1
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
2
|
Uddin MS, Rahman MM, Jakaria M, Rahman MS, Hossain MS, Islam A, Ahmed M, Mathew B, Omar UM, Barreto GE, Ashraf GM. Estrogen Signaling in Alzheimer's Disease: Molecular Insights and Therapeutic Targets for Alzheimer's Dementia. Mol Neurobiol 2020; 57:2654-2670. [PMID: 32297302 DOI: 10.1007/s12035-020-01911-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023]
Abstract
Estrogens play a crucial physiological function in the brain; however, debates exist concerning the role of estrogens in Alzheimer's disease (AD). Women during pre-, peri-, or menopause periods are more susceptible for developing AD, suggesting the connection of sex factors and a decreased estrogen signaling in AD pathogenesis. Yet, the underlying mechanism of estrogen-mediated neuroprotection is unclarified and is complicated by the existence of estrogen-related factors. Consequently, a deeper analysis of estrogen receptor (ER) expression and estrogen-metabolizing enzymes could interpret the importance of estrogen in age-linked cognitive alterations. Previous studies propose that hormone replacement therapy may attenuate AD onset in postmenopausal women, demonstrating that estrogen signaling is important for the development and progression of AD. For example, ERα exerts neuroprotection against AD by maintaining intracellular signaling cascades and study reported reduced expression of ERα in hippocampal neurons of AD patients. Similarly, reduced expression of ERβ in female AD patients has been associated with abnormal function in mitochondria and improved markers of oxidative stress. In this review, we discuss the critical interaction between estrogen signaling and AD. Moreover, we highlight the potential of targeting estrogen-related signaling for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Md Motiar Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Md Sarwar Hossain
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ariful Islam
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ulfat Mohammed Omar
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Brain catechol-O-methyltransferase (COMT) inhibition by tolcapone counteracts recognition memory deficits in normal and chronic phencyclidine-treated rats and in COMT-Val transgenic mice. Behav Pharmacol 2017; 27:415-21. [PMID: 26919286 DOI: 10.1097/fbp.0000000000000208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
The critical involvement of dopamine in cognitive processes has been well established, suggesting that therapies targeting dopamine metabolism may alleviate cognitive dysfunction. Catechol-O-methyl transferase (COMT) is a catecholamine-degrading enzyme, the substrates of which include dopamine, epinephrine, and norepinephrine. The present work illustrates the potential therapeutic efficacy of COMT inhibition in alleviating cognitive impairment. A brain-penetrant COMT inhibitor, tolcapone, was tested in normal and phencyclidine-treated rats and COMT-Val transgenic mice. In a novel object recognition procedure, tolcapone counteracted a 24-h-dependent forgetting of a familiar object as well as phencyclidine-induced recognition deficits in the rats at doses ranging from 7.5 to 30 mg/kg. In contrast, entacapone, a COMT inhibitor that does not readily cross the blood-brain barrier, failed to show efficacy at doses up to 30 mg/kg. Tolcapone at a dose of 30 mg/kg also improved novel object recognition performance in transgenic mice, which showed clear recognition deficits. Complementing earlier studies, our results indicate that central inhibition of COMT positively impacts recognition memory processes and might constitute an appealing treatment for cognitive dysfunction related to neuropsychiatric disorders.
Collapse
|
4
|
Potential drug targets and treatment of schizophrenia. Inflammopharmacology 2017; 25:277-292. [DOI: 10.1007/s10787-017-0340-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
|
5
|
Goto Y, Lee YA, Yamaguchi Y, Jas E. Biological mechanisms underlying evolutionary origins of psychotic and mood disorders. Neurosci Res 2016; 111:13-24. [PMID: 27230505 DOI: 10.1016/j.neures.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2015] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
Psychotic and mood disorders are brain dysfunctions that are caused by gene environment interactions. Although these disorders are disadvantageous and involve behavioral phenotypes that decrease the reproductive success of afflicted individuals in the modern human society, the prevalence of these disorders have remained constant in the population. Here, we propose several biological mechanisms by which the genes associated with psychotic and mood disorders could be selected for in specific environmental conditions that provide evolutionary bases for explanations of when, why, and where these disorders emerged and have been maintained in humans. We discuss the evolutionary origins of psychotic and mood disorders with specific focuses on the roles of dopamine and serotonin in the conditions of social competitiveness/hierarchy and maternal care and other potential mechanisms, such as social network homophily and symbiosis.
Collapse
Affiliation(s)
- Yukiori Goto
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| | - Young-A Lee
- Department of Food Science & Nutrition, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 712-702, Republic of Korea
| | - Yoshie Yamaguchi
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Emanuel Jas
- Graduate School of Natural Sciences, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
6
|
|
7
|
McDermott CM, Liu D, Ade C, Schrader LA. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice. Neurobiol Learn Mem 2014; 118:167-77. [PMID: 25555360 DOI: 10.1016/j.nlm.2014.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders.
Collapse
Affiliation(s)
- Carmel M McDermott
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Dan Liu
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Catherine Ade
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Laura A Schrader
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
8
|
Entacapone augmentation of antipsychotic treatment in schizophrenic patients with negative symptoms; a double-blind placebo-controlled study. Int J Neuropsychopharmacol 2014; 17:337-40. [PMID: 24229565 DOI: 10.1017/s1461145713001387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Negative symptoms in schizophrenia are associated with decreased dopaminergic activity in the prefrontal cortex (PFC). It is hypothesized that increasing dopamine levels would alleviate negative symptoms. Termination of dopamine activity in the PFC is mainly via catechol-O-methyl tranferase (COMT) activity. Hence, inhibition of COMT activity with entacapone should reverse PFC dopaminergic transmission. To assess the efficacy of entacapone addition to antipsychotic treatment in patients with residual schizophrenia, we conducted a double-blind, randomised, placebo-controlled study for 12 wk of treatment with entacapone or placebo. Clinical measures (PANSS, CGI and QLS) were obtained at baseline and at weeks 4, 8 and 12 and cognitive functions were assessed by the RBANSS. Significant improvement over time in PANSS and QLS scores was observed in both groups. However, entacapone did not demonstrate a beneficial effect compared to placebo. Therefore, this study does not support a therapeutic role for entacapone in residual schizophrenia.
