1
|
Hafida EG, Rachid S, Halima G, Najib K. CBD's potential impact on Parkinson's disease: An updated overview. Open Med (Wars) 2024; 19:20241075. [PMID: 39479465 PMCID: PMC11524397 DOI: 10.1515/med-2024-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Background Parkinson's disease (PD) is primarily known as a motor disorder; however, its debilitating non-motor symptoms have a significant impact on patients' quality of life. The current standard treatment, l-DOPA, is used to relieve motor symptoms, but prolonged use is often associated with severe side effects. This creates an urgent need for effective alternatives targeting both motor and non-motor symptoms. Objectives Over the past decade, Cannabis sativa and its cannabinoids have been widely studied across various health conditions. Among these compounds, cannabidiol (CBD), a non-psychoactive component, is garnering growing interest due to its multi-targeted pleiotropic properties. This work aims to provide a comprehensive overview of CBD's efficacy in PD. Methods This review compiles data on both motor and non-motor symptoms of PD, integrating results from preclinical animal studies and available clinical trials. Results Preclinical research has demonstrated promising results regarding CBD's potential benefits in PD; however, the total number of clinical trials is limited (with only seven studies to date), making it difficult to draw definitive conclusions on its efficacy. Conclusions While preclinical findings suggest that CBD may have therapeutic potential in PD, the limited number of clinical trials highlights the need for further research. This review emphasizes the gaps that need to be addressed in future studies to fully understand CBD's role in treating both motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- El Ghachi Hafida
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Soulimani Rachid
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Gamrani Halima
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Kissani Najib
- Department of Neurology, Faculty of Medicine and Pharmacy, University Hospital Mohamed VI, Medical Research Center, University Cadi Ayyad, 40000, Marrakesh, Morocco
| |
Collapse
|
2
|
Briânis RC, Andreotti JP, Moreira FA, Iglesias LP. Interplay between endocannabinoid and endovanilloid mechanisms in fear conditioning. Acta Neuropsychiatr 2024; 36:255-264. [PMID: 37982167 DOI: 10.1017/neu.2023.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVE The transient receptor potential cation channel, subfamily V (vanilloid), member 1 (TRPV1) mediates pain perception to thermal and chemical stimuli in peripheral neurons. The cannabinoid receptor type 1 (CB1), on the other hand, promotes analgesia in both the periphery and the brain. TRPV1 and CB1 have also been implicated in learned fear, which involves the association of a previously neutral stimulus with an aversive event. In this review, we elaborate on the interplay between CB1 receptors and TRPV1 channels in learned fear processing. METHODS We conducted a PubMed search for a narrative review on endocannabinoid and endovanilloid mechanisms on fear conditioning. RESULTS TRPV1 and CB1 receptors are activated by a common endogenous agonist, arachidonoyl ethanolamide (anandamide), Moreover, they are expressed in common neuroanatomical structures and recruit converging cellular pathways, acting in concert to modulate fear learning. However, evidence suggests that TRPV1 exerts a facilitatory role, whereas CB1 restrains fear responses. CONCLUSION TRPV1 and CB1 seem to mediate protective and aversive roles of anandamide, respectively. However, more research is needed to achieve a better understanding of how these receptors interact to modulate fear learning.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Giannì M, Antinucci M, Bertoncini S, Taglioli L, Giuliani C, Luiselli D, Risso D, Marini E, Morini G, Tofanelli S. Association between Variants of the TRPV1 Gene and Body Composition in Sub-Saharan Africans. Genes (Basel) 2024; 15:752. [PMID: 38927688 PMCID: PMC11202968 DOI: 10.3390/genes15060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In humans, the transient receptor potential vanilloid 1 (TRPV1) gene is activated by exogenous (e.g., high temperatures, irritating compounds such as capsaicin) and endogenous (e.g., endocannabinoids, inflammatory factors, fatty acid metabolites, low pH) stimuli. It has been shown to be involved in several processes including nociception, thermosensation, and energy homeostasis. In this study, we investigated the association between TRPV1 gene variants, sensory perception (to capsaicin and PROP), and body composition (BMI and bioimpedance variables) in human populations. By comparing sequences deposited in worldwide databases, we identified two haplotype blocks (herein referred to as H1 and H2) that show strong stabilizing selection signals (MAF approaching 0.50, Tajima's D > +4.5) only in individuals with sub-Saharan African ancestry. We therefore studied the genetic variants of these two regions in 46 volunteers of sub-Saharan descent and 45 Italian volunteers (both sexes). Linear regression analyses showed significant associations between TRPV1 diplotypes and body composition, but not with capsaicin perception. Specifically, in African women carrying the H1-b and H2-b haplotypes, a higher percentage of fat mass and lower extracellular fluid retention was observed, whereas no significant association was found in men. Our results suggest the possible action of sex-driven balancing selection at the non-coding sequences of the TRPV1 gene, with adaptive effects on water balance and lipid deposition.
Collapse
Affiliation(s)
- Maddalena Giannì
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Marco Antinucci
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Stefania Bertoncini
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| | - Luca Taglioli
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| | - Cristina Giuliani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, 40126 Bologna, Italy;
| | - Donata Luiselli
- Dipartimento di Beni Culturali (DBC), Università di Bologna, 48121 Ravenna, Italy;
| | - Davide Risso
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| | - Elisabetta Marini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy;
| | | | - Sergio Tofanelli
- Dipartimento di Biologia, Università di Pisa, Via Ghini 13, 56126 Pisa, Italy; (M.G.); (M.A.); (S.B.); (L.T.); (D.R.)
| |
Collapse
|
4
|
Samineni L, Acharya B, Behera H, Oh H, Kumar M, Chowdhury R. Protein engineering of pores for separation, sensing, and sequencing. Cell Syst 2023; 14:676-691. [PMID: 37591205 DOI: 10.1016/j.cels.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Proteins are critical to cellular function and survival. They are complex molecules with precise structures and chemistries, which allow them to serve diverse functions for maintaining overall cell homeostasis. Since the discovery of the first enzyme in 1833, a gamut of advanced experimental and computational tools has been developed and deployed for understanding protein structure and function. Recent studies have demonstrated the ability to redesign/alter natural proteins for applications in industrial processes of interest and to make customized, novel synthetic proteins in the laboratory through protein engineering. We comprehensively review the successes in engineering pore-forming proteins and correlate the amino acid-level biochemistry of different pore modification strategies to the intended applications limited to nucleotide/peptide sequencing, single-molecule sensing, and precise molecular separations.
