1
|
Omoumi S, Rashidy-Pour A, Seyedinia SA, Tarahomi P, Vafaei AA, Raise-Abdullahi P. Corticosterone injection into the infralimbic prefrontal cortex enhances fear memory extinction: Involvement of GABA receptors and the extracellular signal-regulated kinase. Physiol Behav 2023; 265:114156. [PMID: 36918107 DOI: 10.1016/j.physbeh.2023.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Samira Omoumi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Ali Seyedinia
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Parnia Tarahomi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
2
|
Ke H, Yang H, Zhao Y, Li T, Xin D, Gai C, Jiang Z, Wang Z. 3D Gelatin Microsphere Scaffolds Promote Functional Recovery after Spinal Cord Hemisection in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204528. [PMID: 36453595 PMCID: PMC9875663 DOI: 10.1002/advs.202204528] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/22/2022] [Indexed: 05/24/2023]
Abstract
Spinal cord injury (SCI) damages signal connections and conductions, with the result that neuronal circuits are disrupted leading to neural dysfunctions. Such injuries represent a serious and relatively common central nervous system condition and current treatments have limited success in the reconstruction of nerve connections in injured areas, especially where sizeable gaps are present. Biomaterial scaffolds have become an effective alternative to nerve transplantation in filling these gaps and provide the foundation for simulating the 3D structure of solid organs. However, there remain some limitations with the application of 3D bioprinting for preparation of biomaterial scaffolds. Here, the approach in constructing and testing mini-tissue building blocks and self-assembly, solid 3D gelatin microsphere (GM) scaffolds with multiple voids as based on the convenient preparation of gelatin microspheres by microfluidic devices is described. These 3D GM scaffolds demonstrate suitable biocompatibility, biodegradation, porosity, low preparation costs, and relative ease of production. Moreover, 3D GM scaffolds can effectively bridge injury gaps, establish nerve connections and signal transductions, mitigate inflammatory microenvironments, and reduce glial scar formation. Accordingly, these 3D GM scaffolds can serve as a novel and effective bridging method to promote nerve regeneration and reconstruction and thus recovery of nerve function after SCI.
Collapse
Affiliation(s)
- Hongfei Ke
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong University27 Shanda NanluJinanShandong250100P. R. China
| | - Yijing Zhao
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Tingting Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Danqing Xin
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Chengcheng Gai
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Zige Jiang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Zhen Wang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012P. R. China
| |
Collapse
|
3
|
Yook JH, Rizwan M, Shahid NUA, Naguit N, Jakkoju R, Laeeq S, Reghefaoui T, Zahoor H, Mohammed L. Some Twist of Molecular Circuitry Fast Forwards Overnight Sleep Hours: A Systematic Review of Natural Short Sleepers' Genes. Cureus 2021; 13:e19045. [PMID: 34722012 PMCID: PMC8547374 DOI: 10.7759/cureus.19045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
This systematic review focuses on different genetic mutations identified in studies on natural short sleepers, who would not be ill-defined as one type of sleep-related disorder. The reviewed literature is from databases such as PubMed, PMC, Scopus, and ResearchGate. Due to the rare prevalence, the number of studies conducted on natural short sleepers is limited. Hence, searching the search of databases was done without any date restriction and included animal studies, since mouse and fly models share similarities with human sleep behaviors. Of the 12 articles analyzed, four conducted two types of studies, animal and human (cross-sectional or randomized-controlled studies), to testify the effects of human mutant genes in familial natural short sleepers via transgenic mouse or fly models. The remaining eight articles mainly focused on one type of study each: animal study (four articles), cross-sectional study (two articles), review (one article), and case report (one article). Hence, those articles brought different perspectives on the natural short sleep phenomenon by identifying intrinsic factors like DEC2, NPSR1, mGluR1, and β1-AR mutant genes. Natural short sleep traits in either point-mutations or single null mutations in those genes have been examined and confirmed its intrinsic nature in affected individuals without any related health concerns. Finally, this review added a potential limitation in these studies, mainly highlighting intrinsic causes since one case study reported an extrinsically triggered short sleep behavior in an older man without any family history. The overall result of the review study suggests that the molecular mechanisms tuned by identified sleep genes can give some potential points of therapeutic intervention in future studies.
Collapse
Affiliation(s)
- Ji Hyun Yook
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, Shanghai Medical College of Fudan University, Shanghai, CHN
| | - Muneeba Rizwan
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Noor Ul Ain Shahid
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Noreen Naguit
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rakesh Jakkoju
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sadia Laeeq
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tiba Reghefaoui
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hafsa Zahoor
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
4
|
Wu Y, Ma R, Long C, Shu Y, He P, Zhou Y, Xiang Y, Wang Y. The protective effect of cannabinoid type II receptor agonist AM1241 on ConA-induced liver injury in mice via mitogen-activated protein kinase signalling pathway. Int J Immunopathol Pharmacol 2021; 35:20587384211035251. [PMID: 34384259 PMCID: PMC8366113 DOI: 10.1177/20587384211035251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction The endocannabinoid system plays an important role in regulating the immune responses in inflammation. At present, there are no good clinical drugs for many immune liver diseases. Methods We explored the protective effect of the cannabinoid type II (CB2) receptor agonist AM1241 on the liver of mice with acute liver injury caused by concanavalin from the perspective of inflammation and immunity. Pathological evaluation in hepatic tissue was examined by haematoxylin and eosin (HE) staining and the levels of biochemical parameters in the serum were measured by automatic biochemical analysis. The content of inflammatory factors was measured by enzyme-linked immunosorbent assay and real-time quantitative reverse transcription polymerase chain reaction (real-time PCR). The liver apoptosis-related proteins were observed by immunohistochemistry. The expression of liver injury-related proteins was analysed by Western blot. Immune cells were isolated from the liver of mice and studied in vitro. Results Reduced levels of alanine transaminase and aspartate transaminase were observed in ConA-induced liver injury mice treated with AM1241, together with attenuated liver damage evidenced by H&E staining. Moreover, AM1241 inhibited the protein and gene expression levels of TNF-α, IL-6 and IFN-γ in the livers of mice. The phosphorylation levels of p38, JNK, ERK1/2, P65 and cAMP response element-binding protein (CREB) in the mouse were significantly reduced in AM1241 pretreatment, while the level of p-JNK increased. In addition, the P/T-P65 and P/T-CREB of the AM1241 pretreatment group were significantly reduced. The results of immunohistochemistry measurement are consistent with those of Western blotting. The CB2-mediated effect is through macrophage-like Kupffer cells. Conclusion Our study suggests that the ConA-induced liver injury model in mice is protected by CB2 agonist AM1241 by modulation of CB2 receptor-rich immune cells, for example, Kupffer cells. Reduced inflammatory responses regulate apoptosis/cell death in the liver particularly hepatocytes and other parenchymal cells.
