1
|
Shafi S, Gupta S, Jain R, Shoaib R, Munjal A, Maurya P, Kumar P, Kalam Najmi A, Singh S. Tackling the emerging Artemisinin-resistant malaria parasite by modulation of defensive oxido-reductive mechanism via nitrofurantoin repurposing. Biochem Pharmacol 2023; 215:115756. [PMID: 37598974 DOI: 10.1016/j.bcp.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress-mediated cell death has remained the prime parasiticidal mechanism of front line antimalarial, artemisinin (ART). The emergence of resistant Plasmodium parasites characterized by oxidative stress management due to impaired activation of ART and enhanced reactive oxygen species (ROS) detoxification has decreased its clinical efficacy. This gap can be filled by development of alternative chemotherapeutic agents to combat resistance defense mechanism. Interestingly, repositioning of clinically approved drugs presents an emerging approach for expediting antimalarial drug development and circumventing resistance. Herein, we evaluated the antimalarial potential of nitrofurantoin (NTF), a clinically used antibacterial drug, against intra-erythrocytic stages of ART-sensitive (Pf3D7) and resistant (PfKelch13R539T) strains of P. falciparum, alone and in combination with ART. NTF exhibited growth inhibitory effect at submicro-molar concentration by arresting parasite growth at trophozoite stage. It also inhibited the survival of resistant parasites as revealed by ring survival assay. Concomitantly, in vitro combination assay revealed synergistic association of NTF with ART. NTF was found to enhance the reactive oxygen and nitrogen species, and induced mitochondrial membrane depolarization in parasite. Furthermore, we found that exposure of parasites to NTF disrupted redox balance by impeding Glutathione Reductase activity, which manifests in enhanced oxidative stress, inducing parasite death. In vivo administration of NTF, alone and in combination with ART, in P. berghei ANKA-infected mice blocked parasite multiplication and enhanced mean survival time. Overall, our results indicate NTF as a promising repurposable drug with therapeutic potential against ART-sensitive as well as resistant parasites.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
2
|
Tiwari S, Sharma N, Sharma GP, Mishra N. Redox interactome in malaria parasite Plasmodium falciparum. Parasitol Res 2021; 120:423-434. [PMID: 33459846 DOI: 10.1007/s00436-021-07051-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
The malaria-causing parasite Plasmodium falciparum is a severe threat to human health across the globe. This parasite alone causes the highest morbidity and mortality than any other species of Plasmodium. The parasites dynamically multiply in the erythrocytes of the vertebrate hosts, a large number of reactive oxygen species that damage biological macromolecules are produced in the cell during parasite growth. To relieve this intense oxidative stress, the parasite employs an NADPH-dependent thioredoxin and glutathione system that acts as an antioxidant and maintains redox status in the parasite. The mutual interaction of both redox proteins is involved in various biological functions and the survival of the erythrocytic stage of the parasite. Since the Plasmodium species is deficient in catalase and classical glutathione peroxidase, so their redox balance relies on a complex set of five peroxiredoxins, differentially positioned in the cytosol, mitochondria, apicoplast, and nucleus with partly overlapping substrate preferences. Moreover, Plasmodium falciparum possesses a set of members belonging to the thioredoxin superfamily, such as three thioredoxins, two thioredoxin-like proteins, one dithiol, three monocysteine glutaredoxins, and one redox-active plasmoredoxin with largely redundant functions. This review paper aims to discuss and encapsulate the biological function and current knowledge of the functional redox network of Plasmodium falciparum.
Collapse
Affiliation(s)
- Savitri Tiwari
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Nivedita Sharma
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | | | - Neelima Mishra
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
3
|
Chirawurah JD, Ansah F, Nyarko PB, Duodu S, Aniweh Y, Awandare GA. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:399-406. [PMID: 29128848 PMCID: PMC5683671 DOI: 10.1016/j.ijpddr.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
Malaria remains a major cause of childhood deaths in resource-limited settings. In the absence of an effective vaccine, drugs and other interventions have played very significant roles in combating the scourge of malaria. The recent reports of resistance to artemisinin necessitate the need for new antimalarial drugs with novel mechanisms of action. Towards the development of new, affordable and easily accessible antimalarial drugs for endemic regions, the Medicines for Malaria Venture (MMV) assembled a total of 400 active antimalarial compounds called the Malaria Box. The potency and the efficacy of the Malaria Box Compounds have been determined mainly using laboratory strains of P. falciparum. This study investigated the potency of twenty compounds from the Malaria Box against four clinical isolates from Ghana, using optimized in vitro growth inhibitory assays. Seven out of the 20 compounds screened had 50% inhibitory concentration (IC50) below 500 nM. The most active among the selected compounds was MMV006087 (average IC50 of 30.79 nM). Variations in the potency of the Malaria Box Compounds were observed between P. falciparum clinical isolates and Dd2 strain. We also investigated the sensitivity of the clinical isolates to chloroquine and artesunate. The N093 clinical isolate was found to be resistant to chloroquine but showed high sensitivity to artesunate. The results underscore the importance of including clinical isolates with different drug-resistant backgrounds, in addition to laboratory strains, in validating potential compounds during antimalarial compound screening programs.
Collapse
Affiliation(s)
- Jersley D Chirawurah
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Felix Ansah
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Prince B Nyarko
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Samuel Duodu
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana.
