1
|
Srinivasan P, Arguello EME, Atwah I. Evaluating the reliability of solid phase extraction techniques for hydrocarbon analysis by GC-MS. J Chromatogr A 2024; 1737:465435. [PMID: 39427508 DOI: 10.1016/j.chroma.2024.465435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Saturate and aromatic compounds are essential in the petroleum industry for assessing the thermal maturity of source rocks and oils, which is critical for basin modeling and sweet-spot mapping. These compounds also play a role in environmental applications, such as oil spill fingerprinting and biogeochemistry. However, the analysis of these compounds by gas chromatography-mass spectrometry (GC-MS) requires meticulous and time-consuming separation processes. Traditional methods like normal-phase liquid column chromatography (LCC) involve large volumes of harmful solvents. This study evaluates the effectiveness of five different sorbents using solid-phase extraction (SPE) techniques-neutral Si, SiOH, Ag-ion, neutral Al, and Ag-ion mixed with activated silica-compared to LCC. The goal was to discern differences in peak resolution, concentration, and isomer ratios of saturate and aromatic compounds for thermal maturity and source rock assessments. The results show that SiOH, neutral Si, and neutral Al do not fully separate aromatic compounds from the saturate fraction, sometimes leaving 40-100% of aromatics within the saturate fraction. Ag-ion mixed with activated silica provided the best separation, resulting in up to 23 times higher aromatic concentration than SiOH. This method is more reliable for quantifying both saturate and aromatic compounds, increases the efficiency of hydrocarbon evaluations, and reduces solvent consumption by 63%, offering a more sustainable approach to hydrocarbon analysis.
Collapse
Affiliation(s)
- Poorna Srinivasan
- Aramco Americas- Houston Research Center, 16300 Park Row Drive, Houston, TX 77084, USA.
| | | | | |
Collapse
|
2
|
Ullah N, Tuzen M, Saleh TA. A comprehensive review of portable syringe systems using micropipette-based extraction techniques for metal analysis. J Chromatogr A 2024; 1736:465423. [PMID: 39413567 DOI: 10.1016/j.chroma.2024.465423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The release of harmful compounds, particularly dangerous metal ions, into the environment has drawn deep concern from the scientific community. Therefore, it has become common in research to evaluate and quantify the harmful concentrations in the presence of these metal ions in several real samples (food, water, and biological samples). To increase sensitivity and lessen the impact of the matrix, sample pretreatment is a helpful strategy to implement before analysis. The limitations of conventional methods have been recently significantly reduced by developing new analytical approaches such as microextraction techniques. The miniaturization of conventional solid-phase extraction (SPE) led to solid-phase microextraction (SPME), drastically reducing both adsorbent use and extraction phase volume. SPME is defined in the present context as a modified extraction technique that employs a portable syringe system attached to micropipette tips. The SPME is considered one of the most appropriate sample preparation tools due to its compatibility with different detection techniques for different metal ions. The current review focuses on SPME based on a portable syringe (attaches to a micropipette tip) system because it has many advantages over conventional solid-phase extraction. It can be designed very simply in a syringe system, a very small quantity of the sorbent has to be kept in the tip, tube, or inside a syringe as a plug and combined with various analytical instruments. Many researchers have designed their own by using homemade tips packed with a sorbent to increase extraction capability and selectivity. According to the current review, there is a lot of potential for increasing the efficacy and efficiency of metal ion extraction from complicated matrices using portable syringe SPME. Studies have shown that when compared to conventional approaches, it performs better in terms of sensitivity, selectivity, and user-friendliness. Furthermore, its application to a wider range of sample types has been enhanced by the flexibility in constructing unique sorbent tips. Conclusively, the developments in portable syringe SPME have addressed several limitations of conventional techniques, positioning it as a robust and versatile tool for environmental monitoring and analysis of hazardous metal ions.
Collapse
Affiliation(s)
- Naeem Ullah
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey; Department of Chemistry, University of Turbat, Balochistan 92600, Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat, Turkey
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
3
|
Bodur S, Bodur SE, Tutar BK, Bakırdere S, Yağmuroğlu O. Development of dispersive solid phase extraction method for the preconcentration of parathion ethyl as a simulant of nerve agent sarin from soil, plant and water samples prior to GC-MS determination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:829. [PMID: 39167268 DOI: 10.1007/s10661-024-13007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography-mass spectrometry (GC-MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide-iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15 mg, acetonitrile, vortex/30 s, 100 µL and 10 mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC-MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94-235.15 µg/kg, 0.41 µg/kg and 1.36 µg/kg (mass based), respectively. Satisfactory percent recovery results (90.3-125% for soil, 93.5-108.7% for plant, 88.5-112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC-MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories.
Collapse
Affiliation(s)
- Süleyman Bodur
- Chemistry Department, Yıldız Technical University, 34220, Istanbul, Türkiye
- Faculty of Pharmacy, Department of Analytical Chemistry, İstinye University, 34010, Istanbul, Türkiye
- Scientific and Technological Research Application and Research Center, İstinye University, 34010, Istanbul, Türkiye
| | | | | | - Sezgin Bakırdere
- Chemistry Department, Yıldız Technical University, 34220, Istanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Piyade Street, No. 27, Çankaya, 06690, Ankara, Türkiye.
| | - Ozan Yağmuroğlu
- Air Force Academy, Department of Chemistry, National Defence University, 34149, Istanbul, Türkiye.
| |
Collapse
|
4
|
Kashi F, Ebrahimzadeh H, Nejabati F. Development and characterization of a non-enzymatic electrochemical biosensor for rapid determination of sorbent-based extracted trazodone and doxepin in complicated samples. Anal Chim Acta 2024; 1317:342902. [PMID: 39030006 DOI: 10.1016/j.aca.2024.342902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Given the importance of achieving optimal therapeutical concentration in patients treated with antidepressants, this study investigates a novel technique for the simultaneous determination of trazodone (TRZ) and doxepin (DOX) in human plasma and serum samples for the first time. RESULTS To achieve simultaneous determination of two antidepressants, TRZ and DOX, a novel detection system was designed: a non-enzymatic voltammetric biosensor based on boron-reduced graphene oxide/manganese oxide nanoparticles (GCE/B-rGO/MnO NPs). The detection was accomplished after pre-concentration and extraction trace amounts of the analytes using the thin film-solid phase microextraction (TF-SPME) technique, which employed polyvinyl alcohol/polyvinyl acetate/copper oxide nanoparticles (PVA/PVAc/CuO NPs) electrospun nanofibers. The successful preparation of composite nanofibers and modified electrodes was confirmed using the evaluation of field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX). Also, the composite nanofibers were characterized with attenuated total reflectance-Fourier transform-infrared (ATR-FT-IR) and X-ray diffraction (XRD). In the solution of TRZ and DOX, under optimum experimental conditions, the linear dynamic ranges (LDRs) were 0.1-20.0 μmol L-1 and 0.5-27.0 μmol L-1, respectively. Also, the limit of detection (LOD) values of TRZ and DOX were 0.032 and 0.150 μmol L-1. SIGNIFICANCE PVAc acts as a cross-linking agent for PVA, and their mixture is effective for sample preparation and pre-concentration of analytes in complex matrices. Also, adding CuO NPs to this polymeric mixture enhanced the adsorption efficiency. Taking advantage of the high surface area of MnO NPs and the high electrical conductivity of B-rGO, and considering the superiority of their simultaneous utilization, the constructed electrochemical biosensor is both cost-effective and rapid. It demonstrates excellent stability, repeatability, and sensitivity for the simultaneous determination of TRZ and DOX under optimal conditions. This biosensor, the first of its kind, is specifically designed for the simultaneous determination of TRZ and DOX in human plasma and serum samples, representing a significant advancement in biosensing technology.