Collapse
Affiliation(s)
- Yafeng Wu
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.,Department of School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou Province, China.,Department of Clinical Laboratory, The Fourth People's Hospital of Ya'an City, Ya'an, Sichuan Province, China
| | - Run Ma
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cuizhen Long
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuanhui Shu
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Ping He
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yan Zhou
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yining Xiang
- Department of Pathology, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuping Wang
- Department of Center for Clinical Laboratories, 74628The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
5
|
Grimm T, Garshasbi M, Puettmann L, Chen W, Ullmann R, Müller-Myhsok B, Klopocki E, Herbst L, Haug J, Jensen LR, Fischer C, Nöthen M, Ludwig K, Warnke A, Ott J, Schulte-Körne G, Ropers HH, Kuss AW. A Novel Locus and Candidate Gene for Familial Developmental Dyslexia on Chromosome 4q. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2020; 48:478-489. [PMID: 33172359 DOI: 10.1024/1422-4917/a000758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: Developmental dyslexia is a highly heritable specific reading and writing disability. To identify a possible new locus and candidate gene for this disability, we investigated a four-generation pedigree where transmission of dyslexia is consistent with an autosomal dominant inheritance pattern. Methods: We performed genome wide array-based SNP genotyping and parametric linkage analysis and sequencing analysis of protein-coding exons, exon-intron boundaries and conserved extragenic regions within the haplotype cosegregating with dyslexia in DNA from one affected and one unaffected family member. Cosegregation was confirmed by sequencing all available family members. Additionally, we analyzed 96 dyslexic individuals who had previously shown positive LOD scores on chromosome 4q28 as well as an even larger sample (n = 2591). Results: We found a single prominent linkage interval on chromosome 4q, where sequence analysis revealed a nucleotide variant in the 3' UTR of brain expressed SPRY1 in the dyslexic family member that cosegregated with dyslexia. This sequence alteration might affect the binding efficiency of the IGF2BP1 RNA-binding protein and thus influence the expression level of the SPRY1 gene product. An analysis of 96 individuals from a cohort of dyslexic individuals revealed a second heterozygous variant in this gene, which was absent in the unaffected sister of the proband. An investigation of the region in a much larger sample further found a nominal p-value of 0.0016 for verbal short-term memory (digit span) in 2,591 individuals for a neighboring SNV. After correcting for the local number of analyzed SNVs, and after taking into account linkage disequilibrium, we found this corresponds to a p-value of 0.0678 for this phenotype. Conclusions: We describe a new locus for familial dyslexia and discuss the possibility that SPRY1 might play a role in the etiology of a monogenic form of dyslexia.
Collapse
Affiliation(s)
- Tiemo Grimm
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Masoud Garshasbi
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lucia Puettmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Chen
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reinhard Ullmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Eva Klopocki
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Lina Herbst
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Janina Haug
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Lars R Jensen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | | | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Germany
| | - Kerstin Ludwig
- Institute of Human Genetics, University of Bonn, Germany
| | - Andreas Warnke
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Würzburg, Germany
| | - Jürg Ott
- Laboratory of Statistical Genetics, Rockefeller University, New York, USA
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Germany
| | - Hans-Hilger Ropers
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| |
Collapse
|
6
|
Kim Y, Jang YN, Kim JY, Kim N, Noh S, Kim H, Queenan BN, Bellmore R, Mun JY, Park H, Rah JC, Pak DTS, Lee KJ. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons. FASEB J 2020; 34:6965-6983. [PMID: 32237183 DOI: 10.1096/fj.201902122rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.
Collapse
Affiliation(s)
- Yoonju Kim
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - You-Na Jang
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Ji-Young Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Nari Kim
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Seulgi Noh
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Bridget N Queenan
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan Bellmore
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ji Young Mun
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyungju Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Jong Cheol Rah
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea.,Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
7
|
Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int 2020; 135:104707. [PMID: 32092326 DOI: 10.1016/j.neuint.2020.104707] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its major pathological hallmarks, neurofibrillary tangles (NFT), and amyloid-β plaques can result from dysfunctional insulin signaling. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function, autophagy, oxidative stress, synaptic plasticity, and cognitive function. Insulin and its downstream signaling molecules are located majorly in the regions of cortex and hippocampus. The major molecules involved in impaired insulin signaling include IRS, PI3K, Akt, and GSK-3β. Activation or inactivation of these major molecules through increased or decreased phosphorylation plays a role in insulin signaling abnormalities or insulin resistance. Insulin resistance, therefore, is considered as a major culprit in generating the hallmarks of AD arising from neuroinflammation and oxidative stress, etc. Moreover, caspases, Nrf2, and NF-κB influence this pathway in an indirect way. Various studies also suggest a strong link between Diabetes Mellitus and AD due to the impairment of insulin signaling pathway. Moreover, studies also depict a strong correlation of other neurodegenerative diseases such as Parkinson's disease and Huntington's disease with insulin resistance. Hence this review will provide an insight into the role of insulin signaling pathway and related molecules as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
|
8
|
Sung JY, Bae JH, Lee JH, Kim YN, Kim DK. The Melatonin Signaling Pathway in a Long-Term Memory In Vitro Study. Molecules 2018; 23:molecules23040737. [PMID: 29570621 PMCID: PMC6017053 DOI: 10.3390/molecules23040737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) via phosphorylation in the hippocampus is an important signaling mechanism for enhancing memory processing. Although melatonin is known to increase CREB expression in various animal models, the signaling mechanism between melatonin and CREB has been unknown in vitro. Thus, we confirmed the signaling pathway between the melatonin receptor 1 (MT1) and CREB using melatonin in HT-22 cells. Melatonin increased MT1 and gradually induced signals associated with long-term memory processing through phosphorylation of Raf, ERK, p90RSK, CREB, and BDNF expression. We also confirmed that the calcium, JNK, and AKT pathways were not involved in this signaling pathway by melatonin in HT-22 cells. Furthermore, we investigated whether melatonin regulated the expressions of CREB-BDNF associated with long-term memory processing in aged HT-22 cells. In conclusion, melatonin mediated the MT1-ERK-p90RSK-CREB-BDNF signaling pathway in the in vitro long-term memory processing model and increased the levels of p-CREB and BDNF expression in melatonin-treated cells compared to untreated HT-22 cells in the cellular aged state. Therefore, this paper suggests that melatonin induces CREB signaling pathways associated with long-term memory processing in vitro.
Collapse
Affiliation(s)
- Jin-Young Sung
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Ji-Hyun Bae
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Yoon-Nyun Kim
- Dongsan Medical Center, Department of Internal Medicine, Keimyung University, Daegu 42931, Korea.
| | - Dae-Kwang Kim
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
9
|
Ras inhibitor S-trans, trans-farnesylthiosalicylic acid enhances spatial memory and hippocampal long-term potentiation via up-regulation of NMDA receptor. Neuropharmacology 2018; 139:257-267. [PMID: 29578035 DOI: 10.1016/j.neuropharm.2018.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/22/2022]
Abstract
Statins by reducing farnesyl-pyrophosphate or farnesyl transferase inhibitors have been demonstrated to enhance spatial memory and long-term potentiation (LTP). The objective of this study was to investigate effects of the synthetic Ras inhibitor S-trans, trans-farnesylthiosalicylic acid (FTS) on spatial cognitive function in adult mice, synaptic plasticity in hippocampal CA1 regions, and NMDA receptor (NMDAr) activity of pyramidal cells. Here, we show that administering FTS (5 mg/kg, i.p.) enhanced spatial cognitive performance, as assessed via Morris water maze and Y-maze tests. Treating hippocampal slices with FTS (5 μM) for 2 h enhanced selectively NMDAr-dependent LTP without changing the synaptic properties. In comparison with the controls, the FTS-treated slices showed increases in the amplitude of NMDA-evoked currents (INMDA) and the phosphorylation of NMDAr GluN2A/GluN2B subunits and Src. The Src inhibitor PP2 blocked the enhancing effects of FTS on the activity and phosphorylation of NMDAr. In FTS-treated slices, basal levels of CaMKII, ERK2 and CREB phosphorylation did not differ significantly from those of controls; however, high-frequency stimulation-induced increases in CaMKII, ERK2 and CREB phosphorylation were more significant than in the controls, which were sensitive to PP2 and NMDAr antagonist MK801. Furthermore, the phosphorylation of AMPA receptor GluR1 during LTP was higher in FTS-treated slices compared with the control, which depended on Src and ERK1/2 signaling. The results indicate that the Ras inhibition by FTS can enhance NMDAr-dependent LTP by increasing Src activity to promote NMDAr GluN2A/GluN2B phosphorylation, which then leads to spatial memory potentiation.
