1
|
Kovács DK, Eitmann S, Berta G, Kormos V, Gaszner B, Pétervári E, Balaskó M. Aging Changes the Efficacy of Central Urocortin 2 to Induce Weight Loss in Rats. Int J Mol Sci 2023; 24:8992. [PMID: 37240340 PMCID: PMC10219457 DOI: 10.3390/ijms24108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Middle-aged obesity and aging cachexia present healthcare challenges. Central responsiveness to body-weight-reducing mediators, e.g., to leptin, changes during aging in a way, which may promote middle-aged obesity and aging cachexia. Leptin is connected to urocortin 2 (Ucn2), an anorexigenic and hypermetabolic member of the corticotropin family. We aimed to study the role of Ucn2 in middle-aged obesity and aging cachexia. The food intake, body weight and hypermetabolic responses (oxygen consumption, core temperature) of male Wistar rats (3, 6, 12 and 18 months) were tested following intracerebroventricular injections of Ucn2. Following one central injection, Ucn2-induced anorexia lasted for 9 days in the 3-month, 14 days in the 6-month and 2 days in the 18-month group. Middle-aged 12-month rats failed to show anorexia or weight loss. Weight loss was transient (4 days) in the 3-month, 14 days in the 6-month and slight but long-lasting in the 18-month rats. Ucn2-induced hypermetabolism and hyperthermia increased with aging. The age-dependent changes in the mRNA expression of Ucn2 detected by RNAscope in the paraventricular nucleus correlated with the anorexigenic responsiveness. Our results show that age-dependent changes in Ucn2 may contribute to middle-aged obesity and aging cachexia. Ucn2 shows potential in the prevention of middle-aged obesity.
Collapse
Affiliation(s)
- Dóra K. Kovács
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Szimonetta Eitmann
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| |
Collapse
|
2
|
Ismail OM, El-Omar OM, Said UN. Exploring the Role of Urocortin in Osteoporosis. Cureus 2023; 15:e38978. [PMID: 37313093 PMCID: PMC10259878 DOI: 10.7759/cureus.38978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoporosis is a debilitating disease that affects over 200 million people worldwide. Overactive osteoclast activity leads to micro-architectural defects and low bone mass. This culminates in fragility fractures, such as femoral neck fractures. Treatments currently available either are not completely effective or have considerable side effects; thus, there is a need for more effective treatments. The urocortin (Ucn) family, composed of urocortin 1 (Ucn1), urocortin 2 (Ucn2), urocortin 3 (Ucn3), corticotropin-releasing factor (CRF) and corticotropin-releasing factor-binding protein (CRF-BP), exerts a wide range of effects throughout the body. Ucn1 has been shown to inhibit murine osteoclast activity. This review article will aim to bridge the gap between existing knowledge of Ucn and whether it can affect human osteoclasts.
Collapse
Affiliation(s)
- Omar M Ismail
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Omar M El-Omar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Umar N Said
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| |
Collapse
|
3
|
Wang M, Wang X, Jiang B, Zhai Y, Zheng J, Yang L, Tai X, Li Y, Fu S, Xu J, Lei X, Kuang Z, Zhang C, Bai X, Li M, Zan T, Qu S, Li Q, Zhang C. Identification of MRAP protein family as broad-spectrum GPCR modulators. Clin Transl Med 2022; 12:e1091. [PMID: 36314066 PMCID: PMC9619224 DOI: 10.1002/ctm2.1091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown. METHODS Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution. We also integrated multiple bulk RNA-seq profiles and single-cell datasets of human and mouse tissues, and narrowed down a list of 48 GPCRs with strong endogenous co-expression correlation with MRAPs. RESULTS 36 and 46 metabolic-related GPCRs were consequently identified as novel interacting partners of MRAP1 or MRAP2, respectively. MRAPs exhibited protein-protein interactions and varying pharmacological properties on the surface translocation, constitutive activities and ligand-stimulated downstream signalling of these GPCRs. Knockdown of MRAP2 expression by hypothalamic administration of adeno-associated virus (AAV) packed shRNA stimulated body weight gain in mouse model. Co-injection of corticotropinreleasing factor (CRF), the agonist of corticotropin releasing hormone receptor 1 (CRHR1), suppressed feeding behaviour in a MRAP2-dependent manner. CONCLUSIONS Collectively, our study has comprehensively elucidated the complex GPCR networks in two major endocrine organs and redefined the MRAP protein family as broad-spectrum GPCR modulators. MRAP proteins not only serve as a vital endocrine pivot on the regulation of global GPCR activities in vivo that could explain the composite physiological phenotypes of the MRAP2 null murine model but also provide us with new insights of the phenotyping investigation of GPCR-MRAP functional complexes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaozhu Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bopei Jiang
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yue Zhai
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jihong Zheng
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liu Yang
- Department of Endocrinology and MetabolismNational Metabolic Management CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xiaolu Tai
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yunpeng Li
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shaliu Fu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jing Xu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaowei Lei
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhe Kuang
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Cong Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xuanxuan Bai
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shen Qu
- Department of Endocrinology and MetabolismNational Metabolic Management CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chao Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
5
|
Yamaguchi N, Hosomi E, Hori Y, Ro S, Maezawa K, Ochiai M, Nagoshi S, Takayama K, Yakabi K. The Combination of Cholecystokinin and Stress Amplifies an Inhibition of Appetite, Gastric Emptying, and an Increase in c-Fos Expression in Neurons of the Hypothalamus and the Medulla Oblongata. Neurochem Res 2020; 45:2173-2183. [PMID: 32661781 DOI: 10.1007/s11064-020-03079-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
Cholecystokinin (CCK) had been the first gastrointestinal hormone known to exert anorexic effects. CCK had been inferred to contribute to the onset of functional dyspepsia (FD) symptoms. To understand the pathophysiology of FD, the roles of stress have to be clarified. In this study, we aimed to clarify the influence of stress on the action of cholecystokinin (CCK) on appetite and gastric emptying. Using rats, stress was simulated by giving restraint stress or intraperitoneal injection of the stress-related peptide hormone urocortin 1 (UCN1). The effects of CCK and restraint stress, alone or in combination, on food intake and gastric motility were examined, and c-Fos expression in the neurons of appetite control network in the central nervous system was assessed by immunohistochemical staining. CCK inhibited food intake and gastric emptying in a dose-dependent manner. Food intake for 1 h was significantly lower with UCN1 (2 nmol/kg) than with the saline control. Restraint stress amplified the suppressive effects of CCK on food intake for 1 h and on gastric emptying. With regard to brain function, the CCK induced c-Fos expression in the neurons of the nucleus tractus solitarius and paraventricular nucleus of the hypothalamus was markedly and significantly amplified by the addition of restraint stress with CCK. The results suggested that stress might amplify the anorexic effects of CCK through activation of the nuclei that comprise the brain neuronal network for satiation; this might play a role in the pathogenesis of the postprandial distress syndromes of functional dyspepsia.
Collapse
Affiliation(s)
- Naomi Yamaguchi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Eriko Hosomi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Yutaro Hori
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan.,Central Research Laboratories, Teikyo University Chiba Medical Center, 3426-3 Anegasaki, Ichihara, Chiba, Japan
| | - Kosuke Maezawa
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Sumiko Nagoshi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Kiyoshige Takayama
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan
| | - Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, Japan.
| |
Collapse
|
6
|
Flees J, Greene E, Ganguly B, Dridi S. Phytogenic feed- and water-additives improve feed efficiency in broilers via modulation of (an)orexigenic hypothalamic neuropeptide expression. Neuropeptides 2020; 81:102005. [PMID: 31926603 DOI: 10.1016/j.npep.2020.102005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Fueled by consumer preference for natural and antibiotic-free products, phytogenics have become the fastest growing segment of the animal feed additives. Yet, their modes of action are not fully understood. This study was undertaken to determine the effect of 5 phytogenics (3 feed- and 2 water-supplements) on the growth performance of commercial broilers, and their potential underlying molecular mechanisms. Day-old male Cobb 500 chicks (n = 576) were randomly assigned into 48 pens consisting of 6 treatments (Control; AVHGP; SCP; BHGP; AVSSL; SG) in a complete randomized design (12 birds/pen, 8 pens/treatment, 96 birds/treatment). Chicks had ad libitum access to feed and water. Individual body weight (BW) was recorded weekly and feed intake was measured daily. Core body temperatures were continuously recorded using thermo-loggers. At d 35, hypothalamic tissues were excised from the thermo-logger-equipped chickens (n = 8 birds/treatment) to determine the expression of feeding-related neuropeptides. Both feed (AVHGP, SCP, BHGP) and water-supplemented (AVSSL, SG) phytogenics significantly improved feed efficiency (FE) compared to the control birds. This higher FE was achieved via a reduction in core body temperature and improvement of market BW, without changes in feed intake in broilers supplemented with phytogenic water additives as compared to the control group. Broilers fed dietary phytogenics, however, attained higher feed efficiency via a reduction in feed intake while maintaining similar BW as the control group. At the molecular levels, the effects of the phytogenic water additives seemed to be mediated by the activation of the hypothalamic AgRP-ORX-mTOR-S6k1 and inhibition of CRH pathways. The effect of the phytogenic feed additives appeared to be exerted through the activation of AdipoQ, STAT3, AMPK, and MC1R pathways. This is the first report describing the likely central mechanisms through which phytogenic additives improve the growth performance and feed efficiency in broilers.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Bhaskar Ganguly
- Clinical Research, Ayurvet Limited, Baddi, Himachal Pradesh 173205, India
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States of America.