Collapse
Affiliation(s)
- Laxmicharan Samineni
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Bibek Acharya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023; 28:5980. [PMID: 37630232 PMCID: PMC10458707 DOI: 10.3390/molecules28165980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Giuliana Corna
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina
| | - Michele Golino
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| |
Collapse
|
6
|
Erin N, Szallasi A. Carcinogenesis and Metastasis: Focus on TRPV1-Positive Neurons and Immune Cells. Biomolecules 2023; 13:983. [PMID: 37371563 DOI: 10.3390/biom13060983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Both sensory neurons and immune cells, albeit at markedly different levels, express the vanilloid (capsaicin) receptor, Transient Receptor Potential, Vanilloid-1 (TRPV1). Activation of TRPV1 channels in sensory afferent nerve fibers induces local effector functions by releasing neuropeptides (most notably, substance P) which, in turn, trigger neurogenic inflammation. There is good evidence that chronic activation or inactivation of this inflammatory pathway can modify tumor growth and metastasis. TRPV1 expression was also demonstrated in a variety of mammalian immune cells, including lymphocytes, dendritic cells, macrophages and neutrophils. Therefore, the effects of TRPV1 agonists and antagonists may vary depending on the prominent cell type(s) activated and/or inhibited. Therefore, a comprehensive understanding of TRPV1 activity on immune cells and nerve endings in distinct locations is necessary to predict the outcome of therapies targeting TRPV1 channels. Here, we review the neuro-immune modulation of cancer growth and metastasis, with focus on the consequences of TRPV1 activation in nerve fibers and immune cells. Lastly, the potential use of TRPV1 modulators in cancer therapy is discussed.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
- Immuno-Pharmacology and Immuno-Oncology Unit, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
7
|
Luo ZH, Ma JX, Zhang W, Tian AX, Gong SW, Li Y, Lai YX, Ma XL. Alterations in the microenvironment and the effects produced of TRPV5 in osteoporosis. J Transl Med 2023; 21:327. [PMID: 37198647 DOI: 10.1186/s12967-023-04182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.
Collapse
Affiliation(s)
- Zhi-Heng Luo
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ai-Xian Tian
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Shu-Wei Gong
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
8
|
Fulp A, Bingham S, Fisler B, Kho F, Kim J, Kim SJ, Martin T, Mims B, Reji Thomas K, Roe G, Spiotta J, Young J, Lazenka M. Design and synthesis of endocannabinoid enzyme inhibitors for ocular indications. Bioorg Med Chem Lett 2022; 68:128763. [PMID: 35500728 DOI: 10.1016/j.bmcl.2022.128763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
A small library of FAAH and dual FAAH/MAGL inhibitors designed for peripheral selectivity were targeted. Of these compounds, three were identified to have desirable FAAH inhibition and reduced permeability in a PAMPA assay. Those three compounds were advanced into a MAGL inhibitor assay and one was found to be a relative selective FAAH inhibitor, FAAH to MAGL IC50 ratio of 1:27, and one was found to be more characteristic of a true dual enzyme inhibitor, FAAH to MAGL IC50 ratio of 1:4. Both compounds showed activity in an ABPP assay, blockage of TAMRA-FP labeling of FAAH and MAGL in rat eye homogenate.
Collapse
Affiliation(s)
- Alan Fulp
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA.
| | - Sarah Bingham
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Bethany Fisler
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Felice Kho
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Joshua Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - So Jung Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Tabitha Martin
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Bailey Mims
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Kezia Reji Thomas
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Grace Roe
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Julia Spiotta
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Julianna Young
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24515, USA
| | - Matthew Lazenka
- Kentucky College of Osteopathic Medicine and Kentucky College of Optometry, University of Pikeville, 147 Sycamore Street, Pikeville, KY 41501, USA
| |
Collapse
|
9
|
Nguyen TL, Nam YS, Lee SY, Jang CG. Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway. Biomol Ther (Seoul) 2022; 30:328-333. [PMID: 35616070 PMCID: PMC9252876 DOI: 10.4062/biomolther.2022.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.
Collapse
Affiliation(s)
- Thi-Lien Nguyen
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Pharmacology Laboratory, National Institute of Drug Quality Control, Ha Noi 100000, Viet Nam
| | - Yun-Son Nam
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Morales P, Muller C, Jagerovic N, Reggio PH. Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. Front Mol Biosci 2022; 9:841190. [PMID: 35281260 PMCID: PMC8914543 DOI: 10.3389/fmolb.2022.841190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Both metabotropic (CBRs) and ionotropic cannabinoid receptors (ICRs) have implications in a range of neurological disorders. The metabotropic canonical CBRs CB1 and CB2 are highly implicated in these pathological events. However, selective targeting at CB2 versus CB1 offers optimized pharmacology due to the absence of psychoactive outcomes. The ICR transient receptor potential vanilloid type 1 (TRPV1) has also been reported to play a role in CNS disorders. Thus, activation of both targets, CB2 and TRPV1, offers a promising polypharmacological strategy for the treatment of neurological events including analgesia and neuroprotection. This brief research report aims to identify chemotypes with a potential dual CB2/TRPV1 profile. For this purpose, we have rationalized key structural features for activation and performed virtual screening at both targets using curated chemical libraries.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
11
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Parkinson's disease related alterations in cannabinoid transmission. Brain Res Bull 2021; 178:82-96. [PMID: 34808322 DOI: 10.1016/j.brainresbull.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Egaña-Huguet J, Bonilla-Del Río I, Gómez-Urquijo SM, Mimenza A, Saumell-Esnaola M, Borrega-Roman L, García Del Caño G, Sallés J, Puente N, Gerrikagoitia I, Elezgarai I, Grandes P. The Absence of the Transient Receptor Potential Vanilloid 1 Directly Impacts on the Expression and Localization of the Endocannabinoid System in the Mouse Hippocampus. Front Neuroanat 2021; 15:645940. [PMID: 33692673 PMCID: PMC7937815 DOI: 10.3389/fnana.2021.645940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Roman
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
13
|
Ishitsuka Y, Kondo Y, Kadowaki D. Toxicological Property of Acetaminophen: The Dark Side of a Safe Antipyretic/Analgesic Drug? Biol Pharm Bull 2020; 43:195-206. [PMID: 32009106 DOI: 10.1248/bpb.b19-00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is the most popular analgesic/antipyretic agent in the world. APAP has been regarded as a safer drug compared with non-steroidal anti-inflammatory drugs (NSAIDs) particularly in terms of lower risks of renal dysfunction, gastrointestinal injury, and asthma/bronchospasm induction, even in high-risk patients such as the elderly, children, and pregnant women. On the other hand, the recent increasing use of APAP has raised concerns about its toxicity. In this article, we review recent pharmacological and toxicological findings about APAP from basic, clinical, and epidemiological studies, including spontaneous drug adverse events reporting system, especially focusing on drug-induced asthma and pre-and post-natal closure of ductus arteriosus. Hepatotoxicity is the greatest fault of APAP and the most frequent cause of drug-induced acute liver failure in Western countries. However, its precise mechanism remains unclear and no effective cure beyond N-acetylcysteine has been developed. Recent animal and cellular studies have demonstrated that some cellular events, such as c-jun N-terminal kinase (JNK) pathway activation, endoplasmic reticulum (ER) stress, and mitochondrial oxidative stress may play important roles in the development of hepatitis. Herein, the molecular mechanisms of APAP hepatotoxicity are summarized. We also discuss the not-so-familiar "dark side" of APAP as an otherwise safe analgesic/antipyretic drug.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Daisuke Kadowaki
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University
| |
Collapse
|
14
|
Ohashi N, Kohno T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front Pharmacol 2020; 11:580289. [PMID: 33328986 PMCID: PMC7734311 DOI: 10.3389/fphar.2020.580289] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen is one of the most commonly used analgesic agents for treating acute and chronic pain. However, its metabolism is complex, and its analgesic mechanisms have not been completely understood. Previously, it was believed that acetaminophen induces analgesia by inhibiting cyclooxygenase enzymes; however, it has been considered recently that the main analgesic mechanism of acetaminophen is its metabolization to N-acylphenolamine (AM404), which then acts on the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid 1 receptors in the brain. We also recently revealed that the acetaminophen metabolite AM404 directly induces analgesia via TRPV1 receptors on terminals of C-fibers in the spinal dorsal horn. It is known that, similar to the brain, the spinal dorsal horn is critical to pain pathways and modulates nociceptive transmission. Therefore, acetaminophen induces analgesia by acting not only on the brain but also the spinal cord. In addition, acetaminophen is not considered to possess any anti-inflammatory activity because of its weak inhibition of cyclooxygenase (COX). However, we also revealed that AM404 induces analgesia via TRPV1 receptors on the spinal dorsal horn in an inflammatory pain rat model, and these analgesic effects were stronger in the model than in naïve rats. The purpose of this review was to summarize the previous and new issues related to the analgesic mechanisms of acetaminophen. We believe that it will allow clinicians to consider new pain management techniques involving acetaminophen.
