1
|
Manzoni P, Messina A, Germano C, Picone S, Masturzo B, Sainaghi PP, Sola D, Rizzi M. Lactoferrin Supplementation in Preventing and Protecting from SARS-CoV-2 Infection: Is There Any Role in General and Special Populations? An Updated Review of Literature. Int J Mol Sci 2024; 25:10248. [PMID: 39408576 PMCID: PMC11476995 DOI: 10.3390/ijms251910248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
At the beginning of the pandemic, SARS-CoV-2 infection represented a great medical burden worldwide, as targeted and effective therapeutic options were lacking. This resulted in the revival of existing molecules and the increasing popularity of over-the-counter nutritional supplements. Among the latter, lactoferrin has been investigated as an adjuvant in COVID-19 therapy with conflicting results, mainly depending on different study designs. Considering that lactoferrin is one of the main components of human breast milk with anti-microbial and anti-inflammatory activity, it is conceivable that such bioactive molecule could be effective in supporting anti-SARS-CoV-2 infection therapy, especially in infants and pregnant women, two subpopulations that have been poorly evaluated in the existing clinical trials. This narrative review is intended to offer insight into the existing literature on lactoferrin's biological functions and protective effects against COVID-19, with a special focus on pregnant women and their infants.
Collapse
Affiliation(s)
- Paolo Manzoni
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Alessandro Messina
- School of Medicine, University of Turin, 10124 Turin, Italy;
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Germano
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy
| | - Bianca Masturzo
- Department of Maternal, Neonatal and Infant Medicine, University Hospital “Degli Infermi”, 13875 Ponderano, Italy (B.M.)
- School of Medicine, University of Turin, 10124 Turin, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Daniele Sola
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, S. Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Manuela Rizzi
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Health Sciences (DiSS), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
2
|
Dang VB, Alsherbiny MA, Lin R, Gao Y, Li C, Bhuyan DJ. Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E. Int J Mol Sci 2024; 25:9353. [PMID: 39273301 PMCID: PMC11394815 DOI: 10.3390/ijms25179353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Milk boasts an array of potent bioactive compounds, such as lactoferrin (Lf), immunoglobulins, and functional proteins, all delivering substantial therapeutic benefits. In this study, Immune Powder (a functional dairy formulation) and its primary component called Fractionated Milk Protein (FMP) containing Lf, zinc, and immunoglobulins and formulated by Ausnutria Pty Ltd. were evaluated for their potential broad-spectrum pharmacological activity. In particular, this study investigated the antibacterial (against pathogenic Escherichia coli), prebiotic (promoting Lactobacillus delbrueckii growth), anti-inflammatory (inhibition of NO production in RAW264.7 macrophages), and antiviral (against human coronavirus 229E) effects of the samples. In addition, the impact of simulated gastric digestion on the efficacy of the samples was explored. LCMS-based proteomics was implemented to unveil cellular and molecular mechanisms underlying antiviral activity. The Immune Powder demonstrated antibacterial activity against E. coli (up to 99.74 ± 11.47% inhibition), coupled with prebiotic action (10.84 ± 2.2 viability fold-change), albeit these activities diminished post-digestion (p < 0.01). The Immune Powder effectively mitigated NO production in lipopolysaccharide-stimulated RAW264.7 macrophages, with declining efficacy post-digestion (p < 0.0001). The Immune Powder showed similar antiviral activity before and after digestion (p > 0.05) with up to 3-fold improvement. Likewise, FMP exhibited antibacterial potency pre-digestion at high concentrations (95.56 ± 1.23% inhibition at 125 mg/mL) and post-digestion at lower doses (61.82 ± 5.58% inhibition at 3906.25 µg/mL). FMP also showed enhanced prebiotic activity post-digestion (p < 0.0001), NO inhibition pre-digestion, and significant antiviral activity. The proteomics study suggested that the formulation and its primary component shared similar antiviral mechanisms by inhibiting scavenger receptor binding and extracellular matrix interaction.
Collapse
Affiliation(s)
- Vu Bao Dang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | | | - Ruohui Lin
- Australian Dairy Park Pty Ltd., 120 Frankston Gardens Drive, Carrum Downs, VIC 3201, Australia
- Ausnutria Pty Ltd., 25-27 Keysborough Avenue, Keysborough, VIC 3173, Australia
| | - Yumei Gao
- Ausnutria Pty Ltd., 25-27 Keysborough Avenue, Keysborough, VIC 3173, Australia
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhou H, Zhu Y, Liu N, Zhang W, Han J. Effect of iron saturation of bovine lactoferrin on the inhibition of hepatitis B virus in vitro. PeerJ 2024; 12:e17302. [PMID: 38737747 PMCID: PMC11086297 DOI: 10.7717/peerj.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Background Hepatitis B virus (HBV) infection poses a major public health problem worldwide. Bovine lactoferrin (bLf) is a natural product that can inhibit HBV, but the effect of iron saturation on its resistance to HBV is unknown. Aims The purpose of this study is to investigate the impact of iron saturation of bLf against HBV. Methods HepG2 cells were cultured in DMEM high glucose containing 10% inactivated fetal calf serum, at 37 °C, in 5% CO2. MTT method was used to detect the cytotoxicity of bLf to HepG2 cells. Apo-bLf and holo-bLf were prepared from bLf. Iron saturation of these proteins was determined by atomic absorption spectrophotometry. Non-cytotoxic concentrations of candidate proteins were used in anti-HBV tests. Fluorescent quantitative polymerase chain reaction was used to detect HBV-DNA. Results The TC50 and TC0of bLf were 54.570 mg/ml and 1.997 mg/ml, respectively. The iron saturation of bLf, apo-bLf and holo-bLf were 10.29%, 8.42% and 85.32%, respectively. In this study, four non-cytotoxic concentrations of candidate proteins (1.5, 1.0, 0.5, and 0.1 mg/ml, respectively) were used to inhibit HBV in HepG2 cells. The results showed that 1.5 mg/ml bLf and 0.1 mg/ml holo-bLf effectively impaired the HBV-DNA amplification in HBV-infected HepG2 cells (P < 0.05). However, apo-bLf, and Fe3+ did not show the anti-HBV effects. Conclusion A total of 1.5 mg/ml bLf and 0.1 mg/ml holo-bLf could inhibit HBV-DNA in HepG2 cells. Complete bLf structure, appropriate concentration and iron saturation of bLf are necessary conditions for anti-HBV effects.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yiwei Zhu
- Chongqing Food Industry Research Institute Co., Ltd., Chongqing, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Wencui Zhang
- Institute of Endemic Diseases, Harbin Center for Disease Control and Prevention, Harbin, Heilongjiang Province, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Lopdell TJ, Trevarton AJ, Moody J, Prowse-Wilkins C, Knowles S, Tiplady K, Chamberlain AJ, Goddard ME, Spelman RJ, Lehnert K, Snell RG, Davis SR, Littlejohn MD. A common regulatory haplotype doubles lactoferrin concentration in milk. Genet Sel Evol 2024; 56:22. [PMID: 38549172 PMCID: PMC11234695 DOI: 10.1186/s12711-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand.