Collapse
Affiliation(s)
- Fatemeh Kashi
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Fatemeh Nejabati
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Tsai WH, Su CK. 4D-Printed Elution-Peak-Guided Dual-Responsive Monolithic Packing for the Solid-Phase Extraction of Metal Ions. Anal Chem 2024; 96:4469-4478. [PMID: 38380612 PMCID: PMC10955517 DOI: 10.1021/acs.analchem.3c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Four-dimensional printing (4DP) technologies are revolutionizing the fabrication of stimuli-responsive devices. To advance the analytical performance of conventional solid-phase extraction (SPE) devices using 4DP technology, in this study, we employed N-isopropylacrylamide (NIPAM)-incorporated photocurable resins and digital light processing three-dimensional printing to fabricate an SPE column with a [H+]/temperature dual-responsive monolithic packing stacked as interlacing cuboids to extract Mn, Co, Ni, Cu, Zn, Cd, and Pb ions. When these metal ions were eluted using 0.5% HNO3 solution as the eluent at a temperature below the lower critical solution temperature of polyNIPAM, the monolithic packing swelled owing to its hydrophilic/hydrophobic transition and electrostatic repulsion among the protonated units of polyNIPAM. These effects resulted in smaller interstitial volumes among these interlacing cuboids and improvements in the elution peak profiles of the metal ions, which, in turn, demonstrated the reduced method detection limits (MDLs; range, 0.2-7.2 ng L-1) during analysis using inductively coupled plasma mass spectrometry. We studied the effects of optimizing the elution peak profiles of the metal ions on the analytical performance of this method and validated its reliability and applicability by analyzing the metal ions in reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and performing spike analyses of seawater, groundwater, river water, and human urine samples. Our results suggest that this 4D-printed elution-peak-guided dual-responsive monolithic packing enables lower MDLs when packed in an SPE column to facilitate the analyses of the metal ions in complex real samples.
Collapse
Affiliation(s)
- Wen-Hsiu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
6
|
Xu Z, Yu K, Zhang M, Ju Y, He J, Jiang Y, Li Y, Jiang J. Accurate Clinical Detection of Vitamin D by Mass Spectrometry: A Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38376891 DOI: 10.1080/10408347.2024.2316237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Vitamin D deficiency is thought to be associated with a wide range of diseases, including diabetes, cancer, depression, neurodegenerative diseases, and cardiovascular and cerebrovascular diseases. This vitamin D deficiency is a global epidemic affecting both developing and developed countries and therefore qualitative and quantitative analysis of vitamin D in a clinical context is essential. Mass spectrometry has played an increasingly important role in the clinical analysis of vitamin D because of its accuracy, sensitivity, specificity, and the ability to detect multiple substances at the same time. Despite their many advantages, mass spectrometry-based methods are not without analytical challenges. Front-end and back-end challenges such as protein precipitation, analyte extraction, derivatization, mass spectrometer functionality, must be carefully considered to provide accurate and robust analysis of vitamin D through a well-designed approach with continuous control by internal and external quality control. Therefore, the aim of this review is to provide a comprehensive overview of the development of mass spectrometry methods for vitamin D accurate analysis, including emphasis on status markers, deleterious effects of biological matrices, derivatization reactions, effects of ionization sources, contribution of epimers, standardization of assays between laboratories.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Yunuo Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Du XN, He Y, Chen YW, Liu Q, Sun L, Sun HM, Wu XF, Lu Y. Decoding Cosmetic Complexities: A Comprehensive Guide to Matrix Composition and Pretreatment Technology. Molecules 2024; 29:411. [PMID: 38257324 PMCID: PMC10818968 DOI: 10.3390/molecules29020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Despite advancements in analytical technologies, the complex nature of cosmetic matrices, coupled with the presence of diverse and trace unauthorized additives, hinders the application of these technologies in cosmetics analysis. This not only impedes effective regulation of cosmetics but also leads to the continual infiltration of illegal products into the market, posing serious health risks to consumers. The establishment of cosmetic regulations is often based on extensive scientific experiments, resulting in a certain degree of latency. Therefore, timely advancement in laboratory research is crucial to ensure the timely update and adaptability of regulations. A comprehensive understanding of the composition of cosmetic matrices and their pretreatment technologies is vital for enhancing the efficiency and accuracy of cosmetic detection. Drawing upon the China National Medical Products Administration's 2021 Cosmetic Classification Rules and Classification Catalogue, we streamline the wide array of cosmetics into four principal categories based on the following compositions: emulsified, liquid, powdered, and wax-based cosmetics. In this review, the characteristics, compositional elements, and physicochemical properties inherent to each category, as well as an extensive overview of the evolution of pretreatment methods for different categories, will be explored. Our objective is to provide a clear and comprehensive guide, equipping researchers with profound insights into the core compositions and pretreatment methods of cosmetics, which will in turn advance cosmetic analysis and improve detection and regulatory approaches in the industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xian-Fu Wu
- National Institutes for Food and Drug Control, Beijing 102629, China; (X.-N.D.); (Y.H.); (Y.-W.C.); (Q.L.); (L.S.); (H.-M.S.)
| | - Yong Lu
- National Institutes for Food and Drug Control, Beijing 102629, China; (X.-N.D.); (Y.H.); (Y.-W.C.); (Q.L.); (L.S.); (H.-M.S.)
| |
Collapse
|
8
|
Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, Kawamura K, Fu P. Hydroxy fatty acids in the surface Earth system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167358. [PMID: 37793460 DOI: 10.1016/j.scitotenv.2023.167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Lipids are ubiquitous and highly abundant in a wide range of organisms and have been found in various types of environmental media. These molecules play a crucial role as organic tracers by providing a chemical perspective on viewing the material world, as well as offering a wealth of information on metabolic activities. Among the diverse lipid compounds, hydroxy fatty acids (HFAs) with one to multiple hydroxyl groups attached to the carbon chain stand out as important biomarkers for different sources of organic matter. HFAs are widespread in nature and are involved in biotransformation and oxidation processes in living organisms. The unique chemical and physical properties attributed to the hydroxyl group make HFAs ideal biomarkers in biomedicine and environmental toxicology, as well as organic geochemistry. The molecular distribution patterns of HFAs can be unique and diagnostic for a given class of organisms, including animals, plants, and microorganisms. Thus, HFAs can act as a valuable proxy for understanding the ecological relationships between different organisms and their environment. Furthermore, HFAs have numerous industrial applications due to their higher reactivity, viscosity, and solvent miscibility. This review paper integrates the latest research on the sources and chemical analyses of HFAs, as well as their applications in industrial/medicinal production and as biomarkers in environmental studies. This review article also provides insights into the biogeochemical cycles of HFAs in the surface Earth system, highlighting the importance of these compounds in understanding the complex interactions between living organisms and the environment.