Collapse
|
9
|
Magalona SC, Rasetti R, Chen J, Chen Q, Gold I, Decot H, Callicott JH, Berman KF, Apud JA, Weinberger DR, Mattay VS. Effect of tolcapone on brain activity during a variable attentional control task: a double-blind, placebo-controlled, counter-balanced trial in healthy volunteers. CNS Drugs 2013; 27:663-73. [PMID: 23794107 PMCID: PMC4135358 DOI: 10.1007/s40263-013-0082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Attention is the capacity to flexibly orient behaviors and thoughts towards a goal by selecting and integrating relevant contextual information. The dorsal cingulate (dCC) and prefrontal (PFC) cortices play critical roles in attention. Evidence indicates that catechol-O-methyltransferase (COMT) modulates dopaminergic tone in the PFC and dCC. OBJECTIVE In this study, we explored the effect of tolcapone, a CNS penetrant COMT inhibitor that increases cortical dopamine levels, on brain activity during a Variable Attentional Control (VAC) task. STUDY DESIGN We performed a double-blinded, placebo-controlled, counter-balanced trial with tolcapone (Tasmar, tablets, 100 mg three times a day for 1 day and then 200 mg three times a day for 6 days; ClinicalTrials.gov identifier: NCT00044083). SETTING The study was conducted in the Clinical Center of the National Institute of Mental Health from 2005 to 2009. PATIENTS Twenty healthy volunteers (11 males; mean age = 32.7 years) with good imaging and performance data on both arms of the study were investigated. INTERVENTION Participants underwent 3T blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while performing the event-related VAC task, which varies attention over three levels of load: LOW, INT (intermediate), and HIGH. MAIN OUTCOME MEASURE Changes in behavioral data and individual contrast images were analyzed using ANOVA with drug and task load as co-factors. RESULTS There was a significant main effect of increasing task load, with resulting decreased accuracy and increased reaction time. While there was no significant effect of tolcapone on these behavioral measures, the neuroimaging data showed a significant effect on load-related changes in dCC, with significantly lower dCC activation on tolcapone compared with placebo. Further, neural activity in dCC correlated positively with COMT enzyme activity (i.e., lower COMT activity and presumably more dopamine was associated with lower activation in dCC, i.e., more efficient information processing). CONCLUSION Our results show that pharmacological reduction of COMT activity modulates the engagement of attentional mechanisms, selectively enhancing the efficiency of dCC processing in healthy volunteers, reflected as decreased activity for the same level of performance.
Collapse
Affiliation(s)
- Sophia C. Magalona
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Roberta Rasetti
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jingshan Chen
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Ian Gold
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Heather Decot
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joseph H. Callicott
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Karen F. Berman
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - José A. Apud
- Clinical Brain Disorders Branch (CBDB), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Baltimore, MD 21205, USA,Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Venkata S. Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Sexually dimorphic effects of catechol-O-methyltransferase (COMT) inhibition on dopamine metabolism in multiple brain regions. PLoS One 2013; 8:e61839. [PMID: 23613951 PMCID: PMC3629045 DOI: 10.1371/journal.pone.0061839] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) enzyme metabolises catecholamines. COMT inhibitors are licensed for the adjunctive treatment of Parkinson's disease and are attractive therapeutic candidates for other neuropsychiatric conditions. COMT regulates dopamine levels in the prefrontal cortex (PFC) but plays a lesser role in the striatum. However, its significance in other brain regions is largely unknown, despite its links with a broad range of behavioural phenotypes hinting at more widespread effects. Here, we investigated the effect of acute systemic administration of the brain-penetrant COMT inhibitor tolcapone on tissue levels of dopamine, noradrenaline, and the dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). We examined PFC, striatum, hippocampus and cerebellum in the rat. We studied both males and females, given sexual dimorphisms in several aspects of COMT's function. Compared with vehicle, tolcapone significantly increased dopamine levels in the ventral hippocampus, but did not affect dopamine in other regions, nor noradrenaline in any region investigated. Tolcapone increased DOPAC and/or decreased HVA in all brain regions studied. Notably, several of the changes in DOPAC and HVA, particularly those in PFC, were more prominent in females than males. These data demonstrate that COMT alters ventral hippocampal dopamine levels, as well as regulating dopamine metabolism in all brain regions studied. They demonstrate that COMT is of significance beyond the PFC, consistent with its links with a broad range of behavioural phenotypes. Furthermore, they suggest that the impact of tolcapone may be greater in females than males, a finding which may be of clinical significance in terms of the efficacy and dosing of COMT inhibitors.
Collapse
|
11
|
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 2012; 17:1206-27. [PMID: 22584864 DOI: 10.1038/mp.2012.47] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
Since the introduction of chlorpromazine and throughout the development of the new-generation antipsychotic drugs (APDs) beginning with clozapine, the D(2) receptor has been the target for the development of APDs. Pharmacologic actions to reduce neurotransmission through the D(2) receptor have been the only proven therapeutic mechanism for psychoses. A number of novel non-D(2) mechanisms of action of APDs have been explored over the past 40 years but none has definitively been proven effective. At the same time, the effectiveness of treatments and range of outcomes for patients are far from satisfactory. The relative success of antipsychotics in treating positive symptoms is limited by the fact that a substantial number of patients are refractory to current medications and by their lack of efficacy for negative and cognitive symptoms, which often determine the level of functional impairment. In addition, while the newer antipsychotics produce fewer motor side effects, safety and tolerability concerns about weight gain and endocrinopathies have emerged. Consequently, there is an urgent need for more effective and better-tolerated antipsychotic agents, and to identify new molecular targets and develop mechanistically novel compounds that can address the various symptom dimensions of schizophrenia. In recent years, a variety of new experimental pharmacological approaches have emerged, including compounds acting on targets other than the dopamine D(2) receptor. However, there is still an ongoing debate as to whether drugs selective for singe molecular targets (that is, 'magic bullets') or drugs selectively non-selective for several molecular targets (that is, 'magic shotguns', 'multifunctional drugs' or 'intramolecular polypharmacy') will lead to more effective new medications for schizophrenia. In this context, current and future drug development strategies can be seen to fall into three categories: (1) refinement of precedented mechanisms of action to provide drugs of comparable or superior efficacy and side-effect profiles to existing APDs; (2) development of novel (and presumably non-D(2)) mechanism APDs; (3) development of compounds to be used as adjuncts to APDs to augment efficacy by targeting specific symptom dimensions of schizophrenia and particularly those not responsive to traditional APD treatment. In addition, efforts are being made to determine if the products of susceptibility genes in schizophrenia, identified by genetic linkage and association studies, may be viable targets for drug development. Finally, a focus on early detection and early intervention aimed at halting or reversing progressive pathophysiological processes in schizophrenia has gained great influence. This has encouraged future drug development and therapeutic strategies that are neuroprotective. This article provides an update and critical review of the pharmacology and clinical profiles of current APDs and drugs acting on novel targets with potential to be therapeutic agents in the future.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Neuropsychiatry, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
12
|
Green AE, Kraemer DJM, Deyoung CG, Fossella JA, Gray JR. A gene-brain-cognition pathway: prefrontal activity mediates the effect of COMT on cognitive control and IQ. ACTA ACUST UNITED AC 2012; 23:552-9. [PMID: 22368081 DOI: 10.1093/cercor/bhs035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
A core thesis of cognitive neurogenetic research is that genetic effects on cognitive ability are mediated by specific neural functions, however, demonstrating neural mediation has proved elusive. Pairwise relationships between genetic variation and brain function have yielded heterogeneous findings to date. This heterogeneity indicates that a multiple mediator modeling approach may be useful to account for complex relationships involving function at multiple brain regions. This is relevant not only for characterizing healthy cognition but for modeling the complex neural pathways by which disease-related genetic effects are transmitted to disordered cognitive phenotypes in psychiatric illness. Here, in 160 genotyped functional magnetic resonance imaging participants, we used a multiple mediator model to test a gene-brain-cognition pathway by which activity in 4 prefrontal brain regions mediates the effects of catechol-O-methyltransferase (COMT) gene on cognitive control and IQ. Results provide evidence for gene-brain-cognition mediation and help delineate a pathway by which gene expression contributes to intelligence.