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P. O. Box LG 54, Volta Road Legon, Accra, Ghana.
| |
Collapse
|
4
|
Liu M, Cao S, Zhou M, Wang G, Jirapattharasate C, Adjou Moumouni PF, Iguchi A, Vudriko P, Suzuki H, Soma T, Xuan X. Genetic variations of four immunodominant antigens of Babesia gibsoni isolated from dogs in southwest Japan. Ticks Tick Borne Dis 2016; 7:298-305. [DOI: 10.1016/j.ttbdis.2015.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
5
|
Stratton CF, Namanja-Magliano HA, Cameron SA, Schramm VL. Binding Isotope Effects for para-Aminobenzoic Acid with Dihydropteroate Synthase from Staphylococcus aureus and Plasmodium falciparum. ACS Chem Biol 2015; 10:2182-6. [PMID: 26288086 PMCID: PMC4648244 DOI: 10.1021/acschembio.5b00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dihydropteroate synthase is a key enzyme in folate biosynthesis and is the target of the sulfonamide class of antimicrobials. Equilibrium binding isotope effects and density functional theory calculations indicate that the substrate binding sites for para-aminobenzoic acid on the dihydropteroate synthase enzymes from Staphylococcus aureus and Plasmodium falciparum present distinct chemical environments. Specifically, we show that para-aminobenzoic acid occupies a more sterically constrained vibrational environment when bound to dihydropteroate synthase from P. falciparum relative to that of S. aureus. Deletion of a nonhomologous, parasite-specific insert from the plasmodial dihydropteroate synthase abrogated the binding of para-aminobenzoic acid. The loop specific to P. falciparum is important for effective substrate binding and therefore plays a role in modulating the chemical environment at the substrate binding site.
Collapse
Affiliation(s)
| | | | - Scott A. Cameron
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
7
|
Tyagi C, Bathke J, Goyal S, Fischer M, Dahse HM, Chacko S, Becker K, Grover A. Targeting the intersubunit cavity of Plasmodium falciparum glutathione reductase by a novel natural inhibitor: Computational and experimental evidence. Int J Biochem Cell Biol 2015; 61:72-80. [DOI: 10.1016/j.biocel.2015.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
|
8
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
9
|
Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr Pharm Des 2013; 19:2512-28. [PMID: 23116403 DOI: 10.2174/1381612811319140003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.
Collapse
Affiliation(s)
- Didier Belorgey
- European School of Chemistry, Polymers and Materials (ECPM), UMR7509 CNRS - Universite de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
10
|
Schirmer RH, Coulibaly B, Stich A, Scheiwein M, Merkle H, Eubel J, Becker K, Becher H, Müller O, Zich T, Schiek W, Kouyaté B. Methylene blue as an antimalarial agent. Redox Rep 2013; 8:272-5. [PMID: 14962363 DOI: 10.1179/135100003225002899] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Methylene blue has intrinsic antimalarial activity and it can act as a chloroquine sensitizer. In addition, methylene blue must be considered for preventing methemoglobinemia, a serious complication of malarial anemia. As an antiparasitic agent, methylene blue is pleiotropic: it interferes with hemoglobin and heme metabolism in digestive organelles, and it is a selective inhibitor of Plasmodium falciparum glutathione reductase. The latter effect results in glutathione depletion which sensitizes the parasite for chloroquine action. At the Centre de Recherche en Santé de Nouna in Burkina Faso, we study the combination of chloroquine with methylene blue (BlueCQ) as a possible medication for malaria in endemic regions. A pilot study with glucose-6-phosphate dehydrogenase-sufficient adult patients has been conducted recently.
Collapse
|
11
|
Ligand-based 3D-QSAR analysis and virtual screening in exploration of new scaffolds as Plasmodium falciparum glutathione reductase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0603-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Lehane AM, McDevitt CA, Kirk K, Fidock DA. Degrees of chloroquine resistance in Plasmodium - is the redox system involved? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:47-57. [PMID: 22773965 DOI: 10.1016/j.ijpddr.2011.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chloroquine (CQ) was once a very effective antimalarial drug that, at its peak, was consumed in the hundreds of millions of doses per year. The drug acts against the Plasmodium parasite during the asexual intraerythrocytic phase of its lifecycle. Unfortunately, clinical resistance to this drug is now widespread. Questions remain about precisely how CQ kills malaria parasites, and by what means some CQ-resistant (CQR) parasites can withstand much higher concentrations of the drug than others that also fall in the CQR category. In this review we investigate the evidence for and against the proposal that CQ kills parasites by generating oxidative stress. Further, we examine a long-held idea that the glutathione system of malaria parasites plays a role in CQ resistance. We conclude that there is strong evidence that glutathione levels modulate CQ response in the rodent malaria species P. berghei, but that a role for redox in contributing to the degree of CQ resistance in species infectious to humans has not been firmly established.
Collapse
Affiliation(s)
- Adele M Lehane
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
13
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Storm J, Perner J, Aparicio I, Patzewitz EM, Olszewski K, Llinas M, Engel PC, Müller S. Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development. Malar J 2011; 10:193. [PMID: 21756354 PMCID: PMC3163627 DOI: 10.1186/1475-2875-10-193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target. Methods The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated. Results No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdha parasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites. Conclusions First, the data support the conclusion that D10Δgdha parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.
Collapse
Affiliation(s)
- Janet Storm
- Institute of Infection, Immunity & Inflammation, Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pastrana-Mena R, Dinglasan RR, Franke-Fayard B, Vega-Rodríguez J, Fuentes-Caraballo M, Baerga-Ortiz A, Coppens I, Jacobs-Lorena M, Janse CJ, Serrano AE. Glutathione reductase-null malaria parasites have normal blood stage growth but arrest during development in the mosquito. J Biol Chem 2010; 285:27045-27056. [PMID: 20573956 PMCID: PMC2930704 DOI: 10.1074/jbc.m110.122275] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.