| |
Collapse
|
7
|
Wang J, DePena M, Taylor G, Gilbert ER, Cline MA. Hypothalamic mechanism of corticotropin-releasing factor's anorexigenic effect in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2019; 276:22-29. [PMID: 30769012 DOI: 10.1016/j.ygcen.2019.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with anorexigenic effects across various species, with particularly potent reductions in food intake in rodents and chickens (Gallus gallus domesticus), a species for which the most is known. The purpose of the current study was to determine the hypothalamic mechanism of CRF-induced anorexigenic effects in 7 day-old Japanese quail (Coturnix japonica), a less-intensely-selected gallinaceous relative to the chicken that can provide more evolutionary perspective. After intracerebroventricular (ICV) injection of 2, 22, or 222 pmol of CRF, a dose-dependent decrease in food intake was observed that lasted for 3 and 24 h for the 22 and 222 pmol doses, respectively. The 2 pmol dose had no effect on food or water intake. The numbers of c-Fos immunoreactive cells were increased in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) at 1 h post-injection in quail injected with 22 pmol of CRF. The hypothalamic mRNA abundance of proopiomelanocortin, melanocortin receptor subtype 4, CRF, and CRF receptor sub-type 2 was increased at 1 h in quail treated with 22 pmol of CRF. Behavior analyses demonstrated that CRF injection reduced feeding pecks and jumps and increased the time spent standing. In conclusion, results demonstrate that the anorexigenic effects of CRF in Japanese quail are likely influenced by the interaction between CRF and melanocortin systems and that injection of CRF results in species-specific behavioral changes.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mara DePena
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Graham Taylor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
8
|
Kavalakatt S, Khadir A, Madhu D, Hammad M, Devarajan S, Abubaker J, Al-Mulla F, Tuomilehto J, Tiss A. Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise. Front Endocrinol (Lausanne) 2019; 10:762. [PMID: 31781037 PMCID: PMC6851015 DOI: 10.3389/fendo.2019.00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Urocortin3 (UCN3) regulates metabolic functions and is involved in cellular stress response. Although UCN3 is expressed in human adipose tissue, the association of UCN3 with obesity and diabetes remains unclear. This study investigated the effects of Type 2 diabetes (T2D) and increased body weight on the circulatory and subcutaneous adipose tissue (SAT) levels of UCN3 and assessed UCN3 modulation by a regular physical exercise. Normal-weight (n = 37) and overweight adults with and without T2D (n = 98 and n = 107, respectively) were enrolled in the study. A subset of the overweight subjects (n = 39 for each group) underwent a supervised 3-month exercise program combining both moderate intensity aerobic exercise and resistance training with treadmill. UCN3 levels in SAT were measured by immunofluorescence and RT-PCR. Circulatory UCN3 in plasma was assessed by ELISA and was correlated with various clinical and metabolic markers. Our data revealed that plasma UCN3 levels decreased in overweight subjects without T2D compared with normal-weight controls [median; 11.99 (0.78-86.07) and 6.27 (0.64-77.04), respectively; p < 0.001], whereas plasma UCN3 levels increased with concomitant T2D [median; 9.03 (0.77-104.92) p < 0.001]. UCN3 plasma levels were independently associated with glycemic index; fasting plasma glucose and hemoglobin A1c (r = 0.16 and r = 0.20, p < 0.05, respectively) and were significantly different between both overweight, with and without T2D, and normal-weight individuals (OR = 2.11 [1.84-4.11, 95% CI] and OR = 2.12 [1.59-3.10, 95% CI], p < 0.01, respectively). Conversely, the UCN3 patterns observed in SAT were opposite to those in circulation; UCN3 levels were significantly increased with body weight and decreased with T2D. After a 3-month supervised exercise protocol, UCN3 expression showed a significant reduction in SAT of both overweight groups (2.3 and 1.6-fold change; p < 0.01, respectively). In conclusion, UCN levels are differentially dysregulated in obesity in a tissue-dependent manner and can be mitigated by regular moderate physical exercise.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdelkrim Khadir
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dhanya Madhu
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Maha Hammad
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ali Tiss
- Research Division, Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Ali Tiss
| |
Collapse
|
9
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
10
|
Matsumoto C, Yamada C, Sadakane C, Nahata M, Hattori T, Takeda H. Psychological stress in aged female mice causes acute hypophagia independent of central serotonin 2C receptor activation. PLoS One 2017; 12:e0187937. [PMID: 29125864 PMCID: PMC5695286 DOI: 10.1371/journal.pone.0187937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
Sex differences exist in the activation of the hypothalamic–pituitary–adrenal axis following exposure to stress, and the stress response is further affected by aging. This study was conducted to elucidate the mechanism of hypophagia in aged female mice exposed to stress. Immediately after a stress load, aged female mice exhibited acute hypophagia and a rise in plasma corticosterone levels. The administration of a serotonin 2C receptor (5-HT2CR) antagonist suppressed plasma corticosterone but did not affect the reduction in food intake. In contrast, an endogenous ghrelin enhancer, rikkunshito (RKT), significantly inhibited the reduction in food intake. An increase in peripheral acylated ghrelin levels during fasting, which occurs in young mice, was not observed in aged female mice. Moreover, in these mice, significantly increased levels of ghrelin and gastric preproghrelin mRNA expression were observed in the fed status. Moreover, plasma ghrelin levels were elevated by RKT and not by the 5-HT2CR antagonist. In female mice, the hypothalamic non-edited (INI) and partially edited mRNA 5-HT2CR isoforms (VNV, VNI, VSV or VSI) decreased with age, while in male mice, the editing isoform was unchanged by aging or stress. Estrogen receptor α (ERα)-positive cell counts in the arcuate nucleus of young male mice exposed to stress and control aged male mice were increased compared with those in young control mice. In aged male mice exposed to stress, the number of ERα-expressing cells in the paraventricular nucleus were significantly increased compared with those in aged control mice; in female mice, there was no increase in the number of ERα-positive cells. Hypophagia in aged female mice exposed to stress may be independent of 5-HT2CR activation. It seems likely that the mechanisms may be caused by sex dependent, differential regulation in 5-HT2CR mRNA expression, peripheral acylated ghrelin secretion and/or hypothalamic ERα expression.
Collapse
Affiliation(s)
| | - Chihiro Yamada
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Miwa Nahata
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
- * E-mail:
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
D'Aquila AL, Hsieh AHR, Hsieh AHM, De Almeida R, Lovejoy SR, Lovejoy DA. Expression and actions of corticotropin-releasing factor/diuretic hormone-like peptide (CDLP) and teneurin C-terminal associated peptide (TCAP) in the vase tunicate, Ciona intestinalis: Antagonism of the feeding response. Gen Comp Endocrinol 2017; 246:105-115. [PMID: 27292788 DOI: 10.1016/j.ygcen.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Teneurin C-terminal associated peptide (TCAP) is a neuropeptide that bears some structural similarity to the corticotropin-releasing factor (CRF) family of peptides. TCAP and CRF are both implicated in the regulation of stress-related behaviors, as established in rodent models. However, in vertebrates, both TCAP and CRF possess three additional paralogous forms making vertebrate models difficult to assess with respect to TCAP-CRF interaction. As a urochordate, this species possesses single homologs of TCAP and of a CRF/Diuretic-like peptide (CDLP) in the genome, thereby establishing Ciona intestinalis as an excellent model organism to examine the interaction of these peptide systems. However, the lack of C. intestinalis synthetic peptides and specific antisera has complicated experimentation. We, therefore, prepared synthetic versions of CDLP and TCAP to prepare specific antisera and to investigate their bioactivity in this species. To analyze stress-related behaviors, a novel behavioral assay was used to characterize different types of contraction-based behaviors, using buccal opening contractions, cloacal opening contractions, lateral contractions, longitudinal contractions and expulsions. Protein and mRNA expression data indicate that the mature versions of both peptides are present in a number of tissues. With respect to behavioral activity, both TCAP- and CDLP-treated animals had distinct contraction profiles under ambient conditions. Moreover, food stimulation tests revealed that whereas CDLP-treated animals displayed a strong expulsion behavior in response to feeding, TCAP-treated animals did not show this effect. These actions are consistent with previous studies done in vertebrates.
Collapse
Affiliation(s)
- Andrea L D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Alan Hwa-Ruey Hsieh
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Adam Hwa-Ming Hsieh
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Reuben De Almeida
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Sabine R Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Urocortinergic system in the testes of normal and cryptorchid dogs. Ann Anat 2016; 207:91-6. [DOI: 10.1016/j.aanat.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 01/17/2023]
|
13
|
CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia. Sci Rep 2016; 6:27516. [PMID: 27273195 PMCID: PMC4897628 DOI: 10.1038/srep27516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.
