the developing hippocampus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:42-57. [PMID: 15939084 DOI: 10.1016/j.devbrainres.2005.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 03/08/2005] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
Serotonin (5-HT) has long been implicated in a number of neurodevelopmental processes including neuronal cell division, migration, neurite outgrowth, and synapse formation. However, relatively little is known about how these effects are mediated during normal brain development in vivo and the identity of the receptor subtypes involved in mediating these effects. In recent years, a number of pharmacological studies have suggested a role for the serotonin 1A (5HT1A) receptor subtype in mediating the developmental effects of 5-HT in the hippocampus. These studies, however, have been difficult to interpret due to lack of information regarding the expression and distribution of 5HT1A in the developing brain and hippocampus in particular. In the current study, specific anti-5-HT1A antibodies, developed in our laboratory [F.C. Zhou, T.D. Patel, D. Swartz, Y. Xu, M.R. Kelley, Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT1A binding sites, Brain Res Mol Brain Res, 69 (1999) 186-201], were utilized to map the ontogeny and distribution of the 5HT1A receptor protein in the developing rat hippocampus through embryonic and early postnatal life. This is the first such study of 5-HT1A expression in the developing rat brain. Our findings revealed that expression of the 5HT1A receptor emerges during the initial stages of embryonic hippocampal development. Remarkably, most if not all hippocampal neurons begin to express 5HT1A shortly upon completion of their terminal mitosis. We found that 5HT1A is initially concentrated around the cell bodies and later becomes more sparsely distributed along the dendrites after the neurons have matured. In addition to postmitotic neurons, we have observed that S100 and GFAP positive glia transiently express 5HT1A during early postnatal development of the hippocampus. These findings demonstrate that the 5-HT1A receptor is positioned to mediate developmental effects of serotonin in the hippocampus. Furthermore, the temporal patterns of expression suggest a role for 5-HT1A in postmitotic events such as neuronal migration, neurite outgrowth, and phenotypic differentiation.
Collapse
Affiliation(s)
- Tushar D Patel
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Medical Science Research Building, Room 508, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
32
|
Thompson AM, Lauder JM. Postnatal Expression of the Serotonin Transporter in Auditory Brainstem Neurons. Dev Neurosci 2005; 27:1-12. [PMID: 15886479 DOI: 10.1159/000084527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 09/01/2004] [Indexed: 11/19/2022] Open
Abstract
To investigate the putative role of serotonin (5-HT) in auditory brainstem development, the expression of the 5-HT transporter (5-HTT) was evaluated in the normal mouse brainstem at 6 different postnatal ages. The brains of C3H/HeJ mice at birth (P0) and P1, P8-P9, P13, P21-P22, P35-P36 and P48-P50 were collected and processed immunohistochemically with an antibody raised against the 5-HTT. 5-HTT immunoreactivity (5-HTT-IR) was first observed in P8 mice and was localized to cell bodies in the ventral cochlear nucleus (VCN) and principal nuclei of the superior olivary complex, including the medial nucleus of the trapezoid body. Labeled neurons were found in similar regions in older mice except at P48-50, where labeled neurons were observed in the VCN only. 5-HTT-IR was especially prominent in VCN neurons at P21 and was observed in all of the brains examined at this age. These results indicate that auditory brainstem neurons of the normal inbred mouse express the 5-HTT postnatally. The presence of 5-HTT-IR in neurons located in the VCN indicates a regional expression of the 5-HTT that is related to the ascending auditory pathway. The timing of 5-HTT expression indicates that 5-HT may modulate developmental processes that rely on cochlear input.