Collapse
Affiliation(s)
- Rebecca Pastrana-Mena
- Department of Microbiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936-5067
| | - Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, L4-Q, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Joel Vega-Rodríguez
- Department of Microbiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936-5067
| | - Mariela Fuentes-Caraballo
- Department of Microbiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936-5067
| | - Abel Baerga-Ortiz
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936-5067
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, L4-Q, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Adelfa E Serrano
- Department of Microbiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936-5067.
| |
Collapse
|
17
|
Wenzel NI, Chavain N, Wang Y, Friebolin W, Maes L, Pradines B, Lanzer M, Yardley V, Brun R, Herold-Mende C, Biot C, Tóth K, Davioud-Charvet E. Antimalarial versus cytotoxic properties of dual drugs derived from 4-aminoquinolines and Mannich bases: interaction with DNA. J Med Chem 2010; 53:3214-26. [PMID: 20329733 DOI: 10.1021/jm9018383] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and biological evaluation of new organic and organometallic dual drugs designed as potential antimalarial agents are reported. A series of 4-aminoquinoline-based Mannich bases with variations in the aliphatic amino side chain were prepared via a three-steps synthesis. These compounds were also tested against chloroquine-susceptible and chloroquine-resistant strains of Plasmodium falciparum and assayed for their ability to inhibit the formation of beta-hematin in vitro using a colorimetric beta-hematin inhibition assay. Several compounds showed a marked antimalarial activity, with IC(50) and IC(90) values in the low nM range but also a high cytotoxicity against mammalian cells, in particular a highly drug-resistant glioblastoma cell line. The newly designed compounds revealed high DNA binding properties, especially for the GC-rich domains. Altogether, these dual drugs seem to be more appropriate to be developed as antiproliferative agents against mammalian cancer cells than Plasmodium parasites.
Collapse
Affiliation(s)
- Nicole I Wenzel
- Biochemie-Zentrum der Universitat Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Probing the roles of non-homologous insertions in the N-terminal domain of Plasmodium falciparum hydroxymethylpterin pyrophosphokinase–dihydropteroate synthase. Mol Biochem Parasitol 2009; 168:135-42. [DOI: 10.1016/j.molbiopara.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 11/19/2022]
|
19
|
Vora HK, Shaik FR, Pal-Bhowmick I, Mout R, Jarori GK. Effect of deletion of a plant like pentapeptide insert on kinetic, structural and immunological properties of enolase from Plasmodium falciparum. Arch Biochem Biophys 2009; 485:128-38. [PMID: 19268421 DOI: 10.1016/j.abb.2009.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/15/2009] [Accepted: 02/19/2009] [Indexed: 12/30/2022]
Abstract
Plasmodium falciparum enolase (Pfen) is of photosynthetic lineage as evident from the presence of a plant like pentapeptide insert (104)EWGWS(108) in a highly conserved surface loop of the protein. Such a unique region which is absent in human enolase, constitutes an excellent target for inhibitor design, provided its essentiality for function could be demonstrated. A deletion Pfen lacking this insert was made and the effect of this deletion on activity and structure was assessed. Deletion of insert resulted in approximately 100-fold decrease in k(cat)/K(m) and caused dissociation of dimeric form into monomers. Since the parasite enolase localizes on the merozoite surface and confers partial protection against malaria [I. Pal-Bhowmick, M. Mehta, I. Coppens, S. Sharma, G.K. Jarori, Infect. Immun. 75(11) (2007) 5500-5008], the possibility of the insert being involved in protective response was examined. Serum from Pfen vaccinated mouse which showed prolonged survival to parasite challenge had negligible reactivity against deletion protein as compared to wild type enolase. These results indicate that the insert sequence is required for the full enolase activity and may constitute the protective antigenic epitope in parasite enolase.
Collapse
Affiliation(s)
- Hardeep K Vora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | | | | | | |
Collapse
|
20
|
Differential inhibition of high and low Mr thioredoxin reductases of parasites by organotelluriums supports the concept that low Mr thioredoxin reductases are good drug targets. Parasitology 2008; 136:27-33. [PMID: 18980703 DOI: 10.1017/s0031182008005131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thioredoxin reductase (TrxR), a NADPH-dependent disulfide oxidoreductase, is vital in numerous cellular processes including defence against reactive oxygen species, cell proliferation and signal transduction. TrxRs occur in 2 forms, a high Mr enzyme characterized by those of mammals, the malaria parasite Plasmodium falciparum and some worms, and a low Mr form is present in bacteria, fungi, plants and some protozoan parasites. Our hypothesis is that the differences between the forms can be exploited in the development of selective inhibitors. In this study, cyclodextrin- and sulfonic acid-derived organotelluriums known to inhibit mammalian TrxR were investigated for their relative efficacy against P. falciparum TrxR (PfTrxR), a high Mr enzyme, and Trichomonas vaginalis TrxR (TvTrxR), a low Mr form of TrxR. The results suggest that selective inhibition of low Mr TrxRs is a feasible goal.
Collapse
|
21
|
Boucher IW, McMillan PJ, Gabrielsen M, Akerman SE, Brannigan JA, Schnick C, Brzozowski AM, Wilkinson AJ, Müller S. Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Mol Microbiol 2006; 61:948-59. [PMID: 16879648 PMCID: PMC1618809 DOI: 10.1111/j.1365-2958.2006.05303.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum possesses a single mitochondrion with a functional electron transport chain. During respiration, reactive oxygen species are generated that need to be removed to protect the organelle from oxidative damage. In the absence of catalase and glutathione peroxidase, the parasites rely primarily on peroxiredoxin-linked systems for protection. We have analysed the biochemical and structural features of the mitochondrial peroxiredoxin and thioredoxin of P. falciparum. The mitochondrial localization of both proteins was confirmed by expressing green fluorescent protein fusions in parasite erythrocytic stages. Recombinant protein was kinetically characterized using the cytosolic and the mitochondrial thioredoxin (PfTrx1 and PfTrx2 respectively). The peroxiredoxin clearly preferred PfTrx2 to PfTrx1 as a reducing partner, reflected by the KM values of 11.6 microM and 130.4 microM respectively. Substitution of the two dyads asparagine-62/tyrosine-63 and phenylalanine-139/alanine-140 residues by aspartate-phenylalaine and valine-serine, respectively, reduced the KM for Trx1 but had no effect on the KM of Trx2 suggesting some role for these residues in the discrimination between the two substrates. Solution studies suggest that the protein exists primarily in a homodecameric form. The crystal structure of the mitochondrial peroxiredoxin reveals a fold typical of the 2-Cys class peroxiredoxins and a dimeric form with an intermolecular disulphide bridge between Cys67 and Cys187. These results show that the mitochondrial peroxiredoxin of P. falciparum occurs in both dimeric and decameric forms when purified under non-reducing conditions.
