1
|
Zipser CM, Curt A. Disease-specific interventions using cell therapies for spinal cord disease/injury. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:263-282. [PMID: 39341658 DOI: 10.1016/b978-0-323-90120-8.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traumatic spinal cord injury (SCI) may occur across the lifespan and is of global relevance. Damage of the spinal cord results in para- or tetraplegia and is associated with neuropathic pain, spasticity, respiratory, and autonomic dysfunction (i.e., control of bladder-bowel function). While the acute surgical treatment aims at stabilizing the spine and decompressing the damaged spinal cord, SCI patients require neurorehabilitation to restore neural function and to compensate for any impairments including motor disability, pain treatment, and bladder/bowel management. However, the spinal cord has a limited capacity to regenerate and much of the disability may persist, depending on the initial lesion severity and level of injury. For this reason, and the lack of effective drug treatments, there is an emerging interest and urgent need in promoting axonal regeneration and remyelination after SCI through cell- and stem-cell based therapies. This review briefly summarizes the state-of the art management of acute SCI and its neurorehabilitation to critically appraise phase I/II trials from the last two decades that have investigated cell-based therapies (i.e., Schwann cells, macrophages, and olfactory ensheathing cells) and stem cell-based therapies (i.e., neural stem cells, mesenchymal, and hematopoietic stem cells). Recently, two large multicenter trials provided evidence for the safety and feasibility of neural stem cell transplantation into the injured cord, whilst two monocenter trials also showed this to be the case for the transplantation of Schwann cells into the posttraumatic cord cavity. These are milestone studies that will facilitate further interventional trials. However, the clinical adoption of such approaches remains unproven, as there is only limited encouraging data, often in single patients, and no proven trial evidence to support regulatory approval.
Collapse
Affiliation(s)
- Carl Moritz Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.
| |
Collapse
|
2
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
3
|
Terminel MN, Bassil C, Rau J, Trevino A, Ruiz C, Alaniz R, Hook MA. Morphine-induced changes in the function of microglia and macrophages after acute spinal cord injury. BMC Neurosci 2022; 23:58. [PMID: 36217122 PMCID: PMC9552511 DOI: 10.1186/s12868-022-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Opioids are among the most effective and commonly prescribed analgesics for the treatment of acute pain after spinal cord injury (SCI). However, morphine administration in the early phase of SCI undermines locomotor recovery, increases cell death, and decreases overall health in a rodent contusion model. Based on our previous studies we hypothesize that morphine acts on classic opioid receptors to alter the immune response. Indeed, we found that a single dose of intrathecal morphine increases the expression of activated microglia and macrophages at the injury site. Whether similar effects of morphine would be seen with repeated intravenous administration, more closely simulating clinical treatment, is not known. Methods To address this, we used flow cytometry to examine changes in the temporal expression of microglia and macrophages after SCI and intravenous morphine. Next, we explored whether morphine changed the function of these cells through the engagement of cell-signaling pathways linked to neurotoxicity using Western blot analysis. Results Our flow cytometry studies showed that 3 consecutive days of morphine administration after an SCI significantly increased the number of microglia and macrophages around the lesion. Using Western blot analysis, we also found that repeated administration of morphine increases β-arrestin, ERK-1 and dynorphin (an endogenous kappa opioid receptor agonist) production by microglia and macrophages. Conclusions These results suggest that morphine administered immediately after an SCI changes the innate immune response by increasing the number of immune cells and altering neuropeptide synthesis by these cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00739-3.
Collapse
Affiliation(s)
- Mabel N Terminel
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA.
| | - Carla Bassil
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Amanda Trevino
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Cristina Ruiz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Robert Alaniz
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Parkway 47, Bryan, TX, 77807, USA
| |
Collapse
|
4
|
Xu X, Liang Z, Lin Y, Rao J, Lin F, Yang Z, Wang R, Chen C. Comparing the Efficacy and Safety of Cell Transplantation for Spinal Cord Injury: A Systematic Review and Bayesian Network Meta-Analysis. Front Cell Neurosci 2022; 16:860131. [PMID: 35444516 PMCID: PMC9013778 DOI: 10.3389/fncel.2022.860131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo compare the safety and effectiveness of transplanted cells from different sources for spinal cord injury (SCI).DesignA systematic review and Bayesian network meta-analysis.Data SourcesMedline, Embase, and the Cochrane Central Register of Controlled Trials.Study SelectionWe included randomized controlled trials, case–control studies, and case series related to cell transplantation for SCI patients, that included at least 1 of the following outcome measures: American Spinal Cord Injury Association (ASIA) Impairment Scale (AIS grade), ASIA motor score, ASIA sensory score, the Functional Independence Measure score (FIM), International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS), or adverse events. Follow-up data were analyzed at 6 and 12 months.ResultsForty-four eligible trials, involving 1,266 patients, investigated 6 treatments: olfactory ensheathing cells (OECs), neural stem cells/ neural progenitor cells (NSCs), mesenchymal stem cells (MSCs), Schwann cells, macrophages, and combinations of cells (MSCs plus Schwann cells). Macrophages improved the AIS grade at 12 months (mean 0.42, 95% credible interval: 0–0.91, low certainty) and FIM score at 12 months (42.83, 36.33–49.18, very low certainty). MSCs improved the AIS grade at 6 months (0.42, 0.15–0.73, moderate certainty), the motor score at 6 months (4.43, 0.91–7.78, moderate certainty), light touch at 6 (10.01, 5.81–13.88, moderate certainty) and 12 months (11.48, 6.31–16.64, moderate certainty), pinprick score at 6 (14.54, 9.76–19.46, moderate certainty) and 12 months (12.48, 7.09–18.12, moderate certainty), and the IANR-SCIFRS at 6 (3.96, 0.62–6.97, moderate certainty) and 12 months (5.54, 2.45–8.42, moderate certainty). OECs improved the FIM score at 6 months (9.35, 1.71–17.00, moderate certainty). No intervention improved the motor score significantly at 12 months. The certainty of other interventions was low or very low. Overall, the number of adverse events associated with transplanted cells was low.ConclusionsPatients with SCI who receive transplantation of macrophages, MSCs, NSCs, or OECs may have improved disease prognosis. MSCs are the primary recommendations. Further exploration of the mechanism of cell transplantation in the treatment of SCI, transplantation time window, transplantation methods, and monitoring of the number of transplanted cells and cell survival is needed.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021282043.
Collapse
|
5
|
Van den Bos J, Ouaamari YE, Wouters K, Cools N, Wens I. Are Cell-Based Therapies Safe and Effective in the Treatment of Neurodegenerative Diseases? A Systematic Review with Meta-Analysis. Biomolecules 2022; 12:340. [PMID: 35204840 PMCID: PMC8869169 DOI: 10.3390/biom12020340] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, significant advances have been made in the field of regenerative medicine. However, despite being of the utmost clinical urgency, there remains a paucity of therapeutic strategies for conditions with substantial neurodegeneration such as (progressive) multiple sclerosis (MS), spinal cord injury (SCI), Parkinson's disease (PD) and Alzheimer's disease (AD). Different cell types, such as mesenchymal stromal cells (MSC), neuronal stem cells (NSC), olfactory ensheathing cells (OEC), neurons and a variety of others, already demonstrated safety and regenerative or neuroprotective properties in the central nervous system during the preclinical phase. As a result of these promising findings, in recent years, these necessary types of cell therapies have been intensively tested in clinical trials to establish whether these results could be confirmed in patients. However, extensive research is still needed regarding elucidating the exact mechanism of action, possible immune rejection, functionality and survival of the administered cells, dose, frequency and administration route. To summarize the current state of knowledge, we conducted a systematic review with meta-analysis. A total of 27,043 records were reviewed by two independent assessors and 71 records were included in the final quantitative analysis. These results show that the overall frequency of serious adverse events was low: 0.03 (95% CI: 0.01-0.08). In addition, several trials in MS and SCI reported efficacy data, demonstrating some promising results on clinical outcomes. All randomized controlled studies were at a low risk of bias due to appropriate blinding of the treatment, including assessors and patients. In conclusion, cell-based therapies in neurodegenerative disease are safe and feasible while showing promising clinical improvements. Nevertheless, given their high heterogeneity, the results require a cautious approach. We advocate for the harmonization of study protocols of trials investigating cell-based therapies in neurodegenerative diseases, adverse event reporting and investigation of clinical outcomes.