Collapse
Affiliation(s)
- Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|
15
|
Li Q, Garry MG. A murine model of the exercise pressor reflex. J Physiol 2020; 598:3155-3171. [PMID: 32406099 DOI: 10.1113/jp277602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The decerebrate mouse provides a novel working model of the exercise pressor reflex (EPR). The decerebrate mouse model of the EPR is similar to the previously described decerebrate rat model. Studying the EPR in transgenic mouse models can define exact mechanisms of the EPR in health and disease. ABSTRACT The exercise pressor reflex (EPR) is defined by a rise in mean arterial pressure (MAP) and heart rate (HR) in response to exercise and is necessary to match metabolic demand and prevent premature fatigue. While this reflex is readily tested in humans, mechanistic studies are largely infeasible. Here, we have developed a novel murine model of the EPR to allow for mechanistic studies in various mouse models. We observed that ventral root stimulation (VRS) in an anaesthetized mouse causes a depressor response and a reduction in HR. In contrast, the same stimulation in a decerebrate mouse causes a rise in MAP and HR which is abolished by dorsal rhizotomy or by neuromuscular blockade. Moreover, we demonstrate a reduced MAP response to VRS using TRPV1 antagonism or in Trpv1 null mice while the response to passive stretch remains intact. Additionally, we demonstrate that intra-arterial infusion of capsaicin results in a dose-related rise in MAP and HR that is significantly reduced by a selective and potent TRPV1 antagonist or is completely abolished in Trpv1 null mice. These data serve to validate the development of a decerebrate mouse model for the study of cardiovascular responses to exercise and further define the role of the TRPV1 receptor in mediating the EPR. This novel model will allow for extensive study of the EPR in unlimited transgenic and mutant mouse lines, and for an unprecedented exploration of the molecular mechanisms that control cardiovascular responses to exercise in health and disease.
Collapse
Affiliation(s)
- Qinglu Li
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
16
|
Vigo MB, Pérez MJ, De Fino F, Gómez G, Martínez SA, Bisagno V, Di Carlo MB, Scazziota A, Manautou JE, Ghanem CI. Acute acetaminophen intoxication induces direct neurotoxicity in rats manifested as astrogliosis and decreased dopaminergic markers in brain areas associated with locomotor regulation. Biochem Pharmacol 2019; 170:113662. [DOI: 10.1016/j.bcp.2019.113662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/08/2019] [Indexed: 01/13/2023]
|
17
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
18
|
Almeida V, Levin R, Peres FF, Suiama MA, Vendramini AM, Santos CM, Silva ND, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC. Role of the endocannabinoid and endovanilloid systems in an animal model of schizophrenia-related emotional processing/cognitive deficit. Neuropharmacology 2019; 155:44-53. [DOI: 10.1016/j.neuropharm.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
19
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
20
|
Wenzel JM, Cheer JF. Endocannabinoid Regulation of Reward and Reinforcement through Interaction with Dopamine and Endogenous Opioid Signaling. Neuropsychopharmacology 2018; 43:103-115. [PMID: 28653666 PMCID: PMC5719091 DOI: 10.1038/npp.2017.126] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system (eCB) is implicated in the mediation of both reward and reinforcement. This is evidenced by the ability of exogenous cannabinoid drugs to produce hedonia and maintain self-administration in both human and animal subjects. eCBs similarly facilitate behaviors motivated by reward through interaction with the mesolimbic dopamine (DA) and endogenous opioid systems. Indeed, eCB signaling in the ventral tegmental area stimulates activation of midbrain DA cells and promotes DA release in terminal regions such as the nucleus accumbens (NAc). DA transmission mediates several aspects of reinforced behavior, such as motivation, incentive salience, and cost-benefit calculations. However, much research suggests that endogenous opioid signaling underlies the hedonic aspects of reward. eCBs and their receptors functionally interact with opioid systems within the NAc to support reward, most likely through augmenting DA release. This review explores the interaction of these systems as it relates to reward and reinforcement and examines current literature regarding their role in food reward.