Collapse
Affiliation(s)
- Adam E Green
- Department of Psychology, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | |
Collapse
|
13
|
McAllister TW. Genetic Factors Modulating Outcome After Neurotrauma. PM R 2010; 2:S241-52. [DOI: 10.1016/j.pmrj.2010.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
|
14
|
Nissinen E, Männistö PT. Biochemistry and Pharmacology of Catechol-O-Methyltransferase Inhibitors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 95:73-118. [DOI: 10.1016/b978-0-12-381326-8.00005-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
15
|
Edelstyn NMJ, Shepherd TA, Mayes AR, Sherman SM, Ellis SJ. Effect of disease severity and dopaminergic medication on recollection and familiarity in patients with idiopathic nondementing Parkinson's. Neuropsychologia 2009; 48:1367-75. [PMID: 20036678 DOI: 10.1016/j.neuropsychologia.2009.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2009] [Revised: 11/24/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
Abstract
The effect of disease severity and dopaminergic medication on the assessment of familiarity and the recollection of episodic details during recognition in nondementing idiopathic Parkinson's is uncertain. Some studies have reported familiarity as deficient in mild Parkinson's yet others have found it intact even in moderate Parkinson's. Recollection has been found to be both preserved and deficient in mild and moderate Parkinson's. The extent to which these conflicting findings are explained by disease severity or dopaminergic medication or a combination of the two is uncertain, as all studies assessed patients in a medicated state, and disease severity has not always been consistently reported. Twelve patients with mild Parkinson's and 11 with moderate Parkinson's (medicated Hoehn and Yahr mean: 2.1 and 3.2, respectively), completed matched versions of a yes/no recognition memory test in a medicated and unmedicated condition (termed ON and OFF, respectively). Twenty-one matched healthy volunteers also completed both memory tasks in 2 separate sessions (termed Blue and Green, respectively). In the ON/Green condition, the moderate Parkinson's recollection performance was significantly poorer than the healthy volunteers and mild Parkinson's. By contrast, recognition memory and familiarity measures in both Parkinson's group were relatively spared. In the OFF/Blue condition, the moderate Parkinson's recollection was impaired, but only in relation to the healthy volunteer set. There were no significant differences in recollection performance between the mild and moderate Parkinson's groups. Again, recognition memory and familiarity measures in both Parkinson's group were relatively spared. Further analyses showed the moderate patients' recollection rates to be significantly poorer ON-medication compared to OFF. These findings are discussed in relation to the staging of disease progression on medial temporal areas which separately support recollection and familiarity, and the putative effects the different classes of dopaminergic drugs may have on these areas.
Collapse
|
16
|
Polymorphisms in genes modulating the dopamine system: do they inf luence outcome and response to medication after traumatic brain injury? J Head Trauma Rehabil 2009; 24:65-8. [PMID: 19158598 DOI: 10.1097/htr.0b013e3181996e6b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
17
|
Galletly C. Recent advances in treating cognitive impairment in schizophrenia. Psychopharmacology (Berl) 2009; 202:259-73. [PMID: 18766331 DOI: 10.1007/s00213-008-1302-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/14/2008] [Accepted: 08/10/2008] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Schizophrenia is often associated with chronic disability and poor outcome. In addition to positive symptoms, such as hallucinations and delusions, and negative symptoms including poverty of speech and blunted affect, schizophrenia is also associated with deficits in cognitive function. It has been increasingly recognized that the severity of cognitive impairment is a major determinant of outcome. Therefore, interventions to improve cognitive function also have the capacity to improve quality of life and social and occupational outcomes. Whilst some of the antipsychotic drugs have shown some selective benefits, there is some controversy about the extent of these benefits. OBJECTIVES This article provides an overview of research into drugs that might enhance cognition in schizophrenia. CONCLUSION Drugs such as modafanil and galantamine are being evaluated, and a number of new drugs are currently in development. Standardized cognitive assessment measures are being developed so studies can be compared more easily. This field is advancing rapidly, but as yet, no widely applicable, evidence-based treatments are available to the clinician.
Collapse
Affiliation(s)
- Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Suite 13, The Adelaide Clinic Consulting Suites, 33 Park Tce Gilberton, Adelaide, South Australia 5081, Australia.
| |
Collapse
|
18
|
Lapish CC, Ahn S, Evangelista LM, So K, Seamans JK, Phillips AG. Tolcapone enhances food-evoked dopamine efflux and executive memory processes mediated by the rat prefrontal cortex. Psychopharmacology (Berl) 2009; 202:521-30. [PMID: 18854987 DOI: 10.1007/s00213-008-1342-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/17/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND RATIONALE Genetic variations in catechol-O-methyl transferase (COMT) or administration of COMT inhibitors have a robust impact on cognition and executive function in humans. The COMT enzyme breaks down extracellular dopamine (DA) and has a particularly important role in the prefrontal cortex (PFC) where DA transporters are sparse. As such, the beneficial cognitive effects of the COMT inhibitor tolcapone are postulated to be the result of increased bioavailability of DA in the PFC. Furthermore, it has been shown previously that COMT inhibitors increase pharmacologically evoked DA but do not affect basal levels in the PFC. OBJECTIVES The current study characterized the ability of tolcapone to increase DA release in response to behaviorally salient stimuli and improve performance of the delayed spatial win-shift (DSWSh) task. RESULTS AND CONCLUSIONS Tolcapone enhanced PFC DA efflux associated with the anticipation and consumption of food when compared to saline controls. Chronic and acute treatment with tolcapone also reduced the number of errors committed during acquisition of the DSWSh. However, no dissociable effects were observed in experiments designed to selectively assay encoding or recall in well-trained animals, as both experiments showed improvement with tolcapone treatment. Taken together, these data suggest a generalized positive influence on cognition. Furthermore, these data support the conclusion of Apud and Weinberger (CNS Drugs 21:535-557, 2007) that agents which selectively potentiate PFC DA release may confer cognitive enhancement without the unwanted side effects produced by drugs that increase basal DA levels in cortical and subcortical brain regions.
Collapse
Affiliation(s)
- C C Lapish
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver BCV6T2A1, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Gaur N, Gautam S, Gaur M, Sharma P, Dadheech G, Mishra S. The biochemical womb of schizophrenia: A review. Indian J Clin Biochem 2008; 23:307-27. [PMID: 23105779 PMCID: PMC3453132 DOI: 10.1007/s12291-008-0071-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.