Collapse
Affiliation(s)
- Jasper Van den Bos
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
| | - Yousra El Ouaamari
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
| | - Kristien Wouters
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, B-2650 Edegem, Belgium;
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Inez Wens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium; (Y.E.O.); (N.C.); (I.W.)
| |
Collapse
|
6
|
Gao J, Khang M, Liao Z, Detloff M, Lee JS. Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury. Nanomedicine (Lond) 2021; 16:2013-2028. [PMID: 34402308 PMCID: PMC8411395 DOI: 10.2217/nnm-2021-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) and the resulting neurological trauma commonly result in complete or incomplete neurological dysfunction and there are few effective treatments for primary SCI. However, the following secondary SCI, including the changes of microvasculature, inflammatory response and oxidative stress around the injury site, may provide promising therapeutic targets. The advances of nanomaterials hold promise for delivering therapeutics to alleviate secondary SCI and promote functional recovery. In this review, we highlight recent achievements of nanomaterial-based therapy, specifically targeting blood-spinal cord barrier disruption, mitigation of the inflammatory response and lightening of oxidative stress after spinal cord injury.
Collapse
Affiliation(s)
- Jun Gao
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Minkyung Khang
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Zhen Liao
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| | - Megan Detloff
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA 19129, USA
| | - Jeoung Soo Lee
- Department of Bioengineering, Drug Design, Development & Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Macrophage Transplantation Fails to Improve Repair of Critical-Sized Calvarial Defects. J Craniofac Surg 2020; 30:2640-2645. [PMID: 31609958 DOI: 10.1097/scs.0000000000005797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Over 500,000 bone grafting procedures are performed every year in the United States for neoplastic and traumatic lesions of the craniofacial skeleton, costing $585 million in medical care. Current bone grafting procedures are limited, and full-thickness critical-sized defects (CSDs) of the adult human skull thus pose a substantial reconstructive challenge for the craniofacial surgeon. Cell-based strategies have been shown to safely and efficaciously accelerate the rate of bone formation in CSDs in animals. The authors recently demonstrated that supraphysiological transplantation of macrophages seeded in pullalan-collagen composite hydrogels significantly accelerated wound healing in wild type and diabetic mice, an effect mediated in part by enhancing angiogenesis. In this study, the authors investigated the bone healing effects of macrophage transplantation into CSDs of mice. METHODS CD1 athymic nude mice (60 days of age) were anesthetized, and unilateral full-thickness critical-sized (4 mm in diameter) cranial defects were created in the right parietal bone, avoiding cranial sutures. Macrophages were isolated from FVB-L2G mice and seeded onto hydroxyapatite-poly (lactic-co-glycolic acid) (HA-PLGA) scaffolds (1.0 × 10 cells per CSD). Scaffolds were incubated for 24 hours before they were placed into the CSDs. Macrophage survival was assessed using three-dimensional in vivo imaging system (3D IVIS)/micro-CT. Micro-CT at 0, 2, 4, 6, and 8 weeks was performed to evaluate gross bone formation, which was quantified using Adobe Photoshop. Microscopic evidence of bone regeneration was assessed at 8 weeks by histology. Bone formation and macrophage survival were compared at each time point using independent samples t tests. RESULTS Transplantation of macrophages at supraphysiological concentration had no effect on the formation of bones in CSDs as assessed by either micro-CT data at any time point analyzed (all P > 0.05). These results were corroborated by histology. 3D IVIS/micro-CT demonstrated survival of macrophages through 8 weeks. CONCLUSION Supraphysiologic delivery of macrophages to CSDs of mice had no effect on bone formation despite survival of transplanted macrophages through to 8 weeks posttransplantation. Further research into the physiological effects of macrophages on bone regeneration is needed to assess whether recapitulation of these conditions in macrophage-based therapy can promote the healing of large cranial defects.
Collapse
|
8
|
Papa S, Rossi F, Vismara I, Forloni G, Veglianese P. Nanovector-Mediated Drug Delivery in Spinal Cord Injury: A Multitarget Approach. ACS Chem Neurosci 2019; 10:1173-1182. [PMID: 30763071 DOI: 10.1021/acschemneuro.8b00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many preclinical studies seek cures for spinal cord injury (SCI), but when the results are translated to clinical trials they give scant efficacy. One possible reason is that most strategies use treatments directed toward a single pathological mechanism, while a multitherapeutic approach needs to be tested to significantly improve outcomes after SCI. Most of the preclinical reports gave better outcomes when a combination of different compounds was used instead of a single drug. This promising approach, however, must still be improved because it raises some criticism: (i) the blood-spinal cord barrier limits drug distribution, (ii) it is hard to understand the interactions among the pharmacological components after systemic administration, and (iii) the timing of treatments is crucial: the spread of the lesion is a process finely regulated over time, so therapies must be scheduled at precise times during the postinjury course. Nanomedicine could be useful to overcome these limitations. Nanotools allow finely regulated drug administration in terms of cell selectivity and release kinetics. We believe that excellent therapeutic results could be obtained by exploiting this tool in multitherapy. Combining nanoparticles loaded with different compounds that act on the main pathological pathways could overcome the restrictions of traditional drug delivery routes, a major limit for the clinical application of multitherapy. This review digs into these topics, discussing the critical aspects of multitherapies now proposed and suggesting new points of view.
Collapse
Affiliation(s)
- Simonetta Papa
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Irma Vismara
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| | - Gianluigi Forloni
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
9
|
Chan MWY, Viswanathan S. Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases. Cytotherapy 2019; 21:393-415. [PMID: 30871899 DOI: 10.1016/j.jcyt.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Cell-based therapies are a rapidly developing area of regenerative medicine as dynamic treatments that execute therapeutic functions multimodally. Monocytes and macrophages, as innate immune cells that control inflammation and tissue repair, are increasing popular clinical candidates due to their spectrum of functionality. In this article, we review the role of monocytes and macrophages specifically in inflammatory and degenerative disease pathology and the evidence supporting the use of these cells as an effective therapeutic strategy. We compare current strategies of exogenously polarized monocyte/macrophage therapies regarding dosage, delivery and processing to identify outcomes, advances and challenges to their clinical use. Monocytes/macrophages hold the potential to be a promising therapeutic avenue but understanding and optimization of disease-specific efficacy is needed to accelerate their clinical use.
Collapse
Affiliation(s)
- Mable Wing Yan Chan
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sowmya Viswanathan
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Cell Therapy Program, University Health Network, Toronto, Ontario, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of Inflammatory Cytokines for Spinal Cord Injury Repair Through Local Delivery of Therapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800529. [PMID: 30479916 PMCID: PMC6247077 DOI: 10.1002/advs.201800529] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Indexed: 05/29/2023]
Abstract
The balance of inflammation is critical to the repair of spinal cord injury (SCI), which is one of the most devastating traumas in human beings. Inflammatory cytokines, the direct mediators of local inflammation, have differential influences on the repair of the injured spinal cord. Some inflammatory cytokines are demonstrated beneficial to spinal cord repair in SCI models, while some detrimental. Various animal researches have revealed that local delivery of therapeutic agents efficiently regulates inflammatory cytokines and promotes repair from SCI. Quite a few clinical studies have also shown the promotion of repair from SCI through regulation of inflammatory cytokines. However, local delivery of a single agent affects only a part of the inflammatory cytokines that need to be regulated. Meanwhile, different individuals have differential profiles of inflammatory cytokines. Therefore, future studies may aim to develop personalized strategies of locally delivered therapeutic agent cocktails for effective and precise regulation of inflammation, and substantial functional recovery from SCI.