Collapse
Affiliation(s)
- A M Thompson
- Department of Otorhinolaryngology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | |
Collapse
|
33
|
Abstract
The serotonin system is implicated in major depression and suicide and is negatively regulated by somatodendritic 5-HT1A autoreceptors. Desensitization of 5-HT1A autoreceptors is implicated in the 2- to 3-week latency for antidepressant treatments. Alterations in 5-HT1A receptor levels are reported in depression and suicide, and gene knockout of the 5-HT1A receptor results in an anxiety phenotype, suggesting that abnormal transcriptional regulation of this receptor gene may underlie these disorders. The 5-HT1A receptor gene is negatively regulated in neurons by repressors including REST/NRSF, Freud-1, NUDR/Deaf-1, and Hes5. The association with major depression, suicide, and panic disorder of a new functional 5-HT1A polymorphism at C(-1019)G that selectively blocks repression of the 5-HT1A autoreceptor by NUDR further suggests a causative role for altered regulation of this receptor in predisposition to mental illness. The authors review evidence that altered transcription of the 5-HT1A receptor can affect the serotonin system and limbic and cortical areas, leading to predisposition to depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Health Research Institute, Neuroscience University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
34
|
|
35
|
Whitaker-Azmitia PM. Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci 2004; 23:75-83. [PMID: 15730889 DOI: 10.1016/j.ijdevneu.2004.07.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 07/30/2004] [Indexed: 11/22/2022] Open
Abstract
The hypothesis explored in this review is that the high levels of serotonin in the blood seen in some autistic children (the so-called hyperserotonemia of autism) may lead to some of the behavioral and cellular changes also observed in the disorder. At early stages of development, when the blood-brain Barrier is not yet fully formed, the high levels of serotonin in the blood can enter the brain of a developing fetus and cause loss of serotonin terminals through a known negative feedback function of serotonin during development. The loss of serotonin innervation persists throughout subsequent development and the symptoms of autism appear. A review of the basic scientific literature on prenatal treatments affecting serotonin is given, in support of this hypothesis, with an emphasis on studies using the serotonin agonist, 5-methoxytryptamine (5-MT). In work using 5-MT to mimic hyperserotonemia, Sprague-Dawley rats are treated from gestational day 12 until postnatal 20. In published reports, these animals have been found to have a significant loss of serotonin terminals, decreased metabolic activity in cortex, changes in columnar development in cortex, changes in serotonin receptors, and "autistic-like" behaviors. In preliminary cellular findings given in this review, the animals have also been found to have cellular changes in two relevant brain regions: 1. Central nucleus of the amygdala, a brain region involved in fear-responding, where an increase in calcitonin gene related peptide (CGRP) was found 2. Paraventricular nucleus of the hypothalamus, a brain region involved in social memory and bonding, where a decrease in oxytocin was found. Both of these cellular changes could result from loss of serotonin innervation, possibly due to loss of terminal outgrowth from the same cells of the raphe nuclei. Thus, increased serotonergic activity during development could damage neurocircuitry involved in emotional responding to social stressors and may have relevance to the symptoms of autism.
Collapse
|
36
|
Imai H, Matsukawa M, Okado N. Lamina-selective changes in the density of synapses following perturbation of monoamines and acetylcholine in the rat medial prefrontal cortex. Brain Res 2004; 1012:138-45. [PMID: 15158170 DOI: 10.1016/j.brainres.2004.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2004] [Indexed: 11/30/2022]
Abstract
The rat medial prefrontal cortex is known to have diverse brain functions such as learning and memory, attention, and behavioral flexibility. Although these functions are affected by monoamines (dopamine (DA), noradrenaline (NA) and serotonin (5-HT)) and acetylcholine (ACh), the detailed mechanisms remain unclear. These neuromodulators also have effects on synapse formation and maintenance, and regulate plasticity in the central nervous system (CNS). To clarify the effects of these neuromodulators on changes in the density of synapses in the rat medial prefrontal cortex, we separately administered a D1- or D2-antagonist, NA neurotoxin, 5-HT synthetic inhibitor, or muscarinic ACh antagonist for 1 week, and counted the number of synapses on electron microscopic photographs taken from the prelimbic area of the medial prefrontal cortex. The density of synapses in lamina I was regulated by DA via D1-like receptors, and that in laminae II/III was decreased by depletion of NA or ACh. However, 5-HT did not have a regulatory effect on the synaptic density throughout the layers in this brain region. The data in this study and our previous studies indicate that there are appreciable regional differences in the magnitude of biogenic amine-mediated synaptic plasticity in the rat CNS. These neuromodulators may have a trophic-like effect on the selected neuronal circuit to maintain synaptic contacts in the rat CNS. The synaptic density in the medial prefrontal cortex regulated by monoamines and ACh could be important not only for synaptic plasticity in this region but also for pharmacotherapeutic drug treatment.