Collapse
Affiliation(s)
- Ian W Boucher
- Structural Biology Laboratory, Department of Chemistry, University of YorkYork YO10 5YW, UK
| | - Paul J McMillan
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity and Wellcome Centre for Molecular Parasitology, University of GlasgowGlasgow, UK
| | - Mads Gabrielsen
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity and Wellcome Centre for Molecular Parasitology, University of GlasgowGlasgow, UK
| | - Susan E Akerman
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity and Wellcome Centre for Molecular Parasitology, University of GlasgowGlasgow, UK
| | - James A Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of YorkYork YO10 5YW, UK
| | - Claudia Schnick
- Structural Biology Laboratory, Department of Chemistry, University of YorkYork YO10 5YW, UK
| | - Andrzej M Brzozowski
- Structural Biology Laboratory, Department of Chemistry, University of YorkYork YO10 5YW, UK
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of YorkYork YO10 5YW, UK
| | - Sylke Müller
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity and Wellcome Centre for Molecular Parasitology, University of GlasgowGlasgow, UK
- *For correspondence. E-mail ; Tel. (+44) 141 330 2383; Fax (+44) 141 330 4600
| |
Collapse
|
22
|
Abstract
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.
Collapse
Affiliation(s)
- Sylke Müller
- School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, UK.
| |
Collapse
|
23
|
Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiol Proteins as Guardians of the Intracellular Redox Milieu in Parasites: Old and New Drug Targets in Trypanosomes and Malaria-Causing Plasmodia. Angew Chem Int Ed Engl 2005; 44:690-715. [PMID: 15657967 DOI: 10.1002/anie.200300639] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parasitic diseases such as sleeping sickness, Chagas' heart disease, and malaria are major health problems in poverty-stricken areas. Antiparasitic drugs that are not only active but also affordable and readily available are urgently required. One approach to finding new drugs and rediscovering old ones is based on enzyme inhibitors that paralyze antioxidant systems in the pathogens. These antioxidant ensembles are essential to the parasites as they are attacked in the human host by strong oxidants such as peroxynitrite, hypochlorite, and H2O2. The pathogen-protecting system consists of some 20 thiol and dithiol proteins, which buffer the intraparasitic redox milieu at a potential of -250 mV. In trypanosomes and leishmania the network is centered around the unique dithiol trypanothione (N1,N8-bis(glutathionyl)spermidine). In contrast, malaria parasites have a more conservative dual antioxidative system based on glutathione and thioredoxin. Inhibitors of antioxidant enzymes such as trypanothione reductase are, indeed, parasiticidal but they can also delay or prevent resistance against a number of other antiparasitic drugs.
Collapse
Affiliation(s)
- R Luise Krauth-Siegel
- Universität Heidelberg, Biochemie-Zentrum, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
24
|
Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiolproteine als Hüter des intrazellulären Redoxmilieus bei Parasiten: alte und neue Wirkstoff-Targets bei Trypanosomiasis und Malaria. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200300639] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Wilson PE, Kazadi W, Kamwendo DD, Mwapasa V, Purfield A, Meshnick SR. Prevalence of pfcrt mutations in Congolese and Malawian Plasmodium falciparum isolates as determined by a new Taqman assay. Acta Trop 2005; 93:97-106. [PMID: 15589802 DOI: 10.1016/j.actatropica.2004.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 09/16/2004] [Accepted: 09/23/2004] [Indexed: 11/21/2022]
Abstract
A real-time PCR assay was developed to detect the K76T point mutation in the Plasmodium falciparum putative chloroquine resistance transporter gene. The assay was used with malaria positive clinical isolates from Rutshuru in the eastern part of the Democratic Republic of the Congo (DRC) and from Malawi. The K76T mutation was found in 52/56 (93%) clinical isolates from the DRC, where chloroquine resistance is high, but in none of the 12 isolates tested from Malawi where chloroquine is now rarely used. Sixteen percent of specimens from the DRC had detectable levels of both wild-type and mutant alleles. The real-time PCR results were compared to results from a nested allele-specific PCR assay and from direct DNA sequencing. Using allele-specific PCR as the reference method, the new assay is 100% sensitive and specific towards the mutant allele. In addition to its low per-test cost, the new assay is fast, easily automated, sensitive and well-suited to large-scale epidemiological studies.
Collapse
Affiliation(s)
- Paul E Wilson
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, CB 7290, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
26
|
Akerman SE, Müller S. Peroxiredoxin-linked Detoxification of Hydroperoxides in Toxoplasma gondii. J Biol Chem 2005; 280:564-70. [PMID: 15507457 DOI: 10.1074/jbc.m406367200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii is highly susceptible to oxidative stress caused by tert-butyl-hydroperoxide, juglone, and phenazine methylsulfate with IC(50) in the nanomolar range. Using dichlorofluorescein diacetate, a detector of endogenous oxidative stress, it was shown that juglone and phenazine methylsulfate are potentially toxic to the parasites without affecting the host cells. These results demonstrate that T. gondii is vulnerable to oxidative challenge that results from disruption of its redox balance and so this could be an effective approach to therapeutic intervention. This study has characterized redox active and antioxidant peroxidases belonging to the class of 1-Cys and 2-Cys peroxiredoxins that play crucial roles in maintaining redox balance. The tachyzoite stages of T. gondii express thioredoxin (TgTrx), 1-Cys peroxiredoxin (TgTrx-Px2), and a 2-Cys peroxiredoxin (TgTrx-Px1) and immunofluorescent studies revealed that all three proteins are located in the cytosol of the parasite confirming previous studies on TgTrx-Px1 (Kwok, L.Y., Schluter, D., Clayton, C., and Soldati, D. (2004) Mol. Microbiol. 51, 47-61). TgTrx-Px1 showed K(m) values for H(2)O(2) and tert-butyl hydroperoxide in the nanomolar range, emphasizing the great affinity of the protein for theses substrates. Moreover, the catalytic efficiency of TgTrx-Px1 for these substrates at 10(6)-10(7) M(-1) s(-1) is unusually high, which qualifies the enzyme as an extremely potent antioxidant. Kinetic analyses revealed that TgTrx-Px1 is inhibited by tert-butyl hydroperoxide, and apparent inhibition constants were determined to be between 33 and 35.6 microm depending on the concentration of the non-inhibitory substrate thioredoxin. TgTrx-Px2 protected glutamine synthetase from inactivation by Fe(3+)/DTT, showing that it is an active peroxiredoxin.