Collapse
Affiliation(s)
- Hao Ren
- The Third Affiliated Hospital of Guangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Zhiyong Zhang
- Translational Research Center for Regenerative Medicine and 3D Printing TechnologiesGuangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| |
Collapse
|
11
|
Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018; 15:541-553. [PMID: 29717413 PMCID: PMC6095779 DOI: 10.1007/s13311-018-0631-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deficits in neuronal function are a hallmark of spinal cord injury (SCI) and therapeutic efforts are often focused on central nervous system (CNS) axon regeneration. However, secondary injury responses by astrocytes, microglia, pericytes, endothelial cells, Schwann cells, fibroblasts, meningeal cells, and other glia not only potentiate SCI damage but also facilitate endogenous repair. Due to their profound impact on the progression of SCI, glial cells and modification of the glial scar are focuses of SCI therapeutic research. Within and around the glial scar, cells deposit extracellular matrix (ECM) proteins that affect axon growth such as chondroitin sulfate proteoglycans (CSPGs), laminin, collagen, and fibronectin. This dense deposition of material, i.e., the fibrotic scar, is another barrier to endogenous repair and is a target of SCI therapies. Infiltrating neutrophils and monocytes are recruited to the injury site through glial chemokine and cytokine release and subsequent upregulation of chemotactic cellular adhesion molecules and selectins on endothelial cells. These peripheral immune cells, along with endogenous microglia, drive a robust inflammatory response to injury with heterogeneous reparative and pathological properties and are targeted for therapeutic modification. Here, we review the role of glial and inflammatory cells after SCI and the therapeutic strategies that aim to replace, dampen, or alter their activity to modulate SCI scarring and inflammation and improve injury outcomes.
Collapse
Affiliation(s)
- Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
12
|
Abstract
Traumatic spinal cord injury (SCI) results in impaired neurologic function that for many individuals is permanent and significantly impacts health, function, quality of life, and life expectancy. Many efforts have been taken to develop effective treatments for SCI; nevertheless, proven therapies targeting neurologic regeneration and functional recovery have been limited. Existing therapeutic approaches, including early surgery, strict blood pressure control, and consideration of treatment with steroids, remain debated and largely focus on mitigating secondary injury after the primary trauma has occurred. Today, there is more research being performed in SCI than ever before. Current clinical trials are exploring pharmacologic, cell-based, physiologic, and rehabilitation approaches to reduce secondary injury and also overcome barriers to neurorecovery. In the future, it is likely that tailored treatments combining many of these strategies will offer significant benefits for persons with SCI. This article aims to review key past, current and emerging neurologic and rehabilitation therapeutic approaches for adults with traumatic SCI.
Collapse
Affiliation(s)
- Jayne Donovan
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA.
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA.
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA
- The Kessler Foundation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
| |
Collapse
|
13
|
Shahrezaie M, Mansour RN, Nazari B, Hassannia H, Hosseini F, Mahboudi H, Eftekhary M, Kehtari M, Veshkini A, Ahmadi Vasmehjani A, Enderami SE. Improved stem cell therapy of spinal cord injury using GDNF-overexpressed bone marrow stem cells in a rat model. Biologicals 2017; 50:73-80. [PMID: 28851622 DOI: 10.1016/j.biologicals.2017.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
The use of stem cell base therapy as an effective strategy for the treatment of spinal cord injury (SCI) is very promising. Although some strategy has been made to generate neural-like cells using bone marrow mesenchymal stem cells (BMSCs), the differentiation strategies are still inefficiently. For this purpose, we improved the therapeutic outcome with utilize both of N-neurotrophic factor derived Gelial cells (GDNF) gene and differentiation medium that induce the BMSCs into the neural-like cells. The differentiated GDNF overexpressed BMSCs (BMSCs-GDNF) were injected on the third day of post-SCI. BBB score test was performed for four weeks. Two weeks before the end of BBB, biotin dextranamin was injected intracrebrally and at the end of the fourth week, the tissue was stained. BBB scores were significantly different in BMSCs-GDNF injected and control animals. Significant difference in axon counting was observed in BMSCs-GDNF treated animals compared to the control group. According to the results, differentiated BMSCs-GDNF showed better results in comparison to the BMSCs without genetic modification. This study provides a new strategy to investigate the role of simultaneous in stem cell and gene therapy for future neural-like cells transplantation base therapies for SCI.
Collapse
Affiliation(s)
- Mostafa Shahrezaie
- Department of Orthopedic Surgery and Research, AJA University of Medical Science, Iran
| | | | - Bahare Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Hassannia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Mahboudi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Eftekhary
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mousa Kehtari
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Arash Veshkini
- Department of Transgenic Animal Science, Stem Cell Technology Research Center, Tehran, Iran
| | - Abbas Ahmadi Vasmehjani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Department of Stem Cells Biology, Stem Cell Technology Research Center, Tehran, Iran.
| |
Collapse
|
14
|
Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev 2017; 114:193-205. [PMID: 28449872 DOI: 10.1016/j.addr.2017.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Macrophages are versatile and plastic effector cells of the immune system, and contribute to diverse immune functions including pathogen or apoptotic cell removal, inflammatory activation and resolution, and tissue healing. Macrophages function as signaling regulators and amplifiers, and influencing their activity is a powerful approach for controlling inflammation or inducing a wound-healing response in regenerative medicine. This review discusses biomaterials-based approaches for altering macrophage activity, approaches for targeting drugs to macrophages, and approaches for delivering macrophages themselves as a therapeutic intervention.
Collapse
|
15
|
Activation of the niacin receptor HCA2 reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice. Eur J Pharmacol 2016; 791:124-136. [DOI: 10.1016/j.ejphar.2016.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/17/2022]
|
16
|
Li J, Liu Y, Xu H, Fu Q. Nanoparticle-Delivered IRF5 siRNA Facilitates M1 to M2 Transition, Reduces Demyelination and Neurofilament Loss, and Promotes Functional Recovery After Spinal Cord Injury in Mice. Inflammation 2016; 39:1704-17. [DOI: 10.1007/s10753-016-0405-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Ulndreaj A, Chio JC, Ahuja CS, Fehlings MG. Modulating the immune response in spinal cord injury. Expert Rev Neurother 2016; 16:1127-9. [DOI: 10.1080/14737175.2016.1207532] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Shakhbazau A, Mishra M, Chu TH, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral JP, Mignani S, Blanchard-Desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J. Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromol Biosci 2015; 15:1523-34. [DOI: 10.1002/mabi.201500150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Antos Shakhbazau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Manoj Mishra
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Tak-Ho Chu
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Craig Brideau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Karen Cummins
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Shigeki Tsutsui
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | | | | | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique; Université Paris Descartes; Paris France
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection; University of Lodz; Lodz Poland
| | - V. Wee Yong
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Peter K. Stys
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Jan van Minnen
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| |
Collapse
|
19
|
Gadani SP, Walsh JT, Lukens JR, Kipnis J. Dealing with Danger in the CNS: The Response of the Immune System to Injury. Neuron 2015; 87:47-62. [PMID: 26139369 PMCID: PMC4491143 DOI: 10.1016/j.neuron.2015.05.019] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review, we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site, including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account.