Collapse
Affiliation(s)
- Hirokazu Imai
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
37
|
Andrews MH, Kostaki A, Setiawan E, McCabe L, Matthews SG. Developmental regulation of 5-HT1A receptor mRNA in the fetal limbic system: response to antenatal glucocorticoid. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 149:39-44. [PMID: 15013627 DOI: 10.1016/j.devbrainres.2003.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2003] [Indexed: 11/30/2022]
Abstract
The developmental changes in 5-HT1A receptor mRNA expression associated with advancing gestational age were examined in the fetal guinea pig hippocampus and dentate gyrus (DG) by in situ hybridization. We found that 5-HT1A receptor mRNA was present in the hippocampal CA1 subfield and dentate gyrus (DG), and was significantly (P < 0.05) elevated in the DG during the period of rapid brain growth [gestational day (gd) 50; term = 70 days]. Glucocorticoids have been shown to alter 5-HT1A receptor mRNA expression in the adult, but nothing is known about their impact on the developing fetal brain. Expression of 5-HT1A receptor mRNA in the fetal hippocampus was measured following repeated maternal administration (gd40, 41, 50, 51, 60 and 61) of synthetic glucocorticoid (dexamethasone; 1 and 10 mg/kg). Levels of 5-HT1A receptor mRNA were significantly (P < 0.005) elevated in CA1 and DG following repeated exposure to high-dose glucocorticoid (10 mg/kg) in male, but not in female fetuses. Because fetal exposure to glucocorticoids programs hypothalamo-pituitary-adrenal (HPA) function, and hippocampal serotonin is known to influence glucocorticoid receptor (GR) expression, the glucocorticoid-mediated changes in 5-HT1A receptor mRNA may play a role in the programming of HPA function.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Autoradiography/methods
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Embryo, Mammalian
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glucocorticoids/pharmacology
- Guinea Pigs
- In Situ Hybridization/methods
- Limbic System/drug effects
- Limbic System/embryology
- Limbic System/metabolism
- Male
- Pregnancy
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Sex Factors
Collapse
Affiliation(s)
- Marcus H Andrews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, rm 3240, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8.
| | | | | | | | | |
Collapse
|
38
|
Kondoh M, Shiga T, Okado N. Regulation of dendrite formation of Purkinje cells by serotonin through serotonin1A and serotonin2A receptors in culture. Neurosci Res 2004; 48:101-9. [PMID: 14687886 DOI: 10.1016/j.neures.2003.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serotonergic fibers and receptors appear in the rat cerebellum during early postnatal development. In the present study, we investigated the actions of serotonin (5-HT) and its receptors in the dendrite formation of Purkinje cells in organotypic cultures of anterior and posterior lobes of the cerebellum at postnatal day 7. In anterior lobes after 4 days in vitro (4DIV), the dendritic areas and branchings of Purkinje cells were increased by the treatment of 2 microM 5-HT, but decreased by 20 microM 5-HT. In posterior lobes after 4DIV, the dendritic areas of Purkinje cells were increased by 5-HT (2, 20 and 200 microM). In contrast, 5-HT treatment decreased dendritic areas of Purkinje cells in both anterior and posterior lobes after 7DIV. Next, we determined the actions of specific 5-HT receptors in mediating the effects of 5-HT by treatment with selective 5-HT receptor agonists. In anterior lobes after 4DIV, dendritic areas of Purkinje cells were increased by a 5-HT1A receptor agonist (8-OH-DPAT), whereas decreased by a 5-HT2A receptor agonist (DOI). The present study suggested that the dendrite formation of Purkinje cells is promoted by 5-HT through 5-HT1A receptors, but inhibited by 5-HT through 5-HT2A receptors.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Animals
- Animals, Newborn
- Cerebellum/cytology
- Cerebellum/drug effects
- Cerebellum/metabolism
- Dendrites/drug effects
- Dendrites/physiology
- Dose-Response Relationship, Drug
- Immunohistochemistry
- In Vitro Techniques
- Indophenol/analogs & derivatives
- Indophenol/pharmacology
- Purkinje Cells/cytology
- Purkinje Cells/drug effects
- Purkinje Cells/physiology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/physiology
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/physiology
- Serotonin/physiology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
Collapse
Affiliation(s)
- Mayumi Kondoh
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | |
Collapse
|
39
|