Collapse
Affiliation(s)
- Susan E Akerman
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
27
|
Bozdech Z, Ginsburg H. Antioxidant defense in Plasmodium falciparum--data mining of the transcriptome. Malar J 2004; 3:23. [PMID: 15245577 PMCID: PMC514526 DOI: 10.1186/1475-2875-3-23] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 07/09/2004] [Indexed: 01/28/2023] Open
Abstract
The intraerythrocytic malaria parasite is under constant oxidative stress originating both from endogenous and exogenous processes. The parasite is endowed with a complete network of enzymes and proteins that protect it from those threats, but also uses redox activities to regulate enzyme activities. In the present analysis, the transcription of the genes coding for the antioxidant defense elements are viewed in the time-frame of the intraerythrocytic cycle. Time-dependent transcription data were taken from the transcriptome of the human malaria parasite Plasmodium falciparum. Whereas for several processes the transcription of the many participating genes is coordinated, in the present case there are some outstanding deviations where gene products that utilize glutathione or thioredoxin are transcribed before the genes coding for elements that control the levels of those substrates are transcribed. Such insights may hint to novel, non-classical pathways that necessitate further investigations.
Collapse
Affiliation(s)
- Zbynek Bozdech
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16Str, San Francisco, CA 94143-0448, USA
| | - Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
28
|
Krungkrai SR, Aoki S, Palacpac NMQ, Sato D, Mitamura T, Krungkrai J, Horii T. Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile. Mol Biochem Parasitol 2004; 134:245-55. [PMID: 15003844 DOI: 10.1016/j.molbiopara.2003.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 11/04/2003] [Accepted: 12/19/2003] [Indexed: 11/22/2022]
Abstract
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, relies on de novo pyrimidine biosynthesis. A gene encoding orotate phosphoribosyltransferase (OPRT), the fifth enzyme of the de novo pathway catalyzing formation of orotidine 5'-monophosphate (OMP) and pyrophosphate (PP(i)) from 5-phosphoribosyl-1-pyrophosphate (PRPP) and orotate, was identified from P. falciparum (pfOPRT). The deduced amino acid sequence for pfOPRT was compared with OPRTs from other organisms and found to be most similar to that of Escherichia coli. The catalytic residues and consensus sequences for substrate binding in the enzyme were conserved among other organisms. The pfOPRT was exceptional in that it contained a unique insertion of 20 amino acids and an amino-terminal extension of 66 amino acids, making the longest amino acid sequence (281 amino acids with a predicted molecular mass of 33kDa). The cDNA of the pfOPRT gene was cloned, sequenced and functionally expressed in soluble form. The recombinant pfOPRT was purified from the E. coli lysate by two steps, nickel metal-affinity and gel-filtration chromatography. From 1l E. coli culture, 1.2-1.5mg of pure pfOPRT was obtained. SDS-PAGE revealed that the pfOPRT had a molecular mass of 33kDa and analytical gel-filtration chromatography showed that the enzyme activity eluted at approximately 67kDa. Using dimethyl suberimidate to cross-link neighboring subunits of the pfOPRT, it was confirmed that the native enzyme exists in a dimeric form. The steady state kinetics of initial velocity and product inhibition studies indicate that the enzyme pfOPRT follows a random sequential kinetic mechanism. Compounds aimed at the pfOPRT nexus may act against the parasite through at least two mechanisms: by directly inhibiting the enzyme activity, or be processed to an inhibitor of thymidylate synthase. This study provides a working system with which to investigate new antimalarial agents targeted against P. falciparum OPRT.
Collapse
Affiliation(s)
- Sudaratana R Krungkrai
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol 2004; 34:163-89. [PMID: 15037104 DOI: 10.1016/j.ijpara.2003.09.011] [Citation(s) in RCA: 420] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 09/18/2003] [Accepted: 09/18/2003] [Indexed: 01/09/2023]
Abstract
Experimenta naturae, like the glucose-6-phosphate dehydrogenase deficiency, indicate that malaria parasites are highly susceptible to alterations in the redox equilibrium. This offers a great potential for the development of urgently required novel chemotherapeutic strategies. However, the relationship between the redox status of malarial parasites and that of their host is complex. In this review article we summarise the presently available knowledge on sources and detoxification pathways of reactive oxygen species in malaria parasite-infected red cells, on clinical aspects of redox metabolism and redox-related mechanisms of drug action as well as future prospects for drug development. As delineated below, alterations in redox status contribute to disease manifestation including sequestration, cerebral pathology, anaemia, respiratory distress, and placental malaria. Studying haemoglobinopathies, like thalassemias and sickle cell disease, and other red cell defects that provide protection against malaria allows insights into this fine balance of redox interactions. The host immune response to malaria involves phagocytosis as well as the production of nitric oxide and oxygen radicals that form part of the host defence system and also contribute to the pathology of the disease. Haemoglobin degradation by the malarial parasite produces the redox active by-products, free haem and H(2)O(2), conferring oxidative insult on the host cell. However, the parasite also supplies antioxidant moieties to the host and possesses an efficient enzymatic antioxidant defence system including glutathione- and thioredoxin-dependent proteins. Mechanistic and structural work on these enzymes might provide a basis for targeting the parasite. Indeed, a number of currently used drugs, especially the endoperoxide antimalarials, appear to act by increasing oxidant stress, and novel drugs such as peroxidic compounds and anthroquinones are being developed.