Collapse
|
10
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
11
|
Chauvet C, Nicolas C, Lafay-Chebassier C, Jaber M, Thiriet N, Solinas M. Statins Reduce the Risks of Relapse to Addiction in Rats. Neuropsychopharmacology 2016; 41:1588-97. [PMID: 26466819 PMCID: PMC4832020 DOI: 10.1038/npp.2015.317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/21/2015] [Accepted: 10/06/2015] [Indexed: 01/20/2023]
Abstract
Statins are drugs that have been used for decades in humans for the treatment of hypercholesterolemia. More recently, several lines of evidence demonstrate that statins, in addition to their peripheral effects, produce a wide variety of effects in the brain and may be beneficial in neurological and psychiatric conditions. In this study, we allowed rats to self-administer cocaine for several weeks and, at the end of self-administration training, we treated them with low doses of statins daily for a 21-day period of abstinence. Chronic administration of brain-penetrating statins, simvastatin (1 mg/kg) and atorvastatin (1 mg/kg), reduced cocaine seeking compared with vehicle, whereas administration of pravastatin (2 mg/kg), a statin with low brain penetrability, did not. Importantly, the effects of brain-penetrating statins persisted even after discontinuation of the treatment and were specific for drug seeking because drug taking was not altered by simvastatin treatment. Finally, the effects of simvastatin were found to generalize to another drug of abuse such as nicotine, but not to food reward, and to reinstatement of cocaine seeking induced by stress. These results demonstrate that brain-penetrating statins can reduce risks of relapse to addiction. Given their well-known safety profile in humans, statins could be a novel effective treatment for relapse to cocaine and nicotine addiction and their use could be implemented in clinical settings without major health risks.
Collapse
Affiliation(s)
- Claudia Chauvet
- Inserm, U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France,University of Poitiers, 1 Rue George Bonnet, Poitiers, France
| | - Celine Nicolas
- Inserm, U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France,University of Poitiers, 1 Rue George Bonnet, Poitiers, France
| | - Claire Lafay-Chebassier
- Inserm, U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France,University of Poitiers, 1 Rue George Bonnet, Poitiers, France,Department of Clinical Pharmacology, Poitiers University Hospital, Poitiers, France,Inserm, CIC 1402, Poitiers University Hospital, Poitiers, France
| | - Mohamed Jaber
- Inserm, U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France,University of Poitiers, 1 Rue George Bonnet, Poitiers, France,Inserm, CIC 1402, Poitiers University Hospital, Poitiers, France
| | - Nathalie Thiriet
- Inserm, U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France,University of Poitiers, 1 Rue George Bonnet, Poitiers, France
| | - Marcello Solinas
- Inserm, U-1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France,University of Poitiers, 1 Rue George Bonnet, Poitiers, France,Neurobiology and Neuropharmacology of Addiction Team, Experimental and Clinical Neurosciences Laboratory, INSERM U-1084, University of Poitiers, Poitiers Cedex 86022, France, Tel: +33 5 49 366343, Fax: +33 5 49 454014, E-mail:
| |
Collapse
|
12
|
Cabrera S, Morel C, Tartaglia MC. Clinical Report: Cognitive decline in a patient with Cardiofaciocutaneous syndrome. Am J Med Genet A 2016; 170A:1251-6. [PMID: 26842671 DOI: 10.1002/ajmg.a.37552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/27/2015] [Indexed: 11/07/2022]
Abstract
Cardiofaciocutaneous Syndrome (CFCS) is a rare genetic syndrome caused by mutations in one of four genes: BRAF, MAP2K1, MAP2K2, and KRAS. There is tremendous phenotypic heterogeneity in patients with CFCS and so confirmation of diagnosis requires genetic testing. Neurologic and/or cognitive symptoms are present in almost all CFCS individuals. Little is known about cognitive function in older patients with CFCS. In this report, we present the cognitive, neuropsychiatric, and imaging findings of a patient diagnosed with CFCS who after having remained stable developed progressive cognitive/behavioral and motor decline.
Collapse
Affiliation(s)
- Sergio Cabrera
- University Health Network Memory Clinic, Toronto, Ontario, Canada
| | - Chantal Morel
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- University Health Network Memory Clinic, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex. Proc Natl Acad Sci U S A 2015; 112:E3582-9. [PMID: 26100875 DOI: 10.1073/pnas.1423989112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bHLH transcription factors SHARP1 and SHARP2 are partially redundant modulators of the circadian system. SHARP1/DEC2 has been shown to control sleep length in humans and sleep architecture is also altered in double mutant mice (S1/2(-/-)). Because of the importance of sleep for memory consolidation, we investigated the role of SHARP1 and SHARP2 in cognitive processing. S1/2(-/-) mice show enhanced cortex (Cx)-dependent remote fear memory formation as well as improved reversal learning, but do not display alterations in hippocampus (Hi)-dependent recent fear memory formation. SHARP1 and SHARP2 single null mutants do not display any cognitive phenotype supporting functional redundancy of both factors. Molecular and biochemical analyses revealed elevated insulin-related growth factor 2 (IGF2) signaling and increased phosphorylation of MAPK and S6 in the Cx but not the Hi of S1/2(-/-) mice. No changes were detected in single mutants. Moreover, adeno-associated virus type 2-mediated IGF2 overexpression in the anterior cingulate cortex enhanced remote fear memory formation and the analysis of forebrain-specific double null mutants of the Insulin and IGF1 receptors revealed their essential function for memory formation. Impaired fear memory formation in aged S1/2(-/-) mice indicates that elevated IGF2 signaling in the long term, however, has a negative impact on cognitive processing. In summary, we conclude that the bHLH transcription factors SHARP1 and SHARP2 are involved in cognitive processing by controlling Igf2 expression and associated signaling cascades. Our analyses provide evidence that the control of sleep and memory consolidation may share common molecular mechanisms.
Collapse
|
14
|
Hoedjes KM, Smid HM, Schijlen EGWM, Vet LEM, van Vugt JJFA. Learning-induced gene expression in the heads of two Nasonia species that differ in long-term memory formation. BMC Genomics 2015; 16:162. [PMID: 25888126 PMCID: PMC4440501 DOI: 10.1186/s12864-015-1355-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. Results RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. Conclusion This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1355-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katja M Hoedjes
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, P.O. box 8031, 6700AP, Wageningen, The Netherlands. .,Department of Ecology and Evolution, University of Lausanne, Le Biophore, CH-1015, Lausanne, Switzerland.
| | - Hans M Smid
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, P.O. box 8031, 6700AP, Wageningen, The Netherlands.
| | - Elio G W M Schijlen
- PRI Bioscience, Plant Research International, P.O. box 619, 6700AP, Wageningen, The Netherlands.
| | - Louise E M Vet
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, P.O. box 8031, 6700AP, Wageningen, The Netherlands. .,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Joke J F A van Vugt
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands. .,Department of Neurology, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Lee GH, Chhangawala Z, von Daake S, Savas JN, Yates JR, Comoletti D, D'Arcangelo G. Reelin induces Erk1/2 signaling in cortical neurons through a non-canonical pathway. J Biol Chem 2014; 289:20307-17. [PMID: 24876378 DOI: 10.1074/jbc.m114.576249] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reelin is an extracellular protein that controls many aspects of pre- and postnatal brain development and function. The molecular mechanisms that mediate postnatal activities of Reelin are not well understood. Here, we first set out to express and purify the full length Reelin protein and a biologically active central fragment. Second, we investigated in detail the signal transduction mechanisms elicited by these purified Reelin proteins in cortical neurons. Unexpectedly, we discovered that the full-length Reelin moiety, but not the central fragment, is capable of activating Erk1/2 signaling, leading to increased p90RSK phosphorylation and the induction of immediate-early gene expression. Remarkably, Erk1/2 activation is not mediated by the canonical signal transduction pathway, involving ApoER2/VLDLR and Dab1, that mediates other functions of Reelin in early brain development. The activation of Erk1/2 signaling likely contributes to the modulation of neuronal maturation and synaptic plasticity by Reelin in the postnatal and adult brain.