Collapse
|
14
|
Larson AA, Nunez MG, Kissel CL, Kovács KJ. Intrathecal urocortin I in the spinal cord as a murine model of stress hormone-induced musculoskeletal and tactile hyperalgesia. Eur J Neurosci 2015; 42:2772-82. [PMID: 26332847 DOI: 10.1111/ejn.13060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Stress is antinociceptive in some models of pain, but enhances musculoskeletal nociceptive responses in mice and muscle pain in patients with fibromyalgia syndrome. To test the hypothesis that urocortins are stress hormones that are sufficient to enhance tactile and musculoskeletal hyperalgesia, von Frey fibre sensitivity and grip force after injection of corticotropin-releasing factor (CRF), urocortin I and urocortin II were measured in mice. Urocortin I (a CRF1 and CRF2 receptor ligand) produced hyperalgesia in both assays when injected intrathecally (i.t.) but not intracerebroventricularly, and only at a large dose when injected peripherally, suggesting a spinal action. Morphine inhibited urocortin I-induced changes in nociceptive responses in a dose-related fashion, confirming that changes in behaviour reflect hyperalgesia rather than weakness. No tolerance developed to the effect of urocortin I (i.t.) when injected repeatedly, consistent with a potential to enhance pain chronically. Tactile hyperalgesia was inhibited by NBI-35965, a CRF1 receptor antagonist, but not astressin 2B, a CRF2 receptor antagonist. However, while urocortin I-induced decreases in grip force were not observed when co-administered i.t. with either NBI-35965 or astressin 2B, they were even more sensitive to inhibition by astressin, a non-selective CRF receptor antagonist. Together these data indicate that urocortin I acts at CRF receptors in the mouse spinal cord to elicit a reproducible and persistent tactile (von Frey) and musculoskeletal (grip force) hyperalgesia. Urocortin I-induced hyperalgesia may serve as a screen for drugs that alleviate painful conditions that are exacerbated by stress.
Collapse
Affiliation(s)
- Alice A Larson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| | - Myra G Nunez
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| | - Casey L Kissel
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| | - Katalin J Kovács
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue Room 295, St Paul, MN, 55108, USA
| |
Collapse
|
15
|
Stengel A. Nesfatin-1 - More than a food intake regulatory peptide. Peptides 2015; 72:175-83. [PMID: 26116783 DOI: 10.1016/j.peptides.2015.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 02/08/2023]
Abstract
Nesfatin-1 was discovered a decade ago and despite the fact that it represents just one of a multitude of food intake-inhibiting factors it received increasing attention. This led to a detailed characterization of NUCB2/nesfatin-1's physiological property to reduce food intake and also gave rise to an involvement in the long term regulation of body weight, especially under conditions of obesity. In addition, studies indicated the involvement of NUCB2/nesfatin-1 in other homeostatic functions as well: glucose homeostasis, water intake, gastrointestinal functions, temperature regulation, cardiovascular functions, puberty onset and sleep. These pleiotropic actions underline the physiological relevance of this peptide. Recently, the involvement of NUCB2/nesfatin-1 in psychiatric disorders such as anxiety has been investigated giving rise to the speculation that NUCB2/nesfatin-1 represents a peptidergic link between eating and anxiety/depression disorders.
Collapse
Affiliation(s)
- Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| |
Collapse
|
16
|
Nakayama N, Suzuki H, Li JB, Atsuchi K, Tsai M, Amitani H, Asakawa A, Inui A. The role of CRF family peptides in the regulation of food intake and anxiety-like behavior. Biomol Concepts 2015; 2:275-80. [PMID: 25962035 DOI: 10.1515/bmc.2011.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Corticotropin-releasing factor (CRF) and the urocortins (UCN1, UCN2, and UCN3) belong to the CRF family of peptides and are the major regulators of the adaptive response to internal and external stresses. The actions of CRF and UCNs are mediated through two receptor subtypes: CRF receptor 1 (CRFR1) and CRFR2. Their physiological roles, among other functions, include the regulation of food intake and anxiety-like behavior. In this review, we describe the progress that has been made towards understanding how anxiety- and depression-like behavior and food intake are regulated by CRF, UCN1, UCN2, and UCN3.
Collapse
|
17
|
Yamada C, Sadakane C, Nahata M, Saegusa Y, Nakagawa K, Okubo N, Ohnishi S, Hattori T, Takeda H. Serotonin 2C receptor contributes to gender differences in stress-induced hypophagia in aged mice. Psychoneuroendocrinology 2015; 55:81-93. [PMID: 25732068 DOI: 10.1016/j.psyneuen.2015.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/21/2015] [Accepted: 02/10/2015] [Indexed: 12/24/2022]
Abstract
The combination of depression and anorexia may influence morbidity and progressive physical disability in the elderly. Gender differences exist in hypothalamic-pituitary-adrenal axis activation following stress exposure. The objective of this study was to investigate gender differences in feeding behavior under novelty stress in aged mice. Food intake measurement, immunohistochemical assessment, and mRNA expression analysis were conducted to investigate the role of serotonin 2C receptor (5-HT(2C)R) and its relationship with ghrelin in stress-induced suppression of feeding behavior in aged mice. After exposure to novelty stress, a 21-fold increase in plasma corticosterone and remarkable suppression of food intake were observed in aged male mice. Furthermore, a 5-HT(2C)R agonist suppressed food intake in aged male mice. Novelty stress induced a 7-fold increase in 5-HT(2C)R and c-Fos co-expressing cells in the paraventricular nucleus of the hypothalamus in aged male mice but caused no change in aged female mice. Plasma acylated ghrelin levels decreased in stressed aged male mice and administration of the 5-HT(2C)R antagonist inhibited this decrease. The 5-HT(2C)R antagonist also reversed the suppression of food intake in estrogen receptor α agonist-treated aged male mice. Therefore, conspicuously suppressed feeding behavior in novelty stress-exposed aged male mice may be mediated by 5-HT(2C)R hypersensitivity, leading to hypoghrelinemia. The hypersensitivity may partly be due to estrogen receptor activation in aged male mice.
Collapse
Affiliation(s)
- Chihiro Yamada
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Chiharu Sadakane
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Miwa Nahata
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yayoi Saegusa
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Koji Nakagawa
- Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Naoto Okubo
- Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Shunsuke Ohnishi
- Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan; Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
18
|
Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience 2015; 289:153-65. [PMID: 25595987 DOI: 10.1016/j.neuroscience.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
Abstract
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
Collapse
|
19
|
Yakabi K, Harada Y, Takayama K, Ro S, Ochiai M, Iizuka S, Hattori T, Wang L, Taché Y. Peripheral α2-β1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats. Psychoneuroendocrinology 2014; 50:300-10. [PMID: 25265283 PMCID: PMC5942202 DOI: 10.1016/j.psyneuen.2014.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
Abstract
The autonomic nervous system (ANS) conveys neuronal input from the brain to the stomach. We investigated mechanisms through which urocortin 1 (UCN1) injected intracerebroventricularly (ICV, 300 pmol/rat) inhibits circulating ghrelin in rats. This was achieved by assessing (1) the induction of c-fos gene expression as a marker of neuronal activation in specific hypothalamic and caudal brainstem regulating ANS; (2) the influence of vagotomy and pharmacological blockade of central and peripheral α- and β-adrenergic receptor (AR) on ICV UCN1-induced reduction of plasma ghrelin levels (determined by ELISA); and (3) the relevance of this pathway in the feeding response to a fast in rats. UCN1 increased c-fos mRNA expression in key brain sites influencing sympathetic activity namely the hypothalamic paraventricular and ventromedial nuclei, locus coeruleus, nucleus of the solitary tract, and rostral ventrolateral medulla, by 16-, 29-, 6-, 37-, and 13-fold, respectively. In contrast, the dorsal motor nucleus of the vagus had little c-fos mRNA expression and ICV UCN1 induced a similar reduction in acylated ghrelin in the sham-operated (31%) and vagotomized (41%) rats. An intraperitoneal (IP) injection of either a non-selective α- or selective α2-AR antagonist reduced, while a selective α2-AR agonist enhanced ICV UCN1-induced suppression of plasma acylated ghrelin levels. In addition, IP injection of a non-selective β- or selective β1-AR agonist blocked, and selective β1-AR antagonist augmented, the ghrelin response to ICV UCN1. The IP injections of a selective α1- or non-selective β or β2-AR antagonists, or any of the pretreatments given ICV had no effect. ICV UCN1 reduced the 2-h food intake in response to a fast by 80%, and this effect was partially prevented by a selective α2-AR antagonist. These data suggest that ICV UCN1 reduces plasma ghrelin mainly through the brain sympathetic component of the ANS and peripheral AR specifically α2-AR activation and inactivation of β1-AR. The α2-AR pathway contributes to the associated reduction in food intake.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan
| | - Yumi Harada
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan.