Collapse
Affiliation(s)
- Sachin P Gadani
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - James T Walsh
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Tajkey J, Biglari A, Habibi Asl B, Ramazani A, Mazloomzadeh S. Comparative Study on the Effects of Ceftriaxone and Monocytes on Recovery after Spinal Cord Injury in Rat. Adv Pharm Bull 2015; 5:189-94. [PMID: 26236656 DOI: 10.15171/apb.2015.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Comparison between the efficacy of ceftriaxone and monocytes on improvement of neuron protection and functional recovery after spinal cord injury (SCI) in rat. METHODS Rats were randomly divided into three groups of ten. Spinal cord injury was performed on rats under general anesthesia using the weight dropping method. Ceftriaxone was injected intraperitoneally 200 mg/kg/day for seven days after SCI. Monocytes were injected 2 × 105 cells 4 days after SCI. Hind limb motor function was assessed using the Basso, Beattie and Bresnahan (BBB) scale. Corticospinal tract (CST) axons were traced by injection of biotin dextran amine (BDA) into the sensorimotor cortex. RESULTS There were statistically significant differences in BBB scores in ceftriaxone in comparison to both monocytes receiving and control groups. On the other hand there were statistically significant differences in axon counting in both ceftriaxone and monocytes receiving groups in comparison to control group. CONCLUSION Our findings suggest that ceftriaxone improves functional recovery more effective than monocytes in rats after SCI. These results are from an experimental model and validation is required for further investigation.
Collapse
Affiliation(s)
- Javad Tajkey
- Department of Pharmacology, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Biglari
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bohlol Habibi Asl
- Department of Pharmacology, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ramazani
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeideh Mazloomzadeh
- Department of Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One 2015; 10:e0117709. [PMID: 25803031 PMCID: PMC4372351 DOI: 10.1371/journal.pone.0117709] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/29/2014] [Indexed: 12/31/2022] Open
Abstract
Tissue engineering has brought new possibilities for the treatment of spinal cord injury. Two important components for tissue engineering of the spinal cord include a suitable cell source and scaffold. In our study, we investigated induced mouse embryonic fibroblasts (MEFs) directly reprogrammed into neural stem cells (iNSCs), as a cell source. Three-dimensional (3D) electrospun poly (lactide-co-glycolide)/polyethylene glycol (PLGA-PEG) nanofiber scaffolds were used for iNSCs adhesion and growth. Cell growth, survival and proliferation on the scaffolds were investigated. Scanning electron microscopy (SEM) and nuclei staining were used to assess cell growth on the scaffolds. Scaffolds with iNSCs were then transplanted into transected rat spinal cords. Two or 8 weeks following transplantation, immunofluorescence was performed to determine iNSC survival and differentiation within the scaffolds. Functional recovery was assessed using the Basso, Beattie, Bresnahan (BBB) Scale. Results indicated that iNSCs showed similar morphological features with wild-type neural stem cells (wt-NSCs), and expressed a variety of neural stem cell marker genes. Furthermore, iNSCs were shown to survive, with the ability to self-renew and undergo neural differentiation into neurons and glial cells within the 3D scaffolds in vivo. The iNSC-seeded scaffolds restored the continuity of the spinal cord and reduced cavity formation. Additionally, iNSC-seeded scaffolds contributed to functional recovery of the spinal cord. Therefore, PLGA-PEG scaffolds seeded with iNSCs may serve as promising supporting transplants for repairing spinal cord injury (SCI).
Collapse
Affiliation(s)
- Chang Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Yong Huang
- Department of Breast & Thyroid Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Linshan Liu
- Department of Biochemistry, University of California, Los Angeles, California 90095-1569, United States of America
| | - Tao Shu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Wei Zhou
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
22
|
Dalbayrak S, Yaman O, Yılmaz T. Current and future surgery strategies for spinal cord injuries. World J Orthop 2015; 6:34-41. [PMID: 25621209 PMCID: PMC4303788 DOI: 10.5312/wjo.v6.i1.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/14/2014] [Indexed: 02/06/2023] Open
Abstract
Spinal cord trauma is a prominent cause of mortality and morbidity. In developed countries a spinal cord injury (SCI) occurs every 16 min. SCI occurs due to tissue destruction, primarily by mechanical and secondarily ischemic. Primary damage occurs at the time of the injury. It cannot be improved. Following the primary injury, secondary harm mechanisms gradually result in neuronal death. One of the prominent causes of secondary harm is energy deficit, emerging from ischemia, whose main cause in the early stage, is impaired perfusion. Due to the advanced techniques in spinal surgery, SCI is still challenging for surgeons. Spinal cord doesn’t have a self-repair property. The main damage occurs at the time of the injury primarily by mechanical factors that cannot be improved. Secondarily mechanisms take part in the following sections. Spinal compression and neurological deficit are two major factors used to decide on surgery. According to advanced imaging techniques the classifications systems for spinal injury has been changed in time. Aim of the surgery is to decompress the spinal channel and to restore the spinal alinement and mobilize the patient as soon as possible. Use of neuroprotective agents as well as methods to achieve cell regeneration in addition to surgery would contribute to the solution.
Collapse
|
23
|
Dysregulated production of leukemia inhibitory factor in immune cells of relapsing remitting multiple sclerosis patients. J Neuroimmunol 2014; 278:85-9. [PMID: 25595256 DOI: 10.1016/j.jneuroim.2014.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023]
Abstract
Leukemia inhibitory factor (LIF) is known to potentiate the differentiation and survival of neuronal and oligodendrocyte precursors. Systemic therapy with LIF reportedly ameliorated the severity of experimental autoimmune encephalomyelitis and prevented oligodendrocyte death. We studied the secreted LIF levels from immune cells of relapsing remitting multiple sclerosis (RR-MS) patients compared to age- and gender-matched healthy controls (HCs). LIF was barely detected in the supernatants when the cells were not stimulated. After stimulation with anti-CD3/CD28 monoclonal antibody, LIF levels were up-regulated in both patients and controls, although to a significantly lower extent in RR-MS patients compared to HC. There were no significant differences between untreated patients and interferon-β1a treated patients. This is a heretofore unreported aspect of immune dysregulation in patients with RR-MS that may be related to insufficient remyelination and neurogenesis in MS lesions.
Collapse
|
24
|
Silver J, Schwab ME, Popovich PG. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 2014; 7:a020602. [PMID: 25475091 DOI: 10.1101/cshperspect.a020602] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal studies are now showing the exciting potential to achieve significant functional recovery following central nervous system (CNS) injury by manipulating both the inefficient intracellular growth machinery in neurons, as well as the extracellular barriers, which further limit their regenerative potential. In this review, we have focused on the three major glial cell types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of their precursors, which form major extrinsic barriers to regrowth in the injured CNS. Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or sprout, there is accumulating evidence that even in the adult and, especially after boosting their growth motor, neurons possess the capacity for considerable circuit reorganization and even lengthy regeneration when these glial obstacles to neuronal regrowth are modified, eliminated, or overcome.