Collapse
Affiliation(s)
- Gum Hwa Lee
- From the Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Zinal Chhangawala
- the Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
| | - Sventja von Daake
- the Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
| | - Jeffrey N Savas
- the Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037
| | - John R Yates
- the Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California 92037
| | - Davide Comoletti
- the Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and
| | - Gabriella D'Arcangelo
- From the Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854,
| |
Collapse
|
16
|
|
17
|
Ciccarelli A, Giustetto M. Role of ERK signaling in activity-dependent modifications of histone proteins. Neuropharmacology 2014; 80:34-44. [PMID: 24486378 DOI: 10.1016/j.neuropharm.2014.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
It is well-established that neuronal intracellular signaling governed by the extracellular signal-regulated kinase (ERK/MAPK) plays a crucial role in long-term adaptive changes that occur during cognitive processes. ERK is a downstream component of a conserved signaling module that is activated by the serine/threonine kinase, Raf, which activates the MAPK/ERK kinase (MEK)1/2 protein kinases, which, in turn, activate ERK1/2. This signaling pathway has been reported to be activated in numerous physiological conditions due to a variety of stimuli, ranging from the activation of ionotropic glutamatergic receptors to metabotropic dopaminergic receptors and neurotrophin receptors. Interestingly, activated ERK can have early and late downstream effects at both the nuclear and synaptic levels. Locally, ERK signaling results in transient changes in the efficacy of synaptic transmission by modifying both pre- and post-synaptic targets. Once translocated into the nucleus, ERK signaling may control transcription by targeting several different regulators of gene expression such as transcription factors and histone proteins. ERK function is considered fundamental in processes such as long-term memory storage and drug addiction, by means of its role in activity-dependent epigenetic modifications that occur in the brain. In this review, we summarize the current understanding of ERK action in the neuroepigenetic processes underlying physiological responses, cognitive processes and drug addiction.
Collapse
Affiliation(s)
- Alessandro Ciccarelli
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy
| | - Maurizio Giustetto
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, C.so M. D'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
18
|
d'Isa R, Brambilla R, Fasano S. Behavioral methods for the study of the Ras-ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests. Methods Mol Biol 2014; 1120:131-156. [PMID: 24470023 DOI: 10.1007/978-1-62703-791-4_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index that we present here for the first time, the recognition index (RI), which quantifies the ability of an animal to recognize a same object at different time points and that, by taking into account the basal individual preferences displayed during the training, can give a more accurate measure of an animal's actual recognition memory.
Collapse
Affiliation(s)
- Raffaele d'Isa
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University, Milan, Italy
| | | | | |
Collapse
|
19
|
Abstract
Disabled-1 (Dab1) is an adaptor protein that is an obligate effector of the Reelin signaling pathway, and is critical for neuronal migration and dendrite outgrowth during development. Components of the Reelin pathway are highly expressed during development, but also continue to be expressed in the adult brain. Here we investigated in detail the expression pattern of Dab1 in the postnatal and adult forebrain, and determined that it is expressed in excitatory as well as inhibitory neurons. Dab1 was found to be localized in different cellular compartments, including the soma, dendrites, presynaptic and postsynaptic structures. Mice that are deficient in Dab1, Reelin, or the Reelin receptors ApoER2 and VLDLR exhibit severely perturbed brain cytoarchitecture, limiting the utility of these mice for investigating the role of this signaling pathway in the adult brain. In this study, we developed an adult forebrain-specific and excitatory neuron-specific conditional knock-out mouse line, and demonstrated that Dab1 is a critical regulator of synaptic function and hippocampal-dependent associative and spatial learning. These dramatic abnormalities were accompanied by a reduction in dendritic spine size, and defects in basal and plasticity-induced Akt and ERK1/2 signaling. Deletion of Dab1 led to no obvious changes in neuronal positioning, dendrite morphology, spine density, or synaptic composition. Collectively, these data conclusively demonstrate an important role for Reelin-Dab1 signaling in the adult forebrain, and underscore the importance of this pathway in learning and memory.
Collapse
|
20
|
Cestari V, Rossi-Arnaud C, Saraulli D, Costanzi M. The MAP(K) of fear: from memory consolidation to memory extinction. Brain Res Bull 2013; 105:8-16. [PMID: 24080449 DOI: 10.1016/j.brainresbull.2013.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/25/2022]
Abstract
The highly conserved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade is involved in several intracellular processes ranging from cell differentiation to proliferation, as well as in synaptic plasticity. In the last two decades, the role of MAPK/ERK in long-term memory formation in mammals, particularly in fear-related memories, has been extensively investigated. In this review we describe knowledge advancement on the role of MAPK/ERK in orchestrating the intracellular processes that lead to the consolidation, reconsolidation and extinction of fear memories. In doing so, we report studies in which the specific role of MAP/ERK in switching from memory formation to memory erasure has been suggested. The possibility to target MAPK/ERK in developing and/or refining pharmacological approaches to treat psychiatric disorders in which fear regulation is defective has also been envisaged.
Collapse
Affiliation(s)
- Vincenzo Cestari
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy.
| | - Clelia Rossi-Arnaud
- Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Daniele Saraulli
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Marco Costanzi
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Human Sciences, LUMSA University, p.zza delle Vaschette 101, 00193 Rome, Italy
| |
Collapse
|
21
|
Baudry M, Bi X, Aguirre C. Progesterone-estrogen interactions in synaptic plasticity and neuroprotection. Neuroscience 2013; 239:280-94. [PMID: 23142339 PMCID: PMC3628409 DOI: 10.1016/j.neuroscience.2012.10.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 01/01/2023]
Abstract
17ß-Estradiol and progesterone exert a number of physiological effects throughout the brain due to interactions with several types of receptors belonging to the traditional family of intracellular hormonal receptors as well as to membrane-bound receptors. In particular, both hormones elicit rapid modifications of neuronal excitability that have been postulated to underlie their effects on synaptic plasticity and learning and memory. Likewise, both hormones have been shown to be neuroprotective under certain conditions, possibly due to the activation of pro-survival pathways and the inhibition of pro-apoptotic cascades. Because of the similarities in their cellular effects, there have been a number of questions raised by numerous observations that progesterone inhibits the effects of estrogen. In this manuscript, we first review the interactions between 17ß-estradiol (E2) and progesterone (P4) in synaptic plasticity, and conclude that, while E2 exerts a clear and important role in long-term potentiation of synaptic transmission in hippocampal neurons, the role of P4 is much less clear, and could be accounted by the direct or indirect regulation of GABAA receptors. We then discuss the neuroprotective roles of both hormones, in particular against excitotoxicity. In this case, the neuroprotective effects of these hormones are very similar to those of the neurotrophic factor BDNF. Interestingly, P4 antagonizes the effects of E2, possibly through the regulation of estrogen receptors or of proteins associated with the receptors or interactions with signaling pathways activated by E2. Overall, this review emphasizes the existence of common molecules and pathways that participate in the regulation of both synaptic plasticity and neurodegeneration.
