1
|
Espinasa L, Pavie M, Rétaux S. Protocol for lens removal in embryonic fish and its application on the developmental effects of eye regression. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.96963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lens plays a central role in the development of the optic cup. In fish, regression of the eye early in development affects the development of the craniofacial skeleton, the size of the olfactory pits, the optic nerve, and the tectum. Lens removal further affects olfaction, prey capture, and aggression. The similarity of the fish eye to other vertebrates is the basis for its use as an excellent animal model of human defects. Questions regarding the effects of eye regression are specifically well-suited to be addressed by using fish from the genus Astyanax. The species has two morphs; an eyeless cave morph and an eyed, surface morph. In the cavefish, a lens initially develops in embryos, but then degenerates by apoptosis. The cavefish retina is subsequently disorganized, degenerates, and retinal growth is arrested. The same effect is observed in surface fish when the lens is removed or exchanged for a cavefish lens. While studies can greatly benefit from a control group of surface fish with regressed eyes brought through lensectomies, few studies include them because of technical difficulties and the low survivorship of embryos that undergo this procedure. Here we describe a technique with significant modification for improvement for conducting lensectomy in one-day-old Astyanax and other fish, including zebrafish. Yields of up to 30 live embryos were obtained using this technique from a single spawn, thus enabling studies that require large sample sizes.
Collapse
|
2
|
|
3
|
Lai JG, Tsai SM, Tu HC, Chen WC, Kou FJ, Lu JW, Wang HD, Huang CL, Yuh CH. Zebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. PLoS One 2014; 9:e106129. [PMID: 25171174 PMCID: PMC4149531 DOI: 10.1371/journal.pone.0106129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by insitu hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression.
Collapse
Affiliation(s)
- Ju-Geng Lai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
| | - Su-Mei Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
| | - Hsiao-Chen Tu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Wen-Chuan Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
| | - Fong-Ji Kou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
| | - Jeng-Wei Lu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chou-Long Huang
- Departments of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (CHY); (CLH)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, ROC
- College of Life Science and Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan, ROC
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- * E-mail: (CHY); (CLH)
| |
Collapse
|
4
|
Abstract
The differentiation of cilia is mediated by kinesin-driven transport. As the function of kinesins in vertebrate ciliogenesis is poorly characterized, we decided to determine the role of kinesin-2 family motors--heterotrimeric kinesin-II and the homodimeric Kif17 kinesin--in zebrafish cilia. We report that kif17 is largely dispensable for ciliogenesis; kif17 homozygous mutant animals are viable and display subtle morphological defects of olfactory cilia only. In contrast to that, the kif3b gene, encoding a heterotrimeric kinesin subunit, is necessary for cilia differentiation in most tissues, although exceptions exist, and include photoreceptors and a subset of hair cells. Cilia of these cell types persist even in kif3b/kif17 double mutants. Although we have not observed a functional redundancy of kif3b and kif17, kif17 is able to substitute for kif3b in some cilia. In contrast to kif3b/kif17 double mutants, simultaneous interference with kif3b and kif3c leads to the complete loss of photoreceptor and hair cell cilia, revealing redundancy of function. This is in agreement with the idea that Kif3b and Kif3c motor subunits form complexes with Kif3a, but not with each other. Interestingly, kif3b mutant photoreceptor cilia differentiate with a delay, suggesting that kif3c, although redundant with kif3b at later stages of differentiation, is not active early in photoreceptor ciliogenesis. Consistent with that, the overexpression of kif3c in kif3b mutants rescues early photoreceptor cilia defects. These data reveal unexpected diversity of functional relationships between vertebrate ciliary kinesins, and show that the repertoire of kinesin motors changes in some cilia during their differentiation.
Collapse
|
5
|
Watanabe K, Nishimura Y, Oka T, Nomoto T, Kon T, Shintou T, Hirano M, Shimada Y, Umemoto N, Kuroyanagi J, Wang Z, Zhang Z, Nishimura N, Miyazaki T, Imamura T, Tanaka T. In vivo imaging of zebrafish retinal cells using fluorescent coumarin derivatives. BMC Neurosci 2010; 11:116. [PMID: 20843315 PMCID: PMC2945357 DOI: 10.1186/1471-2202-11-116] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 09/15/2010] [Indexed: 12/02/2022] Open
Abstract
Background The zebrafish visual system is a good research model because the zebrafish retina is very similar to that of humans in terms of the morphologies and functions. Studies of the retina have been facilitated by improvements in imaging techniques. In vitro techniques such as immunohistochemistry and in vivo imaging using transgenic zebrafish have been proven useful for visualizing specific subtypes of retinal cells. In contrast, in vivo imaging using organic fluorescent molecules such as fluorescent sphingolipids allows non-invasive staining and visualization of retinal cells en masse. However, these fluorescent molecules also localize to the interstitial fluid and stain whole larvae. Results We screened fluorescent coumarin derivatives that might preferentially stain neuronal cells including retinal cells. We identified four coumarin derivatives that could be used for in vivo imaging of zebrafish retinal cells. The retinas of living zebrafish could be stained by simply immersing larvae in water containing 1 μg/ml of a coumarin derivative for 30 min. By using confocal laser scanning microscopy, the lamination of the zebrafish retina was clearly visualized. Using these coumarin derivatives, we were able to assess the development of the zebrafish retina and the morphological abnormalities induced by genetic or chemical interventions. The coumarin derivatives were also suitable for counter-staining of transgenic zebrafish expressing fluorescent proteins in specific subtypes of retinal cells. Conclusions The coumarin derivatives identified in this study can stain zebrafish retinal cells in a relatively short time and at low concentrations, making them suitable for in vivo imaging of the zebrafish retina. Therefore, they will be useful tools in genetic and chemical screenings using zebrafish to identify genes and chemicals that may have crucial functions in the retina.
Collapse
Affiliation(s)
- Kohei Watanabe
- Department of Molecular and Cellular Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The zebrafish is one of the leading models for the analysis of the vertebrate visual system. A wide assortment of molecular, genetic, and cell biological approaches is available to study zebrafish visual system development and function. As new techniques become available, genetic analysis and imaging continue to be the strengths of the zebrafish model. In particular, recent developments in the use of transposons and zinc finger nucleases to produce new generations of mutant strains enhance both forward and reverse genetic analysis. Similarly, the imaging of developmental and physiological processes benefits from a wide assortment of fluorescent proteins and the ways to express them in the embryo. The zebrafish is also highly attractive for high-throughput screening of small molecules, a promising strategy to search for compounds with therapeutic potential. Here we discuss experimental approaches used in the zebrafish model to study morphogenetic transformations, cell fate decisions, and the differentiation of fine morphological features that ultimately lead to the formation of the functional vertebrate visual system.
Collapse
Affiliation(s)
- Andrei Avanesov
- Division of Craniofacial and Molecular Genetics, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
7
|
Zhang Y, McCulloch K, Malicki J. Lens transplantation in zebrafish and its application in the analysis of eye mutants. J Vis Exp 2009:1258. [PMID: 19488031 PMCID: PMC2794882 DOI: 10.3791/1258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The lens plays an important role in the development of the optic cup. Using the zebrafish as a model organism, questions regarding lens development can be addressed. The zebrafish is useful for genetic studies due to several advantageous characteristics, including small size, high fecundity, short lifecycle, and ease of care. Lens development occurs rapidly in zebrafish. By 72 hpf, the zebrafish lens is functionally mature. Abundant genetic and molecular resources are available to support research in zebrafish. In addition, the similarity of the zebrafish eye to those of other vertebrates provides basis for its use as an excellent animal model of human defects. Several zebrafish mutants exhibit lens abnormalities, including high levels of cell death, which in some cases leads to a complete degeneration of lens tissues. To determine whether lens abnormalities are due to intrinsic causes or to defective interactions with the surrounding tissues, transplantation of a mutant lens into a wild-type eye is performed. Using fire-polished metal needles, mutant or wild-type lenses are carefully dissected from the donor animal, and transferred into the host. To distinguish wild-type and mutant tissues, a transgenic line is used as the donor. This line expresses membrane-bound GFP in all tissues, including the lens. This transplantation technique is an essential tool in the studies of zebrafish lens mutants.