| | - Kiyoshige Takayama
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Department of Laboratory Sciences, Gunma University School of Health Sciences, Gunma 3718511, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Central Research Laboratories, Teikyo University Chiba Medical Center, Chiba 2990111, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan
| | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan
| | - Lixin Wang
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90078, USA
| | - Yvette Taché
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90078, USA
| |
Collapse
|
20
|
Mitra A, Lenglos C, Timofeeva E. Inhibition in the lateral septum increases sucrose intake and decreases anorectic effects of stress. Eur J Neurosci 2014; 41:420-33. [DOI: 10.1111/ejn.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Arojit Mitra
- Stress and Feeding Laboratory; IUCPQ; Department of Psychiatry and Neuroscience; Laval University; Quebec QC Canada
| | - Christophe Lenglos
- Stress and Feeding Laboratory; IUCPQ; Department of Psychiatry and Neuroscience; Laval University; Quebec QC Canada
| | - Elena Timofeeva
- Stress and Feeding Laboratory; IUCPQ; Department of Psychiatry and Neuroscience; Laval University; Quebec QC Canada
| |
Collapse
|
21
|
Abstract
Corticotrophin-releasing hormone (CRH) is the pivotal neuroendocrine peptide hormone associated with the regulation of the stress response in vertebrates. However, CRH-like peptides are also found in a number of invertebrate species. The origin of this peptide can be traced to a common ancestor of lineages leading to chordates and to arthropods, postulated to occur some 500 million years ago. Evidence indicates the presence of a single CRH-like receptor and a soluble binding protein system that acted to transduce and regulate the actions of the early CRH peptide. In vertebrates, genome duplications led to the divergence of CRH receptors into CRH1 and CRH2 forms in tandem with the development of four paralogous ligand lineages that included CRH; urotensin I/urocortin (Ucn), Ucn2 and Ucn3. In addition, taxon-specific genome duplications led to further local divergences in CRH ligands and receptors. Functionally, the CRH ligand-receptor system evolved initially as a molecular system to integrate early diuresis and nutrient acquisition. As multicellular organisms evolved into more complex forms, this ligand-receptor system became integrated with the organismal stress response to coordinate homoeostatic challenges with internal energy usage. In vertebrates, CRH and the CRH1 receptor became associated with the hypothalamo-pituitary-adrenal/interrenal axis and the initial stress response, whereas the CRH2 receptor was selected to play a greater role in diuresis, nutrient acquisition and the latter aspects of the stress response.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, CanadaDepartment of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| | - Nathan R Lovejoy
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jon del Castillo
- Department of Cell and Systems BiologyUniversity of Toronto, 25 Harbord Street, Toronto, Ontario, Canada L4A IK6Department of Ecology and EvolutionUniversity of Toronto, Toronto, Ontario, CanadaDepartment of Life SciencesUniversity of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Lodge NJ, Li YW, Chin FT, Dischino DD, Zoghbi SS, Deskus JA, Mattson RJ, Imaizumi M, Pieschl R, Molski TF, Fujita M, Dulac H, Zaczek R, Bronson JJ, Macor JE, Innis RB, Pike VW. Synthesis and evaluation of candidate PET radioligands for corticotropin-releasing factor type-1 receptors. Nucl Med Biol 2014; 41:524-35. [PMID: 24793011 DOI: 10.1016/j.nucmedbio.2014.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 02/02/2023]
Abstract
INTRODUCTION A radioligand for measuring the density of corticotropin-releasing factor subtype-1 receptors (CRF1 receptors) in living animal and human brain with positron emission tomography (PET) would be a useful tool for neuropsychiatric investigations and the development of drugs intended to interact with this target. This study was aimed at discovery of such a radioligand from a group of CRF1 receptor ligands based on a core 3-(phenylamino)-pyrazin-2(1H)-one scaffold. METHODS CRF1 receptor ligands were selected for development as possible PET radioligands based on their binding potency at CRF1 receptors (displacement of [(125)I]CRF from rat cortical membranes), measured lipophilicity, autoradiographic binding profile in rat and rhesus monkey brain sections, rat biodistribution, and suitability for radiolabeling with carbon-11 or fluorine-18. Two identified candidates (BMS-721313 and BMS-732098) were labeled with fluorine-18. A third candidate (BMS-709460) was labeled with carbon-11 and all three radioligands were evaluated in PET experiments in rhesus monkey. CRF1 receptor density (Bmax) was assessed in rhesus brain cortical and cerebellum membranes with the CRF1 receptor ligand, [(3)H]BMS-728300. RESULTS The three ligands selected for development showed high binding affinity (IC50 values, 0.3-8nM) at CRF1 receptors and moderate lipophilicity (LogD, 2.8-4.4). [(3)H]BMS-728300 and the two (18)F-labeled ligands showed region-specific binding in rat and rhesus monkey brain autoradiography, namely higher binding density in the frontal and limbic cortex, and cerebellum than in thalamus and brainstem. CRF1 receptor Bmax in rhesus brain was found to be 50-120 fmol/mg protein across cortical regions and cerebellum. PET experiments in rhesus monkey showed that the radioligands [(18)F]BMS-721313, [(18)F]BMS-732098 and [(11)C]BMS-709460 gave acceptably high brain radioactivity uptake but no indication of the specific binding as seen in vitro. CONCLUSIONS Candidate CRF1 receptor PET radioligands were identified but none proved to be effective for imaging monkey brain CRF1 receptors. Higher affinity radioligands are likely required for successful PET imaging of CRF1 receptors.
Collapse
Affiliation(s)
- Nicholas J Lodge
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Yu-Wen Li
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Frederick T Chin
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Douglas D Dischino
- Department of Radiochemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jeffrey A Deskus
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ronald J Mattson
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Masao Imaizumi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Rick Pieschl
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Thaddeus F Molski
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Heidi Dulac
- Department of Veterinary Sciences, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Robert Zaczek
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Joanne J Bronson
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - John E Macor
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Stengel A, Taché Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front Neurosci 2014; 8:52. [PMID: 24672423 PMCID: PMC3957495 DOI: 10.3389/fnins.2014.00052] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/26/2014] [Indexed: 12/19/2022] Open
Abstract
Early on, corticotropin-releasing factor (CRF), a hallmark brain peptide mediating many components of the stress response, was shown to affect food intake inducing a robust anorexigenic response when injected into the rodent brain. Subsequently, other members of the CRF signaling family have been identified, namely urocortin (Ucn) 1, Ucn 2, and Ucn 3 which were also shown to decrease food intake upon central or peripheral injection. However, the kinetics of feeding suppression was different with an early decrease following intracerebroventricular injection of CRF and a delayed action of Ucns contrasting with the early onset after systemic injection. CRF and Ucns bind to two distinct G-protein coupled membrane receptors, the CRF1 and CRF2. New pharmacological tools such as highly selective peptide CRF1 or CRF2 agonists or antagonists along with genetic knock-in or knock-out models have allowed delineating the primary role of CRF2 involved in the anorexic response to exogenous administration of CRF and Ucns. Several stressors trigger behavioral changes including suppression of feeding behavior which are mediated by brain CRF receptor activation. The present review will highlight the state-of-knowledge on the effects and mechanisms of action of CRF/Ucns-CRF1/2 signaling under basal conditions and the role in the alterations of food intake in response to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette Taché
- CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress and Women's Health, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
24
|
Goebel-Stengel M, Stengel A, Wang L, Taché Y. Orexigenic response to tail pinch: role of brain NPY(1) and corticotropin releasing factor receptors. Am J Physiol Regul Integr Comp Physiol 2014; 306:R164-74. [PMID: 24338440 PMCID: PMC3921301 DOI: 10.1152/ajpregu.00335.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022]
Abstract
Tail pinch stimulates food intake in rats. We investigated brain mechanisms of this response and the influence of repeated exposure. Sprague-Dawley rats received acute (5 min) or repeated (5 min/day for 14 days) tail pinch using a padded clip. Acute tail pinch increased 5-min food intake compared with control (0.92 ± 0.2 vs. 0.03 ± 0.01 g, P < 0.01). This response was inhibited by 76% by intracerebroventricular injection of BIBP-3226, a neuropeptide Y1 (NPY1) receptor antagonist, increased by 48% by astressin-B, a corticotropin-releasing factor (CRF) receptor antagonist, and not modified by S-406-028, a somatostatin subtype 2 antagonist. After the 5-min tail pinch without food, blood glucose rose by 21% (P < 0.01) while changes in plasma acyl ghrelin (+41%) and adrenocorticotropic hormone (+37%) were not significant. Two tail pinches (45 min apart) activate pontine and hindbrain catecholaminergic and hypothalamic paraventricular CRF neurons. After 14 days of repeated tail pinch, the 5-min orexigenic response was not significantly different from days 2 to 11 but reduced by 50% thereafter (P < 0.001). Simultaneously, the 5-min fecal pellet output increased during the last 5 days compared with the first 5 days (+58%, P < 0.05). At day 14, the body weight gain was reduced by 22%, with a 99% inhibition of fat gain and a 25% reduction in lean mass (P < 0.05). The orexigenic response to acute 5-min tail pinch is likely to involve the activation of brain NPY1 signaling, whereas that of CRF tends to dampen the acute response and may contribute to increased defecation and decreased body weight gain induced by repeated tail pinch.
Collapse
Affiliation(s)
- Miriam Goebel-Stengel
- CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, at University of California Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | | |
Collapse
|
25
|
Harada Y, Takayama K, Ro S, Ochiai M, Noguchi M, Iizuka S, Hattori T, Yakabi K. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain. Peptides 2014; 51:139-44. [PMID: 24269295 DOI: 10.1016/j.peptides.2013.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 12/24/2022]
Abstract
This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.
Collapse
Affiliation(s)
- Yumi Harada
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan; Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Kiyoshige Takayama
- Department of Laboratory Sciences, Gunma University School of Health Sciences, Maebashi, Gunma, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan; Central Research Laboratories, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan
| | | | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan.
| |
Collapse
|
26
|
Abstract
Hunger and satiety are regulated in a complex fashion by a few food intake stimulatory (orexigenic) and a multitude of inhibitory (anorexigenic) factors produced in the periphery (mainly in the gastrointestinal tract) or directly in the brain. Within the brain, the hypothalamus plays a pivotal role as a production site of food intake regulatory factors. Importantly, this site integrates peripheral and central signaling factors to orchestrate food intake and in the long term body weight. Our knowledge on these regulatory pathways is not static but rather rapidly changing as new factors as well as up- and downstream signaling pathways of already known transmitters are uncovered. Hypothalamic nucleobindin2 (NUCB2), the precursor of nesfatin-1, was first described in 2006 and nesfatin-1 found to be a novel anorexigenic modulator of food intake and body weight. The initial report stimulated several groups to investigate the biological actions of nesfatin-1 and subsequent studies delineated the underlying brain mechanisms involved in its food reducing effect. Of interest was the demonstration that NUCB2 also exerts its anorexigenic action in the paraventricular nucleus of the hypothalamus and is regulated at this site by changes in metabolic status with a diurnal rhythm inversely related to that of feeding in rats. The present review describes the current state-of-knowledge on central nesfatin-1's effects on food intake and body weight and highlights important missing links regarding cellular signaling mechanisms involved in nesfatin-1's action.