Collapse
Affiliation(s)
- M Baudry
- GCBS and COMP, Western University of Health Sciences, Pomona, CA, USA.
| | | | | |
Collapse
|
22
|
The small G protein H-Ras in the mesolimbic system is a molecular gateway to alcohol-seeking and excessive drinking behaviors. J Neurosci 2013; 32:15849-58. [PMID: 23136424 DOI: 10.1523/jneurosci.2846-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uncontrolled consumption of alcohol is a hallmark of alcohol abuse disorders; however, the central molecular mechanisms underlying excessive alcohol consumption are still unclear. Here, we report that the GTP binding protein, H-Ras in the nucleus accumbens (NAc) plays a key role in neuroadaptations that underlie excessive alcohol-drinking behaviors. Specifically, acute (15 min) systemic administration of alcohol (2.5 g/kg) leads to the activation of H-Ras in the NAc of mice, which is observed even 24 h later. Similarly, rat operant self-administration of alcohol (20%) also results in the activation of H-Ras in the NAc. Using the same procedures, we provide evidence suggesting that the exchange factor GRF1 is upstream of H-Ras activation by alcohol. Importantly, we show that infection of mice NAc with lentivirus expressing a short hairpin RNA that targets the H-Ras gene produces a significant reduction of voluntary consumption of 20% alcohol. In contrast, knockdown of H-Ras in the NAc of mice did not alter water, quinine, and saccharin intake. Furthermore, using two-bottle choice and operant self-administration procedures, we show that inhibiting H-Ras activity by intra-NAc infusion of the farnesyltransferase inhibitor, FTI-276, produced a robust decrease of rats' alcohol drinking; however, sucrose consumption was unaltered. Finally, intra-NAc infusion of FTI-276 also resulted in an attenuation of seeking for alcohol. Together, these results position H-Ras as a central molecular mediator of alcohol's actions within the mesolimbic system and put forward the potential value of the enzyme as a novel target to treat alcohol use disorders.
Collapse
|
23
|
Mechanistic basis and functional roles of long-term plasticity in auditory neurons induced by a brain-generated estrogen. J Neurosci 2013; 32:16478-95. [PMID: 23152630 DOI: 10.1523/jneurosci.3233-12.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The classic estrogen 17β-estradiol (E2) was recently identified as a novel modulator of hearing function. It is produced rapidly, in an experience-dependent fashion, by auditory cortical neurons of both males and females. This brain-generated E2 enhances the efficiency of auditory coding and improves the neural and behavioral discrimination of auditory cues. Remarkably, the effects of E2 are long-lasting and persist for hours after local rises in hormone levels have subsided. The mechanisms and functional consequences of this E2-induced plasticity of auditory responses are unknown. Here, we addressed these issues in the zebra finch model by combining intracerebral pharmacology, biochemical assays, in vivo neurophysiology in awake animals, and computational and information theoretical approaches. We show that auditory experience activates the MAPK pathway in an E2-dependent manner. This effect is mediated by estrogen receptor β (ERβ), which directly associates with MEKK1 to sequentially modulate MEK and ERK activation, where the latter is required for the engagement of downstream molecular targets. We further show that E2-mediated activation of the MAPK cascade is required for the long-lasting enhancement of auditory-evoked responses in the awake brain. Moreover, a functional consequence of this E2/MAPK activation is to sustain enhanced information handling and neural discrimination by auditory neurons for several hours following hormonal challenge. Our results demonstrate that brain-generated E2 engages, via a nongenomic interaction between an estrogen receptor and a kinase, a persistent form of experience-dependent plasticity that enhances the neural coding and discrimination of behaviorally relevant sensory signals in the adult vertebrate brain.
Collapse
|
24
|
17α-Ethynyl-androst-5-ene-3β,7β,17β-triol (HE3286) Is Neuroprotective and Reduces Motor Impairment and Neuroinflammation in a Murine MPTP Model of Parkinson's Disease. PARKINSONS DISEASE 2012; 2012:969418. [PMID: 23050197 PMCID: PMC3463191 DOI: 10.1155/2012/969418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 12/14/2022]
Abstract
17α-Ethynyl-androst-5-ene-3β,7β,17β-triol (HE3286) is a synthetic androstenetriol in Phase II clinical development for the treatment of inflammatory diseases. HE3286 was evaluated for blood-brain barrier (BBB) permeability in mice, and efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson's disease (PD). We found that HE3286 freely penetrated the BBB. HE3286 treatment significantly improved motor function compared to vehicle in the rotarod test (mean 58.2 sec versus 90.9 sec, P < 0.0001), and reduced inflammatory mediator gene expression in the brain (inducible nitric oxide synthase, 20%, P = 0.002; tumor necrosis factor α, 40%, P = 0.038, and interleukin-1β, 33%, P = 0.02) measured by reverse-transcriptase polymerase chain reaction. Brain tissue histopathology and immunohistochemistry showed that HE3286 treatment increased the numbers of tyrosine hydroxylase-positive cells by 17% compared to vehicle (P = 0.003), and decreased the numbers of damaged neurons by 38% relative to vehicle (P = 0.029). L-3,4-dihydroxyphenylalanine (L-DOPA) efficacy was not enhanced by concurrent administration of HE3286. HE3286 administration prior to MPTP did not enhance efficacy. Our data suggest a potential role for HE3286 in PD treatment, and provides incentive for further investigation.
Collapse
|
25
|
Li XL, Nian B, Jin Y, Li LW, Jin GS, Kim MS, Park BR, Jin YZ. Mechanism of glutamate receptor for excitation of medial vestibular nucleus induced by acute hypotension. Brain Res 2012; 1443:27-33. [DOI: 10.1016/j.brainres.2012.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/07/2012] [Indexed: 12/31/2022]
|
26
|
|
27
|
|
28
|
Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, Luo Y, Okun E, Mattson MP. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun 2012; 3:1250. [PMID: 23212379 PMCID: PMC4091730 DOI: 10.1038/ncomms2238] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022] Open
Abstract
The formation, maintenance and reorganization of synapses are critical for brain development and the responses of neuronal circuits to environmental challenges. Here we describe a novel role for peroxisome proliferator-activated receptor γ co-activator 1α, a master regulator of mitochondrial biogenesis, in the formation and maintenance of dendritic spines in hippocampal neurons. In cultured hippocampal neurons, proliferator-activated receptor γ co-activator 1α overexpression increases dendritic spines and enhances the molecular differentiation of synapses, whereas knockdown of proliferator-activated receptor γ co-activator 1α inhibits spinogenesis and synaptogenesis. Proliferator-activated receptor γ co-activator 1α knockdown also reduces the density of dendritic spines in hippocampal dentate granule neurons in vivo. We further show that brain-derived neurotrophic factor stimulates proliferator-activated receptor γ co-activator-1α-dependent mitochondrial biogenesis by activating extracellular signal-regulated kinases and cyclic AMP response element-binding protein. Proliferator-activated receptor γ co-activator-1α knockdown inhibits brain-derived neurotrophic factor-induced dendritic spine formation without affecting expression and activation of the brain-derived neurotrophic factor receptor tyrosine receptor kinase B. Our findings suggest that proliferator-activated receptor γ co-activator-1α and mitochondrial biogenesis have important roles in the formation and maintenance of hippocampal dendritic spines and synapses.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Jenq-Lin Yang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Naomi Kamimura
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki-city, 211-8533 Japan
| | - Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Xin Ouyang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Yongquan Luo
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
29
|
d'Isa R, Clapcote SJ, Voikar V, Wolfer DP, Giese KP, Brambilla R, Fasano S. Mice Lacking Ras-GRF1 Show Contextual Fear Conditioning but not Spatial Memory Impairments: Convergent Evidence from Two Independently Generated Mouse Mutant Lines. Front Behav Neurosci 2011; 5:78. [PMID: 22164138 PMCID: PMC3230787 DOI: 10.3389/fnbeh.2011.00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/31/2011] [Indexed: 12/30/2022] Open
Abstract
Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning Brambilla’s mice with a third mouse line (GENA53) in which a non-sense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdala functions but possibly to some distinct hippocampal connections specific to contextual learning.