Collapse
Affiliation(s)
- J M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, Department of Psychiatry, Graduate Program in Neuroscience, University of Maryland School of Medicine, HSF I, Room 280J, 20 Penn Street, Baltimore, MD 21201, USA, Tel: +1 410 7060112, Fax: +1 410 7062512, E-mail:
| |
Collapse
|
21
|
Influence of GABA-B Agonist Baclofen on Capsaicin-Induced Excitation of Secondary Peristalsis in Humans. Clin Transl Gastroenterol 2017; 8:e120. [PMID: 28981081 PMCID: PMC5666117 DOI: 10.1038/ctg.2017.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Esophageal instillation of capsaicin enhances secondary peristalsis, but the γ-aminobutyric acid receptor type B (GABA-B) agonist baclofen inhibits secondary peristalsis. This study aimed to investigate whether baclofen could influence heartburn perception and secondary peristalsis subsequent to capsaicin infusion in healthy adults. METHODS Secondary peristalsis was performed by slow and rapid mid-esophagus air injections in 15 healthy subjects. Two different sessions including esophageal infusion of capsaicin-containing red pepper sauce (0.84 mg) following pre-treatment with placebo or baclofen were randomly performed to test the effects on heartburn perception and secondary peristalsis. RESULTS The intensity of heartburn symptom subsequent to capsaicin infusion was significantly greater after pre-treatment of baclofen as compared with the placebo (P=0.03). Baclofen significantly increased the threshold volume of secondary peristalsis to slow air injections subsequent to esophageal capsaicin infusion (P<0.001). Baclofen significantly increased the threshold volume of secondary peristalsis to rapid air injections subsequent to esophageal capsaicin infusion (P<0.01). The frequency of secondary peristalsis subsequent to capsaicin infusion was significantly decreased with baclofen as compared with the placebo (P<0.002). Baclofen had no effect on any of the peristaltic parameters of secondary peristalsis subsequent to capsaicin infusion. CONCLUSIONS The GABA-B agonist baclofen appears to attenuate the esophagus to capsaicin-induced excitation of secondary peristalsis in healthy adults. Our study suggests the inhibitory modulation for GABA-B receptors on capsaicin-sensitive afferents mediating secondary peristalsis in human esophagus.
Collapse
|
22
|
Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn. Anesthesiology 2017; 127:355-371. [PMID: 28542001 DOI: 10.1097/aln.0000000000001700] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. METHODS We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. RESULTS Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P < 0.01), while direct application of acetaminophen to the dorsal horn did not reduce these responses. Direct application of N-acylphenolamine decreased the amplitudes of monosynaptic excitatory postsynaptic currents evoked by C-fiber stimulation (control, 462.5 ± 197.5 pA; N-acylphenolamine, 272.5 ± 134.5 pA; n = 10; P = 0.022) but not those evoked by stimulation of Aδ-fibers. These phenomena were mediated by transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. CONCLUSIONS Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.
Collapse
|
23
|
Shiri M, Komaki A, Oryan S, Taheri M, Komaki H, Etaee F. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats. Can J Physiol Pharmacol 2017; 95:382-387. [DOI: 10.1139/cjpp-2016-0274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212–2, (3) capsaicin, and (4) WIN55,212–2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212–2, a cannabinoid receptor (CB1/CB2) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212–2 (CB1/CB2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212–2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats’ cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212–2 on learning and memory.
Collapse
Affiliation(s)
- Mariam Shiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamidreza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Faraji N, Komaki A, Salehi I. Interaction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats. Basic Clin Neurosci 2017; 8:129-137. [PMID: 28539997 PMCID: PMC5440922 DOI: 10.18869/nirp.bcn.8.2.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction: Previous studies have shown that the cannabinoid system is involved in anxiety. In addition, transient receptor potential vanilloid type-1 (TRPV1) channels are new targets for the development of anxiolytics. The present study investigated the possible interaction between the cannabinoid and vanilloid systems on anxiety-like behavior in rats. Methods: Four different groups of male Wistar rats received intraperitoneal (IP) injections of (1) vehicle (DMSO+saline), (2) cannabinoid receptor agonist WIN55212-2 (WIN) (1 mg/kg), (3) TRPV1 receptor antagonist capsazepine (CPZ) (5 mg/kg), or (4) combined WIN (1 mg/kg) and CPZ (5 mg/kg) treatment 30 minutes before testing in the elevated plus maze. Results: The results showed that compared to the control (vehicle), both WIN and CPZ increased the time spent and number of entries on the open arms. Co-administration of WIN and CPZ had a synergistic effect, i.e., the number of entries and time spent on the open arms was greater than that in the groups administered the two compounds alone. The total distance travelled by rats and total number of entries on to the arms did not significantly differ between groups. Conclusion: Acute neuropharmacological blockade of the TRPV1 receptor or stimulation of the CB1 receptor produced an anxiolytic effect. It seems that antagonism of the vanilloid system modulates cannabinoid gain that rises the anxiolytic effect. TRPV1 antagonism may amend generation of endocannabinoids, which in turn increases anxiolytic impact. These results suggest that two systems could act on or share a common signaling pathway affecting the expression of anxiety.
Collapse
Affiliation(s)
- Nafiseh Faraji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Biology, Hamadan Branch, Islamic Azad University, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis. Compr Physiol 2016; 7:1-15. [PMID: 28134998 DOI: 10.1002/cphy.c160005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenna Sarvaideo
- Department of Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 2016; 13:264. [PMID: 27724914 PMCID: PMC5057243 DOI: 10.1186/s12974-016-0738-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
Collapse
Affiliation(s)
- Frances Corrigan
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kimberley A Mander
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Does cannabidiol have a role in the treatment of schizophrenia? Schizophr Res 2016; 176:281-290. [PMID: 27374322 DOI: 10.1016/j.schres.2016.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder which places a significant emotional and economic strain on the individual and society-at-large. Unfortunately, currently available therapeutic strategies do not provide adequate relief and some patients are treatment-resistant. In this regard, cannabidiol (CBD), a non-psychoactive constituent of Cannabis sativa, has shown significant promise as a potential antipsychotic for the treatment of schizophrenia. However, there is still considerable uncertainty about the mechanism of action of CBD as well as the brain regions which are thought to mediate its putative antipsychotic effects. We argue that further research on CBD is required to fast-track its progress to the clinic and in doing so, we may generate novel insights into the neurobiology of schizophrenia.
Collapse
|
28
|
Pérez de Vega MJ, Gómez-Monterrey I, Ferrer-Montiel A, González-Muñiz R. Transient Receptor Potential Melastatin 8 Channel (TRPM8) Modulation: Cool Entryway for Treating Pain and Cancer. J Med Chem 2016; 59:10006-10029. [PMID: 27437828 DOI: 10.1021/acs.jmedchem.6b00305] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPM8 ion channels, the primary cold sensors in humans, are activated by innocuous cooling (<28 °C) and cooling compounds (menthol, icilin) and are implicated in sensing unpleasant cold stimuli as well as in mammalian thermoregulation. Overexpression of these thermoregulators in prostate cancer and in other life-threatening tumors, along with their contribution to an increasing number of pathological conditions, opens a plethora of medicinal chemistry opportunities to develop receptor modulators. This Perspective seeks to describe current known modulators for this ion channel because both agonists and antagonists may be useful for the treatment of most TRPM8-mediated pathologies. We primarily focus on SAR data for the different families of compounds and the pharmacological properties of the most promising ligands. Furthermore, we also address the knowledge about the channel structure, although still in its infancy, and the role of the TRPM8 protein signalplex to channel function and dysfunction. We finally outline the potential future prospects of the challenging TRPM8 drug discovery field.