Collapse
Affiliation(s)
- Yan Zhang
- The Second Teaching Hospital of Jilin University
| | | | | |
Collapse
|
8
|
Kitambi SS, Malicki JJ. Spatiotemporal features of neurogenesis in the retina of medaka, Oryzias latipes. Dev Dyn 2009; 237:3870-81. [PMID: 19035349 DOI: 10.1002/dvdy.21797] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vertebrate retina is very well conserved in evolution. Its structure and functional features are very similar in phyla as different as primates and teleost fish. Here, we describe the spatiotemporal characteristics of neurogenesis in the retina of a teleost, medaka, and compare them with other species, primarily the zebrafish. Several intriguing differences are observed between medaka and zebrafish. For example, photoreceptor differentiation in the medaka retina starts independently in two different areas, and at more advanced stages of differentiation, medaka and zebrafish retinae display obviously different patterns of the photoreceptor cell mosaic. Medaka and zebrafish evolutionary lineages are thought to have separated from each other 110 million years ago, and so the differences between these species are not unexpected, and may be exploited to gain insight into the architecture of developmental pathways. Importantly, this work highlights the benefits of using multiple teleost models in parallel to understand a developmental process.
Collapse
Affiliation(s)
- Satish S Kitambi
- School of Life Sciences, Södertörns University College, Stockholm, Sweden
| | | |
Collapse
|
9
|
Yokoi H, Yan YL, Miller MR, BreMiller RA, Catchen JM, Johnson EA, Postlethwait JH. Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation. Dev Biol 2009; 329:1-15. [PMID: 19210963 DOI: 10.1016/j.ydbio.2009.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/27/2008] [Accepted: 01/06/2009] [Indexed: 01/01/2023]
Abstract
The transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, gonads, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for both sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole-mount in situ hybridization in wild-type and sox9 single and double mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development.
Collapse
Affiliation(s)
- Hayato Yokoi
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ochocinska MJ, Hitchcock PF. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mech Dev 2008; 126:128-41. [PMID: 19121642 DOI: 10.1016/j.mod.2008.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/04/2008] [Accepted: 11/27/2008] [Indexed: 12/29/2022]
Abstract
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroD(EGFP) fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD.
Collapse
Affiliation(s)
- M J Ochocinska
- Department of Ophthalmology and Visual Sciences and The Neuroscience Graduate Program, W.K. Kellogg Eye Center, 1000 Wall Street, The University of Michigan, Ann Arbor, MI 48105-0714, USA
| | | |
Collapse
|
11
|
Akhtar S, Schonthaler HB, Bron AJ, Dahm R. Formation of stromal collagen fibrils and proteoglycans in the developing zebrafish cornea. Acta Ophthalmol 2008; 86:655-65. [PMID: 18221494 DOI: 10.1111/j.1600-0420.2007.01135.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Collagen fibrils and proteoglycans are the main components of the corneal extracellular matrix and corneal transparency depends crucially on their proper arrangement. In the present study, we investigated the formation of collagen fibrils and proteoglycans in the developing cornea of the zebrafish, a model organism used to study vertebrate embryonic development and genetic disease. METHODS We employed thin-section electron microscopy to investigate the ultrastructure of the zebrafish cornea at different developmental stages. RESULTS The layering of the zebrafish cornea into an epithelium, a Bowman's layer, stroma and endothelium was observed starting at 72 hr post-fertilization. At this stage, the stroma contained orthogonally arranged collagen fibrils and small proteoglycans. The density of proteoglycans increased gradually throughout subsequent development of the cornea. In the stroma of 2-week-old larvae, the collagen fibrils were organized into thin lamellae and were separated by very large, randomly distributed proteoglycans. At 4 weeks, a regular arrangement of proteoglycans in relation to the collagen fibrils was observed for the first time and the lamellae were also thickened. CONCLUSION The present study, for the first time, provides ultrastructural details of collagen fibril and proteoglycan development in the zebrafish cornea. Furthermore, it directly correlates the collagen fibril and proteoglycan composition of the zebrafish cornea with that of the human cornea. The similarities between the two species suggest that the zebrafish could serve as a model for investigating the genetics of human corneal development and diseases.
Collapse
Affiliation(s)
- Saeed Akhtar
- Nuffield Laboratory of Ophthalmology, Oxford, UK
| | | | | | | |
Collapse
|
12
|
Liu T, Li G, Nie J, Tarokh A, Zhou X, Guo L, Malicki J, Xia W, Wong STC. An automated method for cell detection in zebrafish. Neuroinformatics 2008; 6:5-21. [PMID: 18288618 DOI: 10.1007/s12021-007-9005-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 11/02/2007] [Indexed: 01/01/2023]
Abstract
Quantification of cells is a critical step towards the assessment of cell fate in neurological disease or developmental models. Here, we present a novel cell detection method for the automatic quantification of zebrafish neuronal cells, including primary motor neurons, Rohon-Beard neurons, and retinal cells. Our method consists of four steps. First, a diffused gradient vector field is produced. Subsequently, the orientations and magnitude information of diffused gradients are accumulated, and a response image is computed. In the third step, we perform non-maximum suppression on the response image and identify the detection candidates. In the fourth and final step the detected objects are grouped into clusters based on their color information. Using five different datasets depicting zebrafish cells, we show that our method consistently displays high sensitivity and specificity of over 95%. Our results demonstrate the general applicability of this method to different data samples, including nuclear staining, immunohistochemistry, and cell death detection.
Collapse
Affiliation(s)
- Tianming Liu
- The Center for Biomedical Informatics, The Methodist Hospital Research Institute, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vihtelic TS. Teleost lens development and degeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:341-73. [PMID: 18779061 DOI: 10.1016/s1937-6448(08)01006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transparent properties of the lens and its ability to focus light onto the retina are critical for normal vision. Optical clarity of the lens is achieved and maintained by a unique, highly regulated integration of lens cell proliferation and differentiation that persists throughout life. Zebrafish is a powerful genetic model for studying vertebrate lens differentiation and growth because the structural organization of the lens and gene functions are largely conserved with mammals, including humans. However, some features of zebrafish lens developmental morphology and gene expression are different from those of mammals and other terrestrial vertebrates. For example, the presumptive zebrafish lens delaminates from the surface ectoderm to form a solid mass of cells, in which the primary fibers differentiate by elongating in circular fashion. Both mutational and candidate gene analyses have identified and characterized developmental gene functions of the lens in zebrafish. This chapter presents the recent morphological analysis of zebrafish lens formation. In addition, the roles of Pitx3, Foxe3, and the lens-specific protein Lengsin (LENS Glutamine SYNthetase-like) in lens development are analyzed. Selected zebrafish lens mutants defective in early developmental processes and the maintenance of lens transparency are also discussed.