Collapse
Affiliation(s)
- Raffaele d'Isa
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute and University Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission. Front Behav Neurosci 2011; 5:71. [PMID: 22028687 PMCID: PMC3199545 DOI: 10.3389/fnbeh.2011.00071] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 11/13/2022] Open
Abstract
Dyskinesia is a serious motor complication caused by prolonged administration of l-DOPA to patients affected by Parkinson's disease. Accumulating evidence indicates that l-DOPA-induced dyskinesia (LID) is primarily caused by the development of sensitized dopamine D1 receptor (D1R) transmission in the medium spiny neurons (MSNs) of the striatum. This phenomenon, combined with chronic administration of l-DOPA, leads to persistent and intermittent hyper-activation of the cAMP signaling cascade. Activation of cAMP signaling results in increased activity of the cAMP-dependent protein kinase (PKA) and of the dopamine- and cAMP-dependent phosphoprotein of 32 kDa (DARPP-32), which regulate several downstream effector targets implicated in the control of the excitability of striatal MSNs. Dyskinesia is also accompanied by augmented activity of the extracellular signal-regulated kinases (ERK) and the mammalian target of rapamycin complex 1 (mTORC1), which are involved in the control of transcriptional and translational efficiency. Pharmacological or genetic interventions aimed at reducing abnormal signal transduction at the level of these various intracellular cascades have been shown to attenuate LID in different animal models. For instance, LID is reduced in mice deficient for DARPP-32, or following inhibition of PKA. Blockade of ERK obtained genetically or using specific inhibitors is also able to attenuate dyskinetic behavior in rodents and non-human primates. Finally, administration of rapamycin, a drug which blocks mTORC1, results in a strong reduction of LID. This review focuses on the abnormalities in signaling affecting the D1R-expressing MSNs and on their potential relevance for the design of novel anti-dyskinetic therapies.
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
31
|
McCoy JG, Strecker RE. The cognitive cost of sleep lost. Neurobiol Learn Mem 2011; 96:564-82. [PMID: 21875679 DOI: 10.1016/j.nlm.2011.07.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/12/2011] [Accepted: 07/25/2011] [Indexed: 11/25/2022]
Abstract
A substantial body of literature supports the intuitive notion that a good night's sleep can facilitate human cognitive performance the next day. Deficits in attention, learning & memory, emotional reactivity, and higher-order cognitive processes, such as executive function and decision making, have all been documented following sleep disruption in humans. Thus, whilst numerous clinical and experimental studies link human sleep disturbance to cognitive deficits, attempts to develop valid and reliable rodent models of these phenomena are fewer, and relatively more recent. This review focuses primarily on the cognitive impairments produced by sleep disruption in rodent models of several human patterns of sleep loss/sleep disturbance. Though not an exclusive list, this review will focus on four specific types of sleep disturbance: total sleep deprivation, experimental sleep fragmentation, selective REM sleep deprivation, and chronic sleep restriction. The use of rodent models can provide greater opportunities to understand the neurobiological changes underlying sleep loss induced cognitive impairments. Thus, this review concludes with a description of recent neurobiological findings concerning the neuroplastic changes and putative brain mechanisms that may underlie the cognitive deficits produced by sleep disturbances.
Collapse
Affiliation(s)
- John G McCoy
- VA Boston Healthcare System, Research Service and Harvard Medical School, Department of Psychiatry, 940 Belmont St., Brockton, MA 02301-5596, USA.
| | | |
Collapse
|
32
|
Alteration of synaptic plasticity in rat dorsal striatum induced by chronic ethanol intake and withdrawal via ERK pathway. Acta Pharmacol Sin 2011; 32:175-81. [PMID: 21293469 DOI: 10.1038/aps.2010.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. METHODS Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). RESULTS Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. CONCLUSION In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.
Collapse
|
33
|
Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci U S A 2010; 107:21824-9. [PMID: 21115823 DOI: 10.1073/pnas.1012071107] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is a common debilitating complication of dopamine replacement therapy in Parkinson's disease. Recent evidence suggests that LID may be linked causally to a hyperactivation of the Ras-ERK signaling cascade in the basal ganglia. We set out to determine whether specific targeting of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a brain-specific activator of the Ras-ERK pathway, may provide a therapy for LID. On the rodent abnormal involuntary movements scale, Ras-GRF1-deficient mice were significantly resistant to the development of dyskinesia during chronic L-dopa treatment. Furthermore, in a nonhuman primate model of LID, lentiviral vectors expressing dominant negative forms of Ras-GRF1 caused a dramatic reversion of dyskinesia severity leaving intact the therapeutic effect of L-dopa. These data reveal the central role of Ras-GRF1 in governing striatal adaptations to dopamine replacement therapy and validate a viable treatment for LID based on intracellular signaling modulation.
Collapse
|
34
|
Kharchenko OA, Grinkevich VV, Vorobiova OV, Grinkevich LN. Learning-induced lateralized activation of the MAPK/ERK cascade in identified neurons of the food-aversion network in the mollusk Helix lucorum. Neurobiol Learn Mem 2010; 94:158-66. [DOI: 10.1016/j.nlm.2010.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/03/2010] [Accepted: 05/02/2010] [Indexed: 11/26/2022]
|
35
|
Kumar TP, Antony S, Gireesh G, George N, Paulose CS. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats. J Biomed Sci 2010; 17:43. [PMID: 20513244 PMCID: PMC2890658 DOI: 10.1186/1423-0127-17-43] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 05/31/2010] [Indexed: 12/18/2022] Open
Abstract
Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.
Collapse
Affiliation(s)
- T Peeyush Kumar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | | | | | | | | |
Collapse
|
36
|
Huang CH, Chiang YW, Liang KC, Thompson RF, Liu IY. Extra-cellular signal-regulated kinase 1/2 (ERK1/2) activated in the hippocampal CA1 neurons is critical for retrieval of auditory trace fear memory. Brain Res 2010; 1326:143-51. [PMID: 20188711 DOI: 10.1016/j.brainres.2010.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/18/2022]
Abstract
The brain regions involved with trace fear conditioning (TFC) and delayed fear conditioning (DFC) are well-characterized, but little is known about the cellular representation subsuming these types of classical conditioning. Previous evidence has shown that activation of the amygdala is required for both TFC and DFC, while TFC also involves the hippocampus for forming conditioned response to tone. Lesions of the hippocampus did not affect tone learning in DFC, but it impaired learning in TFC. Synaptic plasticity in the hippocampus, underlying a cellular representation subsuming learning and memory, is in part modulated by extra-cellular signal-regulated kinase (ERK) signaling pathway. ERK1/2 activation is required for both TFC and DFC during memory formation, but whether this pathway is involved in memory retrieval of TFC is still unknown. In the present study, we investigated changes in ERK1/2 phosphorylation after memory retrieval in groups of mice that received TFC, DFC, tone-shock un-paired conditioning, and naïve control. Our results showed that ERK1/2 phosphorylation was elevated in the hippocampal CA1 region after retrieval of all conditioned fear responses. In particular, in the TFC group, immunohistochemistry indicated higher level of ERK1/2 phosphorylation in the hippocampal pyramidal neurons 30min after tone testing. Inhibition of the ERK1/2 signaling pathway diminished fear memory elicited by a tone in TFC. Together these results suggest that the memory retrieval process in TFC is more dependent on ERK1/2 signaling pathway than that in DFC. ERK1/2 signaling is critical for retrieval associative memory of temporally noncontiguous stimuli.
Collapse
|
37
|
Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3:1. [PMID: 20162032 PMCID: PMC2821174 DOI: 10.3389/neuro.02.001.2010] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 01/15/2010] [Indexed: 12/23/2022] Open
Abstract
Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.