Collapse
Affiliation(s)
- Wenxin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Słota ET, Vasylechko VO, Yaremko ZM, Bagday SR, Poddubnaya O, Puziy AM. Neodymium sorption on the Na-form of Transcarpathian clinoptilolite. Heliyon 2023; 9:e21264. [PMID: 37920482 PMCID: PMC10618770 DOI: 10.1016/j.heliyon.2023.e21264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
The sorption properties of Na-modified Ukrainian Transcarpathian clinoptilolite towards neodymium aqueous solutions under dynamic conditions have been investigated. The sorption capacity of the Na-from of Transcarpathian clinoptilolite towards Nd(III) significantly depends on the concentration of neodymium salt, the pH of the solution, and the heat treatment temperature of the sorbent. Nd(III) is most efficiently sorbed from slightly alkaline solutions (pH 8.5), mainly by adsorption of neutral hydrolyzed forms of Nd(OH)3 on the surface of Na-clinoptilolite samples preheated at 75 °C. During the passage of an Nd(III) solution with a concentration of 1 μg mL-1 through the sorbent at a rate of 3 mL min-1 under optimal conditions, the sorption capacity of Na-clinoptilolite is 7.2 mg g-1, which is in 4 and 2.3 times higher than that of natural and acid-modified forms of this zeolite. It is shown that under the experimental conditions with an increase in the flow rate, the thickness of the stationary surface layer decreases, which leads to a decrease in the sorption capacity of Na-clinoptilolite. The best Nd(III) desorbents are solutions of mineral acids and acidified solutions of alkali metal salts (except NaCl), which provide 93-98 % extraction of lanthanide from the zeolite matrix. The method for neodymium trace amounts preconcentration from aqueous solutions in a solid-phase extraction mode with a further determination of this rare earth element by a spectrophotometric method was developed. The detection limit of this method is 0.75 ng mL-1 and the linearity was evaluated in the range of 2.5-500 ng mL-1.
Collapse
Affiliation(s)
- Emilia T. Słota
- Department of Analytical Chemistry and Life Safety Department, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine
| | - Volodymyr O. Vasylechko
- Department of Analytical Chemistry and Life Safety Department, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine
- Department of Food Technology, Lviv University of Trade and Economics, 9 Samchuka Str., 79011 Lviv, Ukraine
| | - Zinoviy M. Yaremko
- Department of Analytical Chemistry and Life Safety Department, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine
| | - Svitlana R. Bagday
- Department of Analytical Chemistry and Life Safety Department, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine
| | - Olga Poddubnaya
- Department of Analytical Chemistry and Life Safety Department, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine
| | - Alexander M. Puziy
- Department of Analytical Chemistry and Life Safety Department, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 Lviv, Ukraine
| |
Collapse
|
10
|
Poole CF. Sample preparation for planar chromatography. J Sep Sci 2023; 46:e2300071. [PMID: 36965178 DOI: 10.1002/jssc.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
High-performance thin-layer chromatography has favorable properties for high-throughput separations with a high matrix tolerance. Sample preparation, however, is sometimes required to control specific matrix interferences and to enhance the detectability of target compounds. Trends in contemporary applications have shifted from absorbance and fluorescence detection to methods employing bioassays and mass spectrometry. Traditional methods (shake-flask, heat at reflux, Soxhlet, and hydrodistillation) are being challenged by automated instrumental approaches (ultrasound-assisted and microwave-assisted solvent extraction, pressurized liquid extraction, and supercritical fluid extraction) and the quick, easy cheap, efficient, rugged, and safe extraction method for faster and streamlined sample processing. Liquid-liquid extraction remains the most widely used approach for sample clean-up with increasing competition from solid-phase extraction. On-layer sample, clean-up by planar solid-phase extraction is increasingly used for complex samples and in combination with heart-cut multimodal systems. The automated spray-on sample applicator, the elution head interface, biological detection of target and non-target compounds, and straightforward mass spectrometric detection are highlighted as the main factors directing current interest toward faster and simpler sample workflows, analysis of more complex samples, and the determination of minor contaminants requiring high concentration factors.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
11
|
Tryon-Tasson N, Ryoo D, Eor P, Anderson JL. Silver-mediated separations: A comprehensive review on advancements of argentation chromatography, facilitated transport membranes, and solid-phase extraction techniques and their applications. J Chromatogr A 2023; 1705:464133. [PMID: 37329654 DOI: 10.1016/j.chroma.2023.464133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The use of silver(I) ions in chemical separations, also known as argentation separations, is a powerful approach for the selective separation and analysis of many natural and synthetic organic compounds. In this review, a comprehensive discussion of the most common argentation separation techniques, including argentation-liquid chromatography (Ag-LC), argentation-gas chromatography (Ag-GC), argentation-facilitated transport membranes (Ag-FTMs), and argentation-solid phase extraction (Ag-SPE) is provided. For each of these techniques, notable advancements, optimized separations, and innovative applications are discussed. The review begins with an explanation of the fundamental chemistry underlying argentation separations, mainly the reversible π-complexation between silver(I) ions and carbon-carbon double bonds. Within Ag-LC, the use of silver(I) ions in thin-layer chromatography, high-performance liquid chromatography, as well as preparative LC are explored. This discussion focuses on how silver(I) ions are employed in the stationary and mobile phase to separate unsaturated compounds. For Ag-GC and Ag-FTMs, different silver compounds and supporting media are discussed, often with relation to olefin-paraffin separations. Ag-SPE has been widely employed for the selective extraction of unsaturated compounds from complex matrices in sample preparation. This comprehensive review of Ag-LC, Ag-GC, Ag-FTMs, and Ag-SPE techniques emphasizes the immense potential of argentation separations in separations science and serves as a valuable resource for researchers seeking to learn, optimize, and utilize argentation separations.
Collapse
Affiliation(s)
- Nicholas Tryon-Tasson
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Donghyun Ryoo
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Philip Eor
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Jared L Anderson
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
12
|
Abbas F, Zhou Y, O'Neill Rothenberg D, Alam I, Ke Y, Wang HC. Aroma Components in Horticultural Crops: Chemical Diversity and Usage of Metabolic Engineering for Industrial Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091748. [PMID: 37176806 PMCID: PMC10180852 DOI: 10.3390/plants12091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering's potential for enhancing terpenoids volatile production at the industrial level.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Dylan O'Neill Rothenberg
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Intikhab Alam
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yanguo Ke
- College of Economics and Management, College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Kim SH, Lee YH, Jeong MJ, Gwon DY, Lee JH, Shin Y, Choi H. LC-MS/MS Method Minimizing Matrix Effect for the Analysis of Bifenthrin and Butachlor in Chinese Chives and Its Application for Residual Study. Foods 2023; 12:foods12081683. [PMID: 37107478 PMCID: PMC10137788 DOI: 10.3390/foods12081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The matrix effect refers to the change in the analytical signal caused by the matrix in which the sample is contained, as well as the impurities that are co-eluted with the target analyte. In crop sample analysis using LC-MS/MS, the matrix effect can affect the quantification results. Chinese chives are likely to exhibit a strong matrix effect when co-extracted with bifenthrin and butachlor due to the presence of phytochemicals and chlorophyll. A novel analytical method was developed to reduce the matrix effects of bifenthrin and butachlor to a negligible level in Chinese chives. The established method had a limit of quantitation of 0.005 mg/kg and correlation coefficients greater than 0.999 within the range of 0.005-0.5 mg/kg. Matrix effects were found to be negligible, with values ranging from -18.8% to 7.2% in four different sources of chives and two leafy vegetables. Compared to conventional analytical methods for the LOQ and matrix effect, the established method demonstrated improved performances. The analytical method was further applied in a residual study in chive fields. The active ingredient of butachlor 5 granule (GR) was not detected after soil admixture application, while that of bifenthrin 1 emulsifiable concentrate (EC) showed a range from 1.002 to 0.087 mg/kg after foliar spraying. The dissipation rate constant (k) of bifenthrin was determined to be 0.115, thus its half-life was calculated to be 6.0 days. From the results, PHI and safety use standards of both pesticides were suggested. The developed analytical method can be applied to accurately determine bifenthrin and butachlor residues in Chinese chives and provides a foundation for further research on the fate and behavior of these pesticides in the environment.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Yoon-Hee Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Mun-Ju Jeong
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Da-Yeong Gwon
- Department of Life & Environmental Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ji-Ho Lee
- Department of Crop Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yongho Shin
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hoon Choi
- Department of Life & Environmental Sciences, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
14
|
Wei J, Chen L, Zhang R, Yu Y, Ji W, Hou Z, Chen Y, Zhang Z. An Imine-Based Porous 3D Covalent Organic Polymer as a New Sorbent for the Solid-Phase Extraction of Amphenicols from Water Sample. Molecules 2023; 28:molecules28083301. [PMID: 37110535 PMCID: PMC10145516 DOI: 10.3390/molecules28083301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, an imine-based porous 3D covalent organic polymer (COP) was synthesized via solvothermal condensation. The structure of the 3D COP was fully characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and powder X-ray diffractometry, thermogravimetric analysis, and Brunauer-Emmer-Teller (BET) nitrogen adsorption. This porous 3D COP was used as a new sorbent for the solid-phase extraction (SPE) of amphenicol drugs, including chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FF) in aqueous solution. Factors were investigated for their effects on the SPE efficiency, including the types and volume of eluent, washing speed, pH, and salinity of water. Under the optimized conditions, this method gave a wide linear range (0.1-200 ng/mL) with a high correlation coefficient value (R2 > 0.99), low limits of detection (LODs, 0.01-0.03 ng/mL), and low limits of quantification (LOQs, 0.04-0.10 ng/mL). The recoveries ranged from 83.98% to 110.7% with RSDs ≤ 7.02%. The good enrichment performance for this porous 3D COP might contribute to the hydrophobic and π-π interactions, the size-matching effect, hydrogen bonding, and the good chemical stability of 3D COP. This 3D COP-SPE method provides a promising approach to selectively extract trace amounts of CAP, TAP, and FF in environmental water samples in ng quantities.