Collapse
Affiliation(s)
- Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44140
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Liu J, Chen P, Wang Q, Chen Y, Yu H, Ma J, Guo M, Piao M, Ren W, Xiang L. Meta analysis of olfactory ensheathing cell transplantation promoting functional recovery of motor nerves in rats with complete spinal cord transection. Neural Regen Res 2014; 9:1850-8. [PMID: 25422649 PMCID: PMC4239777 DOI: 10.4103/1673-5374.143434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE: To evaluate the effects of olfactory ensheathing cell transplantation on functional recovery of rats with complete spinal cord transection. DATA SOURCES: A computer-based online search of Medline (1989–2013), Embase (1989–2013), Cochrane library (1989–2013), Chinese Biomedical Literature Database (1989–2013), China National Knowledge Infrastructure (1989–2013), VIP (1989–2013), Wanfang databases (1989–2013) and Chinese Clinical Trial Register was conducted to collect randomized controlled trial data regarding olfactory ensheathing cell transplantation for the treatment of complete spinal cord transection in rats. SELECTION CRITERIA: Randomized controlled trials investigating olfactory ensheathing cell transplantation and other transplantation methods for promoting neurological functional recovery of rats with complete spinal cord transection were included in the analysis. Meta analysis was conducted using RevMan 4.2.2 software. MAIN OUTCOME MEASURES: Basso, Beattie and Bresnahan scores of rats with complete spinal cord transection were evaluated in this study. RESULTS: Six randomized controlled trials with high quality methodology were included. Meta analysis showed that Basso, Beattie and Bresnahan scores were significantly higher in the olfactory ensheathing cell transplantation group compared with the control group (WMD = 3.16, 95% CI (1.68, 4.65); P < 0.00001). CONCLUSION: Experimental studies have shown that olfactory ensheathing cell transplantation can promote the functional recovery of motor nerves in rats with complete spinal cord transection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Ping Chen
- Department of Gastroenterology, Taian Central Hospital, Taian, Shandong Province, China
| | - Qi Wang
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Yu Chen
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Haiong Yu
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Junxiong Ma
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Mingming Guo
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Meihui Piao
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Weijian Ren
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Shenyang Military Command Area of Chinese PLA, Shenyang, Liaoning Province, China
| |
Collapse
|
26
|
Hooshmand MJ, Galvan MD, Partida E, Anderson AJ. Characterization of recovery, repair, and inflammatory processes following contusion spinal cord injury in old female rats: is age a limitation? IMMUNITY & AGEING 2014; 11:15. [PMID: 25512759 PMCID: PMC4265993 DOI: 10.1186/1742-4933-11-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/12/2014] [Indexed: 01/14/2023]
Abstract
Background Although the incidence of spinal cord injury (SCI) is steadily rising in the elderly human population, few studies have investigated the effect of age in rodent models. Here, we investigated the effect of age in female rats on spontaneous recovery and repair after SCI. Young (3 months) and aged (18 months) female rats received a moderate contusion SCI at T9. Behavioral recovery was assessed, and immunohistocemical and stereological analyses performed. Results Aged rats demonstrated greater locomotor deficits compared to young, beginning at 7 days post-injury (dpi) and lasting through at least 28 dpi. Unbiased stereological analyses revealed a selective increase in percent lesion area and early (2 dpi) apoptotic cell death caudal to the injury epicenter in aged versus young rats. One potential mechanism for these differences in lesion pathogenesis is the inflammatory response; we therefore assessed humoral and cellular innate immune responses. No differences in either acute or chronic serum complement activity, or acute neutrophil infiltration, were observed between age groups. However, the number of microglia/macrophages present at the injury epicenter was increased by 50% in aged animals versus young. Conclusions These data suggest that age affects recovery of locomotor function, lesion pathology, and microglia/macrophage response following SCI.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel D Galvan
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA.,Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth Partida
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
27
|
CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci 2014; 34:10141-55. [PMID: 25080578 DOI: 10.1523/jneurosci.0076-14.2014] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monocyte-derived macrophages (mo-MΦs) and T cells have been shown to contribute to spinal cord repair. Recently, the remote brain choroid plexus epithelium (CP) was identified as a portal for monocyte recruitment, and its activation for leukocyte trafficking was found to be IFN-γ-dependent. Here, we addressed how the need for effector T cells can be reconciled with the role of inflammation-resolving immune cells in the repair process. Using an acute spinal cord injury model, we show that in mice deficient in IFN-γ-producing T cells, the CP was not activated, and recruitment of inflammation-resolving mo-MΦ to the spinal cord parenchyma was limited. We further demonstrate that mo-MΦ locally regulated recruitment of thymic-derived Foxp3(+) regulatory T (Treg) cells to the injured spinal cord parenchyma at the subacute/chronic phase. Importantly, an ablation protocol that resulted in reduced Tregs at this stage interfered with tissue remodeling, in contrast to Treg transient ablation, restricted to the 4 d period before the injury, which favored repair. The enhanced functional recovery observed following such a controlled decrease of Tregs suggests that reduced systemic immunosuppression at the time of the insult can enhance CNS repair. Overall, our data highlight a dynamic immune cell network needed for repair, acting in discrete compartments and stages, and involving effector and regulatory T cells, interconnected by mo-MΦ. Any of these populations may be detrimental to the repair process if their level or activity become dysregulated. Accordingly, therapeutic interventions must be both temporally and spatially controlled.
Collapse
|
28
|
Bowes AL, Yip PK. Modulating inflammatory cell responses to spinal cord injury: all in good time. J Neurotrauma 2014; 31:1753-66. [PMID: 24934600 DOI: 10.1089/neu.2014.3429] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury can have a range of debilitating effects, permanently impacting a patient's quality of life. Initially thought to be an immune privileged site, the spinal cord is able to mount a timely and well organized inflammatory response to injury. Intricate immune cell interactions are triggered, typically consisting of a staggered multiphasic immune cell response, which can become deregulated if left unchecked. Although several immunomodulatory compounds have yielded success in experimental rodent spinal cord injury models, their translation to human clinical studies needs further consideration. Because temporal differences between rodent and human inflammatory responses to spinal cord injury do exist, drug delivery timing will be a crucial component in recovery from spinal cord injury. Given too early, immunomodulatory therapies may impede beneficial inflammatory reactions to the injured spinal cord or even miss the opportunity to dampen delayed harmful autoimmune processes. Therefore, this review aims to summarize the temporal inflammatory response to spinal cord injury, as well as detailing specific immune cell functions. By clearly defining the chronological order of inflammatory events after trauma, immunomodulatory drug delivery timing can be better optimized. Further, we compare spinal cord injury-induced inflammatory responses in rodent and human studies, enabling clinicians to consider these differences when initiating clinical trials. Improved understanding of the cellular immune response after spinal cord injury would enhance the efficacy of immunomodulatory agents, enabling combined therapies to be considered.
Collapse
Affiliation(s)
- Amy L Bowes
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | | |
Collapse
|
29
|
Immune modulatory therapies for spinal cord injury – Past, present and future. Exp Neurol 2014; 258:91-104. [DOI: 10.1016/j.expneurol.2014.01.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 01/18/2023]
|
30
|
Mortazavi MM, Verma K, Harmon OA, Griessenauer CJ, Adeeb N, Theodore N, Tubbs RS. The microanatomy of spinal cord injury: A review. Clin Anat 2014; 28:27-36. [DOI: 10.1002/ca.22432] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ketan Verma
- Pediatric Neurosurgery; Children's of Alabama
| | | | | | - Nimer Adeeb
- Pediatric Neurosurgery; Children's of Alabama
| | | | | |
Collapse
|
31
|
Jackson WD, Woollard KJ. Targeting monocyte and macrophage subpopulations for immunotherapy: a patent review (2009 - 2013). Expert Opin Ther Pat 2014; 24:779-90. [PMID: 24773534 DOI: 10.1517/13543776.2014.914495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Monocytes and macrophages are heterogeneous populations of effector cells in the innate immune system. Once thought to be obligatory precursors for macrophages, monocytes are now known to have several distinct sub-populations and their own independent functions. This separation of the two lineages has opened new therapeutic avenues in inflammation and created new technologies targeting the mononuclear phagocyte system (MPS). AREAS COVERED A search of Google Patents and PatentScope has revealed numerous patents targeting monocytes and macrophages. This review will focus on seven patents from 2009 to 2013, utilizing autologous monocyte and macrophage adoptive transfer, genetic manipulation of the MPS, therapeutic nanoparticles and liposomes or combinations of these strategies. Patents that target monocyte recruitment are also briefly reviewed. EXPERT OPINION While monocyte and macrophage targeting has yielded some promising results in animal models, these often fail to translate well to successful clinical trials. The paradigm of how cells in the MPS interact and evolve is constantly being updated, and caution must be exercised in developing immunomodulatory agents until this relationship is better understood.