Collapse
Affiliation(s)
- Thomas S Vihtelic
- Department of Biological Sciences and Center for Zebrafish Research, Galvin Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
14
|
Li G, Liu T, Nie J, Guo L, Malicki J, Mara A, Holley SA, Xia W, Wong STC. Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry A 2007; 71:835-45. [PMID: 17654652 DOI: 10.1002/cyto.a.20436] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The zebrafish has become an important vertebrate animal model for the study of developmental biology, functional genomics, and disease mechanisms. It is also being used for drug discovery. Computerized detection of blob objects has been one of the important tasks in quantitative phenotyping of zebrafish. We present a new automated method that is able to detect blob objects, such as nuclei or cells in microscopic zebrafish images. This method is composed of three key steps. The first step is to produce a diffused gradient vector field by a physical elastic deformable model. In the second step, the flux image is computed on the diffused gradient vector field. The third step performs thresholding and nonmaximum suppression based on the flux image. We report the validation and experimental results of this method using zebrafish image datasets from three independent research labs. Both sensitivity and specificity of this method are over 90%. This method is able to differentiate closely juxtaposed or connected blob objects, with high sensitivity and specificity in different situations. It is characterized by a good, consistent performance in blob object detection.
Collapse
Affiliation(s)
- Gang Li
- School of Automation, Northwestern Polytechnic University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Over the last decade, the use of the zebrafish as a genetic model has moved beyond the proof-of-concept for the analysis of vertebrate embryonic development to demonstrated utility as a mainstream model organism for the understanding of human disease. The initial identification of a variety of zebrafish mutations affecting the eye and retina, and the subsequent cloning of mutated genes have revealed cellular, molecular and physiological processes fundamental to visual system development. With the increasing development of genetic manipulations, sophisticated techniques for phenotypic characterization, behavioral approaches and screening strategies, the identification of novel genes or novel gene functions will have important implications for our understanding of human eye diseases, pathogenesis, and treatment.
Collapse
Affiliation(s)
- James M Fadool
- Department of Biological Science, Graduate Program in Neuroscience, Florida State University, Tallahassee, FL 32312, USA.
| | | |
Collapse
|
16
|
Dahm R, Schonthaler HB, Soehn AS, van Marle J, Vrensen GFJM. Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 2007; 85:74-89. [PMID: 17467692 DOI: 10.1016/j.exer.2007.02.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/23/2022]
Abstract
The zebrafish has become an important vertebrate model organism to study the development of the visual system. Mutagenesis projects have resulted in the identification of hundreds of eye mutants. Analysis of the phenotypes of these mutants relies on in depth knowledge of the embryogenesis in wild-type animals. While the morphological events leading to the formation of the retina and its connections to the central nervous system have been described in great detail, the characterization of the development of the eye lens is still incomplete. In the present study, we provide a morphological description of embryonic and larval lens development as well as adult lens morphology in the zebrafish. Our analyses show that, in contrast to other vertebrate species, the zebrafish lens delaminates from the surface ectoderm as a solid cluster of cells. Detachment of the prospective lens from the surface ectoderm is facilitated by apoptosis. Primary fibre cell elongation occurs in a circular fashion resulting in an embryonic lens nucleus with concentric shells of fibres. After formation of a monolayer of lens epithelial cells, differentiation and elongation of secondary lens fibres result in a final lens morphology similar to that of other vertebrate species. As in other vertebrates, secondary fibre cell differentiation includes the programmed degradation of nuclei, the interconnection of adjacent fibres via protrusions at the fibre cells' edges and the establishment of gap junctions between lens fibre cells. The very close spacing of the nuclei of the differentiating secondary fibres in a narrow zone close to the equatorial epithelium, however, suggests that secondary fibre cell differentiation deviates from that described for mammalian or avian lenses. In summary, while there are similarities in the development and final morphology of the zebrafish lens with mammalian and avian lenses, there are also significant differences, suggesting caution when extrapolating findings on the zebrafish to, for example, human lens development or function.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Cell Differentiation/physiology
- Cell Nucleus/ultrastructure
- Embryo, Nonmammalian/anatomy & histology
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/ultrastructure
- Embryonic Development/physiology
- Epithelial Cells/cytology
- Epithelial Cells/ultrastructure
- Gap Junctions/ultrastructure
- In Situ Nick-End Labeling/methods
- Iris/anatomy & histology
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Lens, Crystalline/ultrastructure
- Microscopy, Electron/methods
- Microscopy, Electron, Scanning/methods
- Microscopy, Interference/methods
- Models, Animal
- Zebrafish/anatomy & histology
- Zebrafish/embryology
Collapse
Affiliation(s)
- Ralf Dahm
- Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Omori Y, Malicki J. oko meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr Biol 2006; 16:945-57. [PMID: 16713951 DOI: 10.1016/j.cub.2006.03.058] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/26/2006] [Accepted: 03/13/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Polarity is an essential attribute of most eukaryotic cells. One of the most prominent features of cell polarity in many tissues is the subdivision of cell membrane into apical and basolateral compartments by a belt of cell junctions. The proper formation of this subdivision is of key importance. In sensory cells, for example, the apical membrane compartment differentiates specialized structures responsible for the detection of visual, auditory, and olfactory stimuli. In other tissues, apical specializations are responsible for the propagation of fluid flow. Despite its importance, the role of genetic determinants of apico-basal polarity in vertebrate embryogenesis remains poorly investigated. RESULTS We show that zebrafish oko meduzy (ome) locus encodes a crumbs gene homolog, essential for the proper apico-basal polarity of neural tube epithelia. Two ome paralogs, crb2b and crb3a, promote the formation of apical cell features: photoreceptor inner segments and cilia in renal and auditory systems. The motility of cilia is defective following the impairment of crb2b function. Apical surface defects in ome- and crb2b-deficient animals are associated with profound disorganization of neuronal architecture and with the formation of pronephric cysts, respectively. Unexpectedly, despite differences in their structure and expression patterns, crumbs genes are, at least partially, functionally interchangeable. CONCLUSIONS ome and related crumbs genes are necessary for the formation of gross morphological features in several organs, including the CNS and the renal system. On the cellular level, crumbs genes regulate the formation of both ciliary and nonciliary apical membrane compartment.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Department of Ophthalmology, Harvard Medical School, MEEI, R513, 243 Charles Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
18
|
Pujic Z, Omori Y, Tsujikawa M, Thisse B, Thisse C, Malicki J. Reverse genetic analysis of neurogenesis in the zebrafish retina. Dev Biol 2006; 293:330-47. [PMID: 16603149 DOI: 10.1016/j.ydbio.2005.12.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
To gain an understanding of molecular events that underlie pattern formation in the retina, we evaluated the expression profiles of over 8000 transcripts randomly selected from an embryonic zebrafish library. Detailed analysis of cDNAs that display restricted expression patterns revealed factors that are specifically expressed in single cell classes and are potential regulators of neurogenesis. These cDNAs belong to numerous molecular categories and include cell surface receptors, cytoplasmic enzymes, and transcription factors. To test whether expression patterns that we have uncovered using this approach are indicative of function in neurogenesis, we used morpholino-mediated knockdown approach. The knockdown of soxp, a transcript expressed in the vicinity of the inner plexiform layer, revealed its role in cell type composition of amacrine and ganglion cell layers. Blocking the function of cxcr4b, a chemokine receptor specifically expressed in ganglion cells, suggests a role in ganglion cell survival. These experiments demonstrate that in situ hybridization-based reverse genetic screens can be applied to isolate genetic regulators of neurogenesis. This approach very well complements forward genetic mutagenesis studies previously used to study retinal neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Zac Pujic
- Department of Ophthalmology, Harvard Medical School, MEEI, r513, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dürr K, Holzschuh J, Filippi A, Ettl AK, Ryu S, Shepherd IT, Driever W. Differential roles of transcriptional mediator complex subunits Crsp34/Med27, Crsp150/Med14 and Trap100/Med24 during zebrafish retinal development. Genetics 2006; 174:693-705. [PMID: 16582438 PMCID: PMC1602071 DOI: 10.1534/genetics.105.055152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional mediator complex has emerged as an important component of transcriptional regulation, yet it is largely unknown whether its subunits have differential functions in development. We demonstrate that the zebrafish mutation m885 disrupts a subunit of the mediator complex, Crsp34/Med27. To explore the role of the mediator in the control of retinal differentiation, we employed two additional mutations disrupting the mediator subunits Trap100/Med24 and Crsp150/Med14. Our analysis shows that loss of Crsp34/Med27 decreases amacrine cell number, but increases the number of rod photoreceptor cells. In contrast, loss of Trap100/Med24 decreases rod photoreceptor cells. Loss of Crsp150/Med14, on the other hand, only slightly reduces dopaminergic amacrine cells, which are absent from both crsp34(m885) and trap100(lessen) mutant embryos. Our data provide evidence for differential requirements for Crsp34/Med27 in developmental processes. In addition, our data point to divergent functions of the mediator subunits Crsp34/Med27, Trap100/Med24, and Crsp150/Med14 and, thus, suggest that subunit composition of the mediator contributes to the control of differentiation in the vertebrate CNS.