Collapse
Affiliation(s)
| | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli , Via D. Montesano 49, 80131, Naples, Italy
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández . 03202 Alicante, Spain
| | | |
Collapse
|
29
|
Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel E. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiol Dis 2016; 94:179-95. [PMID: 27373843 DOI: 10.1016/j.nbd.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurício Dos-Santos-Pereira
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Francisco Silveira Guimarães
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res 2016; 109:119-31. [PMID: 26921661 DOI: 10.1016/j.phrs.2016.02.020] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María J Pérez
- Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires, Argentina
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
31
|
Wei NN, Lv HN, Wu Y, Yang SL, Sun XY, Lai R, Jiang Y, Wang K. Selective Activation of Nociceptor TRPV1 Channel and Reversal of Inflammatory Pain in Mice by a Novel Coumarin Derivative Muralatin L from Murraya alata. J Biol Chem 2015; 291:640-51. [PMID: 26515068 DOI: 10.1074/jbc.m115.654392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 01/27/2023] Open
Abstract
Coumarin and its derivatives are fragrant natural compounds isolated from the genus Murraya that are flowering plants widely distributed in East Asia, Australia, and the Pacific Islands. Murraya plants have been widely used as medicinal herbs for relief of pain, such as headache, rheumatic pain, toothache, and snake bites. However, little is known about their analgesic components and the molecular mechanism underlying pain relief. Here, we report the bioassay-guided fractionation and identification of a novel coumarin derivative, named muralatin L, that can specifically activate the nociceptor transient receptor potential vanilloid 1 (TRPV1) channel and reverse the inflammatory pain in mice through channel desensitization. Muralatin L was identified from the active extract of Murraya alata against TRPV1 transiently expressed in HEK-293T cells in fluorescent calcium FlexStation assay. Activation of TRPV1 current by muralatin L and its selectivity were further confirmed by whole-cell patch clamp recordings of TRPV1-expressing HEK-293T cells and dorsal root ganglion neurons isolated from mice. Furthermore, muralatin L could reverse inflammatory pain induced by formalin and acetic acid in mice but not in TRPV1 knock-out mice. Taken together, our findings show that muralatin L specifically activates TRPV1 and reverses inflammatory pain, thus highlighting the potential of coumarin derivatives from Murraya plants for pharmaceutical and medicinal applications such as pain therapy.
Collapse
Affiliation(s)
- Ning-Ning Wei
- From the Department of Neurobiology and Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center
| | - Hai-Ning Lv
- the State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191
| | - Yang Wu
- the Department of Molecular and Cellular Pharmacology, IDG/McGovern Institute for Brain Research, Peking University School of Pharmaceutical Sciences, Beijing 100191
| | - Shi-Long Yang
- the Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, and
| | - Xiao-Ying Sun
- the Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - Ren Lai
- the Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, and
| | - Yong Jiang
- the State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191,
| | - KeWei Wang
- From the Department of Neurobiology and Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, the Department of Molecular and Cellular Pharmacology, IDG/McGovern Institute for Brain Research, Peking University School of Pharmaceutical Sciences, Beijing 100191, the Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
32
|
Planells-Cases1 R, Ferrer-Montiel A. Drug design and development through the vanilloid receptor. Expert Opin Drug Discov 2015; 2:1053-63. [PMID: 23484872 DOI: 10.1517/17460441.2.8.1053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The vanilloid receptor (TRPV1) has attracted a great expectation in pain therapeutics for the treatment of chronic inflammatory conditions. As a result, several drug discovery programmes were launched in the past years that yielded a large number of receptor agonists and antagonists. However, despite the claimed therapeutic potential of TRPV1 modulators, a disappointing number of candidates have progressed into clinical trials and those were only for dental pain and migraine, indicating that our understanding of the role of TRPV1 in pain is still very limited. The widespread distribution of TRPV1 in different tissues suggests an involvement in body functions other than pain. Indeed, new findings indicate that TRPV1 is tonically active in physiological conditions and its pharmacological blockade leads to hyperthermia. Furthermore, the full abrogation of TRPV1 in some models of chronic pain results in enhanced pain. Therefore, a remaining challenge is the development of drugs that preserve the physiological activity of TRPV1 and downregulate the function of overactive receptors.
Collapse
|
33
|
Slavik R, Grether U, Müller Herde A, Gobbi L, Fingerle J, Ullmer C, Krämer SD, Schibli R, Mu L, Ametamey SM. Discovery of a high affinity and selective pyridine analog as a potential positron emission tomography imaging agent for cannabinoid type 2 receptor. J Med Chem 2015; 58:4266-77. [PMID: 25950914 DOI: 10.1021/acs.jmedchem.5b00283] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As part of our efforts to develop CB2 PET imaging agents, we investigated 2,5,6-substituted pyridines as a novel class of potential CB2 PET ligands. A total of 21 novel compounds were designed, synthesized, and evaluated for their potency and binding properties toward human and rodent CB1 and CB2. The most promising ligand 6a was radiolabeled with carbon-11 to yield 16 ([(11)C]RSR-056). Specific binding of 16 to CB2-positive spleen tissue of rats and mice was demonstrated by in vitro autogadiography and verified in vivo in PET and biodistribution experiments. Furthermore, 16 was evaluated in a lipopolysaccharid (LPS) induced murine model of neuroinflammation. Brain radioactivity was strikingly higher in the LPS-treated mice than the control mice. Compound 16 is a promising radiotracer for imaging CB2 in rodents. It might serve as a tool for the investigation of CB2 receptor expression levels in healthy tissues and different neuroinflammatory disorders in humans.
Collapse
Affiliation(s)
- Roger Slavik
- †Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Uwe Grether
- ‡Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Adrienne Müller Herde
- †Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Luca Gobbi
- ‡Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jürgen Fingerle
- ‡Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Ullmer
- ‡Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Stefanie D Krämer
- †Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Roger Schibli
- †Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.,§Department of Nuclear Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Linjing Mu
- †Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.,§Department of Nuclear Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Simon M Ametamey
- †Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
34
|
Tahmasebi L, Komaki A, Karamian R, Shahidi S, Sarihi A, Salehi I, Nikkhah A. The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats. Eur J Pharmacol 2015; 757:68-73. [PMID: 25843413 DOI: 10.1016/j.ejphar.2015.03.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/12/2023]
Abstract
Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus. In this study, we examined the hippocampal effects of co-administrating WIN55-212-2 and capsaicin, which are CB1 and TRPV1 agonists, respectively, on the induction of LTP in the dentate gyrus (DG) of rats. LTP in the hippocampal area was induced by high-frequency stimulation (HFS). Our results indicated that the cannabinoid agonist reduced both field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude after HFS with respect to the control group, whereas the vanilloid agonist increased these parameters along with the increased induction of LTP as compared to the control group. We also showed that the co-administration of cannabinoid and vanilloid agonists had different effects on fEPSP slope and PS amplitude. It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.