Dahlqvist P, Rönnbäck A, Risedal A, Nergårdh R, Johansson IM, Seckl JR, Johansson BB, Olsson T. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats. Neuroscience 2003; 119:643-52. [PMID: 12809685 DOI: 10.1016/s0306-4522(03)00195-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT(1A)) mRNA expression and binding, as well as 5-HT(2A) receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus amongst wheel-running rats. No group differences were found in plasma corticosterone levels or mRNA levels of glucocorticoid receptor, corticotropin-releasing hormone, 5-HT(2C) or c-fos. In conclusion, we have found that social interaction is a major component of the enriched environment regarding the effects on NGFI-A and NGFI-B expression. These transcription factors may be important mediators of improved functional recovery after brain infarctions, induced by environmental enrichment.
Collapse
MESH Headings
- Animals
- Brain Ischemia/genetics
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- DNA-Binding Proteins/genetics
- Early Growth Response Protein 1
- Environment, Controlled
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Immediate-Early Proteins
- Male
- Motor Activity/genetics
- Neuronal Plasticity/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Receptor, Serotonin, 5-HT2A
- Receptors, Cytoplasmic and Nuclear
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Receptors, Steroid
- Recovery of Function/genetics
- Sensory Deprivation/physiology
- Social Behavior
- Synaptic Transmission/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- P Dahlqvist
- Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, S-901 85, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Matsukawa M, Nakadate K, Ishihara I, Okado N. Synaptic loss following depletion of noradrenaline and/or serotonin in the rat visual cortex: a quantitative electron microscopic study. Neuroscience 2003; 122:627-35. [PMID: 14622906 DOI: 10.1016/j.neuroscience.2003.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Biogenic amines have a trophic-like role for the formation and the maintenance of synapses in the CNS. We examined the changes in the number of synaptic profiles in the developing and adult rat visual cortex following selective depletion of noradrenaline and/or serotonin. By the drug-induced decreases in levels of noradrenaline or serotonin between 1 and 2 weeks after birth, the number of synaptic profiles was decreased by 29-55% compared with that of control animals. The magnitude of reduction in the number of synaptic profiles was virtually the same following simultaneous depletion of both noradrenaline and serotonin compared with the depletion of noradrenaline or serotonin alone. Later in the developmental period, the function of noradrenaline and serotonin in facilitating synapse formation and maintenance became less prominent than that in younger animals. In the control animals, the number of axosomatic synapses was the highest at around 2 weeks after birth, and decreased with development. The number of axodendritic synapses was the highest between 2 and 7 weeks after birth, and decreased to 50% at 11 weeks after birth. These data demonstrate that synapses in the rat visual cortex are overproduced during the early developmental period. We suggest that both serotonin and noradrenaline are necessary for synapse formation during the early stages of development of the rat visual cortex.
Collapse
Affiliation(s)
- M Matsukawa
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | |
Collapse
|
41
|
Kudryashov IE, Yakovlev AA, Kudryashova I, Gulyaeva NV. Footshock stress alters early postnatal development of electrophysiological responses and caspase-3 activity in rat hippocampus. Neurosci Lett 2002; 332:95-8. [PMID: 12384219 DOI: 10.1016/s0304-3940(02)00937-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Postnatal changes in population spike (PS) amplitudes and caspase-3 activity were compared in the hippocampi of control rats and experimental animals subjected to a brief footshock on postnatal day (PD) 13. Footshock induced an increase in maximal PS amplitudes during the early period (from PD 14 to PD 16), however, the difference between stressed and control animals gradually decreased with age up to PD 21. No difference between hippocampal caspase-3 activity in control and footshock groups was revealed within the PD 14-17. However, caspase-3 activity in the latter group was significantly lower over the next period of postnatal development (PD 18-21). PS amplitudes in the slices of the footshock group significantly increased over PD 22-27. We suggest that footshock activates the development of hippocampal circuitry during early phases, this phenomenon mediating enhanced responsiveness as a result of an increased production of synaptic connections and related decrease in neuronal loss.