Collapse
Affiliation(s)
- Katrin Dürr
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Avanesov A, Dahm R, Sewell WF, Malicki JJ. Mutations that affect the survival of selected amacrine cell subpopulations define a new class of genetic defects in the vertebrate retina. Dev Biol 2005; 285:138-55. [PMID: 16231865 DOI: 10.1016/j.ydbio.2005.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amacrine neurons are among the most diverse cell classes in the vertebrate retina. To gain insight into mechanisms vital to the production and survival of amacrine cell types, we investigated a group of mutations in three zebrafish loci: kleks (kle), chiorny (chy), and bergmann (bgm). Mutants of all three genes display a severe loss of selected amacrine cell subpopulations. The numbers of GABA-expressing amacrine interneurons are sharply reduced in all three mutants, while cell loss in other amacrine cell subpopulations varies and some cells are not affected at all. To investigate how amacrine cell loss affects retinal function, we performed electroretinograms on mutant animals. While the kle mutation mostly influences the function of the inner nuclear layer, unexpectedly the chy mutant phenotype also involves a loss of photoreceptor cell activity. The precise ration and arrangement of amacrine cell subpopulations suggest that cell-cell interactions are involved in the differentiation of this cell class. To test whether defects of such interactions may be, at least in part, responsible for mutant phenotypes, we performed mosaic analysis and demonstrated that the loss of parvalbumin-positive amacrine cells in chy mutants is due to extrinsic (cell-nonautonomous) causes. The phenotype of another amacrine cell subpopulation, the GABA-positive cells, does not display a clear cell-nonautonomy in chy animals. These results indicate that environmental factors, possibly interactions among different subpopulations of amacrine neurons, are involved in the development of the amacrine cell class.
Collapse
Affiliation(s)
- Andrei Avanesov
- Department of Ophthalmology, Harvard Medical School/MEEI, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
21
|
Kawamura S, Takeshita K, Tsujimura T, Kasagi S, Matsumoto Y. Evolutionarily conserved and divergent regulatory sequences in the fish rod opsin promoter. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:391-9. [PMID: 15964232 DOI: 10.1016/j.cbpc.2005.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/13/2005] [Accepted: 03/15/2005] [Indexed: 12/21/2022]
Abstract
Fish have multiple types and subtypes of opsin genes that are expressed in a highly regulated manner in retinal photoreceptor cells. In the rod opsin proximal promoter region (RPPR) of zebrafish (Danio rerio), the BAT 1 regulatory region contains highly conserved OTX (GATTA) and OTX-like (TATTA) sequences that can be recognized by the mammalian cone-rod homeobox (CRX) protein. However, binding of zebrafish crx to the OTX sequence has remained elusive. In contrast to the BAT 1 region, the Ret 1 region, located approximately 20 bp upstream of the BAT 1 region in mammals, is not conserved in zebrafish. In the Ret 1 region, even the core OTX-like sequence (AATTA sequence in mammals) is destructed. We show in this study that a region between Ret 1 and BAT 1 (denoted IRB, Inter-Ret 1-BAT 1) is highly conserved among fish species. Using electrophoretic mobility shift assay (EMSA), we show that zebrafish crx binds to the conserved OTX sequence and that the fish-specific IRB region specifically binds elements present in both retinal and brain nuclear extracts of zebrafish. These results imply that the regulatory mechanisms of opsin gene expression consist not only of evolutionarily conserved but also of divergent machinery among different animal taxa.
Collapse
Affiliation(s)
- Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8652, Japan.
| | | | | | | | | |
Collapse
|
22
|
Stadler JA, Shkumatava A, Neumann CJ. The role of hedgehog signaling in the development of the zebrafish visual system. Dev Neurosci 2005; 26:346-51. [PMID: 15855763 DOI: 10.1159/000082276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 07/20/2004] [Indexed: 11/19/2022] Open
Abstract
The vertebrate visual system is a region of the nervous system that is characterized by relative simplicity, and its development has hence been studied intensively, to serve as a paradigm for the rest of the central nervous system. The zebrafish model organism offers an impressive array of tools to dissect this process experimentally, and in recent years has helped to significantly deepen our understanding of the development of the visual system. A number of these studies have focused on the role of the Hedgehog family of secreted signaling molecules in eye development, and this is the main topic of this review. Hedgehog signaling plays an important role in all major steps of visual system development, starting with the regionalization of the eye primordium into proximal and distal territories, continuing with the control of cellular differentiation in the retina, and ending with the guidance of axonal projections from the retina to the optic centers of the brain.