Collapse
Affiliation(s)
- Lida Tahmasebi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ruhollah Karamian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nikkhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
Liu TT, Yi CH, Lei WY, Hung XS, Yu HC, Chen CL. Influence of repeated infusion of capsaicin-contained red pepper sauce on esophageal secondary peristalsis in humans. Neurogastroenterol Motil 2014; 26:1487-93. [PMID: 25124733 DOI: 10.1111/nmo.12414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/21/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND The transient receptor potential vanilloid 1 has been implicated as a target mediator for heartburn perception and modulation of esophageal secondary peristalsis. Our aim was to determine the effect of repeated esophageal infusion of capsaicin-contained red pepper sauce on heartburn perception and secondary peristalsis in healthy adults. METHODS Secondary peristalsis was performed with mid-esophageal injections of air in 15 healthy adults. Two separate protocols including esophageal infusion with saline and capsaicin-contained red pepper sauce and 2 consecutive sessions of capsaicin-contained red pepper sauce were randomly performed. KEY RESULTS After repeated infusion of capsaicin-contained red pepper sauce, the threshold volume to activate secondary peristalsis was significantly increased during slow (p < 0.001) and rapid air injections (p = 0.004). Acute infusion of capsaicin-contained red pepper sauce enhanced heartburn perception (p < 0.001), but the intensity of heartburn perception was significantly reduced after repeated capsaicin-contained red pepper sauce infusion (p = 0.007). Acute infusion of capsaicin-contained red pepper sauce significantly increased pressure wave amplitudes of distal esophagus during slow (p = 0.003) and rapid air injections (p = 0.01), but repeated infusion of capsaicin-contained red pepper sauce significantly decreased pressure wave amplitude of distal esophagus during slow (p = 0.0005) and rapid air injections (p = 0.003). CONCLUSIONS & INFERENCES Repeated esophageal infusion of capsaicin appears to attenuate heartburn perception and inhibit distension-induced secondary peristalsis in healthy adults. These results suggest capsaicin-sensitive afferents in modulating sensorimotor function of secondary peristalsis in human esophagus.
Collapse
Affiliation(s)
- T T Liu
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Kobata K, Takemura I, Tago G, Moriya T, Kubota K, Nakatani S, Wada M, Watanabe T. Formation of long-chain N-vanillyl-acylamides from plant oils. Biosci Biotechnol Biochem 2014; 78:1242-5. [DOI: 10.1080/09168451.2014.912118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Long-chain N-vanillyl-acylamides (LCNVAs) were generated from plant oils and vanillylamine (VA) by nucleophilic amidation without any catalytic reagents. The resulting LCNVAs varied according to the fatty acid composition of the plant oil used. Therefore, the LCNVAs contained in Capsicum oleoresins were products that were spontaneously generated from the oleoresin during storage.
Collapse
Affiliation(s)
- Kenji Kobata
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Ikue Takemura
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Japan
| | - Gaku Tago
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Takayuki Moriya
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Kaori Kubota
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Japan
| | - Sachie Nakatani
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Masahiro Wada
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Tatsuo Watanabe
- School of Food and Nutritional Sciences, University of Shizuoka, Suruga-ku, Japan
| |
Collapse
|
37
|
Almeida V, Peres FF, Levin R, Suiama MA, Calzavara MB, Zuardi AW, Hallak JE, Crippa JA, Abílio VC. Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain. Schizophr Res 2014; 153:150-9. [PMID: 24556469 DOI: 10.1016/j.schres.2014.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs display hyperlocomotion - reverted by atypical and typical antipsychotics. These results suggest that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia and the effects of potential drugs with an antipsychotic profile. The aim of this study was to investigate the effects of WIN55-212,2 (CB1/CB2 agonist), ACEA (CB1 agonist), rimonabant (CB1 inverse agonist), AM404 (anandamide uptake/metabolism inhibitor), capsaicin (agonist TRPV1) and capsazepine (antagonist TRPV1) on the social interaction and locomotion of control animals (Wistar rats) and SHRs. The treatment with rimonabant was not able to alter either the social interaction or the locomotion presented by Wistar rats (WR) and SHR at any dose tested. The treatment with WIN55-212,2 decreased locomotion (1mg/kg) and social interaction (0.1 and 0.3mg/kg) of WR, while the dose of 1mg/kg increased social interaction of SHR. The treatment with ACEA increased (0.3mg/kg) and decreased (1mg/kg) locomotion of both strain. The administration of AM404 increased social interaction and decreased locomotion of SHR (5mg/kg), and decreased social interaction and increased locomotion in WR (1mg/kg). The treatment with capsaicin (2.5mg/kg) increased social interaction of both strain and decreased locomotion of SHR (2.5mg/kg) and WR (0.5mg/kg and 2.5mg/kg). In addition, capsazepine (5mg/kg) decreased locomotion of both strains and increased (5mg/kg) and decreased (10mg/kg) social interaction of WR. Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mariana B Calzavara
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil.
| |
Collapse
|
38
|
Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease. Neurobiol Dis 2014; 62:416-25. [DOI: 10.1016/j.nbd.2013.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/10/2023] Open
|
39
|
Wenzel JM, Cheer JF. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues. Front Psychiatry 2014; 5:118. [PMID: 25225488 PMCID: PMC4150350 DOI: 10.3389/fpsyt.2014.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.
Collapse
Affiliation(s)
- Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Psychiatry, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
40
|
Luce V, Fernandez Solari J, Rettori V, De Laurentiis A. The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide. ACTA ACUST UNITED AC 2014; 188:31-9. [DOI: 10.1016/j.regpep.2013.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 01/31/2023]
|
41
|
Medial prefrontal cortex Transient Receptor Potential Vanilloid Type 1 (TRPV1) in the expression of contextual fear conditioning in Wistar rats. Psychopharmacology (Berl) 2014; 231:149-57. [PMID: 23922023 DOI: 10.1007/s00213-013-3211-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Contextual fear is evoked by re-exposing an animal to an environment that has been previously paired with an aversive or unpleasant stimulus. It can be assessed by freezing and cardiovascular changes such as increase in mean arterial pressure and heart rate. A marked increase in neuronal activity is associated with contextual fear conditioning, especially in limbic structures involved with defense reactions, such as the ventral portion of medial prefrontal cortex. OBJECTIVE Given the fact that transient receptor potential vanilloid type 1 (TRPV1) receptors could be involved in the expression of defensive behavior, the present work tested the hypothesis that TRPV1 manipulation in the ventromedial prefrontal cortex (vMPFC) modulates the expression of contextual conditioned fear. METHODS Male Wistar rats received bilateral microinjections into the vMPFC of the TRPV1 receptor antagonists capsazepine (1, 10, and 60 nmol/200 nL) or 6-iodonordihydrocapsaicin (3 nmol/200 nL), and the TRPV1 agonist capsaicin (1 nmol/200 nL) preceded by vehicle or 6-iodonordihydrocapsaicin before re-exposure to the experimental chamber for 10 min, 48 h after conditioning in two different protocols distinct by their aversiveness. RESULTS Both antagonists reduced the freezing and cardiovascular responses in the high aversive protocol. Capsaicin caused an increase in fear-associated responses that could be blocked by 6-iodonordihydrocapsaicin. CONCLUSIONS Our results indicate that TRPV1 receptors located in the vMPFC have a tonic involvement in the modulation of the expression of contextual fear conditioning.