Collapse
Affiliation(s)
- A. Stengel
- Charité Center for Internal Medicine and Dermatology, Division for General Internal and Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Y. Taché
- Department of Medicine, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
27
|
Stengel A, Mori M, Taché Y. The role of nesfatin-1 in the regulation of food intake and body weight: recent developments and future endeavors. Obes Rev 2013; 14:859-70. [PMID: 23980879 PMCID: PMC3810163 DOI: 10.1111/obr.12063] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 01/07/2023]
Abstract
Nesfatin-1 was discovered in 2006 and introduced as a potential novel anorexigenic modulator of food intake and body weight. The past years have witnessed increasing evidence establishing nesfatin-1 as a potent physiological inhibitor of food intake and body weight and unravelled nesfatin-1's interaction with other brain transmitters to exert its food consumption inhibitory effect. As observed for other anorexigenic brain neuropeptides, nesfatin-1 is also likely to exert additional, if not pleiotropic, actions in the brain and periphery. Recent studies established the prominent expression of the nesfatin-1 precursor, nucleobindin2 (NUCB2), in the stomach and pancreas, where nesfatin-1 influences endocrine secretion. This review will highlight the current experimental state-of-knowledge on the effects of NUCB2/nesfatin-1 on food intake, body weight and glucose homeostasis. Potential implications in human obesity will be discussed in relation to the evidence of changes in circulating levels of NUCB2/nesfatin-1 in disease states, the occurrence of genetic NUCB2 polymorphisms and--in contrast to several other hormones--the independence of leptin signalling known to be blunted under conditions of chronically increased body weight.
Collapse
Affiliation(s)
- A Stengel
- Charité Center for Internal Medicine and Dermatology, Division for General Internal and Psychosomatic Medicine, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
28
|
Ortega VA, Lovejoy DA, Bernier NJ. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 2013; 7:196. [PMID: 24194695 PMCID: PMC3810612 DOI: 10.3389/fnins.2013.00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Corticotropin-releasing factor (CRF), urotensin I (UI) and serotonin (5-HT) are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to (1) assess the individual effects of synthesized rainbow trout CRF (rtCRF), rtUI as well as 5-HT on food intake in rainbow trout, and (2) determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv) injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI [ED50 = 17.4 ng/g body weight (BW)] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW). Co-injection of either rtCRF or rtUI with the CRF receptor antagonist α-hCRF(9–41) blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW) and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by α-hCRF(9–41) co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Integrative Biology, University of Guelph Guelph, ON, Canada
| | | | | |
Collapse
|
29
|
Serotonin 2C receptor antagonism ameliorates novelty-induced hypophagia in aged mice. Psychoneuroendocrinology 2013; 38:2051-64. [PMID: 23583320 DOI: 10.1016/j.psyneuen.2013.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/24/2022]
Abstract
This study was conducted to clarify the role of serotonin (5-hydroxytryptamine, 5-HT) 2C receptor (5-HT2CR) signaling during novelty-induced hypophagia in aged mice. Male C57BL/6J mice [6-week-old (young) and 79-80-week-old (aged) mice] were exposed to a novel environment, and its effects on feeding behavior, stress hormones, and appetite-related factors were examined. Exposure of aged mice to a novel environment suppressed food intake and increased corticosterone secretion. These responses were marked compared with those in young mice. The expression in hypothalamic corticotropin-releasing factor (CRF), pituitary CRF1R and proopiomelanocortin mRNA in aged mice exposed to a novel environment was increased or tended to increase, compared to control mice. 5-HT2CR antagonist, SB242084 or rikkunshito administration attenuated the decrease in food intake and increased stress hormone levels in aged mice exposed to the environmental change. The 5-HT2CR mRNA expression in paraventricular nucleus was significantly enhanced, when aged mice was exposure to the novel environment. Thus, novelty-induced hypophagia in aged mice resulted, at least in part, from up-regulated hypothalamic 5-HT2CR function. In conclusion, 5-HT2CR signaling enhancement and the subsequent activation of the CRF neuron were involved in novelty-induced hypophagia in aged mice, and the 5-HT2CR antagonists offer a promising therapeutic option for depression.
Collapse
|
30
|
Bazhan N, Yakovleva T, Kazantseva A, Makarova E. Exaggerated anorexigenic response to restraint stress in Ay mice is associated with elevated CRFR2 mRNA expression in the hypothalamus. Physiol Behav 2013; 120:19-25. [DOI: 10.1016/j.physbeh.2013.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
|
31
|
Cottone P, Sabino V, Nagy TR, Coscina DV, Levin BE, Zorrilla EP. Centrally administered urocortin 2 decreases gorging on high-fat diet in both diet-induced obesity-prone and -resistant rats. Int J Obes (Lond) 2013; 37:1515-23. [PMID: 23478425 PMCID: PMC3706508 DOI: 10.1038/ijo.2013.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/03/2013] [Accepted: 01/27/2013] [Indexed: 01/01/2023]
Abstract
Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity.
Collapse
Affiliation(s)
- P Cottone
- 1] Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA [2] Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA [3] Harold L. Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Fatima A, Andrabi S, Wolf G, Engelmann M, Spina MG. Urocortin 1 administered into the hypothalamic supraoptic nucleus inhibits food intake in freely fed and food-deprived rats. Amino Acids 2012; 44:879-85. [PMID: 23076252 DOI: 10.1007/s00726-012-1415-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
Peptides of the corticotropin-releasing hormone/Urocortin (CRH/Ucn) family are known to suppress appetite primarily via CRH(2) receptors. In the rat hypothalamic supraoptic nucleus (SON), synthesis of both Ucn1 and CRH(2) receptors has been reported, yet little is known about the effects of Ucn1 in the SON on feeding behaviour. We first established the dose-related effects of Ucn1 injected into the SON on the feeding response in both freely fed and 24-h food-deprived rats. A conditioned taste avoidance paradigm was performed to investigate possible generalised effects of local Ucn1 treatment. Administration of Ucn1 into the SON at doses equal to or higher than 0.5 μg significantly decreased food intake in both freely fed and food-deprived rats. The Ucn1-mediated suppression of food intake was delayed in freely fed as compared to food-deprived animals. Conditioning for taste aversion to saccharine appeared at 0.5 and 1 μg of Ucn1. Both the early and the delayed onset of anorexia observed after intra-SON injection of Ucn1 under fasting and fed conditions, respectively, suggest the possible involvement of different CRH receptor subtypes in the two conditions, while the conditioned taste aversion seems to be responsible for the initial latency to eat the first meal in these animals.
Collapse
Affiliation(s)
- A Fatima
- Institute of Biochemistry and Cell Biology, Otto von Guericke University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
33
|
Tavares E, Maldonado R, Garcia-Martinez A, Miñano FJ. Central administration of aminoprocalcitonin inhibits food intake and stimulates the hypothalamic-pituitary-adrenal axis in rats via the corticotrophin-releasing factor system. J Neuroendocrinol 2012; 24:1040-54. [PMID: 22372932 DOI: 10.1111/j.1365-2826.2012.02308.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aminoprocalcitonin (N-PCT), a neuroendocrine peptide derived from procalcitonin, reduces food intake and body weight when administered centrally in rats. We have recently shown that N-PCT is expressed in brain areas known to be involved in energy homeostasis, including the paraventricular nucleus (PVN) of the hypothalamus, which contains a prominent population of corticotrophin-releasing factor (CRF)-synthesising neurones. CRF plays a pivotal role in the regulation of the hypothalamic-pituitary adrenal (HPA) axis and food intake. However, little is known about functional interactions of N-PCT and CRF. In the present study, we found endogenous N-PCT protein in the rat PVN. We also showed N-PCT immunoreactivity in PVN co-localised with NeuN, a neuronal marker, or glial fibrillary acidic protein, an astrocyte marker. Double staining immunohistochemistry revealed that N-PCT co-localised with CRF in parvocellular neurones of the PVN. Intracerebroventricular N-PCT administration increased CRF mRNA and content in the hypothalamus, suggesting that N-PCT stimulates the HPA axis and suppresses food intake and body weight via CRF-dependent pathways. In keeping with this, i.c.v. co-injection of D-Phe-CRF(12-41), a CRF receptor antagonist, significantly attenuated N-PCT-induced reduction in food intake and body weight in a dose-dependent manner. Furthermore, i.c.v. administration of N-PCT increased plasma adrenocorticotrophic hormone and corticosterone concentrations and induced the expression of Fos protein, a marker of neuronal activity, in parvocellular CRF neurones. These data collectively support the hypothesis that N-PCT inhibits food intake and body weight and stimulates the HPA axis via CRF-mediated pathways.