Collapse
Affiliation(s)
- Jinjian Wei
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lengbing Chen
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Rui Zhang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yi Yu
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhaosheng Hou
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yuqin Chen
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Zhide Zhang
- Key Laboratory of Molecular and Nano Probes, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
15
|
Ochoa GS, Synovec RE. Investigating analyte breakthrough under non-linear isotherm conditions during solid phase extraction facilitated by non-targeted analysis with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Talanta 2023; 259:124525. [PMID: 37031541 DOI: 10.1016/j.talanta.2023.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023]
Abstract
Solid phase extraction (SPE) sample preparation for the analysis of complex organic mixtures is often applied assuming all analytes of interest will preconcentrate on the stationary phase. This assumption ignores the reality that extraction is a dynamic interactive process and a diverse range of affinities for the stationary phase will result in equally diverse breakthrough volumes due to competitive sorption processes. To study this dynamic interactive process, and further to take advantage of it, we extracted a JP-8 jet fuel spiked with 40 ppm of a polar compound mix with silica and alumina SPE cartridges and analyzed sequential extracted fractions of the fuel to both assess the shifting chemical landscape present in the extraction and the impact of both SPE stationary phases on this process. Tile-based 1v1 comparative analysis (a recently reported extension of tile-based Fisher ratio analysis) was used to discover the (polar) compounds whose concentrations change between extracted fractions, discovering 21 compounds extracted with silica and 27 compounds extracted with alumina with at least a 2-fold change in concentration from the neat sample relative to the first 1 mL pass fraction sample. These compounds were quantified in each fraction to construct concentration ratio profiles, defined as the concentration ratio for a given SPE fraction per analyte compound relative to the analyte concentration in the neat fuel, for which the extraction behavior for each analyte could be assessed. These analyte compounds were found to breakthrough at different rates, with some analytes remaining on the column indefinitely (until extracted with a subsequent polar solvent) and other analytes eluting before the extraction is complete. Furthermore, in a comparison of the effect of selected stationary phase, alumina was found to retain oxygen-containing phenolic compounds to a greater extent than silica. Principal component analysis (PCA) was used to analyze the concentration ratio profiles of the various trace analytes in the JP8 fuel (phenols, indoles, etc.) in the context of their stationary phase affinity (silica or alumina) and competitive sorption behavior.
Collapse
Affiliation(s)
- Grant S Ochoa
- Department of Chemistry, University of Washington, Seattle, Box 351700, WA, 98195, USA
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Seattle, Box 351700, WA, 98195, USA.
| |
Collapse
|
16
|
Poole CF. Selectivity evaluation of extraction systems. J Chromatogr A 2023; 1695:463939. [PMID: 36996617 DOI: 10.1016/j.chroma.2023.463939] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Extraction is the most common sample preparation technique prior to chromatographic analysis for samples which are too complex, too dilute, or contain matrix components incompatible with the further use of the separation system or interfere in the detection step. The most important extraction techniques are biphasic systems involving the transfer of target compounds from the sample to a different phase ideally accompanied by no more than a tolerable burden of co-extracted matrix compounds. The solvation parameter model affords a general framework to characterize biphasic extraction systems in terms of their relative capability for solute-phase intermolecular interactions (dispersion, dipole-type, hydrogen bonding) and within phase solvent-solvent interactions for cavity formation (cohesion). The approach is general and allows the comparison of liquid and solid extraction phases using the same terms and is used to explain the features important for the selective enrichment of target compounds by a specific extraction phase using solvent extraction, liquid-liquid extraction, and solid-phase extraction for samples in a gas, liquid, or solid phase. Hierarchical cluster analysis with the system constants of the solvation parameter model as variables facilitates the selection of solvents for extraction, the identification of liquid-liquid distribution systems with non-redundant selectivity, and evaluation of different approaches using liquids and solids for the isolation of target compounds from different matrices.
Collapse
|
17
|
Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, de la Guardia M. Miniaturized Solid Phase Extraction techniques for different kind of pollutants analysis: State of the art and future perspectives – PART 1. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
El-Deen AK. An Overview of Recent Advances and Applications of Matrix Solid-Phase Dispersion. SEPARATION & PURIFICATION REVIEWS 2023. [DOI: 10.1080/15422119.2023.2172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Masrura SU, Abbas T, Jones-Lepp TL, Kaewlom P, Khan E. Combining environmental, health, and safety features with a conductor like Screening Model for selecting green solvents for antibiotic analyses. ENVIRONMENTAL RESEARCH 2023; 218:114962. [PMID: 36460072 DOI: 10.1016/j.envres.2022.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.