Collapse
Affiliation(s)
- Katja Becker
- Interdisciplinary Research Center, Heinrich-Buff-Ring 26-32, Justus-Liebig University, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Birkholtz LM, Wrenger C, Joubert F, Wells GA, Walter RD, Louw AI. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions. Biochem J 2004; 377:439-48. [PMID: 12974675 PMCID: PMC1223860 DOI: 10.1042/bj20030614] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 09/08/2003] [Accepted: 09/15/2003] [Indexed: 11/17/2022]
Abstract
Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains are inferred from the effect of its removal on both catalytic activities. Interference with essential protein-protein interactions mediated by parasite-specific regions therefore appears to be a viable strategy to aid the design of selective inhibitors of polyamine metabolism of P. falciparum.
Collapse
Affiliation(s)
- Lyn-Marie Birkholtz
- Department of Biochemistry, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | | | | | | | | |
Collapse
|
31
|
Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA. Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. J Mol Biol 2003; 328:893-907. [PMID: 12729762 DOI: 10.1016/s0022-2836(03)00347-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The malarial parasite Plasmodium falciparum is known to be sensitive to oxidative stress, and thus the antioxidant enzyme glutathione reductase (GR; NADPH+GSSG+H(+) <==> NADP(+)+2 GSH) has become an attractive drug target for antimalarial drug development. Here, we report the 2.6A resolution crystal structure of P.falciparum GR. The homodimeric flavoenzyme is compared to the related human GR with focus on structural aspects relevant for drug design. The most pronounced differences between the two enzymes concern the shape and electrostatics of a large (450A(3)) cavity at the dimer interface. This cavity binds numerous non-competitive inhibitors and is a target for selective drug design. A 34-residue insertion specific for the GRs of malarial parasites shows no density, implying that it is disordered. The precise location of this insertion along the sequence allows us to explain the deleterious effects of a mutant in this region and suggests new functional studies. To complement the structural comparisons, we report the relative susceptibility of human and plasmodial GRs to a series of tricyclic inhibitors as well as to peptides designed to interfere with protein folding and dimerization. Enzyme-kinetic studies on GRs from chloroquine-resistant and chloroquine-sensitive parasite strains were performed and indicate that the structure reported here represents GR of P.falciparum strains in general and thus is a highly relevant target for drug development.
Collapse
Affiliation(s)
- G N Sarma
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | | | | | |
Collapse
|
32
|
Becker K, Rahlfs S, Nickel C, Schirmer RH. Glutathione--functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 2003; 384:551-66. [PMID: 12751785 DOI: 10.1515/bc.2003.063] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When present as a trophozoite in human erythrocytes, the malarial parasite Plasmodium falciparum exhibits an intense glutathione metabolism. Glutathione plays a role not only in antioxidative defense and in maintaining the reducing environment of the cytosol. Many of the known glutathione-dependent processes are directly related to the specific lifestyle of the parasite. Reduced glutathione (GSH) supports rapid cell growth by providing electrons for deoxyribonucleotide synthesis and it takes part in detoxifying heme, a product of hemoglobin digestion. Free radicals generated in the parasite can be scavenged in reaction sequences involving the thiyl radical GS* as well as the thiolate GS-. As a substrate of glutathione S-transferase, glutathione is conjugated to non-degradable compounds including antimalarial drugs. Furthermore, it is the coenzyme of the glyoxalase system which detoxifies methylglyoxal, a byproduct of the intense glycolysis taking place in the trophozoite. Proteins involved in GSH-dependent processes include glutathione reductase, glutaredoxins, glyoxalase I and II, glutathione S-transferases, and thioredoxins. These proteins, as well as the ATP-dependent enzymes of glutathione synthesis, are studied as factors in the pathophysiology of malaria but also as potential drug targets. Methylene blue, an inhibitor of the structurally known P. falciparum glutathione reductase, appears to be a promising antimalarial medication when given in combination with chloroquine.
Collapse
Affiliation(s)
- Katja Becker
- Interdisciplinary Research Center, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
33
|
Clarke JL, Sodeinde O, Mason PJ. A unique insertion in Plasmodium berghei glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase: evolutionary and functional studies. Mol Biochem Parasitol 2003; 127:1-8. [PMID: 12615331 DOI: 10.1016/s0166-6851(02)00298-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plasmodium berghei glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (G6PD-6PGL) is a bifunctional enzyme with significant sequence similarity in both the 6PGL and G6PD domains to the Plasmodium falciparum enzyme. A recombinant form of the P. berghei enzyme was found to have both G6PD and 6PGL activities, and therefore catalyses the first two steps in the pentose phosphate pathway. Genes encoding very similar proteins are also found in three other malarial parasites, Plasmodium yoelii, Plasmodium chabaudi and Plasmodium knowlesi. All of these predicted enzymes contain unique parasite insertions in corresponding positions in the G6PD domain but the insertions differ in size and sequence. Such insertions are a common feature of malarial proteins but their origin and function is unknown. Excision of the insertion sequence in the P. berghei protein renders the G6PD domain inactive, although the 6PGL activity is unaffected. Replacing the insertion sequence in P. berghei with the insertion sequence from P. falciparum restores some of the G6PD activity and also enhances 6PGL activity. We conclude that although the insertions are evolving rapidly they have an essential role in the activity of the bifunctional enzyme.