| | - Alexander J Trevarton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Janelle Moody
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Claire Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Knowles
- Auckland War Memorial Museum, Victoria Street West, Auckland, New Zealand
| | - Kathryn Tiplady
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J Spelman
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Stephen R Davis
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Mathew D Littlejohn
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
- AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
7
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
8
|
Li Z, Li Z, Ma H, Fu S, Liu G, Hao C, Liu Y. Molecular insight into binding behavior of caffeine with lactoferrin: Spectroscopic, molecular docking, and simulation study. J Dairy Sci 2023; 106:8249-8261. [PMID: 37641325 DOI: 10.3168/jds.2023-23631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
The majority of bioactive substances in the human diet come from polyphenols. Here, we use spectroscopy, molecular docking, molecular dynamics simulations, and in vitro digestion to look at the relationship between caffeine (CAF) and bovine lactoferrin (BLF). The correlation analysis of the CAF-BLF fluorescence quenching process revealed that the reaction was spontaneous and that the CAF-BLF fluorescence quenching process may have been static. The predominant intrinsic binding forces were hydrogen bonds and van der Waals forces, which were also supported by molecular docking and molecular dynamics simulations. Through Fourier infrared and circular dichroism spectroscopy experiments, it was found that CAF changed the secondary structure of BLF and might bind to the hydrophobic amino acids of BLF. Compared with BLF, CAF-BLF showed inhibitory effects on digestion in simulated in vitro digestion. It will be helpful to better understand the interaction between CAF and BLF and provide the basis for the development of innovative dairy products.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhixi Li
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Changchun Hao
- College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
9
|
Berkowitz RL, Bluhm AP, Knox GW, McCurdy CR, Ostrov DA, Norris MH. Sigma Receptor Ligands Prevent COVID Mortality In Vivo: Implications for Future Therapeutics. Int J Mol Sci 2023; 24:15718. [PMID: 37958703 PMCID: PMC10647780 DOI: 10.3390/ijms242115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.
Collapse
Affiliation(s)
- Reed L. Berkowitz
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Andrew P. Bluhm
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Glenn W. Knox
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Michael H. Norris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
11
|
Alves NS, Azevedo AS, Dias BM, Horbach IS, Setatino BP, Denani CB, Schwarcz WD, Lima SMB, Missailidis S, Ano Bom APD, Silva AMV, Barreto Vieira DF, Silva MAN, Barros CA, Carvalho CAM, Gonçalves RB. Inhibition of SARS-CoV-2 Infection in Vero Cells by Bovine Lactoferrin under Different Iron-Saturation States. Pharmaceuticals (Basel) 2023; 16:1352. [PMID: 37895823 PMCID: PMC10609673 DOI: 10.3390/ph16101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the rapid mass vaccination against COVID-19, the emergence of new SARS-CoV-2 variants of concern, such as omicron, is still a great distress, and new therapeutic options are needed. Bovine lactoferrin (bLf), a multifunctional iron-binding glycoprotein available in unsaturated (apo-bLf) and saturated (holo-bLf) forms, has been shown to exert broad-spectrum antiviral activity against many viruses. In this study, we evaluated the efficacy of both forms of bLf at 1 mg/mL against infection of Vero cells by SARS-CoV-2. As assessed with antiviral assays, an equivalent significant reduction in virus infection by about 70% was observed when either form of bLf was present throughout the infection procedure with the SARS-CoV-2 ancestral or omicron strain. This inhibitory effect seemed to be concentrated during the early steps of virus infection, since a significant reduction in its efficiency by about 60% was observed when apo- or holo-bLf were incubated with the cells before or during virus addition, with no significant difference between the antiviral effects of the distinct iron-saturation states of the protein. However, an ultrastructural analysis of bLf treatment during the early steps of virus infection revealed that holo-bLf was somewhat more effective than apo-bLf in inhibiting virus entry. Together, these data suggest that bLf mainly acts in the early events of SARS-CoV-2 infection and is effective against the ancestral virus as well as its omicron variant. Considering that there are no effective treatments to COVID-19 with tolerable toxicity yet, bLf shows up as a promising candidate.
Collapse
Affiliation(s)
- Nathalia S. Alves
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Adriana S. Azevedo
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Brenda M. Dias
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Ingrid S. Horbach
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Bruno P. Setatino
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Caio B. Denani
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Waleska D. Schwarcz
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Sheila Maria B. Lima
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Sotiris Missailidis
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Ana Paula D. Ano Bom
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Andréa M. V. Silva
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (N.S.A.); (A.S.A.); (B.M.D.); (I.S.H.); (B.P.S.); (C.B.D.); (W.D.S.); (S.M.B.L.); (S.M.); (A.P.D.A.B.); (A.M.V.S.)
| | - Débora F. Barreto Vieira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (D.F.B.V.); (M.A.N.S.)
| | - Marcos Alexandre N. Silva
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil; (D.F.B.V.); (M.A.N.S.)
| | - Caroline A. Barros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20270-021, RJ, Brazil
| | - Carlos Alberto M. Carvalho
- Departamento de Patologia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém 66095-662, PA, Brazil
| | - Rafael B. Gonçalves
- Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, RJ, Brazil;
| |
Collapse
|
12
|
Omiya K, Nakadate Y, Sato H, Oguchi T, Matsuoka T, Kawakami A, Schricker T, Matsukawa T. Role of the protein kinase A signaling pathway and identification of mediators in the cardioprotective effects of enteral lactoferrin for ischemia-reperfusion injury in an isolated rat heart model. Nutrition 2023; 113:112088. [PMID: 37354654 DOI: 10.1016/j.nut.2023.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE Lactoferrin is an iron-binding glycoprotein. Enteral lactoferrin attenuates myocardial ischemia-reperfusion (IR) injury, but the underlying mechanism remains unknown. The aim of this study was to investigate protein kinase A (PKA) signaling pathway activation and levels of serum glucagonlike peptide-1 (GLP-1), secreted by intestinal endocrine L cells, and adiponectin, secreted by adipose tissue, after enteral lactoferrin administration. METHODS Hearts (N = 32) were excised from Wistar rats and perfused using a Langendorff system. To assess the role of the PKA pathway in the cardioprotective effects of lactoferrin, an inhibitor of PKA (H89) was applied before no-flow ischemia. Rats were randomly divided into four groups: control, lactoferrin (LF), control+H89, and LF+H89. The control and control+H89 groups were administered normal saline by gavage, and the LF and L +H89 groups were administered bovine lactoferrin (1000 mg/kg) by gavage 15 min before intraperitoneal pentobarbital injection. Muscle sampling was performed at the end of reperfusion. When rats were sacrificed, blood was sampled to measure hormone levels. The primary outcome was maximum left ventricular pressure derivative (LV dP/dt max) 15 min after reperfusion. RESULTS LV dP/dt max at 10 and 15 min after reperfusion was significantly higher in the LF group than in the control group (P < 0.05), and the effect was diminished by H89. The PKA pathway was significantly activated in the LF group. Enteral lactoferrin increased serum GLP-1 but not serum adiponectin levels. CONCLUSIONS Enteral lactoferrin induces cardioprotective effects against myocardial IR injury via the PKA signaling pathway and increases serum GLP-1 levels.