Collapse
Affiliation(s)
- Sayeda Ummeh Masrura
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Tauqeer Abbas
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA; Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Tammy L Jones-Lepp
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
20
|
Tang X, Meng C, Rampal N, Li A, Chen X, Gong W, Jiang H, Fairen-Jimenez D, Cui Y, Liu Y. Homochiral Porous Metal-Organic Polyhedra with Multiple Kinds of Vertices. J Am Chem Soc 2023; 145:2561-2571. [PMID: 36649535 DOI: 10.1021/jacs.2c12424] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metal-organic polyhedra featuring non-Archimedean/Platonic architectures with multiple kinds of vertices have aroused great attention for their fascinating structures and properties but are yet challenging to achieve. Here, we report a combinatorial strategy to make such nonclassic polyhedral cages by combining kinetically labile metal ions with non-planar organic linkers instead of the usual only inert metal centers and planar ligands. This facilitates the synthesis of an enantiopure twisted tetra(3-pyridyl)-based TADDOL (TADDOL = tetraaryl-1,3-dioxolane-4,5-dimethanol) ligand (L) capable of binding Ni(II) ions to produce a regular convex cage, Ni6L8, with two mixed metal/organic vertices and three rarely reported concave cages Ni14L8, Ni18L12, and Ni24L16 with three or four mixed vertices. Each of the cages has an amphiphilic cavity decorated with chiral dihydroxyl functionalities and packs into a three-dimensional structure. The enantioselective adsorption and separation performances of the cages are strongly dependent on their pore structure features. Particularly, Ni14L8 and Ni18L12 with wide openings can be solid adsorbents for the adsorptive and solid-phase extractive separation of a variety of racemic spirodiols with up to 98% ee, whereas Ni6L8 and Ni24L16 with smaller pore apertures cannot adsorb the racemates. The combination of single-crystal X-ray diffraction analysis of the host-guest adduct and GCMC simulation indicates that the enantiospecific recognition capabilities originate from the well-organized chiral inner sphere as well as multiple interactions within the chiral microenvironment. This work therefore provides an attractive strategy for the rational design of polyhedral cages, showing geometrically fascinating structures with properties different from those of classic assemblies.
Collapse
Affiliation(s)
- Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunlong Meng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nakul Rampal
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Aurelia Li
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Xu Chen
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
An automated micro solid phase extraction gas chromatography-mass spectrometry (μSPE-GC-MS) detection method for geosmin and 2-methylisoborneol in drinking water. Sci Rep 2023; 13:1768. [PMID: 36720961 PMCID: PMC9889310 DOI: 10.1038/s41598-023-28543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Geosmin and 2-methylisoborneol (2-MIB) are amongst the most common earthy and musty taste and odour (T&O) compounds found in drinking water. With low odour threshold detection limits below 10 ng L-1, and the complexity of raw water matrices, these two compounds provide a significant challenge for water companies globally. In this research, for the first time, a novel and fully automated micro-solid phase-extraction (μSPE) method coupled with gas chromatography (GC)-mass spectrometry (MS) has been developed for the detection of geosmin and 2-MIB for drinking water analysis. The new automated method described herein is environmentally friendly requiring low raw water sample volumes, of 25 mL, and only 50 μL of elution solvent. Our μSPE-GC-MS method exhibits excellent linearity for both compounds (R2 > 0.999) and low limits of detection of 2.0 ng L-1 and 4.3 ng L-1 for geosmin and 2-MIB, respectively. The method showed excellent recovery rates (95.1-100.1%) and good precision (RSD < 7%) in raw sample matrices. Our approach is fully automated onto a robotic workstation which can be readily integrated into a laboratory workflow for routine water analysis. Furthermore, the method has excellent potential to be incorporated within a portable system for onsite analysis.
Collapse
|
22
|
Schincaglia A, Aspromonte J, Franchina FA, Chenet T, Pasti L, Cavazzini A, Purcaro G, Beccaria M. Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products. Foods 2023; 12:527. [PMID: 36766055 PMCID: PMC9914313 DOI: 10.3390/foods12030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.
Collapse
Affiliation(s)
- Andrea Schincaglia
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 Esq. 115, La Plata 1900, Argentina
| | - Flavio A. Franchina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
23
|
Daghi MM, Nemati M, Abbasalizadeh A, Farajzadeh MA, Afshar Mogaddam MR, Mohebbi A. Combination of dispersive solid phase extraction using MIL–88A as a sorbent and deep eutectic solvent–based dispersive liquid–liquid microextraction for the extraction of some pesticides from fruit juices before their determination by GC–MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Ullah I, Adnan M, Begum S, Nazir R, Javed T, Aziz MA. Effects of ecological factors on phytochemical and nutritional composition of Caralluma tuberculata N. E. Brown. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Zhang Q, Zhang M, Li Y, Hou X. Novel core–shell SiO2@dSiO2@NH2-MIL-53(Al) packed into solid phase extraction column for enrichment of non-steroidal anti-inflammatory drugs prior to UPLC-MS/MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Simultaneous Quantification of Opioids in Blood and Urine by Gas Chromatography-Mass Spectrometer with Modified Dispersive Solid-Phase Extraction Technique. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196761. [PMID: 36235294 PMCID: PMC9570840 DOI: 10.3390/molecules27196761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022]
Abstract
Common methodologies such as liquid-liquid extraction and solid-phase extraction are applied for the extraction of opioids from biological specimens i.e., blood and urine. Techniques including LC-MS/LC-MSMS, GC-MS, etc. are used for qualitative or quantitative determination of opioids. The goal of the present work is to design a green, economic, rugged, and simple extraction technique for famous opioids in human blood and urine and their simultaneous quantification by GC-MS equipped with an inert plus electron impact (EI) ionization source at SIM mode to produce reproducible and efficient results. Morphine, codeine, 6-acetylmorphine, nalbuphine, tramadol and dextromethorphan were selected as target opioids. Anhydrous Epsom salt was applied for dSPE of opioids from blood and urine into acetonitrile extraction solvent with the addition of sodium phosphate buffer (pH 6) and n-hexane was added to remove non-polar interfering species from samples. BSTFA was used as a derivatizing agent for GC-MS. Following method validation, the LOD/LLOQ and ULOQ were determined for morphine, codeine, nal-buphine, tramadol, and dextromethorphan at 10 ng/mL and 1500 ng/mL, respectively, while the LOD/LLOQ and ULOQ were determined for 6-acetylmorphine at 5 ng/mL and 150 ng/mL, respectively. This method was applied to real blood and urine samples of opioid abusers and the results were found to be reproducible with true quantification.
Collapse
|
27
|
Ullah N, Tuzen M. A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review. Crit Rev Anal Chem 2022; 54:1729-1747. [PMID: 36197714 DOI: 10.1080/10408347.2022.2128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Sample preparation is one of the viable procedures to be used before analysis to enhance sensitivity and reduce the matrix effect. The current review is mainly emphasized the latest outcome and applications of microextraction techniques based on the miniaturization of the classical conventional methods based on liquid-phase and solid-phase extraction for the quantitative elemental analysis in different real samples. The limitation of the conventional sample preparation methods (liquid and solid phase extraction) has been overcome by developing a new way of reducing size as compared with the conventional system through the miniaturization approach. Miniaturization of the sample preparation techniques has received extensive attention due to its extraction at microlevels, speedy, economical, eco-friendly, and high extraction capability. The growing demand for speedy, economically feasible, and environmentally sound analytical approaches is the main intention to upgrade the conventional procedures apply for sample preparation in environmental investigation. A growing trend of research has been perceived to quantify the trace for elemental analysis in different natures of real samples. This review also recapitulates the current futuristic scenarios for the green and economically viable procedure with special overemphasis and concentrates on eco-friendly miniaturized sample-preparation techniques such as liquid-phase microextraction (LPME) and solid-phase microextraction (SPME). This review also emphasizes the latest progress and applications of the LPME and SPME approach and their future perspective.