Collapse
Affiliation(s)
- Jochen A Stadler
- EMBL, Developmental Biology Programme, Meyerhofstrasse 1, DE-69117 Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W. Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1-8) in pufferfish (Fugu rubripes). J Mol Evol 2005; 59:204-217. [PMID: 15486694 PMCID: PMC1351297 DOI: 10.1007/s00239-004-2614-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 02/16/2004] [Indexed: 11/25/2022]
Abstract
The guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins of the calmodulin (CaM) gene superfamily that function in the regulation of photoreceptor guanylate cyclases (GCs). In the mammalian retina, two GCAPs (GCAP 1-2) and two transmembrane GCs have been identified as part of a complex regulatory system responsive to fluctuating levels of free Ca(2+). A third GCAP, GCAP3, is expressed in human and zebrafish (Danio rerio) retinas, and a guanylate cyclase-inhibitory protein (GCIP) has been shown to be present in frog cones. To explore the diversity of GCAPs in more detail, we searched the pufferfish (Fugu rubripes) and zebrafish (Danio rerio) genomes for GCAP-related gene sequences (fuGCAPs and zGCAPs, respectively) and found that at least five additional GCAPs (GCAP4-8) are predicted to be present in these species. We identified genomic contigs encoding fuGCAPl-8, fuGCIP, zGCAPl-5, zGCAP7 and zGCIP. We describe cloning, expression and localization of three novel GCAPs present in the zebrafish retina (zGCAP4, zGCAP5, and zGCAP7). The results show that recombinant zGCAP4 stimulated bovine rod outer segment GC in a Ca(2+)-dependent manner. RT-PCR with zGCAP specific primers showed specific expression of zGCAPs and zGCIP in the retina, while zGCAPl mRNA is also present in the brain. In situ hybridization with anti-sense zGCAP4, zGCAP5 and zGCAP7 RNA showed exclusive expression in zebrafish cone photoreceptors. The presence of at least eight GCAP genes suggests an unexpected diversity within this subfamily of Ca(2+)-binding proteins in the teleost retina, and suggests additional functions for GCAPs apart from stimulation of GC. Based on genome searches and EST analyses, the mouse and human genomes do not harbor GCAP4-8 or GCIP genes.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | - Lili Yang
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Izabela Sokal
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, Warsaw, PL 02109, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wolfgang Baehr
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Ophthalmology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
Mumm JS, Godinho L, Morgan JL, Oakley DM, Schroeter EH, Wong ROL. Laminar circuit formation in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2005; 147:155-69. [PMID: 15581704 DOI: 10.1016/s0079-6123(04)47012-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Neuronal function depends on the accurate wiring between pre- and postsynaptic cells. Determining the mechanisms underlying precision in neuronal connectivity is challenging because of the complexity of the nervous system. In diverse parts of the nervous system, regions of synaptic contact are organized into distinct parallel layers, or laminae, that are correlated with distinct functions. Such an arrangement enables the development of synapse specificity to be more readily investigated. Here, we present an overview of the developmental mechanisms that are thought to underlie the formation of synaptic layers in the vertebrate retina, a highly laminated CNS structure. We will contrast the roles of activity-dependent and activity-independent mechanisms in establishing functionally discrete sublaminae in the inner retina, where circuits involving many subtypes of retinal neurons are assembled precisely. In addition, we will discuss new optical imaging approaches for elucidating how retinal synaptic lamination occurs in vivo.
Collapse
Affiliation(s)
- Jeff S Mumm
- Washington University School of Medicine, Department of Anatomy & Neurobiology, 4566 Scott Avenue, Box 8108, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Baraban SC, Taylor MR, Castro PA, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 2005; 131:759-68. [PMID: 15730879 DOI: 10.1016/j.neuroscience.2004.11.031] [Citation(s) in RCA: 451] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/29/2022]
Abstract
Rodent seizure models have significantly contributed to our basic understanding of epilepsy. However, medically intractable forms of epilepsy persist and the fundamental mechanisms underlying this disease remain unclear. Here we show that seizures can be elicited in a simple vertebrate system e.g. zebrafish larvae (Danio rerio). Exposure to a common convulsant agent (pentylenetetrazole, PTZ) induced a stereotyped and concentration-dependent sequence of behavioral changes culminating in clonus-like convulsions. Extracellular recordings from fish optic tectum revealed ictal and interictal-like electrographic discharges after application of PTZ, which could be blocked by tetrodotoxin or glutamate receptor antagonists. Epileptiform discharges were suppressed by commonly used antiepileptic drugs, valproate and diazepam, in a concentration-dependent manner. Up-regulation of c-fos expression was also observed in CNS structures of zebrafish exposed to PTZ. Taken together, these results demonstrate that chemically-induced seizures in zebrafish exhibit behavioral, electrographic, and molecular changes that would be expected from a rodent seizure model. Therefore, zebrafish larvae represent a powerful new system to study the underlying basis of seizure generation, epilepsy and epileptogenesis.
Collapse
Affiliation(s)
- S C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, Box 0520, 503 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
26
|
Shi X, Bosenko DV, Zinkevich NS, Foley S, Hyde DR, Semina EV, Vihtelic TS. Zebrafish pitx3 is necessary for normal lens and retinal development. Mech Dev 2004; 122:513-27. [PMID: 15804565 DOI: 10.1016/j.mod.2004.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 11/11/2004] [Accepted: 11/19/2004] [Indexed: 01/23/2023]
Abstract
The human PITX3 gene encodes a bicoid-like homeodomain transcription factor associated with a variety of congenital ocular conditions, including anterior segment dysgenesis, Peter's anomaly, and cataracts. We identified a zebrafish pitx3 gene encoding a protein (Pitx3) that possesses 63% amino acid identity with human PITX3. The zebrafish pitx3 gene encompasses approximately 16.5kb on chromosome 13 and consists of four exons, which is similar to the genomic organization of other pitx genes. Expression of the zebrafish pitx3 gene was studied by in situ mRNA hybridization and RT-PCR. The pitx3 transcripts were detected throughout development with the greatest level of expression occurring in the developing lens and brain at 24hpf. In adults, the highest expression was detected in the eye. Morpholinos were used to knockdown expression of the Pitx3 protein and a control morpholino that contains five mismatched bases was used to confirm the specificity of the phenotypes. The morphants had small eyes, misshapen heads and reduced jaws and fins relative to controls. The morphants exhibited abnormalities in lens development and their retinas contained pyknotic nuclei accompanied by a reduction in the number of cells in different neuronal classes. This suggests the lens is required for retinal development or Pitx3 has an unexpected role in retinal cell differentiation or survival. These results demonstrate zebrafish pitx3 represents a true ortholog of the human PITX3 gene and the general function of the Pitx3 protein in lens development is conserved between mammals and the teleost fish.
Collapse
Affiliation(s)
- Xiaohai Shi
- Department of Biological Sciences, Center for Zebrafish Research, Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Shkumatava A, Fischer S, Müller F, Strahle U, Neumann CJ. Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development 2004; 131:3849-58. [PMID: 15253932 DOI: 10.1242/dev.01247] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurogenesis in the zebrafish retina occurs in several waves of differentiation. The first neurogenic wave generates ganglion cells and depends on hedgehog (hh) signaling activity. Using transgenic zebrafish embryos that express GFP under the control of the sonic hedgehog (shh) promoter, we imaged the differentiation wave in the retina and show that, in addition to the wave in the ganglion cell layer, shh expression also spreads in the inner nuclear layer. This second wave generates amacrine cells expressing shh, and although it overlaps temporally with the first wave, it does not depend on it, as it occurs in the absence of ganglion cells. We also show that differentiation of cell types found in the inner and outer nuclear layers, as well as lamination of the retina, depends on shh. By performing mosaic analysis, we demonstrate that Shh directs these events as a short-range signal within the neural retina.
Collapse
|
28
|
Loosli F, Del Bene F, Quiring R, Rembold M, Martinez-Morales JR, Carl M, Grabher C, Iquel C, Krone A, Wittbrodt B, Winkler S, Sasado T, Morinaga C, Suwa H, Niwa K, Henrich T, Deguchi T, Hirose Y, Iwanami N, Kunimatsu S, Osakada M, Watanabe T, Yasuoka A, Yoda H, Winkler C, Elmasri H, Kondoh H, Furutani-Seiki M, Wittbrodt J. Mutations affecting retina development in Medaka. Mech Dev 2004; 121:703-14. [PMID: 15210178 DOI: 10.1016/j.mod.2004.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/20/2004] [Accepted: 03/01/2004] [Indexed: 02/03/2023]
Abstract
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.