Collapse
Affiliation(s)
- Keisuke Omiya
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan.
| | - Yosuke Nakadate
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan; Department of Anesthesiology, University of Tsukuba Hospital, Tsukuba-City, Ibaraki Japan
| | - Hiroaki Sato
- Department of Anesthesia, McGill University Health Centre Glen Site, Royal Victoria Hospital, Decarie, Montreal QC Canada
| | - Takeshi Oguchi
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toru Matsuoka
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Akiko Kawakami
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Thomas Schricker
- Department of Anesthesia, McGill University Health Centre Glen Site, Royal Victoria Hospital, Decarie, Montreal QC Canada
| | - Takashi Matsukawa
- Department of Anesthesiology, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
13
|
Ostrówka M, Duda-Madej A, Pietluch F, Mackiewicz P, Gagat P. Testing Antimicrobial Properties of Human Lactoferrin-Derived Fragments. Int J Mol Sci 2023; 24:10529. [PMID: 37445717 DOI: 10.3390/ijms241310529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lactoferrin, an iron-binding glycoprotein, plays a significant role in the innate immune system, with antibacterial, antivirial, antifungal, anticancer, antioxidant and immunomodulatory functions reported. It is worth emphasizing that not only the whole protein but also its derived fragments possess antimicrobial peptide (AMP) activity. Using AmpGram, a top-performing AMP classifier, we generated three novel human lactoferrin (hLF) fragments: hLF 397-412, hLF 448-464 and hLF 668-683, predicted with high probability as AMPs. For comparative studies, we included hLF 1-11, previously confirmed to kill some bacteria. With the four peptides, we treated three Gram-negative and three Gram-positive bacterial strains. Our results indicate that none of the three new lactoferrin fragments have antimicrobial properties for the bacteria tested, but hLF 1-11 was lethal against Pseudomonas aeruginosa. The addition of serine protease inhibitors with the hLF fragments did not enhance their activity, except for hLF 1-11 against P. aeruginosa, which MIC dropped from 128 to 64 µg/mL. Furthermore, we investigated the impact of EDTA with/without serine protease inhibitors and the hLF peptides on selected bacteria. We stress the importance of reporting non-AMP sequences for the development of next-generation AMP prediction models, which suffer from the lack of experimentally validated negative dataset for training and benchmarking.
Collapse
Affiliation(s)
- Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| |
Collapse
|
14
|
Liu WJ, Chang YS, Tseng KC, Yu MH. Activity of bovine lactoferrin in resistance to white spot syndrome virus infection in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104651. [PMID: 36736936 DOI: 10.1016/j.dci.2023.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
White spot syndrome virus (WSSV) is a notorious pathogen that has plagued shrimp farming worldwide for decades. To date, there are no known treatments that are effective against this virus. Lactoferrin (LF) is a protein with many bioactivities, including antiviral properties. In this study, the activities and mechanisms of bovine LF (bLF) against WSSV were analyzed. Our results showed that bLF treatment significantly reduced shrimp mortalities caused by WSSV infection. bLF was found to have the ability to bind to surfaces of both host cells and WSSV virions. These bindings may have been a result of bLF interactions with the host cellular chitin binding protein and F1 ATP synthase β subunit protein and the WSSV structural proteins VP28, VP110, VP150 and VP160B. bLF demonstrated potential for development as an anti-WSSV agent in shrimp culture. Furthermore, these reactionary proteins may play a role in WSSV infection.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan.
| | - Yun-Shiang Chang
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Kou-Chun Tseng
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Meng-Hua Yu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| |
Collapse
|
15
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
de Sousa ALM, Rizaldo Pinheiro R, Furtado Araujo J, Mesquita Peixoto R, de Azevedo DAA, Cesar Lima AM, Marques Canuto K, Vasconcelos Ribeiro PR, de Queiroz Souza AS, Rocha Souza SC, de Amorim SL, Paula Amaral G, de Souza V, de Morais SM, Andrioli A, da Silva Teixeira MF. In vitro antiviral effect of ethanolic extracts from Azadirachta indica and Melia azedarach against goat lentivirus in colostrum and milk. Sci Rep 2023; 13:4677. [PMID: 36949145 PMCID: PMC10031174 DOI: 10.1038/s41598-023-31455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
This study aimed to evaluate, in vitro, the use of leaf extracts of Azadirachta indica (A. indica) and Melia azedarach (M. azedarach) as antivirals against caprine lentivirus (CLV) in colostrum and milk of goat nannies. These were collected from eight individuals and infected with the standard strain of CLV. Samples were then subdivided into aliquots and treated with 150 µg/mL of crude extract, and with ethyl acetate and methanol fractions for 30, 60, and 90 min. Next, somatic cells from colostrum and milk were co-cultured with cells from the ovine third eyelid. After this step, viral titers of the supernatants collected from treatments with greater efficacy in co-culture were assessed. The organic ethyl acetate fractions of both plants at 90 min possibly inhibited the viral activity of CLV by up to a thousandfold in colostrum. In milk, this inhibition was up to 800 times for the respective Meliaceae. In conclusion, the ethanolic fraction of ethyl acetate from both plants demonstrated efficacy against CLV in samples from colostrum and milk when subjected to treatment, which was more effective in colostrum.
Collapse
Affiliation(s)
- Ana Lidia Madeira de Sousa
- Laboratory of Virology (LABOVIR), State University of Ceará (UECE), Fortaleza, CE, Brazil.
- Faculdade Educar da Ibiapaba, Ípu, CE, Brazil.
| | | | | | - Renato Mesquita Peixoto
- Vale do Salgado University Center (UNIVS), Icó, CE, Brazil
- Terra Nordeste College (FATENE), Caucaia, CE, Brazil
| | | | - Ana Milena Cesar Lima
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Kirley Marques Canuto
- Multiuser Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | | | | | - Sara Lucena de Amorim
- Department of Veterinary Medicine, Federal University of Rondônia, Rolim de Moura, RO, Brazil
| | | | - Viviane de Souza
- Laboratory of Microbiology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry and Natural Products (LQPN), Ceará State University, Fortaleza, CE, Brazil
| | - Alice Andrioli
- Laboratory of Virology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | | |
Collapse
|
17
|
Jiang L, Tang A, Song L, Tong Y, Fan H. Advances in the development of antivirals for rotavirus infection. Front Immunol 2023; 14:1041149. [PMID: 37006293 PMCID: PMC10063883 DOI: 10.3389/fimmu.2023.1041149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Rotavirus (RV) causes 200,000 deaths per year and imposes a serious burden to public health and livestock farming worldwide. Currently, rehydration (oral and intravenous) remains the main strategy for the treatment of rotavirus gastroenteritis (RVGE), and no specific drugs are available. This review discusses the viral replication cycle in detail and outlines possible therapeutic approaches including immunotherapy, probiotic-assisted therapy, anti-enteric secretory drugs, Chinese medicine, and natural compounds. We present the latest advances in the field of rotavirus antivirals and highlights the potential use of Chinese medicine and natural compounds as therapeutic agents. This review provides an important reference for rotavirus prevention and treatment.
Collapse
Affiliation(s)
| | | | - Lihua Song
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
18
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Separation Technologies for Whey Protein Fractionation. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Abstract
Whey is a by-product of cheese, casein, and yogurt manufacture. It contains a mixture of proteins that need to be isolated and purified to fully exploit their nutritional and functional characteristics. Protein-enriched fractions and highly purified proteins derived from whey have led to the production of valuable ingredients for many important food and pharmaceutical applications. This article provides a review on the separation principles behind both the commercial and emerging techniques used for whey protein fractionation, as well as the efficacy and limitations of these techniques in isolating and purifying individual whey proteins. The fractionation of whey proteins has mainly been achieved at commercial scale using membrane filtration, resin-based chromatography, and the integration of multiple technologies (e.g., precipitation, membrane filtration, and chromatography). Electromembrane separation and membrane chromatography are two main emerging techniques that have been developed substantially in recent years. Other new techniques such as aqueous two-phase separation and magnetic fishing are also discussed, but only a limited number of studies have reported their application in whey protein fractionation. This review offers useful insights into research directions and technology screening for academic researchers and dairy processors for the production of whey protein fractions with desired nutritional and functional properties.