Collapse
Affiliation(s)
- E Tavares
- Unidad de Farmacología Experimental y Clínica (UFEC), Hospital Universitario de Valme, Sevilla, Spain
| | | | | | | |
Collapse
|
34
|
Dedic N, Touma C, Romanowski CP, Schieven M, Kühne C, Ableitner M, Lu A, Holsboer F, Wurst W, Kimura M, Deussing JM. Assessing behavioural effects of chronic HPA axis activation using conditional CRH-overexpressing mice. Cell Mol Neurobiol 2012; 32:815-28. [PMID: 22198557 DOI: 10.1007/s10571-011-9784-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/08/2011] [Indexed: 01/05/2023]
Abstract
The corticotropin-releasing hormone (CRH) and its cognate receptors have been implicated in the pathophysiology of stress-related disorders. Hypersecretion of central CRH and elevated glucocorticoid levels, as a consequence of impaired feedback control, have been shown to accompany mood and anxiety disorders. However, a clear discrimination of direct effects of centrally hypersecreted CRH from those resulting from HPA axis activation has been difficult. Applying a conditional strategy, we have generated two conditional CRH-overexpressing mouse lines: CRH-COE ( Del ) mice overexpress CRH throughout the body, while CRH-COE ( APit ) mice selectively overexpress CRH in the anterior and intermediate lobe of the pituitary. Both mouse lines show increased basal plasma corticosterone levels and consequently develop signs of Cushing's syndrome. However, while mice ubiquitously overexpressing CRH exhibited increased anxiety-related behaviour, overexpression of CRH in the pituitary did not produce alterations in emotional behaviour. These results suggest that chronic hypercorticosteroidism alone is not sufficient to alter anxiety-related behaviour but rather that central CRH hyperdrive on its own or in combination with elevated glucocorticoids is responsible for the increase in anxiety-related behaviour. In conclusion, the generated mouse lines represent valuable animal models to study the consequences of chronic CRH overproduction and HPA axis activation.
Collapse
Affiliation(s)
- Nina Dedic
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stengel A, Taché Y. Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake. J Neurogastroenterol Motil 2012; 18:138-49. [PMID: 22523723 PMCID: PMC3325299 DOI: 10.5056/jnm.2012.18.2.138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/11/2012] [Indexed: 01/14/2023] Open
Abstract
Ingestion of food affects secretion of hormones from enteroendocrine cells located in the gastrointestinal mucosa. These hormones are involved in the regulation of various gastrointestinal functions including the control of food intake. One cell in the stomach, the X/A-like has received much attention over the past years due to the production of ghrelin. Until now, ghrelin is the only known orexigenic hormone that is peripherally produced and centrally acting to stimulate food intake. Subsequently, additional peptide products of this cell have been described including desacyl ghrelin, obestatin and nesfatin-1. Desacyl ghrelin seems to be involved in the regulation of food intake as well and could play a counter-balancing role of ghrelin's orexigenic effect. In contrast, the initially proposed anorexigenic action of obestatin did not hold true and therefore the involvement of this peptide in the regulation of feeding is questionable. Lastly, the identification of nesfatin-1 in the same cell in different vesicles than ghrelin extended the function of this cell type to the inhibition of feeding. Therefore, this X/A-like cell could play a unique role by encompassing yin and yang properties to mediate not only hunger but also satiety.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy, Charité, Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
36
|
Fekete EM, Zhao Y, Szücs A, Sabino V, Cottone P, Rivier J, Vale WW, Koob GF, Zorrilla EP. Systemic urocortin 2, but not urocortin 1 or stressin 1-A, suppresses feeding via CRF2 receptors without malaise and stress. Br J Pharmacol 2012; 164:1959-75. [PMID: 21627635 DOI: 10.1111/j.1476-5381.2011.01512.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Infusion of corticotropin-releasing factor (CRF)/urocortin (Ucn) family peptides suppresses feeding in mice. We examined whether rats show peripheral CRF/Ucn-induced anorexia and determined its behavioural and pharmacological bases. EXPERIMENTAL APPROACH Male Wistar rats (n= 5-12 per group) were administered (i.p.) CRF receptor agonists with different subtype affinities. Food intake, formation of conditioned taste aversion and corticosterone levels were assessed. In addition, Ucn 1- and Ucn 2-induced anorexia was studied in fasted CRF(2) knockout (n= 11) and wild-type (n= 13) mice. KEY RESULTS Ucn 1, non-selective CRF receptor agonist, reduced food intake most potently (~0.32 nmol·kg(-1) ) and efficaciously (up to 70% reduction) in fasted and fed rats. The peptides' rank-order of anorexic potency was Ucn 1 ≥ Ucn 2 > >stressin(1) -A > Ucn 3, and efficacy, Ucn 1 > stressin(1) -A > Ucn 2 = Ucn 3. Ucn 1 reduced meal frequency and size, facilitated feeding bout termination and slowed eating rate. Stressin(1) -A (CRF(1) agonist) reduced meal size; Ucn 2 (CRF(2) agonist) reduced meal frequency. Stressin(1) -A and Ucn 1, but not Ucn 2, produced a conditioned taste aversion, reduced feeding efficiency and weight regain and elicited diarrhoea. Ucn 1, but not Ucn 2, also increased corticosterone levels. Ucn 1 and Ucn 2 reduced feeding in wild-type, but not CRF(2) knockout, mice. CONCLUSIONS AND IMPLICATIONS CRF(1) agonists, Ucn 1 and stressin(1) -A, reduced feeding and induced interoceptive stress, whereas Ucn 2 potently suppressed feeding via a CRF(2) -dependent mechanism without eliciting malaise. Consistent with their pharmacological differences, peripheral urocortins have diverse effects on appetite.
Collapse
Affiliation(s)
- E M Fekete
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lutfy K, Aimiuwu O, Mangubat M, Shin CS, Nerio N, Gomez R, Liu Y, Friedman TC. Nicotine stimulates secretion of corticosterone via both CRH and AVP receptors. J Neurochem 2012; 120:1108-16. [PMID: 22191943 DOI: 10.1111/j.1471-4159.2011.07633.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticosterone-releasing hormone (CRH) and arginine vasopressin (AVP) are crucial components of the hypothalamic-pituitary-adrenal axis that stimulates the release of adrenocorticotropic hormone from the pituitary and mediate the stress response. CRH binds to two subtypes of CRH receptors (CRH-R1 and CRH-R2) that are present in both central and peripheral tissues. We used the CRH-R1-specific antagonist, antalarmin (ANT), the CRH-R1 and CRH-R2 peptide antagonist, astressin (AST), and the CRH-R2-specific peptide antagonist, astressin2b (AST2b), to determine which CRH receptor is involved in the nicotine-stimulated secretion of corticosterone. Male C57BL/6 mice were administered ANT (20 mg/kg, i.p.), AST (0.3 mg/kg, i.p.), AST2b (0.3 mg/kg, i.p.) or vehicle prior to administration of nicotine (1.0 mg/kg, s.c.), CRH (10 μg/kg, s.c.), AVP (10 μg/kg, s.c.) or saline (s.c.), killed 15 min later and trunk blood collected and assayed for corticosterone plasma levels. We found that CRH enhanced corticosterone release, and this response was blocked by both AST and ANT. Nicotine also increased corticosterone secretion, but this effect persisted in the presence of either CRH antagonist. Furthermore, AST but not ANT or AST2b decreased corticosterone levels associated with stress of handling and injection. We also assessed the role of AVP V(1b) -specific receptor antagonist, SSR149415 alone and in combination with AST and AST2b. Although the AVP antagonist did not alter basal or nicotine-stimulated corticosterone secretion, it attenuated the AVP-induced stimulation of corticosterone and its combination with AST but not AST2b completely abolished nicotine-mediated stimulation of corticosterone secretion. Our results demonstrate that the nicotine-induced stimulation of the hypothalamic-pituitary-adrenal axis is mediated by both the CRH-R and the AVP V(1b) receptor and when the CRH receptor is blocked, nicotine may utilize the AVP V(1b) receptor to mediate secretion of corticosterone. These results argue in favor of the development of specific antagonists that block both AVP and CRH receptors to decrease the pleasurable component of nicotine, which may be mediated by corticosterone.