Collapse
Affiliation(s)
- William D Jackson
- Imperial College London, Department of Medicine, Division of Immunology and Inflammation , London, W12 ONN , UK
| | | |
Collapse
|
32
|
Mokarram N, Bellamkonda RV. A perspective on immunomodulation and tissue repair. Ann Biomed Eng 2013; 42:338-51. [PMID: 24297492 DOI: 10.1007/s10439-013-0941-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022]
Abstract
An immune response involves the action of all types of macrophages, classically activated subtype (M1) in the early inflammatory phase and regulatory and wound-healing subtypes (M2) in the resolution phase. The remarkable plasticity of macrophages makes them an interesting target in the context of immunomodulation. Here, we reviewed the current state of understanding regarding the role that different phenotypes of macrophages and monocytes play following injury and during the course of remodeling in different tissue types. Moreover, we explored recent designs of macrophage modulatory biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Nassir Mokarram
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
33
|
Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast 2013; 2013:945034. [PMID: 24288627 PMCID: PMC3833318 DOI: 10.1155/2013/945034] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) triggers inflammation with activation of innate immune responses that contribute to secondary injury including oligodendrocyte apoptosis, demyelination, axonal degeneration, and neuronal death. Macrophage activation, accumulation, and persistent inflammation occur in SCI. Macrophages are heterogeneous cells with extensive functional plasticity and have the capacity to switch phenotypes by factors present in the inflammatory microenvironment of the injured spinal cord. This review will discuss the role of different polarized macrophages and the potential effect of macrophage-based therapies for SCI.
Collapse
|
34
|
Huang W, Vodovotz Y, Kusturiss MB, Barclay D, Greenwald K, Boninger ML, Coen PM, Brienza D, Sowa G. Identification of distinct monocyte phenotypes and correlation with circulating cytokine profiles in acute response to spinal cord injury: a pilot study. PM R 2013; 6:332-41. [PMID: 24140737 DOI: 10.1016/j.pmrj.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Macrophage infiltration to the injury site during the acute response to traumatic spinal cord injury (SCI) is not uniform. Macrophage phenotype has been characterized as either proinflammatory (M1) or anti-inflammatory (M2). Results of animal studies suggest that M1 or M2 dominance at the site of injury relates to spontaneous recovery after SCI. OBJECTIVE To investigate whether the phenotype of circulating macrophage precursors-monocytes (MO) is altered in the acute phase of SCI and corresponds to circulating inflammatory cytokines. STUDY DESIGN A prospective observational cohort study. SETTING A single academic medical center in Pennsylvania. PATIENTS A cohort of 27 subjects with complete or incomplete traumatic SCI enrolled within 7 days after SCI injury. METHODS The MO phenotype was defined within the first week after SCI by using flow cytometry and was compared with that of historic uninjured controls. Concentrations of 25 cytokines and/or chemokines were assessed by using Luminex in serial blood samples up to 2 weeks after SCI. An analysis of variance was used to determine the correlations between the phenotypes and the cytokine profiles. RESULTS Patient subsets were identified with either M1- or M2-dominant circulating MOs distinct from the uninjured controls. The M1 dominant was associated with higher circulating levels of proinflammatory mediators interleukin (IL)12p70 and interferon gamma-induced protein 10 kDa (IP-10/CXCL10), and lower levels of anti-inflammatory cytokines IL-10, IL-15, and IL-7, whereas the M2 dominant exhibited the opposite cytokine profiles with significantly higher IL-10 and IL-7. CONCLUSION In the acute phase after SCI, at comparable injury severity, subgroups of patients exhibit distinct M1 or M2 MOs dominance and the phenotype is correlated with M1- or M2-specific cytokine and/or chemokine profiles. Although further studies are needed to determine how these observed phenotypic differences relate to functional recovery, our findings (1) provide the first evidence, to our knowledge, that indicates the possible individual differences in the immune responses to the comparable traumatic SCI, with potential implications for management of acute SCI and rehabilitation; and (2) may represent easily accessible biomarkers with prognostic utility.
Collapse
Affiliation(s)
- Wan Huang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; The Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh, PA(∗)
| | - Yoram Vodovotz
- Department of Surgery, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA(†)
| | - Mary B Kusturiss
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA(‡)
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA(§)
| | - Karen Greenwald
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA(‖)
| | - Michael L Boninger
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA(¶)
| | - Paul M Coen
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA(∗∗)
| | - David Brienza
- Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA(††)
| | - Gwendolyn Sowa
- Department of Physical Medicine and Rehabilitation, 3471 5th Ave, Suite 201, University of Pittsburgh, Pittsburgh, PA 15213; The Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA(‡‡).
| |
Collapse
|
35
|
Gu XY, Shen SE, Huang CF, Liu YN, Chen YC, Luo L, Zeng Y, Wang AP. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Res Clin Pract 2013; 102:53-9. [PMID: 24011427 DOI: 10.1016/j.diabres.2013.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023]
Abstract
AIM We aimed to evaluate the effectiveness of the application of activated autologous monocytes/macrophages (Mo/Mp) on wound healing in diabetic rats. METHODS Sixty male SD rats were equally divided into the following: control group (normal, nondiabetic), PBS-treated diabetic group, and tumor necrotic factor alpha (TNF-α) plus interferon-γ (IFN-γ)-stimulated or unstimulated Mo/Mp-treated diabetic group. Full-thickness round wounds (1cm×1cm) were created in the right hind foot of rats and the wounds were treated with PBS or Mo/Mp on day 1 after injury. In the following 14 days, the percentage of wound contraction was measured, histologic examination was performed with hematoxylin and eosin staining, and vascular endothelial growth factor (VEGF) in the wound was evaluated by Western blot analysis. RESULTS Diabetic rats exhibited impaired wound healing with delayed angiogenesis and VEGF expression. The early application of TNF-α plus IFN-γ-stimulated autologous Mo/Mp to diabetic wounds significantly improved the delayed wound healing through the stimulation of angiogenesis and re-epithelization, as well as restoring the defect in VEGF expression. CONCLUSIONS Mo/Mp activated by TNF-α and IFN-γ promotes diabetic wound healing and normalizes the defect in VEGF regulation associated with diabetes-induced skin-repair disorders.
Collapse
Affiliation(s)
- Xiao-yan Gu
- Department of Rehabilitation, The 454th Hospital of Chinese PLA, Nanjing 210002, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: New perspectives in CNS neurogenesis and repair. Pharmacol Ther 2013; 141:21-31. [PMID: 23954656 DOI: 10.1016/j.pharmthera.2013.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/11/2022]
Abstract
The pharmacological support and stimulation of endogenous and transplanted neural stem cells (NSCs) is a major challenge in brain repair. Trauma to the central nervous system (CNS) results in a distinct inflammatory response caused by local and infiltrating immune cells. This makes NSC-supported regeneration difficult due to the presence of inhibitory immune factors which are upregulated around the lesion site. The continual and dual role of the neuroinflammatory response leaves it difficult to decipher upon a single modulatory strategy. Therefore, understanding the influence of cytokines upon regulation of NSC self-renewal, proliferation and differentiation is crucial when designing therapies for CNS repair. There is a plethora of partially conflicting data in vitro and in vivo on the role of cytokines in modulating the stem cell niche and the milieu around NSC transplants. This is mainly due to the pleiotropic role of many factors. In order for cell-based therapy to thrive, treatment must be phase-specific to the injury and also be personalized for each patient, i.e. taking age, sex, neuroimmune and endocrine status as well as other key parameters into consideration. In this review, we will summarize the most relevant information concerning interleukin (IL)-1, IL-4, IL-10, IL-15, IFN-γ, the neuropoietic cytokine family and TNF-α in order to extract promising therapeutic approaches for further research. We will focus on the consequences of neuroinflammation on endogenous brain stem cells and the transplantation environment, the effects of the above cytokines on NSCs, as well as immunopharmacological manipulation of the microenvironment for potential therapeutic use.