Collapse
Affiliation(s)
- N. Gaur
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - S. Gautam
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Psychiatric Centre, SMS Medical College, Jaipur, India
| | - M. Gaur
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Psychiatric Centre, SMS Medical College, Jaipur, India
| | - P. Sharma
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Biochemistry, SMS Medical College, Jaipur, India
| | - G. Dadheech
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - S. Mishra
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
20
|
Gallinat J, Bauer M, Heinz A. Genes and Neuroimaging: Advances in Psychiatric Research. NEURODEGENER DIS 2008; 5:277-85. [DOI: 10.1159/000135612] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
|
21
|
Gray JA, Roth BL. The pipeline and future of drug development in schizophrenia. Mol Psychiatry 2007; 12:904-22. [PMID: 17667958 DOI: 10.1038/sj.mp.4002062] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/29/2007] [Revised: 05/20/2007] [Accepted: 05/24/2007] [Indexed: 11/08/2022]
Abstract
While the current antipsychotic medications have profoundly impacted the treatment of schizophrenia over the past 50 years, the newer atypical antipsychotics have not fulfilled initial expectations, and enormous challenges remain in long-term treatment of this debilitating disease. In particular, improved treatment of the negative symptoms and cognitive dysfunction in schizophrenia which greatly impact overall morbidity is needed. In this review we will briefly discuss the current pipeline of drugs for schizophrenia, outlining many of the strategies and targets currently under investigation for the development of new schizophrenia drugs. Many of these compounds have great potential as augmenting agents in the treatment of negative symptoms and cognition. In addition, we will highlight the importance of developing new paradigms for drug discovery in schizophrenia and call for an increased role of academic scientists in discovering and validating novel drug targets. Indeed, recent breakthroughs in genetic studies of schizophrenia are allowing for the development of hypothesis-driven approaches for discovering possible disease-modifying drugs for schizophrenia. Thus, this is an exciting and pivotal time for the development of truly novel approaches to drug development and treatment of complex disorders like schizophrenia.
Collapse
Affiliation(s)
- J A Gray
- Department of Psychiatry, University of California, San Francisco, CA 94143-0984, USA.
| | | |
Collapse
|
22
|
Apud JA, Weinberger DR. Treatment of cognitive deficits associated with schizophrenia: potential role of catechol-O-methyltransferase inhibitors. CNS Drugs 2007; 21:535-57. [PMID: 17579498 DOI: 10.2165/00023210-200721070-00002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
In the last two decades, understanding of the dynamics of dopamine function in the prefrontal cortex and its role in prefrontal cortex physiology has opened up new avenues for therapeutic interventions in conditions in which prefrontal cortex function is compromised. Neuropsychological and imaging studies of prefrontal information processing have confirmed specific cognitive and neurophysiological abnormalities in individuals with schizophrenia. Because such findings are also observed in the healthy siblings of patients with schizophrenia, they may represent intermediate phenotypes related to schizophrenia susceptibility genes.Catechol-O-methyltransferase (COMT) represents an important candidate as a susceptibility gene for cognitive dysfunction in schizophrenia because of the unique role this enzyme plays in regulating prefrontal dopaminergic function. A functional COMT polymorphism (Val158Met) predicts performance in tasks of prefrontal executive function and the neurophysiological response measured with electroencephalography and functional magnetic resonance imaging in tasks assessing working memory. In fact, individuals with the Val/Val genotype, which encodes for the high-activity enzyme resulting in lower dopamine concentrations in the prefrontal cortex, perform less well and are less efficient physiologically than Met/Met individuals. These findings raise the possibility of new pharmacological interventions for the treatment of prefrontal cortex dysfunction and of predicting outcome based on COMT genotype. One strategy consists of the use of CNS-penetrant COMT inhibitors such as tolcapone. A second strategy is to increase extracellular dopamine concentrations in the frontal cortex by blocking the noradrenaline (norepinephrine) reuptake system, a secondary mechanism responsible for the disposal of dopamine from synaptic clefts in the prefrontal cortex. A third possibility involves the use of modafinil, a drug with an unclear mechanism of action but with positive effects on working memory in rodents. The potential of these drugs to improve executive cognitive function by selectively increasing dopamine load in the frontal cortex but not in subcortical territories, and the possibility that response to them may be modified by a COMT polymorphism, provides a novel genotype-based targeted pharmacological approach without abuse potential for the treatment of cognitive disorder in schizophrenia and in other conditions involving prefrontal cortex dysfunction.
Collapse
Affiliation(s)
- José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Abstract
Cognitive impairment is a core feature of schizophrenia as deficits are present in the majority of patients, frequently precede the onset of other positive symptoms, persist even with successful treatment of positive symptoms, and account for a significant portion of functional impairment in schizophrenia. While the atypical antipsychotics have produced incremental improvements in the cognitive function of patients with schizophrenia, overall treatment remains inadequate. In recent years, there has been an increased interest in developing novel strategies for treating the cognitive deficits in schizophrenia, focusing on ameliorating impairments in working memory, attention, and social cognition. Here we review various molecular targets that are actively being explored for potential drug discovery efforts in schizophrenia and cognition. These molecular targets include dopamine receptors in the prefrontal cortex, nicotinic and muscarinic acetylcholine receptors, the glutamatergic excitatory synapse, various serotonin receptors, and the gamma-aminobutyric acid (GABA) system.
Collapse
Affiliation(s)
- John A. Gray
- Department of Psychiatry, University of California, San Francisco, CA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, 8032 Burnett-Womack, CB # 7365, Chapel Hill, NC 27599-7365
| |
Collapse
|
24
|
Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R, Alce G, Iudicello JE, Akbar N, Egan MF, Goldberg TE, Weinberger DR. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 2007; 32:1011-20. [PMID: 17063156 DOI: 10.1038/sj.npp.1301227] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Prefrontal cortical dopamine (DA) regulates various executive cognitive functions, including attention and working memory. Efforts to enhance prefrontal-related cognition, which have focused on catecholaminergic stimulant drugs, have been unsatisfactory. Recently, the demonstration that a functional polymorphism in the catecholamine-O-methyltransferase (COMT) gene impacts prefrontal cognition raises the possibility of a novel pharmacological approach for the treatment of prefrontal lobe executive dysfunction. To explore in a proof of concept study the effects of tolcapone, a CNS penetrant specific COMT inhibitor, we performed a randomized, double blind, placebo controlled, and crossover design of this drug in normal subjects stratified by COMT (val158met) genotype. COMT enzyme activity was determined in peripheral blood. Forty-seven normal volunteers with no family history of psychiatric disorders underwent neuropsychological testing and 34 of those subjects underwent physiological measurement of prefrontal information processing assessed by blood oxygen level-dependent functional magnetic resonance imaging (fMRI). We found significant drug effects on measures of executive function and verbal episodic memory and a significant drug by genotype interaction on the latter, such that individuals with val/val genotypes improved, whereas individuals with met/met genotypes worsened on tolcapone. fMRI revealed a significant tolcapone-induced improvement in the efficiency of information processing in prefrontal cortex during a working memory test. This study demonstrates enhancement of prefrontal cortical function in normal human subjects with a nonstimulant drug having COMT inhibitory activity. Our results are consistent with data from animal studies and from computational models of the effects of selective enhancement of DA signaling in the prefrontal cortex.