Collapse
Affiliation(s)
- Julia L Clarke
- Department of Haematology, Faculty of Medicine, Imperial College of Science Technology and Medicine, Hammersmith Hospital, London W12 0NN, UK
| | | | | |
Collapse
|
34
|
Bednarek A, Wiek S, Lingelbach K, Seeber F. Toxoplasma gondii: analysis of the active site insertion of its ferredoxin-NADP(+)-reductase by peptide-specific antibodies and homology-based modeling. Exp Parasitol 2003; 103:68-77. [PMID: 12810049 DOI: 10.1016/s0014-4894(03)00074-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apicomplexan parasites possess an apicoplast-localized redox system consisting of a plant-type ferredoxin-NADP(+)-reductase (FNR) and its redox partner ferredoxin, a small [2Fe-2S] protein. We show here that several apicomplexan FNRs contain unique amino acid insertions of various lengths which are located in close proximity to the enzymatically important FAD and ferredoxin-binding sites of these proteins. Using the insertion of the Toxoplasma gondii reductase as an example we raised epitope-specific antibodies against an 11 amino acids long peptide predicted to be surface-exposed within this insertion. This peptide was found to be immunogenic when presented to the immune system as part of a carrier protein, but also in its natural structural context in the whole recombinant protein, implying that the epitope is surface-exposed. Three-dimensional modeling of T. gondii FNR based on the known 3D-structure of maize root FNR predicts that the overall structure of plant and apicomplexan FNRs are very similar and that the 11 amino acids are part of an alpha-helix, looping out of the molecule. Collectively, these data suggest that the insertion in T. gondii FNR does not affect the overall structure of the protein but may have an effect on the binding dynamics of FAD, NADP(+), and/or ferredoxin to FNR.
Collapse
Affiliation(s)
- Anika Bednarek
- FB Biologie/Parasitologie, Philipps-Universität Marburg, Karl-von-Frisch-Str., D-35032, Marburg, Germany
| | | | | | | |
Collapse
|
35
|
Meierjohann S, Walter RD, Müller S. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Biochem J 2002; 368:761-8. [PMID: 12225291 PMCID: PMC1223037 DOI: 10.1042/bj20020962] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Revised: 09/03/2002] [Accepted: 09/12/2002] [Indexed: 11/17/2022]
Abstract
Malaria is one of the most devastating tropical diseases despite the availability of numerous drugs acting against the protozoan parasite Plasmodium in its human host. However, the development of drug resistance renders most of the existing drugs useless. In the malaria parasite the tripeptide glutathione is not only involved in maintaining an adequate intracellular redox environment and protecting the cell against oxidative stress, but it has also been shown that it degrades non-polymerized ferriprotoporphyrin IX (FP IX) and is thus implicated in the development of chloroquine resistance. Glutathione levels in Plasmodium -infected red blood cells are regulated by glutathione synthesis, glutathione reduction and glutathione efflux. Therefore the effects of drugs that interfere with these metabolic processes were studied to establish possible differences in the regulation of the glutathione metabolism of a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodium falciparum. Growth inhibition of P. falciparum 3D7 by D,L-buthionine-( S, R )sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase (gamma-GCS), and by Methylene Blue (MB), an inhibitor of gluta thione reductase (GR), was significantly more pronounced than inhibition of P. falciparum Dd2 growth by these drugs. These results correlate with the higher levels of total glutathione in P. falciparum Dd2. Short-term incubations of Percoll-enriched trophozoite-infected red blood cells in the presence of BSO, MB and N, N (1)-bis(2-chloroethyl)- N -nitrosourea and subsequent determinations of gamma-GCS activities, GR activities and glutathione disulphide efflux revealed that maintenance of intracellular glutathione in P. falciparum Dd2 is mainly dependent on glutathione synthesis whereas in P. falciparum 3D7 it is regulated via GR. Generally, P. falciparum Dd2 appears to be able to sustain its intracellular glutathione more efficiently than P. falciparum 3D7. In agreement with these findings is the differential susceptibility to oxidative stress of both parasite strains elicited by the glucose/glucose oxidase system.
Collapse
|
36
|
Abstract
GSH is the major low-molecular-mass thiol in most organisms. The tripeptide maintains a reduced intracellular environment and protects cellular components from damaging oxidation. GSH is synthesized by the action of two ATP-dependent enzymic steps, in which gamma-glutamylcysteine synthetase (gamma-GCS) catalyses the ligation of glutamate and cysteine and subsequently glutathione synthetase (GS) adds glycine to the dipeptide. Recently it was shown that the synthesis of gamma-glutamylcysteine is crucial for the survival of the erythrocytic stages of the malaria parasite Plasmodium falciparum by using the specific gamma-GCS inhibitor buthionine sulphoximine. In order to investigate further the synthetic pathway of the tripeptide in the parasite, GS was cloned and expressed recombinantly. The deduced amino acid sequence of P. falciparum GS shares only a moderate degree of identity with other known GSs, but the residues responsible for substrate and co-factor binding are almost all conserved, with the exception of the ones involved in gamma-glutamylcysteine binding. The protein is active as a dimer, with a subunit molecular mass of 77 kDa, and the addition of reducing reagents such as dithiothreitol is essential in maintaining enzymic activity, indicating that thiol groups are important for stability and enzymic activity. The K(app)(m) values for gamma-glutamyl-alpha-aminobutyrate, ATP and glycine were determined to be 107.1 microM, 59.1 microM and 5.04 mM, respectively, and the V(max) of 5.24 +/- 0.7 micromol.min(-1).mg(-1) was in the same range as that of the mammalian enzymes. However, the negative co-operativity observed for gamma-glutamylcysteine binding to the rat enzyme was not found for the parasite protein. This may be due to the alteration of several amino acids in the gamma-glutamylcysteine-binding site.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
37
|
Meyer CG, May J, Arez AP, Gil JP, Do Rosario V. Genetic diversity of Plasmodium falciparum: asexual stages. Trop Med Int Health 2002; 7:395-408. [PMID: 12000649 DOI: 10.1046/j.1365-3156.2002.00875.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Christian G Meyer
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Perozzo R, Kuo M, Sidhu ABS, Valiyaveettil JT, Bittman R, Jacobs WR, Fidock DA, Sacchettini JC. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 2002; 277:13106-14. [PMID: 11792710 DOI: 10.1074/jbc.m112000200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum synthesizes fatty acids using a type II pathway that is absent in humans. The final step in fatty acid elongation is catalyzed by enoyl acyl carrier protein reductase, a validated antimicrobial drug target. Here, we report the cloning and expression of the P. falciparum enoyl acyl carrier protein reductase gene, which encodes a 50-kDa protein (PfENR) predicted to target to the unique parasite apicoplast. Purified PfENR was crystallized, and its structure resolved as a binary complex with NADH, a ternary complex with triclosan and NAD(+), and as ternary complexes bound to the triclosan analogs 1 and 2 with NADH. Novel structural features were identified in the PfENR binding loop region that most closely resembled bacterial homologs; elsewhere the protein was similar to ENR from the plant Brassica napus (root mean square for Calphas, 0.30 A). Triclosan and its analogs 1 and 2 killed multidrug-resistant strains of intra-erythrocytic P. falciparum parasites at sub to low micromolar concentrations in vitro. These data define the structural basis of triclosan binding to PfENR and will facilitate structure-based optimization of PfENR inhibitors.