Collapse
Affiliation(s)
- Kabirullah Lutfy
- Division of Endocrinology, Molecular Medicine and Metabolism, Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences-David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Stengel A, Taché Y. Minireview: nesfatin-1--an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology 2011; 152:4033-8. [PMID: 21862618 PMCID: PMC3199002 DOI: 10.1210/en.2011-1500] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 is a recently identified 82-amino-acid peptide derived from the precursor protein, nucleobindin2 (NUCB2). The brain distribution of NUCB2/nesfatin-1 at the mRNA and protein level along with functional studies in rodents support a role for NUCB2/nesfatin-1 as a novel satiety molecule acting through leptin-independent mechanisms. In addition, nesfatin-1 induces a wide spectrum of central actions to stimulate the pituitary-adrenal axis and sympathetic nervous system and influences visceral functions and emotion. These central actions combined with the activation of NUCB2/nesfatin-1 neurons in the brain by various stressors are indicative of a role in the adaptive response under stressful conditions. In the periphery, evidence is mounting that nesfatin-1 exerts a direct glucose-dependent insulinotropic action on β-cells of the pancreatic islets. However, the cellular mechanisms of nesfatin-1's action remain poorly understood, partly because the receptor through which nesfatin-1 exerts its pleiotropic actions is yet to be identified.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Medicine, CURE Digestive Diseases Research Center, University of California, Los Angeles, Building 115, Room 117, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, California 90073, USA
| | | |
Collapse
|
39
|
Saegusa Y, Takeda H, Muto S, Nakagawa K, Ohnishi S, Sadakane C, Nahata M, Hattori T, Asaka M. Decreased plasma ghrelin contributes to anorexia following novelty stress. Am J Physiol Endocrinol Metab 2011; 301:E685-96. [PMID: 21712530 DOI: 10.1152/ajpendo.00121.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We hypothesized that anorexia induced by novelty stress caused by exposure to a novel environment may be due to activation of corticotropin-releasing factor (CRF) and subsequently mediated by decreasing peripheral ghrelin concentration via serotonin (5-HT) and melanocortin-4 receptors (MC4R). Each mouse was transferred from group-housed cages to individual cages to establish the novelty stress. We observed the effect of changes in feeding behavior in a novel environment using the method of transferring group-housed mice to individual cages. We investigated the effect of an intracerebroventricular injection of antagonists/agonists of CRF1/2 receptors (CRF1/2Rs), 5-HT(1B)/(2C) receptors (5-HT(1B)/(2C)R), and MC4R to clarify the role of each receptor on the decrease in food intake. Plasma ghrelin levels were also measured. The novelty stress caused a reduction in food intake that was abolished by administering a CRF1R antagonist. Three hours after the novelty stress, appetite reduction was associated with reduced levels of neuropeptide Y/agouti-related peptide mRNA, increased levels of proopiomelanocortin mRNA in the hypothalamus, and a decrease in plasma ghrelin level. Administering a CRF1R antagonist, a 5-HT(1B)/(2C)R antagonist, an MC4R antagonist, exogenous ghrelin, and an enhancer of ghrelin secretion, rikkunshito, resolved the reduction in food intake 3 h after the novelty stress by enhancing circulating ghrelin concentrations. We showed that anorexia during a novelty stress is a process in which CRF1R is activated at the early stage of appetite loss and is subsequently activated by a 5-HT(1B)/(2C)R and MC4R stimulus, leading to decreased peripheral ghrelin concentrations.
Collapse
Affiliation(s)
- Yayoi Saegusa
- Department of Pathophysiology and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang L, Goebel-Stengel M, Stengel A, Wu SV, Ohning G, Taché Y. Comparison of CRF-immunoreactive neurons distribution in mouse and rat brains and selective induction of Fos in rat hypothalamic CRF neurons by abdominal surgery. Brain Res 2011; 1415:34-46. [PMID: 21872218 PMCID: PMC3236612 DOI: 10.1016/j.brainres.2011.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 12/24/2022]
Abstract
Mice and rats are widely used in stress-related behavioral studies while little is known about the distribution of the stress hormone, corticotropin-releasing factor (CRF) in the mouse brain. We developed and characterized a novel rat/mouse CRF polyclonal antibody (CURE ab 200101) that was used to detect and compare the brain distributions of CRF immunoreactivity in naïve and colchicine-treated rats and mice. We also assessed whether the visceral stressor of abdominal surgery activated brain CRF neurons using double labeling of Fos/CRF in naïve rats. CRF-ir neurons were visualized in the cortex, bed nucleus of the stria terminalis, central amygdala, hypothalamic paraventricular nucleus (PVN), Barrington's nucleus and dorsolateral tegmental area in naïve rats. CRF-immunoreactive (ir) neurons in the mouse brain were detected only after colchicine. The pattern shows fundamental similarity compared to the colchicine-treated rat brain, however, there were differences with a lesser distribution in both areas and density except in the lateral septum and external subnucleus of the lateral parabrachial nucleus which contained more CRF-ir neurons in mice, and CRF-ir neurons in the dorsal motor nucleus of the vagus were found only in mice. Abdominal surgery in naïve rats induced Fos-ir in 30% of total CRF-ir neurons in the PVN compared with control (anesthesia alone) while Fos was not co-localized with CRF in other brain nuclei. These data indicate that CRF-ir distribution in the brain displays similarity as well as distinct features in mice compared to rats that may underlie some differential stress responses. Abdominal surgery activates CRF-ir neurons selectively in the PVN of rats without colchicine treatment.
Collapse
Affiliation(s)
- Lixin Wang
- CURE:Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, VAGLAHS, Los Angeles, CA 90073, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Yakabi K, Noguchi M, Ohno S, Ro S, Onouchi T, Ochiai M, Takabayashi H, Takayama K, Harada Y, Sadakane C, Hattori T. Urocortin 1 reduces food intake and ghrelin secretion via CRF(2) receptors. Am J Physiol Endocrinol Metab 2011; 301:E72-82. [PMID: 21540451 PMCID: PMC3129836 DOI: 10.1152/ajpendo.00695.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although it is known that urocortin 1 (UCN) acts on both corticotropin-releasing factor receptors (CRF(1) and CRF(2)), the mechanisms underlying UCN-induced anorexia remain unclear. In contrast, ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, stimulates food intake. In the present study, we examined the effects of CRF(1) and CRF(2) receptor antagonists (CRF(1)a and CRF(2)a) on ghrelin secretion and synthesis, c-fos mRNA expression in the caudal brain stem, and food intake following intracerebroventricular administration of UCN. Eight-week-old, male Sprague-Dawley rats were used after 24-h food deprivation. Acylated and des-acylated ghrelin levels were measured by enzyme-linked immunosorbent assay. The mRNA expressions of preproghrelin and c-fos were measured by real-time RT-PCR. The present study provided the following important insights into the mechanisms underlying the anorectic effects of UCN: 1) UCN increased acylated and des-acylated ghrelin levels in the gastric body and decreased their levels in the plasma; 2) UCN decreased preproghrelin mRNA levels in the gastric body; 3) UCN-induced reduction of plasma ghrelin and food intake were restored by CRF(2)a but not CRF(1)a; 4) UCN-induced increase of c-fos mRNA levels in the caudal brain stem containing the nucleus of the solitary tract (NTS) was inhibited by CRF(2)a; and 5) UCN-induced reduction of food intake was restored by exogenous ghrelin and rikkunshito, an endogenous ghrelin secretion regulator. Thus, UCN increases neuronal activation in the caudal brain stem containing NTS via CRF(2) receptors, which may be related to UCN-induced inhibition of both ghrelin secretion and food intake.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
STENGEL A, GOEBEL-STENGEL M, WANG L, LARAUCHE M, RIVIER J, TACHÉ Y. Central somatostatin receptor 1 activation reverses acute stress-related alterations of gastric and colonic motor function in mice. Neurogastroenterol Motil 2011; 23:e223-36. [PMID: 21564422 PMCID: PMC3683311 DOI: 10.1111/j.1365-2982.2011.01706.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) signaling induced by stress is well established to delay gastric emptying (GE) and stimulate colonic functions. The somatostatin receptor (sst(1-5) ) agonist, ODT8-SST acts in the brain to inhibit stress-induced adrenocorticotropic hormone and epinephrine secretion. We investigated whether ODT8-SST acts in the brain to influence stress-related alterations of gastric and colonic motor function and sst receptor subtype(s) involved. METHODS Peptides were injected intracerebroventricularly (i.c.v.) under short isoflurane anesthesia and GE, fecal pellet output (FPO) and distal colonic motility monitored in conscious mice. KEY RESULTS The stress of acute anesthesia/vehicle i.c.v. injection reduced GE by 67% and increased defecation by 99% compared to non-injected controls. Both responses were abolished by ODT8-SST (1μg= 0.75nmol) or sst(1) agonist (0.65-1.95nmol). The sst(1) agonist (1.95nmol) also prevented the abdominal surgery-induced delayed GE. Octreotide (sst(2) >sst(5) > sst(3) ) and the sst(2) or sst(4) agonists (1μg=0.78 or 0.70nmol, respectively) injected i.c.v. did not influence FPO while i.c.v. somatostatin-28 mimicked ODT8-SST's effect. The ODT8-SST-induced increased food intake was inhibited by i.c.v. sst(2) antagonist while the reduced FPO was unchanged. ODT8-SST i.c.v. reduced distal colonic motility in semi-restrained mice compared with vehicle and blocked water avoidance- and i.c.v. CRF (0.5μg=0.09nmol)-induced stimulated FPO while a similar colonic secretomotor response to i.p. 5-hydroxytryptophane (10mgkg(-1) =36.4μmol kg(-1) ) was unaltered. Conclusions & Inferences ODT8-SST counteracts stress/i.c.v. CRF-related stimulation of colonic motor function and delayed GE which can be reproduced mainly by activation of sst(1) receptors. These data opens new insight to brain somatostatinergic signaling pathways interfering with brain circuitries involved in gut motor responses to acute stress.
Collapse
Affiliation(s)
- A. STENGEL
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - M. GOEBEL-STENGEL
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - L. WANG
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - M. LARAUCHE
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | - J. RIVIER
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Y. TACHÉ
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| |
Collapse
|
43
|
Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. Int J Neuropsychopharmacol 2011; 14:666-83. [PMID: 20860876 DOI: 10.1017/s1461145710000994] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical evidence suggests comorbidity between depression and irritable bowel syndrome (IBS). Early-life stress and genetic predisposition are key factors in the pathophysiology of both IBS and depression. Thus, neonatal maternal separation (MS), and the Wistar-Kyoto (WKY) rat, a genetically stress-sensitive rat strain, are two animal models of depression that display increased visceral hypersensitivity and alterations in the hypothalamic-pituitary-adrenal axis. Corticotrophin-releasing factor (CRF) is the primary peptide regulating this axis, acting through two receptors: CRF1 and CRF2. The central CRF system is also a key regulator in the stress response. However, there is a paucity of studies investigating alterations in the central CRF system of adult MS or WKY animals. Using in-situ hybridization we demonstrate that CRF mRNA is increased in the paraventricular nucleus (PVN) of WKY rats and the dorsal raphé nucleus (DRN) of MS animals, compared to Sprague-Dawley and non-separated controls, respectively. Additionally, CRF1 mRNA was higher in the PVN, amygdala and DRN of both animal models, along with high levels of CRF1 mRNA in the hippocampus of WKY animals compared to control animals. Finally, CRF2 mRNA was lower in the DRN of MS and WKY rats compared to control animals, and in the hippocampus and amygdala of MS rats. These results show that the central CRF system is altered in both animal models. Such alterations may affect HPA axis regulation, contribute to behavioural changes associated with stress-related disorders, and alter the affective component of visceral pain modulation, which is enhanced in IBS patients.