Collapse
Affiliation(s)
- José A Apud
- Genes, Cognition and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B, Gallinat J, Dahmen N, Weinberger DR. COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. Neuroimage 2006; 32:1722-32. [PMID: 16884927 DOI: 10.1016/j.neuroimage.2006.05.058] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2006] [Revised: 04/11/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE Prefrontal dopamine (DA) is catabolized by the COMT (catechol-O-methyltransferase) enzyme. Literature suggests that the Val/Met single nucleotide polymorphism (SNP) in the COMT gene predicts executive cognition in humans with Val carriers showing poorer performance due to less available synaptic DA. Recent fMRI studies are thought to agree with these studies having demonstrated prefrontal hyperactivation during n-back and attention-requiring tasks. This was interpreted as "less efficient" processing due to impaired signal-to-noise ratio (SNR) of neuronal activity. However, electrophysiological studies of neuronal SNR in primates and humans imply that prefrontal cortex should show a diminished prefrontal BOLD response in Val carriers. In the present study, we addressed the question of whether the prefrontal SNR of the BOLD response is decreased in Val carriers using a visual oddball task and an approach to analysis of fMRI data that maximizes noise characterization. METHODS We investigated N=17 homozygous Met carriers compared with N=24 Val carriers matched for age, sex, education, IQ, reaction time (variability) and head motion. Event-related fMRI was conducted presenting 160 visual stimuli (40 targets, checkerboard reversal). Subjects had to respond as quickly as possible to targets by button press. In the fMRI GLM [y(t)=beta*x(t)+c+e(t)] analysis, voxel-by-voxel 'activation' [y(t)] as well as residual noise variance [e(t)=sigma2] were calculated using a conservative full-width half maximum (FWHM=6 mm). RESULTS As compared to Val carriers, we observed a stronger and more extended BOLD responses in homozygous Met carriers in left supplementary motor area (SMA) extending to ACC and dorsolateral prefrontal cortex. Vice versa, increased levels of noise were seen in Val carriers surrounding the peak activation maximum. DISCUSSION In line with our expectations from prior electrophysiological studies, we observed a diminished BOLD response and increased noise in Val carriers. This suggests that the DA stabilizes cortical microcircuits by sharpening the signal and suppressing surrounding noise.
Collapse
Affiliation(s)
- Georg Winterer
- Department of Psychiatry, Heinrich-Heine University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recent important advancements in genomic research have opened the way to new strategies for public health management. One of these questions pertains to how individual genetic variation may be associated with individual variability in response to drug treatment. The field of pharmacogenetics may have a profound impact on treatment of complex psychiatric disorders like schizophrenia. However, pharmacogenetic studies in schizophrenia have produced conflicting results. The first studies examined potential associations between clinical response and drug receptor genes. Subsequent studies have tried to use more objective phenotypes still in association with drug receptor genes. More recently, other studies have sought the association between putative causative or modifier genes and intermediate phenotypes. Thus, conflicting results may be at least in part explained by variability and choice of the phenotype, by choice of candidate genes, or by the relatively little knowledge about the neurobiology of this disorder. We propose that choosing intermediate phenotypes that allow in vivo measurement of specific neuronal functions may be of great help in reducing several of the potential confounds intrinsic to clinical measurements. Functional neuroimaging is ideally suited to address several of these potential confounds, and it may represent a powerful strategy to investigate the relationship between behavior, brain function, genes, and individual variability in the response to treatment with antipsychotic drugs in schizophrenia. Preliminary evidence with potential susceptilibity genes such as COMT, DISC1, and GRM3 support these assumptions.
Collapse
Affiliation(s)
- Giuseppe Blasi
- />Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, 70125 Bari, Italy
- />Clinical Brain Disorders Branch, Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, 20892 Bethesda, MD
| | - Alessandro Bertolino
- />Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, 70125 Bari, Italy
- />Clinical Brain Disorders Branch, Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, 20892 Bethesda, MD
- />Department of Neuroradiology, IRCCSS “Casa Sollievo della Sofferenza,”, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
27
|
Abstract
The identification of the anatomical and physiological substrates involved in the regulation of the dorsolateral prefrontal cortex function in humans provided the basis for the understanding of mechanisms involved in cognitive and executive function under normal as well as pathological conditions. In this context, substantial evidence indicates that alterations in monaminergic function in the dorsolateral prefrontal cortex significantly contributes to the cognitive impairments present in schizophrenia, attention deficit disorders, and other neuropsychiatric conditions. The development of a number of compounds that selectively increase extracellular dopamine (DA) concentrations in the dorsolateral prefrontal cortex but not in subcortical areas by either blocking its metabolism or reuptake, or increasing its release, or that directly activate postsynaptic DA-1 receptor mechanisms provided powerful pharmacotherapeutic tools to mitigate the cognitive deficits brought about by the dopaminergic alterations of the prefrontal cortex. More recently, the findings that polymorphisms of the catecholamine-O-methyl-transferase gene may also modify the effect of these drugs on the prefrontal cortex points toward a more specific genotype-based neuropsychopharmacology for the treatment of cognitive deficits in schizophrenia as well as in a number of other neuropsychiatric conditions. The ability of these compounds to increase DA load selectively in the frontal cortex and not on subcortical systems allows a targeted intervention without the stimulant-like effects observed with older drugs used to treat those conditions.
Collapse
Affiliation(s)
- José A Apud
- Genes, Cognition and Psychosis Program, Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Health and Human Services, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
28
|
Blasi G, Mattay VS, Bertolino A, Elvevåg B, Callicott JH, Das S, Kolachana BS, Egan MF, Goldberg TE, Weinberger DR. Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 2006; 25:5038-45. [PMID: 15901785 PMCID: PMC6724859 DOI: 10.1523/jneurosci.0476-05.2005] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The cingulate cortex is richly innervated by dopaminergic projections and plays a critical role in attentional control (AC). Evidence indicates that dopamine enhances the neurophysiological signal-to-noise ratio and that dopaminergic tone in the frontal cortex is critically dependent on catechol-O-methyltransferase (COMT). A functional polymorphism (val158met) in the COMT gene accounts for some of the individual variability in executive function mediated by the dorsolateral prefrontal cortex. We explored the effect of this genetic polymorphism on cingulate engagement during a novel AC task. We found that the COMT val158met polymorphism also affects the function of the cingulate during AC. Individuals homozygous for the high-activity valine ("val") allele show greater activity and poorer performance than val/methionine ("met") heterozygotes, who in turn show greater activity and poorer performance than individuals homozygous for the low-activity met allele, and these effects are most evident at the highest demand for AC. These results indicate that met allele load and presumably enhanced dopaminergic tone improve the "efficiency" of local circuit processing within the cingulate cortex and thereby its function during AC.
Collapse
Affiliation(s)
- Giuseppe Blasi
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1379, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bäckman L, Nyberg L, Lindenberger U, Li SC, Farde L. The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neurosci Biobehav Rev 2006; 30:791-807. [PMID: 16901542 DOI: 10.1016/j.neubiorev.2006.06.005] [Citation(s) in RCA: 521] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
The brain neuronal systems defined by the neurotransmitter dopamine (DA) have since long a recognized role in the regulation of motor functions. More recently, converging evidence from patient studies, animal research, pharmacological intervention, and molecular genetics indicates that DA is critically implicated also in higher-order cognitive functioning. Many cognitive functions and multiple markers of striatal and extrastriatal DA systems decline across adulthood and aging. Research examining the correlative triad among adult age, DA, and cognition has found strong support for the view that age-related DA losses are associated with age-related cognitive deficits. Future research strategies for examining the DA-cognitive aging link include assessing (a) the generality/specificity of the effects; (b) the relationship between neuromodulation and functional brain activation; and (c) the release of DA during actual task performance.