Collapse
|
20
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Rodriguez-Ochoa N, Cortes-Reynosa P, Rodriguez-Rojas K, de la Garza M, Salazar EP. Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells. Mol Biol Rep 2023; 50:193-201. [PMID: 36319786 DOI: 10.1007/s11033-022-07943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.
Collapse
Affiliation(s)
- Ninive Rodriguez-Ochoa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Karem Rodriguez-Rojas
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mireya de la Garza
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
22
|
Lai X, Zhuang H, Li T, Xiang K. Protocol for characterizing the inhibition of SARS-CoV-2 infection by a protein of interest in cultured cells. STAR Protoc 2022; 3:101802. [PMID: 36345374 PMCID: PMC9531662 DOI: 10.1016/j.xpro.2022.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we present a protocol to characterize the antiviral ability of a protein of interest to SARS-CoV-2 infection in cultured cells, using MUC1 as an example. We use SARS-CoV-2 ΔN trVLP system, which utilizes transcription and replication-competent SARS-CoV-2 virus-like particles lacking nucleocapsid gene. We describe the optimized procedure to analyze protein interference of viral attachment and entry into cells, and qRT-PCR-based quantification of viral infection. The protocol can be applied to characterize more antiviral candidates and clarify their functioning stage. For complete details on the use and execution of this protocol, please refer to Lai et al. (2022). Perform SARS-CoV-2 trVLP system for experiments in biosafety level 2 laboratory Detailed steps for experimenting SARS-CoV-2 attachment and entry into cells Use MUC1 as an example to assess antiviral function at all infection stages Quantify and analyze viral infection by qRT-PCR
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University-YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing 100191, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University-YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing 100191, China
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University-YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing 100191, China
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University-YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing 100191, China.
| |
Collapse
|
23
|
Omiya K, Nakadate Y, Oguchi T, Sato T, Matsuoka T, Abe M, Kawakami A, Matsukawa T, Sato H. Cardioprotective effects of enteral vs. parenteral lactoferrin administration on myocardial ischemia-reperfusion injury in a rat model of stunned myocardium. BMC Pharmacol Toxicol 2022; 23:78. [PMID: 36242077 PMCID: PMC9563476 DOI: 10.1186/s40360-022-00619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/19/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactoferrin, an iron-binding glycoprotein, is known to have protective effects against intestinal and cerebral ischemia-reperfusion (IR) injuries; however, its cardioprotective effects against the stunned myocardium are unknown. This study aimed to test the hypothesis that lactoferrin has cardioprotective effects against stunned myocardium. METHODS Using isolated rat hearts (Langendorff system), we determined the effects of lactoferrin administered enterally and by direct cardiac perfusion. Rat hearts were perfused using the Langendorff system, and two experiments were performed. In experiment 1, the hearts were divided into the enteral lactoferrin (E-LF) 7.5 m, 15 m, 30 m, and 60 m groups, where lactoferrin (1000 mg/kg) was administered enterally 7.5, 15, 30, and 60 min, respectively, before perfusion; and a control group, where saline was administered 30 min before perfusion. In experiment 2, hearts were allocated to the perfusate lactoferrin (P-LF) 15 and 100 groups, where 15 mg/L and 100 mg/L lactoferrin were respectively added to the perfusate, and a control group. Each group was perfused for 20 min prior to 15 min of no-flow ischemia with pacing, followed by 20 min of reperfusion. The primary outcome was the maximum left ventricular derivative of pressure development (LV dP/dt max) 15 min after reperfusion. Myocardial phospho-protein kinase B (p-Akt) was assayed using western blotting. RESULTS The LV dP/dt max 15 min after reperfusion in the E-LF 15 and 30 m groups was significantly higher than that in the control group. However, the effects disappeared in the E-LF 60 m group. In the second experiment, there were no significant differences in LV dP/dt max. Myocardial p-Akt was not significantly activated in any lactoferrin group. CONCLUSION Cardioprotection was observed 15-30 min after enteral lactoferrin but not by direct cardiac perfusion with lactoferrin. Myocardial p-Akt was not associated with the cardioprotective effect. The cardioprotective effect may be induced by enteral lactoferrin-induced substances.
Collapse
Affiliation(s)
- Keisuke Omiya
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan.
| | - Yosuke Nakadate
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan
| | - Takeshi Oguchi
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan
| | - Tamaki Sato
- Department of Anesthesia, McGill University Health Centre Glen Site, Royal Victoria Hospital, Montreal, Canada
| | - Toru Matsuoka
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan
| | - Masako Abe
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan
| | - Akiko Kawakami
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, 409-3898, Chuo, Yamanashi, Japan
| | - Hiroaki Sato
- Department of Anesthesia, McGill University Health Centre Glen Site, Royal Victoria Hospital, Montreal, Canada
| |
Collapse
|
24
|
Ahmed Abdelmaksoud A, Nafady A, Ezzeldin Sayed Bazeed S, Khalefa M, Elsamman MK, Abdelrhman Sayed MA, Qubaisy HM, Ghweil AA, Aref ZF. Lactoferrin versus Long-Acting Penicillin in Reducing Elevated Anti-Streptolysin O Titer in Cases of Tonsillopharyngitis. Infect Drug Resist 2022; 15:5257-5263. [PMID: 36097531 PMCID: PMC9464002 DOI: 10.2147/idr.s376401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Beta-Hemolytic streptococci are the most frequent bacteria causing tonsillitis. Lactoferrin may play a role in the treatment of chronic tonsillitis due to its direct antimicrobial activity. Objective To assess the possible role of lactoferrin in reduction of raised serum Anti-Streptolysin O Titer (ASOT) in cases of chronic tonsillopharyngitis in comparison to long acting penicillin. Methods This study included 117 children with tonsillopharyngitis with high ASOT randomly divided into three groups; group 1 treated with lactoferrin, group 2 treated with long acting penicillin and group 3 treated with both drugs. For all patients ASOT was measured after three and six months of starting treatment. Results This study included 60 males and 57 females with the mean age (8.5 ± 2.4). There is statistically significant reduction in ASOT in all groups after three months of treatment. ASOT after 3 months was significantly lower in group1 (370±440) and group 3 (350±450) in comparison to group 2 (420±560) with p value 0.02, 0.004, respectively, with no significant difference in comparing group 1 to group 3 p value 0.4. Also, ASO titre after 6 months was significantly lower in group1 (350±420) and group 3 (340±440) in comparison to group 2 (420±550) with p value 0.02, 0.007, respectively, with no significant difference in comparing group 1 to group 3 p value 0.5. In comparing ASOT at three months and six months of treatment in the three studied groups; it decreased by 2% in group 1, and 1.6% in group 3 and no change in group 2. Conclusion Lactoferrin alone or in combination with long acting penicillin is safe and more effective than long acting penicillin alone in reducing ASOT. Treatment for six months with lactoferrin alone or in combination with long acting penicillin could offer a better response.