Collapse
Affiliation(s)
- Carla Cunha
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milan, Italy
| | | | | |
Collapse
|
38
|
Park CS, Zhong L, Tang SJ. Aberrant expression of synaptic plasticity-related genes in the NF1+/−mouse hippocampus. J Neurosci Res 2009; 87:3107-19. [DOI: 10.1002/jnr.22134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Fasano S, D’Antoni A, Orban PC, Valjent E, Putignano E, Vara H, Pizzorusso T, Giustetto M, Yoon B, Soloway P, Maldonado R, Caboche J, Brambilla R. Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) controls activation of extracellular signal-regulated kinase (ERK) signaling in the striatum and long-term behavioral responses to cocaine. Biol Psychiatry 2009; 66:758-68. [PMID: 19446794 PMCID: PMC2910545 DOI: 10.1016/j.biopsych.2009.03.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ras-extracellular signal-regulated kinase (Ras-ERK) signaling is central to the molecular machinery underlying cognitive functions. In the striatum, ERK1/2 kinases are co-activated by glutamate and dopamine D1/5 receptors, but the mechanisms providing such signaling integration are still unknown. The Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal specific activator of Ras-ERK signaling, is a likely candidate for coupling these neurotransmitter signals to ERK kinases in the striatonigral medium spiny neurons (MSN) and for modulating behavioral responses to drug abuse such as cocaine. METHODS We used genetically modified mouse mutants for Ras-GRF1 as a source of primary MSN cultures and organotypic slices, to perform both immunoblot and immunofluorescence studies in response to glutamate and dopamine receptor agonists. Mice were also subjected to behavioral and immunohistochemical investigations upon treatment with cocaine. RESULTS Phosphorylation of ERK1/2 in response to glutamate, dopamine D1 agonist, or both stimuli simultaneously is impaired in Ras-GRF1-deficient striatal cells and organotypic slices of the striatonigral MSN compartment. Consistently, behavioral responses to cocaine are also affected in mice deficient for Ras-GRF1 or overexpressing it. Both locomotor sensitization and conditioned place preference are significantly attenuated in Ras-GRF1-deficient mice, whereas a robust facilitation is observed in overexpressing transgenic animals. Finally, we found corresponding changes in ERK1/2 activation and in accumulation of FosB/DeltaFosB, a well-characterized marker for long-term responses to cocaine, in MSN from these animals. CONCLUSIONS These results strongly implicate Ras-GRF1 in the integration of the two main neurotransmitter inputs to the striatum and in the maladaptive modulation of striatal networks in response to cocaine.
Collapse
|
40
|
Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Activation of Extracellular Signal-Regulated Kinase in Sciatic Nerve Contributes to Neuropathic Pain After Partial Sciatic Nerve Ligation in Mice. Anesth Analg 2009; 109:1305-11. [DOI: 10.1213/ane.0b013e3181b1dca2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Fasano S, Pittenger C, Brambilla R. Inhibition of CREB activity in the dorsal portion of the striatum potentiates behavioral responses to drugs of abuse. Front Behav Neurosci 2009; 3:29. [PMID: 19826621 PMCID: PMC2759367 DOI: 10.3389/neuro.08.029.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 08/23/2009] [Indexed: 11/13/2022] Open
Abstract
The striatum participates in multiple forms of behavioral adaptation, including habit formation, other forms of procedural memory, and short- and long-term responses to drugs of abuse. The cyclic-AMP response element binding protein (CREB) family of transcription factors has been implicated in various forms of behavioral plasticity, but its role in the dorsal portion of the striatum-has been little explored. We previously showed that in transgenic mice in which CREB function is inhibited in the dorsal striatum, bidirectional synaptic plasticity and certain forms of long-term procedural memory are impaired. Here we show, in startling contrast, that inhibition of striatal CREB facilitates cocaine- and morphine-place conditioning and enhances locomotor sensitization to cocaine. These findings propose CREB as a positive regulator of dorsal striatum-dependent procedural learning but a negative regulator of drug-related learning.
Collapse
Affiliation(s)
- Stefania Fasano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Foundation and University Milano, Italy
| | | | | |
Collapse
|
42
|
Zhuravliova E, Barbakadze T, Narmania N, Sepashvili M, Mikeladze DG. Hypoinsulinemia alleviates the GRF1/Ras/Akt anti-apoptotic pathway and induces alterations of mitochondrial ras trafficking in neuronal cells. Neurochem Res 2008; 34:1076-82. [PMID: 19002579 DOI: 10.1007/s11064-008-9877-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2008] [Indexed: 02/04/2023]
Abstract
Recent observations have established that interruption of insulin production causes deficits in learning and memory formation. We have studied the mechanism of insulin's neuroprotective effect on primary neuronal cells and in streptozotocin (STZ)-induced diabetic rat brain. We have found that in hippocampal neuronal cells insulin increases the content of farnesylated Ras and phosphorylated form of Akt. Besides, the treatment of cells by insulin leads to the activation of mitochondrial cytochrome oxidase, which is inhibited by manumycin, a farnesyltransferase inhibitor. During experimental diabetes, the content of membrane-bound GRF1 was decreased in rat hippocampus that was correlated with the reduction in mitochondrial Ras and phosphorylated forms of Akt. This redistribution in Ras-GRF system was accompanied by the alteration in the activities of CREB, NF-kB (p65) and c-Rel transcription factors. We have proposed that hypoinsulinemia induces the inhibition of Ras signalling in the neuronal cells additionally by abnormality of Ras trafficking into mitochondria.
Collapse
Affiliation(s)
- E Zhuravliova
- Department of Biochemistry, I. Beritashvili Institute of Physiology, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
43
|
Choi MA, Lee JH, Hwang JH, Choi SJ, Kim MS, Park BR. Signaling pathway of glutamate in the vestibular nuclei following acute hypotension in rats. Brain Res 2008; 1229:111-7. [DOI: 10.1016/j.brainres.2008.06.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/23/2008] [Accepted: 06/23/2008] [Indexed: 02/05/2023]
|
44
|
Pang XY, Liu T, Jiang F, Ji YH. Activation of spinal ERK signaling pathway contributes to pain-related responses induced by scorpion Buthus martensi Karch venom. Toxicon 2008; 51:994-1007. [PMID: 18328523 DOI: 10.1016/j.toxicon.2008.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/24/2007] [Accepted: 01/09/2008] [Indexed: 01/15/2023]
Abstract
It has been demonstrated that spontaneous nociceptive behaviors, cutaneous hyperalgesia and paw edema can be induced by intraplantar injection of scorpion Buthus martensi Karch (BmK) venom in rats. In the present study, activation of spinal extracellular signal-regulated kinase (ERK) signaling pathway and its contribution to pain-related responses induced by scorpion BmK venom were investigated. It was found that ERK was activated not only in the superficial layers but also in deep layers of L4-L5 spinal cord dorsal horn, which started at 2 min, peaked at 30-60 min and almost disappeared at 4h following intraplantar injection of BmK venom. Intrathecal injection of U0126 (0.1, 1.0 and 10 microg), a widely used specific MAP kinase kinase (MEK) inhibitor, suppressed spontaneous nociceptive responses and reduced primary heat hyperalgesia and bilateral mechanical hyperalgesia induced by BmK venom. In addition, BmK venom-induced spinal c-Fos expression could be inhibited by U0126 dose-dependently. Intrathecal delivery of NMDA receptor antagonist (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) could partially inhibit activation of spinal ERK induced by BmK venom at 30 min. Thus, activation of ERK in spinal cord dorsal horn, partially mediated by NMDA and non-NMDA receptor, potentially contributes to BmK venom-induced pain-related behaviors.