Collapse
Affiliation(s)
- Lars Bäckman
- Aging Research Center, Division of Geriatric Epidemiology, Neurotec, Karolinska Institute, Box 6401, S 113 82 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Diaz-Asper CM, Weinberger DR, Goldberg TE. Catechol-O-methyltransferase polymorphisms and some implications for cognitive therapeutics. NeuroRx 2006; 3:97-105. [PMID: 16490416 PMCID: PMC3593358 DOI: 10.1016/j.nurx.2005.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a gene involved in the degradation of dopamine and may both increase susceptibility to develop schizophrenia and affect neuronal functions involved in working memory. A common variant of the COMT gene (val(108/158)met) has been widely reported to affect pre-frontally mediated working memory function, with the high-activity val allele associated with poorest performance across a number of tests sensitive to updating and target detection. Pharmacological manipulations of COMT val(108/158)met also have reliably produced alterations in cognitive function, in line with an inverted U function of prefrontal dopamine signaling. Furthermore, there is accumulating evidence that COMT val(108/158)met genotype may influence the cognitive response to antipsychotic treatment in schizophrenia patients, with met allele load predicting the greatest improvement with medication. Recently, other single-nucleotide polymorphisms (SNPs) across the COMT gene have emerged as possible risk alleles for schizophrenia, although little is known about whether they affect prefrontal cognition in a manner similar to COMT val(108/158)met. Preliminary evidence suggests a modest role for a SNP in the 5' region of the gene on select tests of attention and target detection. Haplotype effects also may account for a modest percentage of the variance in test performance, and are an important area for future study.
Collapse
Affiliation(s)
- Catherine M Diaz-Asper
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
31
|
Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005; 10:79-104. [PMID: 15289815 DOI: 10.1038/sj.mp.4001556] [Citation(s) in RCA: 693] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The treatment of schizophrenia has evolved over the past half century primarily in the context of antipsychotic drug development. Although there has been significant progress resulting in the availability and use of numerous medications, these reflect three basic classes of medications (conventional (typical), atypical and dopamine partial agonist antipsychotics) all of which, despite working by varying mechanisms of actions, act principally on dopamine systems. Many of the second-generation (atypical and dopamine partial agonist) antipsychotics are believed to offer advantages over first-generation agents in the treatment for schizophrenia. However, the pharmacological properties that confer the different therapeutic effects of the new generation of antipsychotic drugs have remained elusive, and certain side effects can still impact patient health and quality of life. Moreover, the efficacy of antipsychotic drugs is limited prompting the clinical use of adjunctive pharmacy to augment the effects of treatment. In addition, the search for novel and nondopaminergic antipsychotic drugs has not been successful to date, though numerous development strategies continue to be pursued, guided by various pathophysiologic hypotheses. This article provides a brief review and critique of the current therapeutic armamentarium for treating schizophrenia and drug development strategies and theories of mechanisms of action of antipsychotics, and focuses on novel targets for therapeutic agents for future drug development.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Neuropsychiatry, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
32
|
Bilder RM, Volavka J, Lachman HM, Grace AA. The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 2004; 29:1943-61. [PMID: 15305167 DOI: 10.1038/sj.npp.1300542] [Citation(s) in RCA: 568] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Diverse phenotypic associations with the catechol-O-methyltransferase (COMT) Val158Met polymorphism have been reported. We suggest that some of the complex effects of this polymorphism be understood from the perspective of the tonic-phasic dopamine (DA) hypothesis. We hypothesize that the COMT Met allele (associated with low enzyme activity) results in increased levels of tonic DA and reciprocal reductions in phasic DA in subcortical regions and increased D1 transmission cortically. This pattern of effects is hypothesized to yield increased stability but decreased flexibility of neural network activation states that underlie important aspects of working memory and executive functions; these effects may be beneficial or detrimental depending on the phenotype, a range of endogenous factors, and environmental exigencies. The literature on phenotypic associations of the COMT Val158Met polymorphism is reviewed, highlighting areas where this hypothesis may have explanatory value, and pointing to possible directions for refinement of relevant phenotypes and experimental evaluation of this hypothesis.
Collapse
Affiliation(s)
- Robert M Bilder
- Department of Psychiatry, David Geffen School of Medicine and Psychology, UCLA Neuropsychiatric Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
33
|
McAllister TW, Ahles TA, Saykin AJ, Ferguson RJ, McDonald BC, Lewis LD, Flashman LA, Rhodes CH. Cognitive effects of cytotoxic cancer chemotherapy: predisposing risk factors and potential treatments. Curr Psychiatry Rep 2004; 6:364-71. [PMID: 15355759 DOI: 10.1007/s11920-004-0023-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that systemic cancer chemotherapy can have significant long-term effects on cognition, particularly on verbal learning, memory, attention, and speed of information processing. These deficits can be a source of significant distress to survivors. There is much less known about the mechanisms, predisposing vulnerabilities, and treatment of these deficits. We will summarize current knowledge of chemotherapy-associated cognitive deficits. Emerging theories about the role of selected genetic polymorphisms in heightening the vulnerability to chemotherapy-induced cognitive decline will be described.
Collapse
Affiliation(s)
- Thomas W McAllister
- Department of Psychiatry, Dartmouth Medical School and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ. Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 2004; 24:5331-5. [PMID: 15190105 PMCID: PMC6729311 DOI: 10.1523/jneurosci.1124-04.2004] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene affects activity of the enzyme and influences performance and efficiency of the prefrontal cortex (PFC); however, although catecholaminergic neurotransmission is implicated, the underlying mechanisms remain elusive because studies of the role of COMT in PFC function are sparse. This study investigated the effect of tolcapone, a brain-penetrant COMT inhibitor, on a rat model of attentional set shifting, which is dependent on catecholamines and the medial PFC (mPFC). Additionally, we investigated the effect of tolcapone on extracellular catecholamines in the mPFC using microdialysis in awake rats. Tolcapone significantly and specifically improved extradimensional (ED) set shifting. Tolcapone did not affect basal extracellular catecholamines, but significantly potentiated the increase in extracellular dopamine (DA) elicited by either local administration of the depolarizing agent potassium chloride or systemic administration of the antipsychotic agent clozapine. Although extracellular norepinephrine (NE) was also elevated by local depolarization and clozapine, the increase was not enhanced by tolcapone. We conclude that COMT activity specifically affects ED set shifting and is a significant modulator of mPFC DA but not NE under conditions of increased catecholaminergic transmission. These data suggest that the links between COMT activity and PFC function can be modeled in rats and may be specifically mediated by DA. The interaction between clozapine and tolcapone may have implications for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom, OX3 7JX.
| | | | | | | |
Collapse
|
35
|
Abstract
Evolution of the prefrontal cortex was an essential precursor to civilization. During the past decade, it became increasingly obvious that human prefrontal function is under substantial genetic control. In particular, heritability studies of frontal lobe-related neuropsychological function, electrophysiology and neuroimaging have greatly improved our insight. Moreover, the first genes that are relevant for prefrontal function such as catechol-O-methyltransferase (COMT) are currently discovered. In this review, we summarize the present knowledge on the genetics of human prefrontal function. For historical reasons, we discuss the genetics of prefrontal function within the broader concept of general cognitive ability (intelligence). Special emphasis is also given to methodological concerns that need to be addressed when conducting research on the genetics of prefrontal function in humans.