Collapse
Affiliation(s)
| | - Asmaa Nafady
- Clinical and Chemical Pathology, South Valley University, Qena, Egypt
| | | | | | | | | | | | - Ali A Ghweil
- Tropical Medicine and Gastroenterology, South Valley University, Qena, Egypt
| | - Zaki F Aref
- ENT, South Valley University, Qena, Egypt
- Department and Institution, ENT Department, Clinical and Chemical Chemistry Department Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
25
|
Dienst EGT, Kremer EJ. Adenovirus receptors on antigen-presenting cells of the skin. Biol Cell 2022; 114:297-308. [PMID: 35906865 DOI: 10.1111/boc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Skin, the largest human organ, is part of the first line of physical and immunological defense against many pathogens. Understanding how skin antigen-presenting cells (APCs) respond to viruses or virus-based vaccines is crucial to develop antiviral pharmaceutics, and efficient and safe vaccines. Here, we discuss the way resident and recruited skin APCs engage adenoviruses and the impact on innate immune responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
26
|
Dao HM, Sahakijpijarn S, Chrostowski RR, Moon C, Mangolini F, Cui Z, Williams RO. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces. Mol Pharm 2022; 19:2662-2675. [PMID: 35639017 DOI: 10.1021/acs.molpharmaceut.2c00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the denaturation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin and the quantification of monomers, oligomers, and, ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in the peak position corresponding to the tryptophan (Trp) residues red-shifting by 1.5 nm. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micrometer-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173 and 13° backward and forward scattering, a combination of derived count rate measurements, and microflow imaging (MFI). After studying the impact of droplet formation mechanisms on aggregation tendency of lactoferrin, we further investigated two additional model proteins with different surface activity: bovine IgG (serving as a non surface-active negative reference), and β-galactosidase (another surface-active protein). The results corroborated the lactoferrin findings that spray-atomization-related stress-induced protein aggregation was much more pronounced for proteins that are surface active (lactoferrin and β-galactosidase), but it was minimal for non-surface-active protein (bovine IgG). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial-induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air. The percentage of denatured protein population and associated activity loss, in the case of β-galactosidase, was determined to range from 2 to 10% depending on the air-flow rate of the spraying process.
Collapse
Affiliation(s)
- Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | | | - Robert R Chrostowski
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
27
|
Waminal YO, Tubalinal GASP, Mingala CN. Molecular characterization and association of lactoferrin gene to subclinical mastitis in goats (Capra hircus). ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.56368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study characterized the lactoferrin (Lf) mRNA gene in different goat breeds in the Philippines and determined its association with subclinical mastitis (SCM). The study involved collection of milk at second week of lactation (n=75) and blood samples (n=5) to obtain extracted RNA and using cDNA to amplify Lf gene through polymerase chain reaction. The nucleotide and amino acid sequences were determined and used as reference in the evaluation of phylogenetic relationship. Amplified products were utilized for RFLP analysis before determining the association of the gene with SCM. Results of the study demonstrated that Lf gene in goats registered a molecular weight of 2135. Nucleotide and amino acid sequence of Lf gene revealed high similarity (99%) in Saanen, Anglo-Nubian and Philippine native goats with that of Capra hircus (U53857) Lf gene submitted to GenBank. Phylogenetic studies showed that Lf gene of Anglo-Nubian, Saanen and Native goats clade together with Lf gene of C. hircus (U53857). Three genotypes in goats were documented using the restriction enzymes AluI and HaeIII. Based on the Statistical analysis, association (comp 5.65, p = 0.0308) has been established between the Lf genes of goats with genotype BB to SCM using HaeIII restriction enzyme.
Collapse
|
28
|
Bruno F, Malvaso A, Canterini S, Bruni AC. Antimicrobial Peptides (AMPs) in the Pathogenesis of Alzheimer's Disease: Implications for Diagnosis and Treatment. Antibiotics (Basel) 2022; 11:726. [PMID: 35740133 PMCID: PMC9220182 DOI: 10.3390/antibiotics11060726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. There are two major forms of the disease: sporadic (SAD)-whose causes are not completely understood-and familial (FAD)-with clear autosomal dominant inheritance. The two main hallmarks of AD are extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein (P-tau). An ever-growing body of research supports the infectious hypothesis of sporadic forms of AD. Indeed, it has been documented that some pathogens, such as herpesviruses and certain bacterial species, are commonly present in AD patients, prompting recent clinical research to focus on the characterization of antimicrobial peptides (AMPs) in this pathology. The literature also demonstrates that Aβ can be considered itself as an AMP; thus, representing a type of innate immune defense peptide that protects the host against a variety of pathogens. Beyond Aβ, other proteins with antimicrobial activity, such as lactoferrin, defensins, cystatins, thymosin β4, LL37, histatin 1, and statherin have been shown to be involved in AD. Here, we summarized and discussed these findings and explored the diagnostic and therapeutic potential of AMPs in AD.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy;
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, 00158 Rome, Italy;
| | | |
Collapse
|
29
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
30
|
Pawar S, Markowitz K, Velliyagounder K. Effect of human lactoferrin on Candida albicans infection and host response interactions in experimental oral candidiasis in mice. Arch Oral Biol 2022; 137:105399. [DOI: 10.1016/j.archoralbio.2022.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
|
31
|
Wotring JW, Fursmidt R, Ward L, Sexton JZ. Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. J Dairy Sci 2022; 105:2791-2802. [PMID: 35221061 PMCID: PMC8872794 DOI: 10.3168/jds.2021-21247] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Bovine lactoferrin (bLF), a naturally occurring glycoprotein found in milk, has bioactive characteristics against many microbes, viruses, and other pathogens. Bovine lactoferrin strongly inhibits SARS-CoV-2 infection in vitro through direct entry inhibition and immunomodulatory mechanisms. This study reports on the anti-SARS-CoV-2 efficacy of commercially available bLF and common dairy ingredients in the human lung cell line H1437 using a custom high-content imaging and analysis pipeline. We also show for the first time that bLF has potent efficacy across different viral strains including the South African B.1.351, UK B.1.1.7, Brazilian P.1, and Indian Delta variants. Interestingly, we show that bLF is most potent against the B.1.1.7 variant [half-maximal inhibitory concentration (IC50) = 3.7 µg/mL], suggesting that this strain relies on entry mechanisms that are strongly inhibited by bLF. We also show that one of the major proteolysis products of bLF, lactoferricin B 17-41, has a modest anti-SARS-CoV-2 activity that could add to the clinical significance of this protein for SARS-CoV-2 treatment as lactoferricin is released by pepsin during digestion. Finally, we show that custom chewable lactoferrin tablets formulated in dextrose or sorbitol have equivalent potency to unformulated samples and provide an option for future human clinical trials. Lactoferrin's broad inhibition of SARS-CoV-2 variants in conjunction with the low cost and ease of production make this an exciting clinical candidate for treatment or prevention of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Jesse W Wotring
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109
| | - Reid Fursmidt
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor 48109
| | - Loren Ward
- Glanbia Nutritionals, Twin Falls, ID 83301
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109; Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor 48109; UM Center for Drug Repurposing, University of Michigan, Ann Arbor 48109; Michigan Institute for Clinical and Health Research (MICHR), University of Michigan, Ann Arbor 48109.