Collapse
Affiliation(s)
- Naeem Ullah
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Research Institute, Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
28
|
Azevedo Lemos V, Bastos Santos L, Santos Assis R. Deep eutectic solvent in ultrasound-assisted liquid-phase microextraction for determination of vanadium in food and environmental waters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Wang H, Liu X, Tu M, Xu X, Yang S, Chen D. Current Sample Preparation Methods and Analytical Techniques for the Determination of Synthetic Antioxidants in Edible Oils. J Sep Sci 2022; 45:3874-3886. [PMID: 35984364 DOI: 10.1002/jssc.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Synthetic antioxidants play a critical role in the storage and process of edible oil due to that they can retard lipid oxidation, maintain the quality of oils, and prolong the shelf life. However, a series of studies have proved the potential risks of synthetic antioxidants for human health when consumed in excess, and many countries have established the permitted amounts of synthetic antioxidants in oils. Thus, the accurate quantification of synthetic antioxidants in edible oils is necessary, and there have developed various analytical methods involved in chromatographical, electrochemical, and spectroscopic methods. Owing to the complex matrix and the incompatibility between the oil sample and the detection instrument, sample preparation is usually adopted prior to the instrument detection to improve the detection effectiveness. The current review aims to provide a comprehensive overview of the recently developed sample preparation methods and analytical techniques applied to determine synthetic antioxidants in edible oils from 2010 to present, with emphasis on the sample preparation methods combined with separation-based analytical techniques such CE and LC with various detectors. The advantages and limitations of some typical analytical methods are discussed and some insights in the future perspectives are also provided in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Honglei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xueting Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menglin Tu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| |
Collapse
|
30
|
Anoxybacillus flavithermus loaded ɣ-Fe 2O 3 magnetic nanoparticles as an efficient magnetic sorbent for the preconcentrations of Cu(II) and Mn(II). Food Chem Toxicol 2022; 168:113334. [PMID: 35952822 DOI: 10.1016/j.fct.2022.113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
It was hypothesized that -iron( oxide nanoparticles (ɣ-Fe2O3 NPs) functionalized with Anoxybacillus flavithermus (A. flavithermus) as an effective magnetic sorbent for the preconcentrations of toxic metal ions. It is clear to conclude that the main novelty of this study is that ɣ-Fe2O3 NPs loaded with A. flavithermus is selective-specific for Cu(II), Mn(II). Structural functional groups of the samples were elucidated by FTIR, and SEM. Significant experimental parameters were investigated in detail. 0.2 mL min-1 of flow rate, 5 mL of 1 M of hydrochloric acid as eluent, 150 mg biogenic mass sample, and 150 mg ɣ-Fe2O3 NPs for supporting material were found as the best conditions. This developed method has been tested and verified using certified and standard reference materials. As a result of the studies, the pre-concentration factor of the Cu(II), Mn(II) metals was calculated as 40. All measurements showed that the developed solid-phase extraction (SPE) columns are available for 32 cycles. The use of ɣ-Fe2O3 NPs equipped with A. flavithermus as an effective magnetic sorbent for the first measurements of ions was thoroughly studied. In order of the biosorption capacities were calculated as 26.0, and 30.3 mg/g for Cu(II), Mn(II), respectively. The developed method for specifying the samples showed excellent to excellent results.
Collapse
|
31
|
Design of molecularly imprinted polymer materials relying on hydrophobic interactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Rapid and ultra-trace levels analysis of 33 antibiotics in water by on-line solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1677:463304. [DOI: 10.1016/j.chroma.2022.463304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
|
33
|
Farajzadeh MA, Fazli N, Pezhhanfar S, Afshar Mogaddam MR. Combination of a dispersive solid phase extraction method based on octadecylamine modified magnetic nanoparticles with dispersive liquid-liquid microextraction for the extraction and preconcentration of pesticides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2376-2388. [PMID: 35666192 DOI: 10.1039/d2ay00404f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, a new and efficient sorbent has been prepared using the co-precipitation method for magnetic dispersive solid phase extraction followed by dispersive liquid-liquid microextraction. This method was used for the extraction and preconcentration of some widely-used pesticides (chlorpyrifos, haloxyfop-R-methyl, oxadiazon, diniconazole, clodinafop-propargyl, fenpropathrin, and fenoxaprop-P-ethyl) from fruit juices prior to their determination by gas chromatography-flame ionization detection. The sorbent was prepared by octadecylamine co-precipitation with Fe3O4. In the first step, mg amount of the magnetic sorbent was spread into an aqueous sample solution including the selected analytes and vortexed. Then the analytes were eluted with acetonitrile from the surface of the nanoparticles separated with an external magnetic field from the aqueous solution. In the second step, the obtained eluent was mixed with an extraction solvent (chloroform) at the μL-level and rapidly injected into deionized water. After centrifugation, an aliquot of the sedimented phase was injected into the separation system. Experimental parameters which control the performance of both steps were investigated and optimized. Using optimum extraction conditions, the proposed method provided low limits of detection (0.23-0.41 μg L-1) and quantification (0.81-1.3 μg L-1), high enrichment factors (353-443), acceptable extraction recoveries (70-88%), and satisfactory relative standard deviations (≤6%) for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 30 μg L-1 of each pesticide.
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Nasim Fazli
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Reza Afshar Mogaddam
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Farrag SA, Rageh AH, Askal HF, Saleh GA. Biocompatible magnetite nanoparticles coated with ionic liquid-based surfactantas a hydrophilic sorbent for dispersive solid phase microextraction of cephalosporins prior to their quantitation by HPTLC. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1205:123339. [PMID: 35724551 DOI: 10.1016/j.jchromb.2022.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Extraction of highly hydrophilic compounds from biological fluids including urine or plasma samples is a dilemma due to high hydrophilicity of the matrix itself. The main aim of the current work is to explore the competence of ionic liquid (IL)-based surfactant-coated mineral oxide nanoparticles (NPs) in dispersive solid-phase microextraction (d-SPME) of highly hydrophilic analytes taking cefoperazone (CPZ) as a model analyte for the study. The IL-based surfactant coated Fe3O4 NPs is utilized as an innovative adsorbent for the separation and pre-concentration of CPZ after intramuscular injection (I.M) in rabbits. The utilized magnetite NPs were synthesized via simple and reliable co-precipitation procedure, which doesn't require any air-free environment and depends on a single iron (III) salt. Characterization of the as-synthesized NPs was achieved by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX). Surface area measurements show that Fe3O4 NPs have large surface area of 75 m2 g-1. The developed approach utilizes the unique properties of the IL-based surfactant including multiple polar interaction types provided by the polar head in addition to merits of Fe3O4 nanoparticles, which include large adsorptive capacity and magnetic properties, to improve separation, save time, and achieve satisfactory recovery. Comprehensive study was developed for the factors, that affect the adsorption capacity such as pH, NPs amount, IL-based surfactant concentration, ionic strength, adsorption time, and desorption conditions. Moreover, the adsorption data was fitted to Langmuir and second-order kinetic models as reflected by the reasonable determination coefficients of 0.9319 and 0.9726, respectively. Under the optimized conditions, the developed approach achieves good correlation coefficient of 0.9975, and 0.9981 over linearity range of 0.7-12.0 and 4.0-50.0 µg mL-1 for both CPZ standard solutions and spiked rabbit plasma, respectively. It also provides good sensitivity expressed by the low values of limit of detection (LOD) of 0.2 and 1.2 µg mL-1 and limit of quantitation (LOQ) of 0.7 and 4.0 µg mL-1 for both the standard solutions and spiked plasma, respectively. The developed approach was also applied successfully for monitoring CPZ in rabbit plasma samples with satisfactory recovery % (83-110). In addition, a detailed pharmacokinetic study is performed where pharmacokinetic parameters of CPZ in rabbit plasma samples were calculated.