Collapse
Affiliation(s)
- Georg Winterer
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
36
|
Abstract
Recent advances in molecular genetics have greatly increased the understanding of the pathophysiology of certain neurobehavioral disorders and the core symptoms of these disorders. This paper reviews key concepts important in understanding the genetics of neuropsychiatric disorders, and gives an overview of several different types of genetic disorders, including trinucleotide repeat disorders, and functional polymorphisms of monoamine neurotransmitter systems.
Collapse
Affiliation(s)
- Thomas W McAllister
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | |
Collapse
|
37
|
Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, Goldman D, Winterer G. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003; 54:40-8. [PMID: 12842307 DOI: 10.1016/s0006-3223(02)01973-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A common functional polymorphism, G1947A, of the catechol-O-methyltransferase (COMT) enzyme has gained interest in schizophrenia research because of its critical involvement in cortical dopamine catabolism and frontal lobe function. An assumed mechanism of dopamine is the reduction of noise in prefrontal neural networks during information processing. Therefore, the hypothesis was tested whether a variation of the COMT genotype is associated with prefrontal noise, which is in part reflected by the frontal P300 amplitude. It was predicted that homozygous Met allele carriers have a lower frontal P300 amplitude. METHODS The P300 component (auditory oddball) was recorded in 49 schizophrenic patients and 170 healthy control subjects. Three single nucleotide polymorphisms (SNPs) of the COMT gene (G1947A, C1883G, and G1243A) were investigated. RESULTS We observed a significant effect of G1947A COMT genotype on frontal P300 amplitude, with evidence for a genotype x diagnosis interaction. Lower frontal P300 amplitudes occurred in homozygous carriers of the Met allele, particularly in schizophrenic patients. CONCLUSIONS The association of the frontal P300 amplitude with the G1947A COMT genotype further emphasizes the functional role of this SNP. As the finding was mainly observed in schizophrenic patients, this may indicate that additional factors are required to interact with COMT genotype to affect prefrontal function. The smaller frontal P300 amplitude in Met carriers suggests that the amount of noise in prefrontal neural networks during information processing might be in part under genetic control, which is mediated by dopamine.
Collapse
Affiliation(s)
- Jürgen Gallinat
- Laboratory for Clinical Psychophysiology, Department of Psychiatry, Free University, Berlin, Germany and National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 2003; 100:6186-91. [PMID: 12716966 PMCID: PMC156347 DOI: 10.1073/pnas.0931309100] [Citation(s) in RCA: 676] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Monamines subserve many critical roles in the brain, and monoaminergic drugs such as amphetamine have a long history in the treatment of neuropsychiatric disorders and also as a substance of abuse. The clinical effects of amphetamine are quite variable, from positive effects on mood and cognition in some individuals, to negative responses in others, perhaps related to individual variations in monaminergic function and monoamine system genes. We explored the effect of a functional polymorphism (val(158)-met) in the catechol O-methyltransferase gene, which has been shown to modulate prefrontal dopamine in animals and prefrontal cortical function in humans, on the modulatory actions of amphetamine on the prefrontal cortex. Amphetamine enhanced the efficiency of prefrontal cortex function assayed with functional MRI during a working memory task in subjects with the high enzyme activity val/val genotype, who presumably have relatively less prefrontal synaptic dopamine, at all levels of task difficulty. In contrast, in subjects with the low activity met/met genotype who tend to have superior baseline prefrontal function, the drug had no effect on cortical efficiency at low-to-moderate working memory load and caused deterioration at high working memory load. These data illustrate an application of functional neuroimaging in pharmacogenomics and extend basic evidence of an inverted-"U" functional-response curve to increasing dopamine signaling in the prefrontal cortex. Further, individuals with the met/met catechol O-methyltransferase genotype appear to be at increased risk for an adverse response to amphetamine.
Collapse
Affiliation(s)
- Venkata S Mattay
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Building 10, Center Drive, Room 4S-235, Bethesda, MD 20982-1379, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Winterer G, Weinberger DR. Cortical signal-to-noise ratio: insight into the pathophysiology and genetics of schizophrenia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-2772(03)00019-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
40
|
Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50:825-44. [PMID: 11743939 DOI: 10.1016/s0006-3223(01)01252-5] [Citation(s) in RCA: 462] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
This article reviews prefrontal cortical biology as it relates to pathophysiology and genetic risk for schizophrenia. Studies of prefrontal neurocognition and functional neuroimaging of prefrontal information processing consistently reveal abnormalities in patients with schizophrenia. Abnormalities of prefrontal information processing also are found in unaffected individuals who are genetically at risk for schizophrenia, suggesting that genetic polymorphisms affecting prefrontal function may be susceptibility alleles for schizophrenia. One such candidate is a functional polymorphism in the catechol-o-methyl transferase (COMT) gene that markedly affects enzyme activity and that appears to uniquely impact prefrontal dopamine. The COMT genotype predicts performance on prefrontal executive cognition and working memory tasks. Functional magnetic resonance imaging confirms that COMT genotype affects prefrontal physiology during working memory. Family-based association studies have revealed excessive transmission to schizophrenic offspring of the allele (val) related to poorer prefrontal function. These various data provide convergent evidence that the COMT val allele increases risk for schizophrenia by virtue of its effect on dopamine-mediated prefrontal information processing-the first plausible mechanism for a genetic effect on normal human cognition and risk for mental illness.
Collapse
Affiliation(s)
- D R Weinberger
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Haapalinna A, Sirviö J, MacDonald E, Virtanen R, Heinonen E. The effects of a specific alpha(2)-adrenoceptor antagonist, atipamezole, on cognitive performance and brain neurochemistry in aged Fisher 344 rats. Eur J Pharmacol 2000; 387:141-50. [PMID: 10650154 DOI: 10.1016/s0014-2999(99)00819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
The present experiments investigated the effects of a specific and potent alpha(2)-adrenoceptor antagonist, atipamezole, on cognitive performance and neurochemistry in aged rats. Aged control Fisher 344 rats, which had lower activities of choline acetyltransferase in the frontal cortex, were impaired in the acquisition of the linear arm maze task both in terms of repetition errors and their behavioural activity (the speed of arm visits), and they needed longer time to complete this task as compared to adult control rats. Atipamezole treatment (0.3 mg/kg) facilitated the acquisition of this task in the aged rats as they committed fewer errors and completed the task more quickly than saline-treated aged control rats. A separate experiment indicated that atipamezole enhanced the turnover of noradrenaline both in the adult and aged rats, but this effect was more pronounced in the aged rats. Furthermore, atipamezole enhanced significantly the turnover of serotonin and dopamine only in the aged rats when analysed in the whole brain samples. As alpha(2)-adrenoceptor antagonists are known to alleviate akinesia in the experimental models of Parkinson's disease, the present results could be especially relevant for the development of palliative treatment for demented Parkinsonian patients.