Collapse
Affiliation(s)
- Xue-Yan Pang
- School of Life Sciences, Shanghai University, Shang-Da Road 99, Shanghai 200444, PR China
| | | | | | | |
Collapse
|
45
|
Grinkevich LN, Lisachev PD, Kharchenko OA, Vasil'ev GV. Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis. Brain Res 2008; 1187:12-9. [DOI: 10.1016/j.brainres.2007.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/04/2007] [Accepted: 08/12/2007] [Indexed: 10/22/2022]
|
46
|
Bruzzone F, Vallarino M, Berruti G, Angelini C. Expression of the deubiquitinating enzyme mUBPy in the mouse brain. Brain Res 2007; 1195:56-66. [PMID: 18206859 DOI: 10.1016/j.brainres.2007.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/29/2007] [Accepted: 12/01/2007] [Indexed: 11/17/2022]
Abstract
Mouse UBPy (mUBPy) is an ubiquitin-specific protease which belongs to a family of deubiquitinating enzymes (DUBs) implicated in several cellular processes related to both cell growth and differentiation. Previously, Northern blot analysis revealed an important expression of mUBPy in the testis and brain. However, a more comprehensive map of mUBPy localization in the central nervous system (CNS) is still lacking. In this study, we mapped the distribution of mUBPy in the mouse brain using nonradioactive in situ hybridization and immunohistochemical techniques. In general, transcript and protein showed a similar and widespread distribution. In particular, mUBPy was strongly expressed in the hippocampal formation, septal region, ventral pallidum, preoptic nucleus, periventricular nucleus of hypothalamus, compact part of the substantia nigra, ventral tegmental area, cochlear nucleus and granular cell layer of cerebellum. A moderate expression of mUBPy was found in the amygdaloid complex, supraoptic nucleus, arcuate and ventromedial nuclei of hypothalamus, lateral hypothalamic area and lateral and reticular part of the substantia nigra. Double labelling with the mUBPy antiserum and antisera against specific cell markers showed that the enzyme is generally expressed in neurons and, in specific regions, also in oligodendrocytes. Moreover, by using antisera to TH and mUBPy we found that mUBPy is localized in dopaminergic neurons. The different distribution of mUBPy in the distinct regions of the brain suggests that it could be related to different deubiquitinating processes; in particular, in the areas where it is expressed at high levels, mUBPy could exert a specialized function through its interaction with specific protein substrates.
Collapse
Affiliation(s)
- Federica Bruzzone
- Department of Biology, University of Genova, V.le Benedetto XV, 5 16132 Genova, Italy
| | | | | | | |
Collapse
|
47
|
Grinkevich LN, Lisachev PD, Baranova KA, Kharchenko OA. Comparative analysis of the activation of MAP/ERK kinases in the CNS of animals with different learning abilities. ACTA ACUST UNITED AC 2007; 37:715-20. [PMID: 17763991 DOI: 10.1007/s11055-007-0072-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 10/13/2005] [Indexed: 12/25/2022]
Abstract
Western blot analysis was used to study the activation of MAP/ERK protein kinases responsible for controlling gene expression via phosphorylation of transcription factors CREB and ELK-1 in native common snails and animals with impaired abilities to form long-term types of conditioned aversive reflexes. Different periods of the formation of this reflex were found to be characterized by different levels of activation of MAP-ERK kinases. The extents of activation of MAP-ERK kinase cascade were different in ganglia (parietal-visceral, cerebral, and pedal) with different roles in the formation of this reflex. The dynamics of activation showed a wavelike nature, with peaks at 10 min and 4 h. Administration of the neurotoxin 5,7-DHT, which induces dysfunction of serotonin terminals and decreases the ability to acquire this type of learning, led to significant decreases in activation of the MAP-ERK kinase cascade at the early stages of learning, which is evidence for an important role for the serotoninergic system in inducing this cascade. Activation of the MAP/ERK kinase cascade 4 h after training was seen both in native and DHT-treated animals, which is probably evidence for activation of non-specific adaptive processes in response to the sensitizing unconditioned stimulus. Thus, the MAP/ERK kinase intracellular regulatory cascade, which plays an important role in the survival of neurons, the regeneration of neuron processes, and synaptic sprouting, also plays an important role in forming the serotonin-dependent food-aversive reflex in the common snail.
Collapse
Affiliation(s)
- L N Grinkevich
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia.
| | | | | | | |
Collapse
|
48
|
Zheng G, Zhang X, Chen Y, Zhang Y, Luo W, Chen J. Evidence for a role of GABAA receptor in the acute restraint stress-induced enhancement of spatial memory. Brain Res 2007; 1181:61-73. [PMID: 17916335 DOI: 10.1016/j.brainres.2007.08.077] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/16/2007] [Accepted: 08/26/2007] [Indexed: 11/17/2022]
Abstract
Stress exerts complex effects on learning and memory; however, the understanding of the molecular mechanisms involved in stress effects on brain and behavior is rather limited. In this study, we investigated the regulation of the activation of MAPK (mitogen-activated protein kinase) cascades in the rat brain by GABAA receptor in a learning and memory task under acute restraint stress conditions. We found that the acute restraint stress improved the performance of the rats in the Morris water maze. Furthermore, the acute restraint stress significantly increased the phosphorylation of ERK and JNK in the hippocampus and prefrontal cortex (PFC), but not in the striatum. The increase paralleled the time course of the decrease of the level of GABAA receptor alpha1 subunit. The increase of P-ERK levels was inhibited by the agonist of GABAA receptor, muscimol, and further increased by the antagonist of the receptor, bicuculline. However, neither muscimol nor bicuculline affected the levels of P-JNK and P-p38. Finally, injection of muscimol partly reversed the acute restraint stress-induced enhancement of performance in the Morris water maze, and injection of bicuculline improved it. These results demonstrated that the changes in ERK phosphorylation in hippocampus and PFC were regulated by GABAA receptor in a learning and memory paradigm under acute restraint stress conditions.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Occupational and Environmental Health, Fourth Military Medical University, 17 Changlexi Road, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
49
|
Group I mGluRs and long-term depression: potential roles in addiction? Mol Neurobiol 2007; 36:232-44. [PMID: 17955198 DOI: 10.1007/s12035-007-0037-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/10/2007] [Indexed: 01/16/2023]
Abstract
Addiction is an enormous societal problem. A number of recent studies have focused on adaptations at glutamatergic synapses that may play a role in the behavioral responses to drugs of abuse. These studies have largely focused on NMDA receptor-dependent forms of synaptic plasticity such as NMDA receptor-dependent long-term potentiation (LTP) and long-term depression (LTD). A growing body of evidence, however, suggests that metabotropic glutamate receptors (mGluRs) also play important roles in the behavioral responses to drugs of abuse and participate in producing synaptic plasticity at glutamate synapses. In this review, we focus first on the evidence supporting a role for mGluRs in addiction and then on the properties of mGluR-dependent forms of synaptic plasticity, focusing in particular on Gq-linked receptor-induced LTD.
Collapse
|
50
|
Abstract
The present study was undertaken to investigate the beneficial effects of Atorvastatin and Simvastatin in cognitive dysfunctions of rats. Alprazolam, Scopolamine and high fat diet (HFD) induced amnesia served as interoceptive memory models where as, Water-maze and Elevated plus-maze served as exteroceptive models. A total of 38 groups of rats were used in this investigation. Escape latency time (ELT) recorded during acquisition trials conducted from day 1 to day 4, in water maze was taken as an index of acquisition, where as mean time spent in target quadrant during retrieval trial on day 5, was taken as the index of retrieval (memory). On elevated plus-maze, transfer latency (TL) measured on 1st d served as the index of acquisition and TL recorded on 2nd d was taken as the index of retrieval (memory). Alprazolam (0.5 mg kg(-1) intraperitoneally), Scopolamine (0.4 mg kg(-1) intraperitoneally) and HFD treated (for 90 days) rats exhibited amnesia as reflected by impairment in learning ability as well as memory, when tested on both, water maze and elevated plus maze. Atorvastatin (5 mg kg(-1) orally) as well as Simvastatin (5 mg kg(-1) orally) significantly attenuated Alprazolam, Scopolamine and HFD induced amnesia. These results highlight the ameliorative role of statins in experimental amnesia with possible involvement of their cholesterol dependent as well as cholesterol independent actions.
Collapse
Affiliation(s)
- Milind Parle
- Pharmacology Division, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, India.
| | | |
Collapse
|