Collapse
Affiliation(s)
| | - Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hassan F Askal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Saleh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Faculty of Pharmacy, Merit University, New Sohag, Sohag, Egypt
| |
Collapse
|
35
|
A New Approach for Quantifying Purpurogallin in Brewed Beverages Using LC-MS in Combination with Solid Phase Extraction. Foods 2022; 11:foods11101429. [PMID: 35626999 PMCID: PMC9141120 DOI: 10.3390/foods11101429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Purpurogallin (PPG) is a phenolic compound known for its high antioxidant properties in plant-based food materials. However, there is no easy and reliable method for direct determination of PPG in brewed beverages owing to its hydrophobicity, which makes it hard to separate from the background hydrophobic components. Therefore, a method employing solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS) was developed for detection and quantification of PPG in brewed beverages, and PPG content was quantified in commercial coffee, cocoa, and tea samples. The limits of detection and quantification were 71.8 and 155.6 ng/g dry weight (dw), respectively. The recovery with SPE was 26.6%. When combined with acetonitrile extraction (ANE), the recovery was 6.8%, higher than 2.6% with water extraction (WTE). Test tube extractions were better than moka pot brewing (MPB) for PPG quantification. Total PPG content of ground coffees prepared by ANE, WTE, and MPB ranged between 635 and 770, 455 and 630, and 85 and 135 ng/g dw, respectively. PPG was detected in two English breakfast tea samples (335−360 ng/g dw) using WTE, but not in cocoa samples. ANE showed higher (p < 0.05) PPG levels, but WTE (r = 0.55, p < 0.01) correlated better with MPB than ANE (r = 0.43, p < 0.01). The result indicated that WTE is the best method to determine PPG in brewed beverages. This work demonstrated that PPG was significant in brewed coffee, and our pioneer study in developing the method for beverage sample preparation and LC-MS analysis has made possible industrial applications and provided new perspectives for future research.
Collapse
|
36
|
Usman I, Hussain M, Imran A, Afzaal M, Saeed F, Javed M, Afzal A, Ashfaq I, Al Jbawi E, A. Saewan S. Traditional and innovative approaches for the extraction of bioactive compounds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mehak Javed
- Medicine and Allied, Faisalabad Medical University, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Shamaail A. Saewan
- Department of Food Sciences, College of Agriculture, University of Basrah, Basrah, Iraq
| |
Collapse
|
37
|
Ferdous Alam M, Begum ZA, Furusho Y, Hasegawa H, Rahman IM. Selective separation of radionuclides from environmental matrices using proprietary solid-phase extraction systems: A review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
A combination of amino-functionalized fibrous silica (KCC-1-NH2)/effectively and efficiently oxidized graphene oxide (EEGO) nanocomposite for dispersive solid-phase extraction, pre-concentration and fluorescence determination of total para-cresol in plasma samples of chronic kidney disease patients. J Pharm Biomed Anal 2022; 214:114746. [DOI: 10.1016/j.jpba.2022.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
39
|
Martos-Esteban A, Macleod OJS, Maudlin I, Kalogeropoulos K, Jürgensen JA, Carrington M, Laustsen AH. Black-necked spitting cobra (Naja nigricollis) phospholipases A 2 may cause Trypanosoma brucei death by blocking endocytosis through the flagellar pocket. Sci Rep 2022; 12:6394. [PMID: 35430620 PMCID: PMC9013370 DOI: 10.1038/s41598-022-10091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
African trypanosomes, such as Trypanosoma brucei, are flagellated protozoa which proliferate in mammals and cause a variety of diseases in people and animals. In a mammalian host, the external face of the African trypanosome plasma membrane is covered by a densely packed coat formed of variant surface glycoprotein (VSG), which counteracts the host's adaptive immune response by antigenic variation. The VSG is attached to the external face of the plasma membrane by covalent attachment of the C-terminus to glycosylphosphatidylinositol. As the trypanosome grows, newly synthesised VSG is added to the plasma membrane by vesicle fusion to the flagellar pocket, the sole location of exo- and endocytosis. Snake venoms contain dozens of components, including proteases and phospholipases A2. Here, we investigated the effect of Naja nigricollis venom on T. brucei with the aim of describing the response of the trypanosome to hydrolytic attack on the VSG. We found no evidence for VSG hydrolysis, however, N. nigricollis venom caused: (i) an enlargement of the flagellar pocket, (ii) the Rab11 positive endosomal compartments to adopt an abnormal dispersed localisation, and (iii) cell cycle arrest prior to cytokinesis. Our results indicate that a single protein family, the phospholipases A2 present in N. nigricollis venom, may be necessary and sufficient for the effects. This study provides new molecular insight into T. brucei biology and possibly describes mechanisms that could be exploited for T. brucei targeting.
Collapse
Affiliation(s)
| | - Olivia J S Macleod
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Isabella Maudlin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Jonas A Jürgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
40
|
Synthesis of a novel polydopamine and C18 dual-functionalized magnetic core-shell mesoporous nanocomposite for enrichment and analysis of widely abused illegal drugs in urine samples on site and in the laboratory. J Pharm Biomed Anal 2022; 212:114656. [DOI: 10.1016/j.jpba.2022.114656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
41
|
Determination of 3-nitrobenzanthrone, its metabolites, and 41 polycyclic aromatic compounds (16 PAHs, 19 nitro-PAHs, and 6 oxy-PAHs) in ascidians (Phallusia nigra). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Li Z, Dong D, Zhang L, Hua X, Guo Z. Photodegradation of norfloxacin in ice: Role of the fluorine substituent. CHEMOSPHERE 2022; 291:133042. [PMID: 34822864 DOI: 10.1016/j.chemosphere.2021.133042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Ice is an important medium in cold regions, because it regulates the environmental behaviors and the fate of pollutants. The photodegradation of fluoroquinolone (FQ) antibiotics as emerging contaminants of concern in ice remains poorly understood. Here, the photodegradation of fluorine-containing norfloxacin (NOR) as one model of FQs in ice formed from freezing solutions was investigated. Pipemidic acid (PPA) as a structural analogue of NOR was selected to compare the effect of molecular structure on the antibiotic photodegradation in the ice. Results suggested that the photodegradation rate constant of NOR in ice relative to pure water increased by 40.0%. Both the absorbance in the absorption spectra and quantum yields of NOR in ice over water increased by 1.4 times. Direct photodegradation mainly caused the defluorination of NOR, which was more important than cleavage and oxidation of the piperazine ring by self-sensitized photooxidation in ice. The defluorination rate of NOR in the ice relative to water increased by about 12.7%. The fluorine substituent played a more important role in the NOR photodegradation in the ice, resulting in a 1.6-fold increase in the photodegradation rate constant of NOR relative to PPA. This work provides a new insight into the role of fluorine substituents in the photodegradation of fluorinated pharmaceuticals in cold regions.
Collapse
Affiliation(s)
- Zhuojuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
43
|
Dugheri S, Mucci N, Cappelli G, Trevisani L, Bonari A, Bucaletti E, Squillaci D, Arcangeli G. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8690569. [PMID: 35154846 PMCID: PMC8837452 DOI: 10.1155/2022/8690569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The solid-phase microextraction (SPME), invented by Pawliszyn in 1989, today has a renewed and growing use and interest in the scientific community with fourteen techniques currently available on the market. The miniaturization of traditional sample preparation devices fulfills the new request of an environmental friendly analytical chemistry. The recent upswing of these solid-phase microextraction technologies has brought new availability and range of robotic automation. The microextraction solutions propose today on the market can cover a wide variety of analytical fields and applications. This review reports on the state-of-the-art innovative solid-phase microextraction techniques, especially those used for chromatographic separation and mass-spectrometric detection, given the recent improvements in availability and range of automation techniques. The progressively implemented solid-phase microextraction techniques and related automated commercially available devices are classified and described to offer a valuable tool to summarize their potential combinations to face all the laboratories requirements in terms of analytical applications, robustness, sensitivity, and throughput.