Collapse
Affiliation(s)
- Felix Loosli
- European Molecular Biology Laboratory, Developmental Biology Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jessen JR, Solnica-Krezel L. Identification and developmental expression pattern of van gogh-like 1, a second zebrafish strabismus homologue. Gene Expr Patterns 2004; 4:339-44. [PMID: 15053985 DOI: 10.1016/j.modgep.2003.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 09/30/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
Cell movement plays a central role in both normal embryogenesis and the development of diseases such as cancer. Therefore, identification and analysis of proteins controlling cell movement is of special importance. The zebrafish trilobite locus encodes a Van Gogh/Strabismus homologue, which regulates diverse cell migratory behaviors during embryogenesis. Trilobite is most similar to human Van Gogh-like 2 (VANGL2)/Strabismus 1 and mouse Loop-tail associated protein/Lpp1. Both human and mouse genomes encode a second Strabismus homologue referred to as VANGL1/Strabismus 2 and Lpp2, respectively. This prompted us to ask whether another van gogh/strabismus gene, one more closely related to human VANGL1, exists in the zebrafish genome. This paper describes the identification of zebrafish vangl1 and provides the first spatiotemporal expression and functional analysis of a vertebrate vangl1 homologue. Our data indicate that vangl1 and trilobite/vangl2 are expressed in largely non-overlapping domains during embryogenesis. Injection of synthetic vangl1 RNA partially suppressed the gastrulation defect in trilobite mutant embryos, suggesting that Vangl1 and Trilobite/Vangl2 have similar biochemical activities.
Collapse
Affiliation(s)
- Jason R Jessen
- Department of Biological Sciences, Vanderbilt University, 1210 Medical Research Building III, VU Station B, Box 35-1634, Nashville, TN 37235-1634, USA
| | | |
Collapse
|
30
|
Glass AS, Dahm R. The Zebrafish as a Model Organism for Eye Development. Ophthalmic Res 2004; 36:4-24. [PMID: 15007235 DOI: 10.1159/000076105] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2003] [Accepted: 12/09/2003] [Indexed: 11/19/2022]
Abstract
In recent years, the zebrafish has become a favourite model organism for biologists studying developmental processes in vertebrates. Its rapid embryonic development, the transparency of its embryos, the large number of offspring together with several other advantages make it ideal for discovering and understanding the genes that regulate embryonic development as well as the physiology of the adult organism. Zebrafish are very visually orientated, and their retina and lens show much the same morphology as other vertebrates including humans. For this reason, they are well suited for examining ocular development, function and disease. This review describes the advantages of the zebrafish as a model organism as well as giving an overview of eye development in this species. It has a particular focus on morphological as well as molecular aspects of the development of the lens.
Collapse
Affiliation(s)
- Anne S Glass
- Medizinische Genetik, Eberhard-Karls-Universität Tübingen, Germany
| | | |
Collapse
|
31
|
Abstract
Similar to other vertebrate species, the zebrafish retina is simpler than other regions of the central nervous system (CNS). Relative simplicity, rapid development, and accessibility to genetic analysis make the zebrafish retina an excellent model system for the studies of neurogenesis in the vertebrate CNS. Numerous genetic screens have led to isolation of an impressive collection of mutations affecting the retina and the retinotectal projection in zebrafish. Mutant phenotypes are being studied using a rich variety of markers: antibodies, RNA probes, retrograde and anterograde tracers, as well as transgenic lines. Particularly impressive progress has been made in the characterization of the zebrafish genome. Consequently, positional and candidate cloning of mutant genes are now fairly easy to accomplish in zebrafish. Many mutant genes have, in fact, already been cloned and their analysis has provided important insights into the gene circuitry that regulates retinal neurogenesis. Genetic screens for visual system defects will continue in the future and progressively more sophisticated screening approaches will make it possible to detect a variety of subtle mutant phenotypes in retinal development. The remarkable evolutionary conservation of the vertebrate eye provides the basis for the use of the zebrafish retina as a model of human disorders. Some of the genetic defects of the zebrafish retina indeed resemble human retinopathies. As new techniques are being introduced and improved at a rapid pace, the zebrafish will continue to be an important organism for the studies of the vertebrate visual system.
Collapse
Affiliation(s)
- Andrei Avanesov
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
32
|
Tropepe V, Sive HL. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? GENES BRAIN AND BEHAVIOR 2003; 2:268-81. [PMID: 14606692 DOI: 10.1034/j.1601-183x.2003.00038.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The zebrafish has proven to be an excellent model for analyzing issues of vertebrate development. In this review we ask whether the zebrafish is a viable model for analyzing the neurodevelopmental causes of autism. In developing an answer to this question three topics are considered. First, the general attributes of zebrafish as a model are discussed, including low cost maintenance, rapid life cycle and the multitude of techniques available. These techniques include large-scale genetic screens, targeted loss and gain of function methods, and embryological assays. Second, we consider the conservation of zebrafish and mammalian brain development, structure and function. Third, we discuss the impressive use of zebrafish as a model for human disease, and suggest several strategies by which zebrafish could be used to dissect the genetic basis for autism. We conclude that the zebrafish system could be used to make important contributions to understanding autistic disorders.
Collapse
Affiliation(s)
- V Tropepe
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
33
|
Takechi M, Hamaoka T, Kawamura S. Fluorescence visualization of ultraviolet-sensitive cone photoreceptor development in living zebrafish. FEBS Lett 2003; 553:90-4. [PMID: 14550552 DOI: 10.1016/s0014-5793(03)00977-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cone photoreceptor cells of fish retinae are arranged in a highly organized fashion. However, the molecular mechanisms underlying photoreceptor development and retinal pattern formation are largely unknown. Here we established transgenic lines of zebrafish carrying green fluorescent protein (GFP) cDNA with the 5.5-kb upstream region of the ultraviolet-sensitive cone opsin gene (SWS1). In the transgenic fish, GFP gene expression proceeded in the same spatiotemporal pattern as SWS1 in the retinae of embryos. In the adult retina, GFP expression was observed throughout the short single cone (SSC) layer where SWS1 is specifically expressed. Therefore, the transgenic fish provides an excellent genetic background to study retinal pattern formation, photoreceptor determination and differentiation, and factors regulating these processes and SSC-specific expression of SWS1.
Collapse
Affiliation(s)
- Masaki Takechi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
34
|
Malicki J, Jo H, Pujic Z. Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev Biol 2003; 259:95-108. [PMID: 12812791 DOI: 10.1016/s0012-1606(03)00181-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic screens in zebrafish identified several loci that play essential roles in the patterning of retinal architecture. Here, we show that one of them, glass onion, encodes the N-cadherin gene. The glo(m117) mutant allele contains a substitution of the Trp2 residue known for its essential role in the adhesive properties of classic cadherins. Both the glo(m117) and pac(tm101b) mutant N-cadherin alleles affect the polarity of the retinal neuroepithelial sheet and, unexpectedly, both result in cell-nonautonomous phenotypes in retinal patterning. The late onset of mutant N-cadherin phenotypes may be due to the ability of classic cadherins to substitute each other's function.
Collapse
Affiliation(s)
- Jarema Malicki
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
35
|
Neuhauss SCF, Seeliger MW, Schepp CP, Biehlmaier O. Retinal defects in the zebrafish bleached mutant. Doc Ophthalmol 2003; 107:71-8. [PMID: 12906124 DOI: 10.1023/a:1024492029629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The recessive zebrafish mutant bleached has, apart from its defects in pigmentation, a heritable defect leading to larval blindness. Here, we analyze the retina of homozygous bleached larvae, employing morphological and electrophysiological methods. Electroretinography revealed a complete lack of electrical signals in response to light. Histological analysis of mutant retinae showed a severely affected outer retina with a hypopigmented pigment epithelium and a disorganized outer nuclear layer containing few or no intact photoreceptors. Using the TUNEL assay for cell death detection, we noticed a strong increase of apoptotic cells in all retinal cell layers, starting in young larvae even before retinal support of visual function. At later stages cell death is most pronounced at the marginal zone, where new cells are constantly added to the retina. At early stages increased apoptosis is mainly confined to the retina, while at later stages elevated cell death is al so apparent in extra-retinal tissues, particularly in the brain. Hence, the lack of visual responses in homozygous bleached larvae can be attributed to a severe defect of the outer retina, preceded by increased levels of apoptotic cell death in all retinal cell layers.