Collapse
|
44
|
Abstract
The protein nucleobindin 2 (NUCB2) or NEFA (DNA binding/EF-hand/acidic amino acid rich region) was identified over a decade ago and implicated in intracellular processes. New developments came with the report that post-translational processing of hypothalamic NUCB2 may result in nesfatin-1, nesfatin-2 and nesfatin-3 and convergent studies showing that nesfatin-1 and full length NUCB2 injected in the brain potently inhibit the dark phase food intake in rodents including leptin receptor deficient Zucker rats. Nesfatin-1 also reduces body weight gain, suggesting a role as a new anorexigenic factor and modulator of energy balance. In light of the obesity epidemic and its associated diseases, underlying new mechanisms regulating food intake may be promising targets in the drug treatment of obese patients particularly as the vast majority of them display reduced leptin sensitivity or leptin resistance while nesfatin-1's mechanism of action is leptin independent. Although much progress on the localization of NUCB2/nesfatin-1 in the brain and periphery as well as on the understanding of nesfatin-1's anorexic effect have been achieved during the past three years, several important mechanisms have yet to be unraveled such as the identification of the nesfatin-1 receptor and the regulation of NUCB2 processing and nesfatin-1 release.
Collapse
Affiliation(s)
- A Stengel
- Department of Medicine, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
45
|
Wang L, Stengel A, Goebel M, Martinez V, Gourcerol G, Rivier J, Taché Y. Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice. Peptides 2011; 32:51-9. [PMID: 20969907 PMCID: PMC3010521 DOI: 10.1016/j.peptides.2010.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
The orexigenic effect of urocortins (Ucns), namely Ucn 1, Ucn 2 and Ucn 3 through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF(2)) in the regulation of food intake using intraperitoneal (ip) injection of Ucns and the selective CRF(2) antagonist, astressin(2)-B, and CRF(2) knockout (-/-) mice. Meal structures were monitored using an automated episodic solid food intake monitoring system. Ucn 2 (3, 10 or 30 μg/kg, ip) induced a rapid in onset, long lasting and dose-dependent decrease (38%, 66% and 86%, respectively at 4h) of cumulative food intake after an overnight fast in mice. Ucn 3 anorexic effect was 10-times less potent. Astressin(2)-B (30 or 100 μg/kg) injected ip, but not intracerebroventricularly, blocked the inhibitory effect of ip Ucn 1 and Ucn 2 (10 μg/kg). Fasted CRF(2-/-) mice did not respond to ip Ucn 1 (10 μg/kg). Meal microstructure analysis of the 4-h re-feeding response to an overnight fast showed that Ucn 2 (10 μg/kg, ip) decreased meal size and duration, but increased meal frequency. In mice fed ad libitum, Ucn 2 (30 μg/kg) injected ip before the dark phase decreased the 4-h nocturnal meal size and duration without influencing meal frequency while the 10 μg/kg dose had no effect. These data indicate that Ucns, through peripheral CRF(2) receptor-mediated induction of satiation, inhibit the eating response to a fast more potently than the physiological nocturnal feeding in mice.
Collapse
Affiliation(s)
- Lixin Wang
- CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine/Digestive Diseases Division, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Leahy DK, Li J, Sausker JB, Zhu J, Fitzgerald MA, Lai C, Buono FG, Braem A, de Mas N, Manaloto Z, Lo E, Merkl W, Su BN, Gao Q, Ng AT, Hartz RA. Development of an Efficient Synthesis of Two CRF Antagonists for the Treatment of Neurological Disorders. Org Process Res Dev 2010. [DOI: 10.1021/op1001512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David K. Leahy
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Jun Li
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Justin B. Sausker
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Jason Zhu
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Monica A. Fitzgerald
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Chiajen Lai
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Frederic G. Buono
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Alan Braem
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Nuria de Mas
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Zerene Manaloto
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Ehrlic Lo
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - William Merkl
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Bao-Ning Su
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Qi Gao
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Alicia T. Ng
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| | - Richard A. Hartz
- Process Research and Development and Analytical Research and Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, U.S.A., and Analytical Research and Development and Neuroscience Discovery Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, U.S.A
| |
Collapse
|
48
|
Stengel A, Taché Y. Nesfatin-1--role as possible new potent regulator of food intake. ACTA ACUST UNITED AC 2010; 163:18-23. [PMID: 20580651 DOI: 10.1016/j.regpep.2010.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/11/2010] [Indexed: 01/13/2023]
Abstract
Nesfatin-1 is an 82 amino acid peptide recently discovered in the brain which is derived from nucleobindin2 (NUCB2), a protein that is highly conserved across mammalian species. Nesfatin-1 has received much attention over the past two years due to its reproducible food intake-reducing effect that is linked with recruitment of other hypothalamic peptides regulating feeding behavior. A growing amount of evidence also supports that various stressors activate fore- and hindbrain NUCB2/nesfatin-1 circuitries. In this review, we outline the central nervous system distribution of NUCB2/nesfatin-1, and recent developments on the peripheral expression of NUCB2/nesfatin-1, in particular its co-localization with ghrelin in gastric X/A-like cells and insulin in ss-cells of the endocrine pancreas. Functional studies related to the characteristics of nesfatin-1's inhibitory effects on dark phase food intake are detailed as well as the central activation of NUCB2/nesfatin-1 immunopositive neurons in the response to psychological, immune and visceral stressors. Lastly, potential clinical implications of targeting NUCB2/nesfatin-1 signaling and existing gaps in knowledge to ascertain the role and mechanisms of action of nesfatin-1 are presented.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Medicine, CURE Digestive Diseases Research Center, Digestive Diseases Division UCLA, Los Angeles, CA 90073, USA
| | | |
Collapse
|
49
|
Koob GF. The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 2010; 1314:3-14. [PMID: 19912996 PMCID: PMC2819562 DOI: 10.1016/j.brainres.2009.11.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by a compulsion to seek and take drugs, the development of dependence, and the manifestation of a negative emotional state when the drug is removed. Activation of brain stress systems is hypothesized to be a key element of the negative emotional state produced by dependence that drives drug-seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. The focus of the present review is on the role of corticotropin-releasing factor (CRF) and CRF-related peptides in the dark side of addiction. CRF is a key mediator of the hormonal, autonomic, and behavior responses to stressors. Emphasis is placed on the role of CRF in extrahypothalamic systems in the extended amygdala, including the central nucleus of the amygdala, bed nucleus of the stria terminalis, and a transition area in the shell of the nucleus accumbens, in the dark side of addiction. The urocortin/CRF(2) systems have been less explored, but results suggest their role in the neuroadaptation associated with chronic drug use, sometimes in opposition to the effects produced by the CRF(1) receptor. Compelling evidence argues that the CRF stress system, including its activation of the hypothalamic-pituitary-adrenal axis, plays a key role in engaging the transition to dependence and maintaining dependence once it is initiated. Understanding the role of the CRF systems in addiction not only provides insight into the neurobiology of the dark side of addiction, but also provides novel targets for identifying vulnerability to addiction and the treatment of addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400 La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Hou IC, Yoshikawa M, Ohinata K. beta-Lactotensin derived from bovine beta-lactoglobulin suppresses food intake via the CRF system followed by the CGRP system in mice. Peptides 2009; 30:2228-32. [PMID: 19720102 DOI: 10.1016/j.peptides.2009.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/30/2022]
Abstract
We found that beta-lactotensin (His-Ile-Arg-Leu), which has been isolated as an ileum-contracting peptide from chymotrypsin digest of bovine beta-lactoglobulin, dose-dependently suppresses food intake after intracerebroventricular (i.c.v.) or intraperitoneal administration at a dose of 40 nmol/mouse or 100mg/kg, respectively, in fasted mice. Orally administered beta-lactotensin also suppressed food intake at 500 mg/kg. We previously reported that beta-lactotensin acts as an agonist for neurotensin receptors; however, the anorexigenic activity of beta-lactotensin was not inhibited by i.c.v. co-administration with SR48692 or levocabastine, an antagonist for neurotensin NT(1) or NT(2) receptor, respectively. On the other hand, the anorexigenic effect of beta-lactotensin was blocked by i.c.v. co-administration with astressin or calcitonin gene-related peptide (CGRP)(8-37), an antagonist for corticotropin releasing factor (CRF) or CGRP, respectively. beta-Lactotensin had affinity for neither CRF nor CGRP receptor. In addition, CRF-induced anorexigenic activity after i.c.v. administration was completely blocked by CGRP(8-37), while CGRP-induced anorexigenic activity was not inhibited by astressin. These results suggest that the CGRP system is activated downstream of the CRF system in food intake regulation. Taken together, beta-lactotensin may suppress food intake by activating the CRF system followed by the CGRP system, independently of the neurotensin system.
Collapse
Affiliation(s)
- I-Ching Hou
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|