Collapse
Affiliation(s)
- Stefano Dugheri
- Industrial Hygiene and Toxicology Laboratory, University Hospital Careggi, Florence, Italy
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lucia Trevisani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Elisabetta Bucaletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Spatiotemporal Distribution and Analysis of Organophosphate Flame Retardants in the Environmental Systems: A Review. Molecules 2022; 27:molecules27020573. [PMID: 35056888 PMCID: PMC8780022 DOI: 10.3390/molecules27020573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
In recent times, there has been a cumulative apprehension regarding organophosphate flame retardants (OPFRs) owing to their high manufacturing and usage after brominated flame retardants were strictly regulated and banned from being distributed and used in many countries. OPFRs are known as the main organic pollutants in the terrestrial and aquatic environment. They are very dangerous to humans, plants and animals. They are also carcinogenic and some have been implicated in neurodevelopmental and fertility challenges. OPFRs are distributed into the environment through a number of processes, including the usage, improper disposal and production of materials. The solid phase extraction (SPE) method is suggested for the extraction of OPFRs from water samples since it provides high quality recoveries ranging from 67% to 105% and relative standard deviations (RSDs) below 20%. In the same vein, microwave-assisted extraction (MAE) is highly advocated for the extraction of OPFRs from sediment/soil. Recoveries in the range of 78% to 105% and RSDs ranging from 3% to 8% have been reported. Hence, it is a faster method of extraction for solid samples and only demands a reduced amount of solvent, unlike other methods. The extract of OPFRs from various matrices is then followed by a clean-up of the extract using a silica gel packed column followed by the quantification of compounds by gas chromatography coupled with a mass spectrometer (GC–MS) or a flame ionization detector (GC-FID). In this paper, different analytical methods for the evaluation of OPFRs in different environmental samples are reviewed. The effects and toxicities of these contaminants on humans and other organisms are also discussed.
Collapse
|
45
|
Self-assembly of core-shell structured multiwalled nanotubes@covalent organic frameworks composite for solid-phase extraction of four phytohormones from fruit juices. J Chromatogr A 2022; 1664:462807. [PMID: 35032898 DOI: 10.1016/j.chroma.2022.462807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Covalent organic frameworks (COFs) have attracted considerable attention in sample pretreatment because of their unique characteristics. However, the submicron or micron size of COFs has restricted their wider applications in solid-phase extraction (SPE). Herein, multiwalled nanotubes (MWNTs) were used as substrate materials to synthesize core-shell structured MWNTs@COFs composites (MWNTs@SNW-1) using a simple self-assembly method. The as-prepared MWNTs@SNW-1 composite exhibited a high BET surface area, good thermal stability, and good adsorption capacity. The MWNTs@SNW-1 composite was used as an adsorbent in cartridge-based SPE to extract four phytohormones before determining their levels by high-performance liquid chromatography. The experimental parameters affecting extraction efficiency, including the amount of adsorbents, solution pH, ionic strength, eluent type, and eluent volume, were investigated. The developed method showed a wide linear range (0.37-100 ng mL-1), low detection limits (0.11-0.32 ng mL-1), low limits of quantification (0.37-1.07 ng mL-1), high enrichment factors (45.9-49.3), and good reproducibility (<4.8%) for phytohormones. The developed analytical method was used to analyze trace phytohormones in fruit juices with good recoveries, highlighting the potential of the MWNTs@SNW-1 composite as an adsorbent in sample preparation.
Collapse
|
46
|
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. CHEMOSPHERE 2022; 287:132216. [PMID: 34517234 DOI: 10.1016/j.chemosphere.2021.132216] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 μg L-1 whereas phthalates were found below the detectable limit to 384 μg L-1, pesticides in the order of 10-1 μg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 μg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.
Collapse
Affiliation(s)
- Lakshmi Pisharody
- The Zuckerberg Institute of Water Research, Ben-Gurion University, Israel
| | - Ashitha Gopinath
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
47
|
Ali S, Azeem SMA, Naqvi A, El-Shahat MF, Mohamed A. Selective Separation and Preconcentration of Caffeine from Natural and Pharmaceutical Products using New Polyurethane Foams. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Samah Ali
- Taibah University, Saudi Arabia; The National Organization for Drug Control and Research, Egypt
| | | | | | | | - Amr Mohamed
- Taibah University, Saudi Arabia; The Higher Institute of Optics Technology, Egypt
| |
Collapse
|
48
|
Pezhhanfar S, Farajzadeh MA, Hosseini-Yazdi SA, Afshar Mogaddam MR. An MOF-based dispersive micro solid phase extraction prior to dispersive liquid-liquid microextraction for analyzing plasticizers. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Kharazi M, Saien J, Asadabadi S. Review on Amphiphilic Ionic Liquids as New Surfactants: From Fundamentals to Applications. Top Curr Chem (Cham) 2021; 380:5. [PMID: 34842981 DOI: 10.1007/s41061-021-00362-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
The demand for lowering interfacial tension (IFT) in different processes has persuaded researchers to use stable and resistant surfactants with low environmental impact. For this purpose, surface-active ionic liquids (SAILs) have attracted much attention owing to their good amphiphilic nature and prominent properties like recyclability and high performance under harsh conditions. This review initially explains how the IFT and critical micelle concentration of different systems vary in the presence of different SAILs with a variety of alkyl chain lengths, head groups, and counter anions. Towards this aim, some physicochemical properties of SAILs as well as the corresponding theoretical aspects of adsorption are considered. Then, recent advances in utilizing SAILs for reducing IFT of different chemical systems are surveyed. Relevantly, the role of important operating parameters of temperature, pH, presence of electrolytes, and the chemical nature of involved phases are adequately discussed. Further, an overview of different SAILs applications in stabilization, separation, and in petroleum industries is scrutinized. To allow better judgment, precise comparisons between different types of SAILs and conventional surfactants are provided. Finally, challenges and possible directions of future research on SAILs are highlighted.
Collapse
Affiliation(s)
- Mona Kharazi
- Department of Applied Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran
| | - Javad Saien
- Department of Applied Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | - Simin Asadabadi
- Department of Applied Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran
| |
Collapse
|
50
|
Li L, Zhang H, Zhang Q, Wang T, Hou X. Macro-microporous zeolitic imidazole framework-8/cellulose aerogel for semi-automated pipette tip solid phase extraction of fluoroquinolones in water. Anal Chim Acta 2021; 1184:338984. [PMID: 34625268 DOI: 10.1016/j.aca.2021.338984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
In this study, Zeolitic Imidazole Framework-8/cellulose aerogel (ZIF-8/CA) hybrid was successfully fabricated through a simple doping method and ZIF-8 acted as the major component for adsorption. In order to elucidate the adsorption mechanism deeply, molecular simulation was adopted to the expound the interaction modes between ZIF-8 and the fluoroquinolones (FQs). ZIF-8/CA was used as the adsorbent for semi-automated pipette tip solid phase extraction (PT-SPE). In combination with high performance liquid chromatography tandem fluorescence detector (HPLC-FLD), the established method was successfully employed to determine trace amount of FQs in water samples. Extraction parameters such as the content of ZIF-8, pH of sample solution, volume of sample, flow rate of sampling, type and volume of elution solvent were investigated. Under the optimized conditions, satisfactory linearity was achieved with the correlation coefficient (R2) ranging from 0.9954 to 0.9992. The limits of detection were in the range of 0.337-1.707 ng L-1. And the recoveries varied from 75.9% to 96.8% with RSD less than 8.0%. The established method was demonstrated to be sensitive, efficient and convenient.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Hongyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Ting Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|