| |
Collapse
|
32
|
Maleki Dizaj S, Salatin S, Khezri K, Lee JY, Lotfipour F. Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Front Microbiol 2022; 13:831655. [PMID: 35432230 PMCID: PMC9009044 DOI: 10.3389/fmicb.2022.831655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023] Open
Abstract
As a category of small peptides frequently found in nature, antimicrobial peptides (AMPs) constitute a major part of the innate immune system of various organisms. Antimicrobial peptides feature various inhibitory effects against fungi, bacteria, viruses, and parasites. Due to the increasing concerns of antibiotic resistance among microorganisms, development of antimicrobial peptides is an emerging tool as a favorable applicability prospect in food, medicine, aquaculture, animal husbandry, and agriculture. This review presents the latest research progress made in the field of antimicrobial peptides, such as their mechanism of action, classification, application status, design techniques, and a review on decoration of nanoparticles and polymers with AMPs that are used in treating multidrug resistance. Lastly, we will highlight recent progress in antiviral peptides to treat emerging viral diseases (e.g., anti-coronavirus peptides) and discuss the outlook of AMP applications.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Farzaneh Lotfipour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Food and Drug Safety Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Identified human breastmilk compositions effectively inhibit SARS-CoV-2 and variants infection and replication. iScience 2022; 25:104136. [PMID: 35342878 PMCID: PMC8937612 DOI: 10.1016/j.isci.2022.104136] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to the public health. Human breastmilk is a complex with nutritional composition to nourish infants and protect them from different kinds of infectious diseases including COVID-19. Here, we identified lactoferrin (LF), mucin1 (MUC1) and α-lactalbumin (α-LA) from human breastmilk inhibit SARS-CoV-2 infection using a SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). Additionally, LF and MUC1 inhibited multiple steps including viral attachment, entry and post-entry replication, while α-LA inhibited viral attachment and entry. Importantly, LF, MUC1 and α-LA possessed potent antiviral activities towards variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.1 (kappa). Taken together, our study provides evidence that human breastmilk components (LF, MUC1 and α-LA) are promising antiviral and potential therapeutic candidates warranting further development or treating COVID-19.
Collapse
|
34
|
Food-Borne Transmission of Tick-Borne Encephalitis Virus—Spread, Consequences, and Prophylaxis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031812. [PMID: 35162837 PMCID: PMC8835261 DOI: 10.3390/ijerph19031812] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Tick-borne encephalitis (TBE) is the most common viral neurological disease in Eurasia. It is usually transmitted via tick bites but can also occur through ingestion of TBEV-infected milk and dairy products. The present paper summarises the knowledge of the food-borne TBEV transmission and presents methods for the prevention of its spread. The incidence of milk-borne TBE outbreaks is recorded in central, eastern, and north-eastern Europe, where Ixodes ricinus, Ixodes persulcatus, and/or Dermacentor reticulatus ticks, i.e., the main vectors of TBEV, occur abundantly. The growing occurrence range and population size of these ticks increases the risk of infection of dairy animals, i.e., goats, sheep, and cows, with viruses transmitted by these ticks. Consumers of unpasteurised milk and dairy products purchased from local farms located in TBE endemic areas are the most vulnerable to alimentary TBEV infections. Familial infections with these viruses are frequently recorded, mainly in children. Food-transmitted TBE can be monophasic or biphasic, and some of its neurological and psychiatric symptoms may persist in patients for a long time. Alimentary TBEV infections can be effectively prevented by consumption of pasteurised milk and the use of TBEV vaccines. It is recommended that milk and dairy products should be checked for the presence of TBE viruses prior to distribution. Protection of dairy animals against tick attacks and education of humans regarding the epidemiology and prophylaxis of TBE are equally important.
Collapse
|
35
|
Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J Funct Foods 2022; 89:104932. [PMID: 35003332 PMCID: PMC8723829 DOI: 10.1016/j.jff.2022.104932] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022] Open
Abstract
Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
| | - Francesco Giansanti
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Alyexandra Arienzo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Giovanni Antonini
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| |
Collapse
|
36
|
Krzyzowska M, Chodkowski M, Janicka M, Dmowska D, Tomaszewska E, Ranoszek-Soliwoda K, Bednarczyk K, Celichowski G, Grobelny J. Lactoferrin-Functionalized Noble Metal Nanoparticles as New Antivirals for HSV-2 Infection. Microorganisms 2022; 10:microorganisms10010110. [PMID: 35056558 PMCID: PMC8780146 DOI: 10.3390/microorganisms10010110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/19/2023] Open
Abstract
(1) Background: Lactoferrin has been recognized as a potent inhibitor of human herpetic viruses, such as herpes simplex type 1 (HSV-1) and 2 (HSV-2). In this work, we tested if silver and gold nanoparticles modified with lactoferrin (LF-Ag/AuNPs) can become novel microbicides with additional adjuvant properties to treat genital herpes infection. (2) Methods: The antiviral and cytotoxic activities of LF-Ag/AuNPs were tested in human skin HaCaT and vaginal VK-2-E6/E7 keratinocytes. Viral titers and immune responses after treatment with LF-Ag/AuNPs were tested in murine vaginal HSV-2 infection. (3) Results: LF-Ag/AuNPs inhibited attachment and entry of HSV-2 in human keratinocytes much better than lactoferrin. Furthermore, pretreatment with LF-AgNPs led to protection from infection. Infected mice treated intravaginally with LF-Ag/AuNPs showed lower virus titers in the vaginal tissues and spinal cords in comparison to treatment with lactoferrin. Following treatment, vaginal tissues showed a significant increase in CD8+/granzyme B + T cells, NK cells and dendritic cells in comparison to NaCl-treated group. LF-Ag/AuNPs-treated animals also showed significantly better expression of IFN-γ, CXCL9, CXCL10, and IL-1β in the vaginal tissues. (4) Conclusions: Our findings show that LF-Ag/AuNPs could become effective novel antiviral microbicides with immune-stimulant properties to be applied upon the mucosal tissues.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
- Correspondence:
| | - Marcin Chodkowski
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02‐786 Warsaw, Poland
| | - Dominika Dmowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (M.C.); (M.J.); (D.D.)
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Katarzyna Bednarczyk
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| | - Jaroslaw Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland; (E.T.); (K.R.-S.); (K.B.); (G.C.); (J.G.)
| |
Collapse
|
37
|
Zhu Y. Human Papillomavirus (HPV) Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:223-239. [DOI: 10.1007/978-981-16-8702-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, Rahman MM, Rahman MM, Elzaki A, Kajoak S, Osman H, ElSamani M, Khandaker MU, Idris AM, Emran TB. Natural Bioactive Molecules: An Alternative Approach to the Treatment and Control of COVID-19. Int J Mol Sci 2021; 22:12638. [PMID: 34884440 PMCID: PMC8658031 DOI: 10.3390/ijms222312638] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Sristy Bepary
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mizanur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mominur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Amin Elzaki
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Samih Kajoak
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mohamed ElSamani
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
39
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeta L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Squillaci E, Valenti P, Bianchi L. Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010985. [PMID: 34682731 PMCID: PMC8535893 DOI: 10.3390/ijerph182010985] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
- Correspondence:
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Federico Iacovelli
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Alice Romeo
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Mattia Falconi
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Luca Coppeta
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | | | | | | | - Nicola Moricca
- Villa dei Pini Hospital, 00042 Anzio, Italy; (S.S.); (N.M.)
| | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, 20133 Milan, Italy;
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy;
| | - Ettore Squillaci
- Department of Diagnostic and Molecular Imaging, Radiation Therapy and Interventional Radiology, University Hospital Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| |
Collapse
|
40
|
Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie 2021; 77:319-328. [PMID: 34689960 PMCID: PMC8498005 DOI: 10.1016/j.therap.2021.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a positive-sense RNA virus and it is the causative agent of the global COVID-19 outbreak. COVID-19 is similar to the previous outbreaks for instance SARS in 2002-2003 and MERS in 2012. As the peptides have many advantages, peptide-based therapeutics might be one of the possible ways in the development of COVID-19 specific drugs. SARS-CoV-2 enters into a human via its S protein by attaching with human hACE2 present on the cell membrane in the lungs and intestines of humans. hACE2 cleaves S protein into the S1 subunit for viral attachment and the S2 subunit for fusion with the host cell membrane. The fusion mechanism forms a six-helical bundle (6-HB) structure which finally fuses the viral envelope with the host cell membrane. hACE2 based peptides such as SBP1 and Spikeplug have shown their potential as antiviral agents. S protein-hACE2 interaction and the SARS-CoV-2 fusion machinery play a crucial part in human viral infection. It is evident that if these interactions could be blocked successfully and efficiently, it could be the way to find the drug for COVID-19. Several peptide-based inhibitors are potent inhibitors of S protein-hACE2 interaction. Similarly, the antiviral activity of the antimicrobial peptide, lactoferrin makes it an important candidate for the COVID-19 drug development process. A candidate drug, RhACE2-APN01 based on recombinant hACE2 peptide has already entered phase II clinical trials. This review sheds light on different aspects of the feasibility of using peptide-based therapeutics as the promising therapeutic route for COVID-19.
Collapse
Affiliation(s)
- Jagat Narayan Shah
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 730000 Lanzhou, China; Department of Plant and Cell Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, 730000 Lanzhou, China
| | - Guang-Qin Guo
- Department of Plant and Cell Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, 730000 Lanzhou, China.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, 9300 Bloemfontein, South Africa.
| | - Muthusamy Ramesh
- Department of Pharmaceutical Analysis, Omega College of Pharmacy, 501 301 Hyderabad, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM Deemed to be University, 502329 Hyderabad, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, 7535 Bellville, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 454080 Chelyabinsk, Russia
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Deanship of Scientific Research, Taif University, Al-Haweiah, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411 Phagwara, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Ultimo, Australia
| |
Collapse
|
41
|
Pan S, Weng H, Hu G, Wang S, Zhao T, Yao X, Liao L, Zhu X, Ge Y. Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities (Review). Int J Oncol 2021; 59:85. [PMID: 34533200 DOI: 10.3892/ijo.2021.5265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Lactoferrin (Lf) is secreted by ectodermal tissue and has a structure similar to that of transferrin. Although Lf seems to be multifunctional, its main function is related to the natural defense system of mammals. The present review aims to highlight the major actions of Lf, including the regulation of cell growth, the inhibition of toxic compound formation, the removal of harmful free radicals and its important role in immune response regulation. Moreover, Lf has antibacterial, antiviral, antioxidant, anticancer and anti‑inflammatory activities. In addition, the use of Lf for functionalization of drug nanocarriers, with emphasis on tumor‑targeted drug delivery, is illustrated. Such effects serve as an important theoretical basis for its future development and application. In neurodegenerative diseases and the brains of elderly people, Lf expression is markedly upregulated. Lf may exert an anti‑inflammatory effect by inhibiting the formation of hydroxyl free radicals. Through its antioxidant properties, Lf can prevent DNA damage, thereby preventing tumor formation in the central nervous system. In addition, Lf specifically activates the p53 tumor suppressor gene.
Collapse
Affiliation(s)
- Sian Pan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Huiting Weng
- Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha, Hunan 430011, P.R. China
| | - Guohong Hu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shiwen Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Tian Zhao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Xueping Yao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Libin Liao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Xiaopeng Zhu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Yanshan Ge
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, The Third Affiliated Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
42
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
43
|
Khan MS, Khan RA, Rehman MT, Ismael MA, Husain FM, AlAjmi MF, Alokail MS, Altwaijry N, Alsalme AM. Elucidation of molecular interactions of theaflavin monogallate with camel milk lactoferrin: detailed spectroscopic and dynamic simulation studies. RSC Adv 2021; 11:26710-26720. [PMID: 35479994 PMCID: PMC9037349 DOI: 10.1039/d1ra03256a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin is a heme-binding multifunctional glycoprotein known for iron transportation in the blood and also contributes to innate immunity. In this study, the interaction of theaflavin monogallate, a polyphenolic component of black tea, with camel milk lactoferrin was studied using various biophysical and computational techniques. Fluorescence quenching at different temperatures suggests that theaflavin monogallate interacted with lactoferrin by forming a non-fluorescent complex, i.e., static quenching. Theaflavin monogallate shows a significant affinity towards lactoferrin with a binding constant of ∼104–105 M−1 at different temperatures. ANS binding shows that the binding of polyphenol resulted in the burial of hydrophobic domains of lactoferrin. Moreover, thermodynamic parameters (ΔH, ΔS and ΔG) suggested that the interaction between protein and polyphenol was entropically favored and spontaneous. Circular dichroism confirmed there was no alteration in the secondary structure of lactoferrin. The energy transfer efficiency (FRET) from lactoferrin to theaflavin was found to be approximately 50%, with a distance between protein and polyphenol of 2.44 nm. Molecular docking shows that the binding energy of lactoferrin–theaflavin monogallate interaction was −9.7 kcal mol−1. Theaflavin monogallate was bound at the central cavity of lactoferrin and formed hydrogen bonds with Gln89, Tyr192, Lys301, Ser303, Gln87, and Val250 of lactoferrin. Other residues, such as Tyr82, Tyr92, and Tyr192, were involved in hydrophobic interactions. The calculation of various molecular dynamics simulations parameters indicated the formation of a stable complex between protein and polyphenol. This study delineates the binding mechanism of polyphenol with milk protein and could be helpful in milk formulations and play a key role in the food industry. Lactoferrin is a heme-binding multifunctional glycoprotein known for iron transportation in the blood and also contributes to innate immunity.![]()
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University Riyadh Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Mohamed A Ismael
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University Riyadh Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Majed S Alokail
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Nojood Altwaijry
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ali M Alsalme
- Department of Chemistry, College of Science, King Saud University Riyadh Saudi Arabia
| |
Collapse
|
44
|
Singh A, Ahmad N, Varadarajan A, Vikram N, Singh TP, Sharma S, Sharma P. Lactoferrin, a potential iron-chelator as an adjunct treatment for mucormycosis - A comprehensive review. Int J Biol Macromol 2021; 187:988-998. [PMID: 34324905 DOI: 10.1016/j.ijbiomac.2021.07.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 01/19/2023]
Abstract
Mucormycosis is a deadly infection which is caused by fungi of the order Mucorales including species belonging to the genus Rhizopus, Mucor, Mycocladus, Rhizomucor, Cunninghamella, and Apophysomyces. Despite antifungal therapy and surgical procedures, the mortality rate of this disease is about 90-100% which is exceptionally high. The hypersensitivity of patients with raised available serum iron indicates that the Mucorales are able to use host iron as a critical factor of virulence. This is because iron happens to be a crucial element playing its role in the growth of cells and development. In this review, we have described Lactoferrin (Lf) as a potential iron-chelator. Lf is a naturally occurring glycoprotein which is expressed in most of the biological fluids. Moreover, Lf possesses exclusive anti-inflammatory effects along with several anti-fungal effects that could prove to be helpful to the pathological physiology of inexorable mucormycosis cases. This literature summarises the biological insights into the Lf being considered as a potential fungistatic agent and an immune regulator. The review also proposes that unique potential of Lf as an iron-chelator can be exploited as the adjunct treatment for mucormycosis infection.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nabeel Ahmad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashwin Varadarajan
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Naval Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
45
|
Lactoferrin and Its Detection Methods: A Review. Nutrients 2021; 13:nu13082492. [PMID: 34444652 PMCID: PMC8398339 DOI: 10.3390/nu13082492] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Lactoferrin (LF) is one of the major functional proteins in maintaining human health due to its antioxidant, antibacterial, antiviral, and anti-inflammatory activities. Abnormal levels of LF in the human body are related to some serious diseases, such as inflammatory bowel disease, Alzheimer’s disease and dry eye disease. Recent studies indicate that LF can be used as a biomarker for diagnosis of these diseases. Many methods have been developed to detect the level of LF. In this review, the biofunctions of LF and its potential to work as a biomarker are introduced. In addition, the current methods of detecting lactoferrin have been presented and discussed. We hope that this review will inspire efforts in the development of new sensing systems for LF detection.