Collapse
|
42
|
Vigna SR, Shahid RA, Liddle RA. Ethanol contributes to neurogenic pancreatitis by activation of TRPV1. FASEB J 2013; 28:891-6. [PMID: 24221085 DOI: 10.1096/fj.13-236208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol abuse is a major cause of pancreatitis in people, but the mechanism is unknown. It has been recently demonstrated that transient receptor potential vanilloid 1 (TRPV1) activation causes neurogenic inflammation and plays an important role in acute pancreatitis. Moreover, TRPV1 is activated by ethanol. We examined the direct effects of ethanol on acute pancreatitis. Acute inflammation of the pancreas was produced by injection of ethanol and palmitoleic acid (POA), a nonoxidative metabolite of ethanol, in wild-type C57BL/6J mice and Trpv1-knockout C57BL/6J mice. Inflammatory indexes were analyzed 24 h later. Injection of ethanol + POA produced acute pancreatitis indicated by significant increases in histopathological damage, serum amylase levels, and pancreatic MPO concentrations (P<0.05-0.001). All parameters of pancreatitis were blocked by pretreatment with the TRPV1 antagonist drug AMG9810. In addition, ethanol + POA administration to Trpv1knockout mice did not produce pancreatic inflammation. Treatment with vehicle, ethanol alone, or POA alone had no inflammatory effects. TRPV1 partially mediates inflammation induced by ethanol + POA in the mouse pancreas, consistent with the ability of ethanol to activate TRPV1. We propose that ethanol may contribute to alcohol-induced pancreatitis by a neurogenic mechanism.
Collapse
Affiliation(s)
- Steven R Vigna
- 1Box 103211, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
43
|
Mascarenhas DC, Gomes KS, Nunes-de-Souza RL. Anxiogenic-like effect induced by TRPV1 receptor activation within the dorsal periaqueductal gray matter in mice. Behav Brain Res 2013; 250:308-15. [PMID: 23707246 DOI: 10.1016/j.bbr.2013.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 01/17/2023]
Abstract
Pharmacological manipulation of TRPV1 (Transient Receptor Potential Vanilloid type-1) receptors has been emerging as a novel target in the investigation of anxiety states. Here, we attempt to show the role played by the TRPV1 receptors within the dorsal periaqueductal gray matter (dPAG), a midbrain structure strongly involved in the modulation of anxiety. Anxiety was assessed by recording spatiotemporal [percent open arm entries (%OE) and percent open arm time (%OT)] and ethological [e.g., head dipping (HD), stretched-attend postures (SAP)] measures in mice exposed to the elevated plus-maze (EPM). Mice received an intra-dPAG injection of the TRPV1 agonist capsaicin (0, 0.01, 0.1 or 1.0nmol/0.2μL; Experiment 1) or antagonist capsazepine (0, 10, 30 or 60nmol/0.2μL; Experiment 2), or combined injections of capsazepine (30nmol) and capsaicin (1.0nmol) (Experiment 3), and were exposed to the EPM to record spatiotemporal and ethological measures. While capsaicin produced an anxiogenic-like effect (it reduced %OE and %OT and frequency of SAP and HD in the open arms), capsazepine did not change any behavior in the EPM. However, when injected before capsaicin (1.0nmol), intra-dPAG capsazepine (30nmol-a dose devoid of intrinsic effects) antagonized completely the anxiogenic-like effect of the TRPV1 agonist. These results suggest that the anxiogenic-like effect produced by capsaicin is primarily due to TRPV1 activation within the dPAG in mice, but that dPAG TRPV1 receptors do not exert a tonic control over defensive behavior in mice exposed to the EPM.
Collapse
|
44
|
Kulisch C, Albrecht D. Effects of single swim stress on changes in TRPV1-mediated plasticity in the amygdala. Behav Brain Res 2013; 236:344-349. [DOI: 10.1016/j.bbr.2012.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/15/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
45
|
Dékány A, Benko R, Szombati V, Bartho L. The contractile effect of anandamide in the guinea-pig small intestine is mediated by prostanoids but not TRPV1 receptors or capsaicin-sensitive nerves. Basic Clin Pharmacol Toxicol 2012; 112:341-5. [PMID: 23216932 DOI: 10.1111/bcpt.12041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/20/2012] [Indexed: 10/26/2022]
Abstract
Although exogenous and endogenous cannabinoid receptor agonists have well-documented inhibitory effects on gastrointestinal motility, a TRPV1 receptor-mediated excitatory action of anandamide (arachidonoyl ethanolamide, AEA) in the guinea-pig ileum strip has also been described. We used in vitro capsaicin desensitization for assessing the possible participation of sensory neurons in the contractile effect of anandamide on the guinea-pig whole ileum, as well as autonomic drugs and a cyclooxygenase inhibitor for characterizing this response. Isolated organ experiments were used with isotonic recording. Contractions induced by anandamide (1 or 10 μM) were strongly inhibited by tetrodotoxin, indomethacin or atropine plus a tachykinin NK(1) receptor antagonist, but weakly to moderately reduced by atropine alone and partly diminished by the fatty acid amide hydrolase inhibitor URB 597. Neither capsaicin pre-treatment nor the TRPV1 receptor antagonist BCTC, the ganglionic blocking drug hexamethonium or cannabinoid (CB1 or CB2 ) receptor antagonists, influenced the effect of anandamide. It is concluded that the capsaicin-insensitive, neuronal excitatory effect of anandamide in the intestine is most probably mediated by cyclooxygenase products. Such a mechanism may also play a role at other sites in the mammalian body.