Collapse
Affiliation(s)
- Igor E Kudryashov
- Department of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Str, Moscow 117865, Russia
| | | | | | | |
Collapse
|
42
|
Azmitia EC. Cajal's hypotheses on neurobiones and neurotropic factor match properties of microtubules and S-100 beta. PROGRESS IN BRAIN RESEARCH 2002; 136:87-100. [PMID: 12143407 DOI: 10.1016/s0079-6123(02)36010-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cajal described both the morphology and plasticity of neurons. He summarized the structure of neurons as composed of membrane, protoplasm, Golgi apparatus, nucleus, spongioplasm and neurofibrils (cytoskeleton). He initially considered the cytoskeleton as absorbing excitation energy and forming a "conductive pathway in the protoplasm" within the neuron. Later, he viewed the neurofibrillary threads as independent, living entities and called them neurobiones. Cajal recognized neuroplasticity in development, memory, sleep, injury and dementia, as well as after exposure to cold and starvation. He noted cytoskeletal changes during these events. However, he did not causatively connect the plastic changes in neurons with the changes in cytoskeleton. Finally, Cajal proposed a theory of chemoaffinity in 1892, and modified his neurotropic theory over the next 40 years. Today we accept that changes in the cytoskeleton produce changes in neuronal morphology. The properties of the cytoskeleton and neurobione as described by Cajal are similar to those of microtubules. These long intraneuronal neurofibrils are polymers of the protein tubulin and, whilst not being living entities, are highly dynamic, sensitive to environmental stimuli, and stabilized by microtubule associated proteins (MAPs). Furthermore, Cajal was very specific in his characterization of the neurotropic factor derived from Schwann cells. Initially, he thought the chemicals attracted the axonal fibers, but later he wrote that the factor was not attractant but rather was involved in assimilation, growth and ramifications. The neurotropic hypothesis described by Cajal in Degeneration and Regeneration in the Nervous System is more similar to a neurite extension factor (NEF) than to a neurotrophic growth factor or specific chemoaffinity (attractant) molecule. S-100 beta is the major NEF found in PNS Schwann cells and CNS astroglial cells. In summary, the views of Cajal on neuroplasticity, its frequency and function, agree with the modern hypothesis of neuronal instability. This concept states that MAPs regulate microtubule stability by a S-100 beta sensitive phosphorylation processes. Serotonin, by acting on the astroglial 5-HT1A receptor, releases S-100 beta and regulates neuronal morphology and apoptosis. This neuronal-glial connection provides a fresh view for linking neuroplasticity, mental illness, and memory with changes in the cytoskeleton.