Collapse
|
46
|
Jia Y, Lu Y, Wang X, Yang Y, Zou M, Liu J, Jin W, Wang X, Pang G, Huang L, Wang Z. Mass spectrometry based quantitative and qualitative analyses reveal N-glycan changes of bovine lactoferrin at different stages of lactation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Jia Q, Wang Y, Zhu J, Yu H, Tong X. A literature review on lactopontin and its roles in early life. Transl Pediatr 2021; 10:1924-1931. [PMID: 34430441 PMCID: PMC8349962 DOI: 10.21037/tp-21-293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Our study aims to review the functions and possible mechanisms of lactopontin (LPN) in early life. BACKGROUND Human milk proteins provide a variety of protection and health benefits in early life. One of these multifunctional proteins is LPN, which is osteopontin (OPN) derived from milk. METHODS Information used to write this paper was collected from Uniprot, PubMed, and Google Scholar, including in vitro, in vivo, and clinical studies. CONCLUSIONS LPN is a highly phosphorylated, O-glycosylated acidic protein and a unique type of OPN, as it presents at the highest concentration and a higher degree of posttranslational modifications (PTMs) in human milk than other tissues and excretions. LPN is present in milk and the intestinal tracts of infants after consumption as a mixture of intact protein and peptides, which can bind diverse integrin and receptors in the target cell and drive downstream signaling pathways. LPN is found to play important roles in developing the immune, intestinal and nervous systems in early life. Moreover, LPN has also shown to support preterm infants' health when they are especially vulnerable after delivery via animal studies. Additionally, LPN can form protein complex with another milk bioactive protein, lactoferrin (LF), to withstand proteolysis and perform more efficient biological activity. Therefore, LPN showed great potential for early life while more clinical trials and evidence are still emergying.
Collapse
Affiliation(s)
- Qiong Jia
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yiran Wang
- Department of Nutritional and Functional Assessment, Beijing Institute of Nutritional Resources, Beijing, China
| | - Jing Zhu
- Department of Nutritional and Functional Assessment, Beijing Institute of Nutritional Resources, Beijing, China
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaomei Tong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
48
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeda L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Valenti P, Bianchi L. Lactoferrin Against SARS-CoV-2: In Vitro and In Silico Evidences. Front Pharmacol 2021; 12:666600. [PMID: 34220505 PMCID: PMC8242182 DOI: 10.3389/fphar.2021.666600] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 μg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Federico Iacovelli
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | - Alice Romeo
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | - Mattia Falconi
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | | | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, Rome, Italy
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Coppeda
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, Rome, Italy
| | | | | | | | | | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, Naples, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
49
|
Wang Z, Zhang N, Wang W, Li Y, Szeto IM, Qin H, Jin Y, Ye M. Glycoproteomics Analysis Reveals Differential Expression of Site-Specific Glycosylation in Human Milk Whey during Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6690-6700. [PMID: 34087070 DOI: 10.1021/acs.jafc.0c07998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein N-glycosylation in human milk whey plays a substantial role in infant health during postnatal development. Changes in site-specific glycans in milk whey reflect the needs of infants under different circumstances. However, the conventional glycoproteomics analysis of milk whey cannot reveal the changes in site-specific glycans because the attached glycans are typically enzymatically removed from the glycoproteins prior to analysis. In this study, N-glycoproteomics analysis of milk whey was performed without removing the attached glycans, and 330 and 327 intact glycopeptides were identified in colostrum and mature milk whey, respectively. Label-free quantification of site-specific glycans was achieved by analyzing the identified intact glycopeptides, which revealed 9 significantly upregulated site-specific glycans on 6 glycosites and 11 significantly downregulated site-specific glycans on 8 glycosites. Some interesting change trends in N-glycans attached to specific glycosites in human milk whey were observed. Bisecting GlcNAc was found attached to 11 glycosites on 8 glycoproteins in colostrum and mature milk. The dynamic changes in site-specific glycans revealed in this study provide insights into the role of protein N-glycosylation during infant development.
Collapse
Affiliation(s)
- Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wendan Wang
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group Company, Limited, 010110 Hohhot, P. R. China
| | - Yitong Li
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group Company, Limited, 010110 Hohhot, P. R. China
| | - Ignatius M Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group Company, Limited, 010110 Hohhot, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, P. R. China
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, P. R. China
| |
Collapse
|
50
|
Leischner C, Egert S, Burkard M, Venturelli S. Potential Protective Protein Components of Cow's Milk against Certain Tumor Entities. Nutrients 2021; 13:1974. [PMID: 34201342 PMCID: PMC8228601 DOI: 10.3390/nu13061974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Milk and dairy products, especially from cow's milk, play a major role in the daily human diet. It is therefore hardly surprising that the subject of milk is being extensively researched and that many effects of individual milk components have been characterized as a result. With the wealth of results available today, the influence of milk on the development of various types of cancer and, in particular, its often protective effects have been shown both in vitro and in vivo and in the evaluation of large-scale cohort and case-control studies. Various caseins, diverse whey proteins such as α-lactalbumin (α-LA), bovine α-lactalbumin made lethal to tumor cells (BAMLET), β-lactoglobulin (β-LG), or bovine serum albumin (BSA), and numerous milk fat components, such as conjugated linoleic acid (CLA), milk fat globule membrane (MFGM), or butyrate, as well as calcium and other protein components such as lactoferrin (Lf), lactoferricin (Lfcin), and casomorphines, show antitumor or cytotoxic effects on cells from different tumor entities. With regard to a balanced and health-promoting diet, milk consumption plays a major role in a global context. This work provides an overview of what is known about the antitumoral properties of proteins derived from cow's milk and their modes of action.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sarah Egert
- Institute of Nutritional Medicine, Nutritional Science/Dietetics 180c, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany;
| | - Markus Burkard
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tuebingen, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|