Collapse
Affiliation(s)
- A Haapalinna
- Orion Pharma, Preclinical R&D, Orion, PO Box 425, FIN-20101, Turku, Finland.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Tolcapone is a selective peripheral and central catechol-O-methyltransferase (COMT) inhibitor recently approved as adjunctive therapy in patients with idiopathic Parkinson's disease who are already being treated with a levodopa-peripheral dopa decarboxylase inhibitor (DDI) combination. Tolcapone potentiates and prolongs the effect of levodopa in the central nervous system (CNS) by enhancing levodopa's delivery to the CNS and slowing dopamine's central metabolism. A short terminal disposition half-life of 2 hours mandates dosing 3 times/day. Dosage adjustment is generally unnecessary in the presence of mild to moderate renal and hepatic impairment. Coadministration of tolcapone with levodopa-DDI results in significant amelioration of the wearing-off and on-off phenomena and frequently allows significant levodopa dosage reduction. In patients with stable disease, tolcapone improves "on" time. As might be expected from its potentiation of levodopa effects, dopaminergic side effects are prominent with this agent. Although the main objective of drug treatment in Parkinson's disease remains clinical improvement with an optimum dose and frequency of levodopa administration, tolcapone may prove a useful adjunct to such therapy, especially in the presence of the wearing-off and on-off phenomena. The relative merits of this agent vis-a-vis dopamine receptor agonists are somewhat unclear at present. However, recent guidelines from the American Academy of Neurology suggest that a COMT inhibitor be added to levodopa-dopamine agonist therapy in patients with advanced disease.
Collapse
Affiliation(s)
- D R Guay
- College of Pharmacy, University of Minnesota, Minneapolis, USA
| |
Collapse
|
43
|
Bonifati V, Meco G. New, selective catechol-O-methyltransferase inhibitors as therapeutic agents in Parkinson's disease. Pharmacol Ther 1999; 81:1-36. [PMID: 10051176 DOI: 10.1016/s0163-7258(98)00032-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
Levodopa remains the most effective drug for Parkinson's disease (PD). However, its benefits are limited owing to extensive metabolism by catechol-O-methyltransferase (COMT), especially if levodopa is used in combination with peripheral dopa-decarboxylase inhibitors. A new generation of potent, orally active, selective, and reversible COMT inhibitors has become available recently. Among these, tolcapone and entacapone have been best characterised. Preclinical and clinical studies have shown that COMT inhibitors markedly enhance levodopa availability and prolong its plasma half-life. In recent large clinical trials they proved to be able to ameliorate motor fluctuations, reduce disability, and decrease levodopa requirements in PD patients. The tolerability profiles of entacapone and tolcapone are good. COMT inhibition promises to become an important means of extending the benefits of levodopa therapy in PD.
Collapse
Affiliation(s)
- V Bonifati
- Department of Neurosciences, University La Sapienza, Rome, Italy
| | | |
Collapse
|
44
|
Li YH, Wirth T, Huotari M, Laitinen K, MacDonald E, Männistö PT. No change of brain extracellular catecholamine levels after acute catechol-O-methyltransferase inhibition: a microdialysis study in anaesthetized rats. Eur J Pharmacol 1998; 356:127-37. [PMID: 9774242 DOI: 10.1016/s0014-2999(98)00524-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Catechol-O-methyltransferase inhibitors have been newly introduced as adjunct drugs to the levodopa/dopa decarboxylase inhibitor therapy in Parkinson's disease. When given alone, catechol-O-methyltransferase inhibitors seem to affect behaviour. We wanted to determine whether the concentrations of free amine would be increased by catechol-O-methyltransferase inhibition with tolcapone and underpin the positive behavioural effects. To this end, dopamine and noradrenaline levels were analyzed in the microdialysis perfusion fluid collected from several brain regions in chloral hydrate anaesthetized rats. We also analyzed the turnover rate of catecholamines in the brain after single doses of tolcapone and entacapone using the alpha-methyl-p-tyrosine method. On their own, tolcapone (at 10 or 30 mg/kg) did not elevate dopamine or noradrenaline levels in any brain region studied although the formation of catechol-O-methyltransferase-dependent metabolites was strongly reduced. Neither tolcapone nor entacapone (at 30 mg/kg) affected the turnover rate of catecholamines. It seems that catechol-O-methyltransferase inhibitors do not alter behaviour by elevating extracellular levels of free catecholamines levels but other explanations are needed.
Collapse
Affiliation(s)
- Y H Li
- University of Kuopio, Department of Pharmacology and Toxicology, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Haapalinna A, Sirviö J, Lammintausta R. Facilitation of cognitive functions by a specific alpha2-adrenoceptor antagonist, atipamezole. Eur J Pharmacol 1998; 347:29-40. [PMID: 9650845 DOI: 10.1016/s0014-2999(98)00077-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
The present experiments investigated the effects of a specific and potent alpha2-adrenoceptor antagonist, atipamezole (as a stimulator of the noradrenergic system) on cognitive performance in rats. Atipamezole enhanced the acquisition of a linear-arm maze test and also improved the choice accuracy of poorly performing rats in a delayed (20 min) three-choice maze test. Furthermore, atipamezole improved the achievement of a one-trial appetite-maze when injected immediately after teaching, thus having an effect on consolidation. Atipamezole clearly impaired the acquisition of the active avoidance test. The present results indicate that stimulation of noradrenergic system by atipamezole improves the performance of animals in tasks assessing relational learning and memory, possibly affecting attention, short-term memory and the speed of information processing. It has also an effect on a consolidation process unrelated to attentional or motivational mechanisms. In a stressful test. stimulation of noradrenaline release leads to impairment of performance.
Collapse
Affiliation(s)
- A Haapalinna
- Orion, Orion Pharma, Preclinical R&D, Turku, Finland.
| | | | | |
Collapse
|
46
|
Khromova I, Voronina T, Kraineva VA, Zolotov N, Männistö PT. Effects of selective catechol-O-methyltransferase inhibitors on single-trial passive avoidance retention in male rats. Behav Brain Res 1997; 86:49-57. [PMID: 9105581 DOI: 10.1016/s0166-4328(96)02242-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
The effects of new selective catechol-O-methyltransferase (COMT) inhibitors entacapone (mainly peripheral effect) and tolcapone (acting also in the brain) on normal and impaired cognitive functions were studied in aversively motivated inhibitory avoidance using a single-trial passive avoidance paradigm in young adult rats. Passive avoidance retention latency was shortened by either scopolamine (1.0 mg/kg) or bilateral lesions to nucleus basalis magnocellularis (NBM) caused by infusions of ethylcholine aziridinium (AF64A). Entacapone (30 mg/kg) administered once before training or before the retention test, 24 h after training, prevented the effect of scopolamine but did not alter extinction in these rats. However, entacapone (30 mg/kg) prolonged lag time when given during the extinction process to intact rats after training. Tolcapone administered once before training (10 mg/kg) counteracted the effect of scopolamine. It prolonged retention latency of the intact rats when given after training (10 mg/kg). Tolcapone (3 mg/kg) also prolonged lag time when given during extinction to rats bearing NBM lesions. The effect of scopolamine on extinction and retrieval was not prevented by tolcapone. Only entacapone improved memory storage. Collectively, the present results indicate that COMT inhibitors prolong retention latencies in a single-trial passive avoidance test assessed at several memory phases.
Collapse
Affiliation(s)
- I Khromova
- Russian Academy of Medical Sciences, Institute of Pharmacology, Moscow, Russia
| | | | | | | | | |
Collapse
|