Collapse
Affiliation(s)
- Efrain C Azmitia
- Departments of Biology and Psychiatry, Center for Neural Science, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
43
|
Alves SE, Hoskin E, Lee SJ, Brake WG, Ferguson D, Luine V, Allen PB, Greengard P, McEwen BS. Serotonin mediates CA1 spine density but is not crucial for ovarian steroid regulation of synaptic plasticity in the adult rat dorsal hippocampus. Synapse 2002; 45:143-51. [PMID: 12112407 DOI: 10.1002/syn.10093] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activity of the serotonin (5-hydroxytryptamine, 5-HT) system is sensitive to estradiol and progesterone. During the ovarian cycle, dendritic spines on CA1 pyramidal neurons of the dorsal hippocampus are increased by estradiol and later decreased by progesterone. We sought to determine whether 5-HT is involved in maintaining CA1 spine density and/or in steroid regulation of synaptic plasticity in dorsal hippocampus. Ovariectomized rats were treated (sc) over 10 days with the tryptophan hydroxylase inhibitor parachlorophenylalanine (pCPA) to deplete 5-HT, followed by estradiol benzoate on days 10 and 11. A subset of animals received progesterone on day 12. The day after the last treatment, rats were perfused and brains were processed for Golgi impregnation. Separate groups were processed for radioimmunocytochemistry (RICC) for the spine-associated protein, spinophilin, or high-performance liquid chromatography (HPLC) for monoamine analysis. Golgi and RICC data indicate that CA1 apical spine density was significantly decreased by pCPA (17-20%). Estradiol increased spine density in both saline- and pCPA-treated rats compared to respective controls (30%); however, pCPA animals maintained significantly fewer spines. No differences in spine densities were observed between saline- and pCPA-treated rats given estradiol and progesterone. Depletion of 5-HT by pCPA was confirmed in the CA1 (-90%) and dorsal raphe (-80%) by HPLC analysis. While 5-HT depletion was associated with a 57% decrease in CA1 norepinephrine (NE), there was no difference in dorsal raphe NE. Thus, whereas 5-HT is involved in maintaining spine density in the adult female rat CA1, it is not crucial for steroid-mediated plasticity. 5-HT-regulated spines/synapses may represent distinct populations from those modulated by estradiol and progesterone in dorsal hippocampus.
Collapse
Affiliation(s)
- Stephen E Alves
- Atherosclerosis and Endocrinology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Norrholm SD, Ouimet CC. Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 2001; 42:151-63. [PMID: 11746712 DOI: 10.1002/syn.10006] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Olfactory bulbectomy, neonatal clomipramine administration, and maternal deprivation have been employed as animal models of depression. Each model is unique with respect to the experimental manipulations required to produce "depressive" signs, expression and duration of these signs, and response to antidepressant treatments. Dendritic spines represent a possible anatomical substrate for the enduring changes seen with depression and we have previously shown that chronic antidepressant drug exposure alters the density of hippocampal dendritic spines in an enduring fashion. The purpose of the present study was to determine whether persistent alteration of hippocampal spine density is a common element in each of these different models of depression and whether such alterations could be reversed with chronic antidepressant treatment. The results show that olfactory bulbectomy reduced spine density in CA1, CA3, and dentate gyrus compared to sham-operated controls. Chronic treatment with amitriptyline, a tricyclic antidepressant, reversed the bulbectomy- induced reduction in dendritic spine density in CA1, CA3, and dentate gyrus, whereas treatment with mianserin, an atypical antidepressant, reversed this reduction only in dentate gyrus. On the other hand, neither neonatal clomipramine administration nor maternal deprivation affected hippocampal dendritic spine density. Repeated neonatal handling, however, as a control or as part of the maternal deprivation procedure, elevated spine density in dentate gyrus. These data suggest that long-lasting alterations in hippocampal dendritic spine density contribute to the neural mechanism underlying the olfactory bulbectomy model of depression, but not the neonatal clomipramine or maternal deprivation models.
Collapse
Affiliation(s)
- S D Norrholm
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, Florida 32306-4340, USA
| | | |
Collapse
|
45
|
Abstract
The maturational changes in the brain and spinal cord do not linearly proceed from immature in infants to mature in adults. Dendrites dynamically extend or retract as neurotrophic factors fluctuate. In certain cases mature neurons can be seen soon after birth, and in other cases immature neurons can be identified in the aged brain. Monoamine 'neurotransmitter'; such as serotonin (5-HT), dopamine and norepinephrine appear to function as Maintenance Growth Factors since they must be present in order to produce their maturational actions. Serotonin neurons contain TRK-B receptors and are sensitive to availability of the trophic factor, BDNF. 5-HT also functions by promoting the release of the glial extension factor, S-100beta. 5-HT and S-100beta can provide maturational signals to a variety of neurons, in both cortical and subcortical areas, and appear to be involved in regulating the maturation and release of acetylcholine and dopamine. We have shown that activation of the 5-HT1A receptor is particularly effective in inducing growth of stunted neurons. The mechanism of action of the 5-HT1A receptor involves both a direct inhibition on c-AMP and pCREB formation in postsynaptic neurons and a release of S-100beta from glial cells. Both these events are capable of stabilization and elaboration of the cytoskeleton of the neuron and inhibition of apoptosis. 5-HT1A receptors have been shown to effectively reverse stunted neurons and microencephaly produced in animal models of fetal alcohol syndrome and prenatal cocaine administration. I discuss the implications for regressive disorders such as Rett's syndrome and autism, and the feasibility of treatments with 5-HT1A agonists in children with developmental disorders.