Collapse
Affiliation(s)
- Dearbhaile Dooley
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium
| | - Pia Vidal
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium
| | - Sven Hendrix
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium.
| |
Collapse
|
37
|
Hirai T, Uchida K, Nakajima H, Guerrero AR, Takeura N, Watanabe S, Sugita D, Yoshida A, Johnson WEB, Baba H. The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One 2013; 8:e64528. [PMID: 23717624 PMCID: PMC3663759 DOI: 10.1371/journal.pone.0064528] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease.
Collapse
Affiliation(s)
- Takayuki Hirai
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Kenzo Uchida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- * E-mail:
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Alexander Rodriguez Guerrero
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Naoto Takeura
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Daisuke Sugita
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Ai Yoshida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - William E. B. Johnson
- Life & Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Hisatoshi Baba
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
38
|
Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 2013; 38:895-905. [PMID: 23462880 DOI: 10.1007/s11064-013-0991-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
Abstract
The incidence of acute and chronic spinal cord injury (SCI) in the United States is more than 10,000 per year, resulting in 720 cases per million persons enduring permanent disability each year. The economic impact of SCI is estimated to be more than 4 billion dollars annually. Preclinical studies, case reports, and small clinical trials suggest that early treatment may improve neurological recovery. To date, no proven therapeutic modality exists that has demonstrated a positive effect on neurological outcome. Emerging data from recent preclinical and clinical studies offer hope for this devastating condition. This review gives an overview of current basic research and clinical studies for the treatment of SCI.
Collapse
Affiliation(s)
- Abhay K Varma
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Awad BI, Carmody MA, Steinmetz MP. Potential role of growth factors in the management of spinal cord injury. World Neurosurg 2013; 83:120-31. [PMID: 23334003 DOI: 10.1016/j.wneu.2013.01.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To review central nervous system growth factors and their therapeutic potential and clinical translation into spinal cord injury (SCI), as well as the challenges that have been encountered during clinical development. METHODS A systemic review of the available current and historical literature regarding central nervous system growth factors and clinical trials regarding their use in spinal cord injury was conducted. RESULTS The effectiveness of administering growth factors as a potential therapeutic strategy for SCI has been tested with the use of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, neurotrophin 3, and neurotrophin-4/5. Delivery of growth factors to injured SC has been tested by numerous methods. Unfortunately, most of clinical trials at this time are uncontrolled and have questionable results because of lack of efficacy and/or unacceptable side effects. CONCLUSIONS There is promise in the use of specific growth factors therapeutically for SCI. However, more studies involving neuronal regeneration and functional recovery are needed, as well the development of delivery methods that allow sufficient quantity of growth factors while restricting their distribution to target sites.
Collapse
Affiliation(s)
- Basem I Awad
- Department of Neurosurgery, Mansoura University School of Medicine, Mansoura, Egypt; Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Margaret A Carmody
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Department of Neurosciences, MetroHealth Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
40
|
Abstract
Over the past 2 decades, the biological understanding of the mechanisms underlying structural and functional repair of the injured central nervous system has strongly increased. This has resulted in the development of multiple experimental treatment strategies with the collective aim of enhancing and surpassing the limited spontaneous recovery occurring in animal models and ultimately humans suffering from spinal cord or brain injuries. Several of these experimental treatments have revealed beneficial effects in animal models of spinal cord injury. With the exception of neurorehabilitative therapies, however, therapeutic interventions that enhance recovery are currently absent within the clinical realm of spinal cord injury. The present review surveys the prospects and challenges in experimental and clinical spinal cord repair. Major shortcomings in experimental research center on the difficulty of closely modeling human traumatic spinal cord injury in animals, the small number of investigations done on cervical spinal injury and tetraplegia, and the differences in lesion models, species, and functional outcome parameters used between laboratories. The main challenges in the clinical field of spinal cord repair are associated with the standardization and sensitivity of functional outcome measures, the definition of the inclusion/exclusion criteria for patient recruitment in trials, and the accuracy and reliability of an early diagnosis to predict subsequent neurological outcome. Research and clinical networks were recently created with the goal of optimizing animal studies and human trials. Promising clinical trials are currently in progress. The time has come to translate the biologic-mechanistic knowledge from basic science into efficacious treatments able to improve the conditions of humans suffering from spinal cord injury.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University Zurich and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
41
|
Kalsi-Ryan S, Karadimas SK, Fehlings MG. Cervical spondylotic myelopathy: the clinical phenomenon and the current pathobiology of an increasingly prevalent and devastating disorder. Neuroscientist 2012. [PMID: 23204243 DOI: 10.1177/1073858412467377] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a common disorder involving chronic progressive compression of the cervical spinal cord due to degenerative disc disease, spondylosis, or other degenerative pathology. CSM is the most common form of spinal cord impairment and causes functional decline leading to reduced independence and quality of life. Despite a sound understanding of the disease process, clinical presentation and management, a universal definition of CSM and a standardized index of severity are not currently used universally. Work is required to develop a definition and establish clinical predictors of progression to improve management of CSM. Despite advances in decompressive and reconstructive surgery, patients are often left with residual disability. Gaps in knowledge of the pathobiology of CSM have limited therapeutic advances to complement surgery. Although the histopathologic and pathophysiologic similarities between CSM and traumatic spinal cord injury have long been acknowledged, the unique pathomechanisms of CSM remain unexplored. Increased efforts to elucidate CSM pathobiology could lead to the discovery of novel therapeutic targets for human CSM and other spinal cord diseases. Here, the natural history of CSM, epidemiology, clinical presentation, and current methods of clinical management are reported, along with the current state of basic scientific research in the field.
Collapse
|
42
|
Gomes-Leal W. Microglial physiopathology: how to explain the dual role of microglia after acute neural disorders? Brain Behav 2012; 2:345-56. [PMID: 22741103 PMCID: PMC3381634 DOI: 10.1002/brb3.51] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). In physiological conditions, resting microglia maintain tissue integrity by scanning the entire CNS parenchyma through stochastic and complex movements of their long processes to identify minor tissue alterations. In pathological conditions, over-activated microglia contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines, reactive oxygen species, and proteinases, but they can provide tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. The reasons for this apparent paradox are unknown. In this paper, we first review the physiological role as well as both detrimental and beneficial actions of microglial during acute CNS disorders. Further, we discuss the possible reasons for this microglial dual role following CNS insults, considering that the final microglial phenotype is a direct consequence of both noxious and beneficial stimuli released into the extracellular space during the pathological insult. The nature of these micro-glial ligands is unknown, but we hypothesize that harmful and beneficial stimuli may be preferentially located at specific anatomical niches along the pathological environment triggering both beneficial and deleterious actions of these glial cells. According to this notion, there are no natural populations of detrimental microglia, but is the pathological environment that determines the final microglial phenotype.
Collapse
Affiliation(s)
- Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará-Brazil Belém-Pará 66075-900, Brazil
| |
Collapse
|
43
|
Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012; 33:3792-802. [PMID: 22386919 PMCID: PMC3727238 DOI: 10.1016/j.biomaterials.2012.02.034] [Citation(s) in RCA: 645] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
The host response to biomaterials has been studied for decades. Largely, the interaction of host immune cells, macrophages in particular, with implanted materials has been considered to be a precursor to granulation tissue formation, the classic foreign body reaction, and eventual encapsulation with associated negative impacts upon device functionality. However, more recently, it has been shown that macrophages, depending upon context dependent polarization profiles, are capable of affecting both detrimental and beneficial outcomes in a number of disease processes and in tissue remodeling following injury. Herein, the diverse roles played by macrophages in these processes are discussed in addition to the potential manipulation of macrophage effector mechanisms as a strategy for promoting site-appropriate and constructive tissue remodeling as opposed to deleterious persistent inflammation and scar tissue formation.