Collapse
Affiliation(s)
- András Dékány
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, Pécs, Hungary
| | | | | | | |
Collapse
|
46
|
Hoffmann J, Supronsinchai W, Andreou AP, Summ O, Akerman S, Goadsby PJ. Olvanil acts on transient receptor potential vanilloid channel 1 and cannabinoid receptors to modulate neuronal transmission in the trigeminovascular system. Pain 2012; 153:2226-2232. [PMID: 22902197 DOI: 10.1016/j.pain.2012.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 11/17/2022]
Abstract
The transient receptor potential vanilloid channel 1 (TRPV1) is a nociceptive transducer located on nociceptive neurons. TRPV1 channels located on peripheral neurons mainly transduce the sense of heat and are also activated by low pH or capsaicin. The role of centrally located TRPV1 channels is not fully understood. Likewise their importance in pain syndromes of central origin, such as migraine, is not known. Experimental data suggest a relationship to migraine. However, experimental studies with TRPV1 receptor antagonists indicate that the receptor may not be a useful target for new acute migraine treatments. Any potential role for the receptor in the chronification of migraine has not been investigated. The present study aimed at analyzing the use of the TRPV1 channel as a target to desensitize trigeminal neurons and thereby inhibit neuronal activity in the trigeminocervical complex. The TRPV1 receptor agonist olvanil was used for desensitization because, as compared with capsaicin, it is non-noxious and lacks capsaicin's pungency and CGRP release potential. We further investigated a possible effect of olvanil on cannabinoid (CB(1)) receptors, as an interaction between both receptor systems has been described previously. The results show that olvanil dose-dependently inhibited spontaneous and stimulus-induced activity within the trigeminocervical complex, whereas it had no effect on CSD susceptibility. We further demonstrated that the inhibiting effect of olvanil is mediated by vanilloid and cannabinoid receptor systems, thereby using the synergistic effects this dual mechanism offers. Curiously, TRPV1 receptor agonism may have anti-nociceptive properties through central mechanisms that would be of considerable interest to elucidate.
Collapse
Affiliation(s)
- Jan Hoffmann
- UCSF Headache Program, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Manna SSS, Umathe SN. A possible participation of transient receptor potential vanilloid type 1 channels in the antidepressant effect of fluoxetine. Eur J Pharmacol 2012; 685:81-90. [PMID: 22542657 DOI: 10.1016/j.ejphar.2012.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/26/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
The present study investigated the influence of transient receptor vanilloid type 1 (TRPV1) channel agonist (capsaicin) and antagonist (capsazepine) either alone or in combination with traditional antidepressant drug, fluoxetine; or a serotonin hydroxylase inhibitor, para-chlorophenylalanine; or a glutamate N-methyl-D-aspartate (NMDA) receptor agonist, NMDA on the forced swim test and tail suspension test using male Swiss mice. Results revealed that intracerebroventricular injections of capsaicin (200 and 300 μg/mouse) and capsazepine (100 and 200 μg/mouse) reduced the immobility time, exhibiting antidepressant-like activity that was comparable to the effects of fluoxetine (2.5-10 μg/mouse) in both the tests. However, in the presence of inactive dose (10 μg/mouse) of capsazepine, capsaicin (300 μg/mouse) had no influence on the indices of both tests, signifying that the effects are TRPV1-mediated. Further, the antidepressant-like effects of both the TRPV1 ligands were neutralized in mice-pretreated with NMDA (0.1 μg/mouse), suggestive of the fact that decreased glutamatergic transmission might contribute to the antidepressant-like activity. In addition, co-administration of sub-threshold dose of capsazepine (10 μg/mouse) and fluoxetine (1.75 μg/mouse) produced a synergistic effect in both the tests. In contrast, inactive doses of capsaicin (10 and 100 μg/mouse) partially abolished the antidepressant effect of fluoxetine (10 μg/mouse), while its effect was potentiated by active dose of capsaicin (200 μg/mouse). Moreover, pretreatment of mice with para-chlorophenylalanine (300 mg/kg/day × 3 days, i.p.) attenuated the effects of capsaicin and capsazepine, demonstrating a probable interplay between serotonin and TRPV1, at least in parts. Thus, our data indicate a possible role of TRPV1 in depressive-like symptoms.
Collapse
Affiliation(s)
- Shyamshree S S Manna
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur 440033, Maharastra, India.
| | | |
Collapse
|
48
|
The endocannabinoid system: a revolving plate in neuro-immune interaction in health and disease. Amino Acids 2012; 45:95-112. [PMID: 22367605 DOI: 10.1007/s00726-012-1252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
Studies of the last 40 years have brought to light an important physiological network, the endocannabinoid system. Endogenous and exogenous cannabinoids mediate their effects through activation of specific cannabinoid receptors. This modulatory homoeostatic system operates in the regulation of brain function and also in the periphery. The cannabinoid system has been shown to be involved in regulating the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are modulated by these agents, thus raising the hypothesis that these compounds may be of value in the management of chronic inflammatory diseases. The special properties of endocannabinoids as neurotransmitters, their pleiotropic effects and the impact on immune function show that the endocannabinoid system represents a revolving plate of neural and immune interactions. In this paper, we outline current information on immune effects of cannabinoids in health and disease.
Collapse
|
49
|
Alterations in the emotional and memory behavioral phenotypes of transient receptor potential vanilloid type 1-deficient mice are mediated by changes in expression of 5-HT1A, GABAA, and NMDA receptors. Neuropharmacology 2012; 62:1034-43. [DOI: 10.1016/j.neuropharm.2011.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/21/2022]
|
50
|
Manna SSS, Umathe SN. Transient receptor potential vanilloid 1 channels modulate the anxiolytic effect of diazepam. Brain Res 2011; 1425:75-82. [PMID: 22018687 DOI: 10.1016/j.brainres.2011.09.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/01/2011] [Accepted: 09/22/2011] [Indexed: 12/15/2022]
Abstract
The present study investigated the interaction between the vanilloid and GABAergic systems on anxiety. Swiss mice were subjected to social interaction test, an animal model for assessing anxiety-related behavior, after intracerebroventricular administration of capsaicin, (TRPV1 agonist) or capsazepine, (TRPV1 antagonist) either alone or in combination with traditional anxiolytic drug, diazepam. Results showed that capsaicin (1, 10, and 100 μg/mouse) decreased the interaction time exhibiting an anxiogenic-like response, while capsazepine (10, and 100 μg/mouse) produced anxiolytic-like response similar to that of diazepam (0.25-4 mg/kg, i.p). Prior administration of capsaicin at a dose, inactive per se (0.1 μg/mouse) attenuated the anxiolytic effect of diazepam, whereas, co-administration of capsazepine and diazepam both in their sub-effective as well as effective doses exhibited significant anxiolytic-like effect. Interestingly, the combined treatment of diazepam (2mg/kg) and capsazepine (100μg/mouse) produced no sedative or locomotor deficit effects. On the contrary, a higher dose of diazepam (>2mg/kg) alone was found to be a sedative or locomotor depressant, indicating that the anxiolytic effect of diazepam, at least in part involve TRPV1 receptor. Morever, capsazepine pretreatment blocked the anxiogenic effect of capsaicin (1, and 100 μg/mouse). Taken together, these findings suggest that blockade of TRPV1 might be a functional tool to prevent the risks associated with the long-term use of benzodiazepines.
Collapse
Affiliation(s)
- Shyamshree S S Manna
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharastra, India.
| | | |
Collapse
|