Collapse
Affiliation(s)
- Stephan C F Neuhauss
- Brain Research Institute, University of Zurich and Department of Biology, Swiss Federal Institute of Technology Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
36
|
Erdmann B, Kirsch FP, Rathjen FG, Moré MI. N-cadherin is essential for retinal lamination in the zebrafish. Dev Dyn 2003; 226:570-7. [PMID: 12619142 DOI: 10.1002/dvdy.10266] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
N-cadherin is one of the major Ca(2+)-dependent cell adhesion proteins in the developing nervous system. Here, we analyze eye development in the zebrafish N-cadherin loss-of-function mutant parachute(paR2.10) (pac(paR2.10)). The zebrafish visual system is fully developed by the time pac(paR2.10) mutants show lethality at day 5. Already at 24 hr postfertilization (hpf), mutant retinal cells are more disorganized and more rounded than in wild-type. At later stages, mutant retinae display a severe lamination defect with rosette formation (mostly islands of plexiform layer tissue surrounded by inner nuclear layer or photoreceptor cells), even though all major classes of cell types appear to be present as determined by histology. Of interest, electron microscopy reveals that the islands of plexiform layer tissue contain a normal amount of synapses with normal morphology. Although mutant photoreceptor cells are sometimes deformed, all typical structural components are present, including the membranous discs for rhodopsin storage. The lens fibers of the pac(paR2.10) mutants develop completely normally, but in some cases, lens epithelial cells round up and become multilayered. We conclude that cell adhesion mediated by N-cadherin is of major importance for retinal lamination and involved in maintenance of the lens epithelial sheet, but is not essential for the formation of photoreceptor ultrastructure or for synaptogenesis.
Collapse
Affiliation(s)
- Bettina Erdmann
- Max-Delbruck-Center for Molecular Medicine, Department of Developmental Neurobiology, Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Chinen A, Hamaoka T, Yamada Y, Kawamura S. Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 2003; 163:663-75. [PMID: 12618404 PMCID: PMC1462461 DOI: 10.1093/genetics/163.2.663] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is becoming a powerful animal model for the study of vision but the genomic organization and variation of its visual opsins have not been fully characterized. We show here that zebrafish has two red (LWS-1 and LWS-2), four green (RH2-1, RH2-2, RH2-3, and RH2-4), and single blue (SWS2) and ultraviolet (SWS1) opsin genes in the genome, among which LWS-2, RH2-2, and RH2-3 are novel. SWS2, LWS-1, and LWS-2 are located in tandem and RH2-1, RH2-2, RH2-3, and RH2-4 form another tandem gene cluster. The peak absorption spectra (lambdamax) of the reconstituted photopigments from the opsin cDNAs differed markedly among them: 558 nm (LWS-1), 548 nm (LWS-2), 467 nm (RH2-1), 476 nm (RH2-2), 488 nm (RH2-3), 505 nm (RH2-4), 355 nm (SWS1), 416 nm (SWS2), and 501 nm (RH1, rod opsin). The quantitative RT-PCR revealed a considerable difference among the opsin genes in the expression level in the retina. The expression of the two red opsin genes and of three green opsin genes, RH2-1, RH2-3, and RH2-4, is significantly lower than that of RH2-2, SWS1, and SWS2. These findings must contribute to our comprehensive understanding of visual capabilities of zebrafish and the evolution of the fish visual system and should become a basis of further studies on expression and developmental regulation of the opsin genes.
Collapse
Affiliation(s)
- Akito Chinen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
38
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
39
|
Galli-Resta L. Putting neurons in the right places: local interactions in the genesis of retinal architecture. Trends Neurosci 2002; 25:638-43. [PMID: 12446132 DOI: 10.1016/s0166-2236(02)02279-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development of the nervous system can be schematically summarized as (1) making the necessary cells, (2) putting these cells in the right places, and then (3) connecting them appropriately. Each of these steps represents an enormous challenge to our understanding. Focusing on the vertebrate retina, I will consider the question of what defines the right place for a neuron to go. I will illustrate data pointing to the prominent role played by short-range cellular interactions, possibly coordinated by global factors, and will discuss how a few sets of local rules could control cell positioning and proper wiring in retinal circuits.
Collapse
|
40
|
Abstract
Mutagenesis screens in zebrafish have uncovered several hundred mutant alleles affecting the development of the retina and established the zebrafish as one of the leading models of vertebrate eye development. In addition to forward genetic mutagenesis approaches, gene function in the zebrafish embryo is being studied using several reverse genetic techniques. Some of these rely on the overexpression of a gene product, others take advantage of antisense oligonucleotides to block function of selected loci. Here we describe these methods in the context of the developing eye.
Collapse
Affiliation(s)
- Jarema Malicki
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
41
|
Hamaoka T, Takechi M, Chinen A, Nishiwaki Y, Kawamura S. Visualization of rod photoreceptor development using GFP-transgenic zebrafish. Genesis 2002; 34:215-20. [PMID: 12395387 DOI: 10.1002/gene.10155] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zebrafish retina contains five morphologically distinct classes of photoreceptors, each expressing a distinct type of opsin gene. Molecular mechanisms underlying specification of opsin expression and differentiation among the cell types are largely unknown. This is partly because mutants affected with expression of a particular class of opsin gene are difficult to find. In this study we established the transgenic lines of zebrafish carrying green fluorescent protein (GFP) gene under the 1.1-kb and 3.7-kb upstream regions of the rod-opsin gene. In transgenic fish, GFP expression initiated and proceeded in the same spatiotemporal pattern with rod-opsin gene. The retinal section from adult transgenic fish showed GFP expression throughout the rod cell layer. These results indicate that the proximal 1.1-kb region is sufficient to drive gene expression in all rod photoreceptor cells. These transgenic fish should facilitate screening of mutants affected specifically with rod-opsin expression or rod cell development by visualization of rod cells by GFP.
Collapse
Affiliation(s)
- Takanori Hamaoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
van der Sar AM, Zivković D, den Hertog J. Eye defects in receptor protein-tyrosine phosphatase alpha knock-down zebrafish. Dev Dyn 2002; 223:292-7. [PMID: 11836793 DOI: 10.1002/dvdy.10059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Receptor protein-tyrosine phosphatase alpha (RPTP alpha) is highly expressed in the developing retina of different species, but little is known about its function there. Here, we report that injection of antisense morpholinos in zebrafish embryos reduced RPTP alpha expression to almost nondetectable levels up to 3 days postfertilization (dpf). RPTP alpha was detectable again from 4 dpf onward. RPTP alpha knock-down resulted in smaller eyes. Examination of sections of the retina at different developmental stages demonstrated that already at 28 hours postfertilization (hpf) fewer cells were present in the retina of RPTP alpha-morpholino-injected embryos. At 3 dpf, the layered organization of the retina was absent. In addition, the morphology and labeling with an axon specific antibody, acetylated tubulin, demonstrated that most cells appeared to be undifferentiated. Strikingly, at 5 dpf the lamination of the retina was partially restored, concomitant with re-expression of RPTP alpha protein. Although cells in the retina were now differentiated, the layering of the retina remained disrupted and significant gaps were observed in the amacrine cell layer. Therefore, knock-down of RPTP alpha protein provides evidence that RPTP alpha is essential for normal retinal development.