Collapse
Affiliation(s)
- Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15218, USA
| | | | | | | | | |
Collapse
|
44
|
Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 2012; 50:661-71. [DOI: 10.1038/sc.2012.39] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WEB, Baba H. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 2012; 29:1614-25. [PMID: 22233298 DOI: 10.1089/neu.2011.2109] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9-T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×10(6) PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-α and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Spitzbarth I, Baumgärtner W, Beineke A. The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 2012; 147:6-24. [PMID: 22542984 DOI: 10.1016/j.vetimm.2012.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
Dogs are comparatively frequently affected by various spontaneously occurring inflammatory and degenerative central nervous system (CNS) conditions, and immunopathological processes are a hallmark of the associated neuropathology. Due to the low regenerative capacity of the CNS a sophisticated understanding of the underlying molecular basis for disease initiation, progression and remission in canine CNS diseases represents a prerequisite for the development of novel therapeutical approaches. In addition, as many spontaneous canine CNS diseases share striking similarities with their human counterpart, knowledge about the immune pathogenesis may in part be translated for a better understanding of certain human diseases. In addition to cytokine-driven differentiation of peripheral leukocytes including different subsets of T cells recent research suggests a pivotal role of these mediators also in phenotype polarization of resident glial cells. Cytokines thus represent the key mediators of the local and systemic immune response in CNS diseases and their orchestration significantly decides on either lesion progression or remission. The aim of the present review is to summarize the growing number of data focusing on the molecular basis of the immune response during spontaneous canine CNS diseases and to detail the effect of cytokines on the immune pathogenesis of selected idiopathic, infectious, and traumatic canine CNS diseases. Steroid-responsive meningitis arteritis (SRMA) represents a unique idiopathic disease of leptomeningeal blood vessels characterized by excessive IgA secretion into the cerebrospinal fluid. Recent reports have given sophisticated insights into the cytokine-driven, immune-mediated pathogenesis of SRMA that is characterized by a biased T helper 2 cell response. Canine distemper associated leukoencephalitis represents an important spontaneously occurring disease that allows investigations on the basic pathogenesis of immune-mediated myelin loss. It is characterized by an early virus-induced up-regulation of pro-inflammatory cytokines with chronic bystander immune-mediated demyelinating processes. Lastly, canine spinal cord injury (SCI) shares many similarities with the human counterpart and most commonly results from intervertebral disk disease. The knowledge of its pathogenesis is largely restricted to experimental studies in rodents, and the impact of immune processes that accompany secondary injury is discussed controversially. Recent investigations on canine SCI highlight the pivotal role of pro-inflammatory cytokine expression that is paralleled by a dominating reaction of microglia/macrophages potentially indicating a polarization of these immune cells into a neurotoxic and harmful phenotype. This report will review the role of cytokines in the immune processes of the mentioned representative canine CNS diseases and highlight the importance of cytokine/cytokine interaction as a useful therapeutic target in canine CNS diseases.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
47
|
Sato A, Ohtaki H, Tsumuraya T, Song D, Ohara K, Asano M, Iwakura Y, Atsumi T, Shioda S. Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. J Neuroinflammation 2012; 9:65. [PMID: 22483094 PMCID: PMC3353190 DOI: 10.1186/1742-2094-9-65] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/07/2012] [Indexed: 01/15/2023] Open
Abstract
Background Microglia and macrophages (MG/MΦ) have a diverse range of functions depending on unique cytokine stimuli, and contribute to neural cell death, repair, and remodeling during central nervous system diseases. While IL-1 has been shown to exacerbate inflammation, it has also been recognized to enhance neuroregeneration. We determined the activating phenotype of MG/MΦ and the impact of IL-1 in an in vivo spinal cord injury (SCI) model of IL-1 knock-out (KO) mice. Moreover, we demonstrated the contribution of IL-1 to both the classical and alternative activation of MG in vitro using an adult MG primary culture. Methods SCI was induced by transection of the spinal cord between the T9 and T10 vertebra in wild-type and IL-1 KO mice. Locomotor activity was monitored and lesion size was determined for 14 days. TNFα and Ym1 levels were monitored to determine the MG/MΦ activating phenotype. Primary cultures of MG were produced from adult mice, and were exposed to IFNγ or IL-4 with and without IL-1β. Moreover, cultures were exposed to IL-4 and/or IL-13 in the presence and absence of IL-1β. Results The locomotor activity and lesion area of IL-1 KO mice improved significantly after SCI compared with wild-type mice. TNFα production was significantly suppressed in IL-1 KO mice. Also, Ym1, an alternative activating MG/MΦ marker, did not increase in IL-1 KO mice, suggesting that IL-1 contributes to both the classical and alternative activation of MG/MΦ. We treated primary MG cultures with IFNγ or IL-4 in the presence and absence of IL-1β. Increased nitric oxide and TNFα was present in the culture media and increased inducible NO synthase was detected in cell suspensions following co-treatment with IFNγ and IL-1β. Expression of the alternative activation markers Ym1 and arginase-1 was increased after exposure to IL-4 and further increased after co-treatment with IL-4 and IL-1β. The phenotype was not observed after exposure of cells to IL-13. Conclusions We demonstrate here in in vivo experiments that IL-1 suppressed SCI in a process mediated by the reduction of inflammatory responses. Moreover, we suggest that IL-1 participates in both the classical and alternative activation of MG in in vivo and in vitro systems.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Anatomy, Showa University School of Medicine, 15-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 2012; 9:40. [PMID: 22369693 PMCID: PMC3310810 DOI: 10.1186/1742-2094-9-40] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 02/27/2012] [Indexed: 12/26/2022] Open
Abstract
Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-γ and tumor necrosis factor-α) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-γ and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-γ-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Collapse
Affiliation(s)
- Alexander Rodriguez Guerrero
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka-Shimoaizuki 23, Eiheiji, Fukui 910-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Reduced ErbB4 Expression in Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis. Mult Scler Int 2011; 2011:561262. [PMID: 22096639 PMCID: PMC3197252 DOI: 10.1155/2011/561262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/25/2022] Open
Abstract
Background. There is an insufficient remyelination in the lesions of multiple sclerosis (MS). One of the factor that was found to promote remyelination is neuregulin-1 which is the ligand of ErbB4. Immune cells have been implicated in neurogenesis and oligodendrogenesis. Aims. We studied the expression of ErbB4 in the immune cells of patients with relapsing remitting (RR) multiple sclerosis (MS) and healthy controls. Methods. ErB4 expression in immune cells was studied by flow cytometry without stimulation or with stimulation with anti-CD3 and anti-CD28 monoclonal antibodies or in the presence of interferon-g or TNF-α as well as by immunoprecipitation and Western blot, and its mRNA was studied by real-time PCR. Results. We found reduced levels of ErbB4 in the total PBMCs and in T cells, monocytes, and B cells of RR MS patients. Similarly, the ErbB4 RNA levels were reduced in the immune cells of patients with RR-MS. Stimulation via CD3 and CD28 significantly upregulated the expression of ErbB4 on immune cells healthy individuals. This effect was weaker in the patients group. Conclusion. ErbB4 may play a role in the proliferation of oligodendrocyte progenitor cells, differentiation of oligodendrocytes, and remyelination, and, therefore, the reduced ErbB4 expression in immune cells of patients with RR-MS may contribute to insufficient remyelination that occurs in the disease.
Collapse
|