Collapse
Affiliation(s)
- E C Azmitia
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
46
|
Abstract
Serotonin is known to play a role in brain development prior to the time it assumes its role as a neurotransmitter in the mature brain. Serotonin regulates both the development of serotonergic neurons (termed autoregulation of development) and the development of target tissues. In both cases, the astroglial-derived protein, S-100beta plays a role. Disruption of serotonergic development can leave permanent alterations in brain function and behavior. This may be the case in such human developmental illnesses as autism and Down Syndrome.
Collapse
Affiliation(s)
- P M Whitaker-Azmitia
- Program in Biopsychology, Department of Psychology, SUNY at Stony Brook, 11794-2500, USA.
| |
Collapse
|
47
|
Norrholm SD, Ouimet CC. Chronic fluoxetine administration to juvenile rats prevents age-associated dendritic spine proliferation in hippocampus. Brain Res 2000; 883:205-15. [PMID: 11074049 DOI: 10.1016/s0006-8993(00)02909-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The density of dendritic spines, the postsynaptic sites of most excitatory synapses, increases during the first 2 postnatal months in rat hippocampus. Significant alterations in hippocampal levels of serotonin and norepinephrine impact synaptic development during this time period. In the present study, dendritic spine density was studied in the hippocampus (CA1) and dentate gyrus of juvenile rats acutely and chronically exposed to antidepressant drugs that act on serotonin and norepinephrine. One group of 21-day-old rats was given a single injection of a serotonin specific re-uptake inhibitor (fluoxetine or fluvoxamine), a norepinephrine-specific re-uptake inhibitor (desipramine), or saline and killed after 24 h. A second group of rats was injected daily, beginning on postnatal day (PN) 21, for 3 weeks. This group was further subdivided into rats that were killed 1 day or 21 days after the last injection. Golgi analysis showed that a single injection of fluvoxamine produced a significant increase in dendritic spine density in stratum radiatum of CA1 and in the dentate gyrus. Further, acute treatment with all three antidepressants increased the total length of secondary dendrites in CA1, with fluoxetine and desipramine increasing the number of secondary dendrites as well. In fluoxetine-treated animals killed on days 42 or 62 (1 or 21 days post-treatment, respectively), dendritic spine density remained at levels present in CA1 at 21 days. These results show that acute antidepressant treatment can impact dendritic length and spine density, and raise the possibility that chronic fluoxetine treatment arrests spine development into young adulthood.
Collapse
Affiliation(s)
- S D Norrholm
- Program in Neuroscience, Department of Psychology, Florida State University, 211 Biomedical Research Facility, Tallahassee, FL 32306-4340, USA
| | | |
Collapse
|
48
|
Haring JH, Yan W. Dentate granule cell function after neonatal treatment with parachloroamphetamine or 5,7-dihydroxytryptamine. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:269-72. [PMID: 10320767 DOI: 10.1016/s0165-3806(99)00032-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro, extracellular electrophysiological recording was used to test granule cell responses in P60 rats after neonatal PCA and 5, 7-DHT. Granule cell population EPSP and spike responses were in the normal range for both PCA and 5,7-DHT groups. However, the degree of paired pulse facilitation was reduced in both of these groups relative to control, reflecting a diminished synaptic drive. Synaptic potentiation in the 5,7-DHT group was not different from control, but was significantly reduced in slices from PCA-treated rats.
Collapse
Affiliation(s)
- J H Haring
- Department of Anatomy and Neurobiology, Saint Louis University Health Sciences Center, 1402 S. Grand Boulevard, St. Louis, MO 63122, USA.
| | | |
Collapse
|