Collapse
Affiliation(s)
- Astrid M van der Sar
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | |
Collapse
|
43
|
Malicki JJ, Pujic Z, Thisse C, Thisse B, Wei X. Forward and reverse genetic approaches to the analysis of eye development in zebrafish. Vision Res 2002; 42:527-33. [PMID: 11853769 DOI: 10.1016/s0042-6989(01)00262-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The zebrafish has been established as a mainstream research system, largely due to the immense success of genetic screens. Over 2000 mutant alleles affecting zebrafish's early development have been isolated in two large-scale morphological screens and several smaller efforts. So far, over 50 mutant strains display retinal defects and many more have been shown to affect the retinotectal projection. More recently, mutant isolation and characterization have been successfully followed by candidate and positional cloning of underlying genes. To supplement forward genetic mutational analysis, several reverse genetic techniques have also been developed. These recent advances, combined with the genome project, have established the zebrafish as one of the leading models for studies of visual system development.
Collapse
Affiliation(s)
- Jarema J Malicki
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02110, USA.
| | | | | | | | | |
Collapse
|
44
|
Abstract
To gain insight into the genetic mechanisms of photoreceptor development, we analyzed a collection of zebrafish mutations characterized by early photoreceptor cell loss. The mutant defects impair outer segment formation and are accompanied by an abnormal distribution of visual pigments. Rods and different cone types display defects of similar severity suggesting that genetic pathways common to all photoreceptors are affected. To investigate whether these phenotypes involve cell-cell interaction defects, we analyzed genetically mosaic animals. Interaction of niezerka photoreceptors with wild-type tissues improves the survival of mutant cells and restores their elongated morphology. In contrast, cells carrying mutations in the loci brudas, elipsa, fleer, and oval retain their defective phenotypes in a wild-type environment indicating cell-autonomy. These experiments identify distinct phenotypic categories of photoreceptor mutants and indicate that zebrafish photoreceptor defects involve both cell-autonomous and cell-nonautonomous mechanisms.
Collapse
Affiliation(s)
- Geoffrey Doerre
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | |
Collapse
|
45
|
Abstract
During the past 15 years, the zebrafish has become established as a genetic model organism to study vertebrate development. It is particularly well suited for the analysis of the retina, and several genetic screens have yielded a large number of mutants affecting retinal development. Most of these mutants still await thorough analysis and molecular characterization, but work on a handful of genes has already generated interesting results that shed some light on patterning mechanisms employed in the vertebrate retina.
Collapse
Affiliation(s)
- C J Neumann
- Developmental Biology Programme, EMBL, Meyerhofstrasse 1, Postfach 10.2209, D-69012 Heidelberg, Germany.
| |
Collapse
|
46
|
Vihtelic TS, Yamamoto Y, Sweeney MT, Jeffery WR, Hyde DR. Arrested differentiation and epithelial cell degeneration in zebrafish lens mutants. Dev Dyn 2001; 222:625-36. [PMID: 11748831 DOI: 10.1002/dvdy.1217] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In a chemical mutagenesis screen, we identified two zebrafish mutants that possessed small pupils. Genetic complementation revealed these two lines are due to mutations in different genes. The phenotypes of the two mutants were characterized using histologic, immunohistochemical, and tissue transplantation techniques. The arrested lens (arl) mutant exhibits a small eye and pupil phenotype at 48 hr postfertilization (hpf) and lacks any histologically identifiable lens structures by 5 days postfertilization (dpf). In contrast, the disrupted lens (dsl) mutants are phenotypically normal until 5 dpf, and then undergo lens disorganization and cell degeneration that is apparent by 7 dpf. Histology reveals the arl mutant terminates lens cell differentiation by 48 hpf, whereas the dsl lens exhibits a defective lens epithelial cell population at 5 dpf. Lens transplantation experiments demonstrate both mutations are autonomous to the lens tissue. Immunohistochemistry reveals the retinal cells may suffer subtle effects, possibly due to the lens abnormalities.
Collapse
Affiliation(s)
- T S Vihtelic
- Center for Zebrafish Research and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA
| | | | | | | | | |
Collapse
|
47
|
A mutation of early photoreceptor development, mikre oko, reveals cell-cell interactions involved in the survival and differentiation of zebrafish photoreceptors. J Neurosci 2001. [PMID: 11517263 DOI: 10.1523/jneurosci.21-17-06745.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To gain insight into mechanisms involved in photoreceptor development, we characterized a zebrafish mutation in the mikre oko locus that produces early loss of photoreceptor cells. mikre oko photoreceptors lose their elongated morphology at the time of wild-type outer segment formation and undergo cell death within a few days. To investigate whether this phenotype involves cell-cell interaction defects, we performed analysis of genetically mosaic animals. Interactions of mikre oko photoreceptors with wild-type cells rescue several aspects of the mutant phenotype. When placed in a wild-type environment, mikre oko photoreceptor cells retain elongated morphology and survive longer. Moreover, although mutant mikre oko photoreceptor outer segments develop only infrequently and are usually disorganized, mikre oko cone and rod cells in mosaic retinas develop robust outer segments that closely resemble the wild type. In contrast to the outer segments, the proximal regions of mikre oko photoreceptor cells, including their inner segments, the nuclear regions, and the synaptic termini, retain the mutant appearance. mikre oko outer segment rescue is not mediated by interactions with the retinal pigment epithelium. These studies demonstrate that the differentiation of outer segments is surprisingly independent from the more proximal photoreceptor cell features and that outer segment development includes retinal pigment epithelium-independent cell-cell interactions.
Collapse
|
48
|
Abstract
Zebrafish are a promising model for behavioral and genetic studies of vertebrate visual system development and retinal degeneration. In the past few years, numerous studies on zebrafish vision have been published. While most of the studies focus on the molecular and cellular characterization of mutations that disrupt zebrafish visual system structure in early development, others examine the mechanisms that underlie inherited visual system disorders in adults. Behavioral assays, along with morphologic and electrophysiological methods, are powerful tools for functional analyses of zebrafish visual development and performance.
Collapse
Affiliation(s)
- L Li
- Departments of Physiology and Ophthalmology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.
| |
Collapse
|
49
|
Kay JN, Finger-Baier KC, Roeser T, Staub W, Baier H. Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog. Neuron 2001; 30:725-36. [PMID: 11430806 DOI: 10.1016/s0896-6273(01)00312-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutation of the zebrafish lakritz (lak) locus completely eliminates the earliest-born retinal cells, the ganglion cells (RGCs). Instead, excess amacrine, bipolar, and Müller glial cells are generated in the mutant. The extra amacrines are found at ectopic locations in the ganglion cell layer. Cone photoreceptors appear unaffected by the mutation. Molecular analysis reveals that lak encodes Ath5, the zebrafish eye-specific ortholog of the Drosophila basic helix-loop-helix transcription factor Atonal. A combined birth-dating and cell marker analysis demonstrates that lak/ath5 is essential for RGC determination during the first wave of neurogenesis in the retina. Our results suggest that this wave is skipped in the mutant, leading to an accumulation of progenitors for inner nuclear layer cells.
Collapse
Affiliation(s)
- J N Kay
- Department of Physiology, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|