Collapse
Affiliation(s)
- Remo Perozzo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Davioud-Charvet E, Delarue S, Biot C, Schwöbel B, Boehme CC, Müssigbrodt A, Maes L, Sergheraert C, Grellier P, Schirmer RH, Becker K. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J Med Chem 2001; 44:4268-76. [PMID: 11708927 DOI: 10.1021/jm010268g] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutathione (GSH), which is known to guard Plasmodium falciparum from oxidative damage, may have an additional protective role by promoting heme catabolism. An elevation of GSH content in parasites leads to increased resistance to chloroquine (CQ), while GSH depletion in resistant P. falciparum strains is expected to restore the sensitivity to CQ. High intracellular GSH levels depend inter alia on the efficient reduction of GSSG by glutathione reductase (GR). On the basis of this hypothesis, we have developed a new strategy for overcoming glutathione-dependent 4-aminoquinoline resistance. To direct both a 4-aminoquinoline and a GR inhibitor to the parasite, double-drugs were designed and synthesized. Quinoline-based alcohols (with known antimalarial activity) were combined with a GR inhibitor via a metabolically labile ester bond to give double-headed prodrugs. The biochemically most active double-drug 7 of this series was then evaluated as a growth inhibitor against six Plasmodium falciparum strains that differed in their degree of resistance to CQ; the ED(50) values for CQ ranged from 14 to 183 nM. While the inhibitory activity of the original 4-aminoquinoline-based alcohol followed that of CQ in these tests, the double-drug exhibited similar efficiency against all strains, the ED(50) being as low as 28 nM. For the ester 7, a dose-dependent decrease in glutathione content and GR activity and an increase in glutathione-S-transferase activity were determined in treated parasites. The drug was subsequently tested for its antimalarial action in vivo using murine malaria models infected with P. berghei. A 178% excess mean survival time was determined for the animals treated with 40 mg/kg 7 for 4 days. No cytotoxicity due to this compound was observed. Work is in progress to extend and validate the strategy outlined here.
Collapse
Affiliation(s)
- E Davioud-Charvet
- UMR 8525 CNRS-Université Lille II-Institut Pasteur de Lille, Institut de Biologie de Lille, 1 rue du Professeur Calmette, BP447 59021 Lille Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fleischer B. The Bernhard Nocht Institute: 100 years of tropical medicine in Hamburg. Mem Inst Oswaldo Cruz 2001; 95 Suppl 1:17-23. [PMID: 11142708 DOI: 10.1590/s0074-02762000000700003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Bernhard Nocht Institute (BNI) is a four months younger and much smaller sibling of the Instituto Oswaldo Cruz. It was founded on 1 October 1900 as an Institut für Schiffs- und Tropenkrankheiten (Institute for Maritime and Tropical Diseases) and was later named after its founder and first director Bernhard Nocht. Today it is the Germany's largest institution for research in tropical medicine. It is a government institution affiliated to the Federal Ministry of Health of Germany and the Department of Health of the State of Hamburg. As the center for research in tropical medicine in Germany the BNI is dedicated to research, training and patient care in the area of human infectious diseases, which are of particular relevance in the tropics. It is the primary mission of the BNI to develop means to the control of these diseases. Secondary missions are to provide expertise for regional and national authorities and to directly and indirectly improve the health care for national and regional citizens in regard to diseases of the tropics.
Collapse
Affiliation(s)
- B Fleischer
- Bernhard-Nocht Institut für Tropenmedizin, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.
| |
Collapse
|
41
|
Krnajski Z, Gilberger TW, Walter RD, Müller S. The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol Biochem Parasitol 2001; 112:219-28. [PMID: 11223129 DOI: 10.1016/s0166-6851(00)00372-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The thioredoxin system consists of the NADPH dependent disulphide oxidoreductase thioredoxin reductase (TrxR) which catalyses the reduction of the small protein thioredoxin. This system is involved in a variety of biological reactions including the reduction of deoxyribonucleotides, transcription factors and hydrogen peroxide. In recent years the TrxR of the malaria parasite Plasmodium falciparum was isolated and characterised using model substrates like 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and Escherichia coli thioredoxin. Here we report on the isolation of a cDNA encoding for P. falciparum thioredoxin (PfTrx) and the expression and characterisation of the recombinant protein, the natural substrate of PfTrxR. The deduced amino acid sequence of PfTrx encodes for a polypeptide of 11715 Da and possesses the typical thioredoxin active site motif CysGlyProCys. Both cysteine residues are essential for catalytic activity of the protein, as shown by mutational analyses. Steady state kinetic analyses with PfTrxR and PfTrx in several coupled assay systems resulted in K(m)-values for PfTrx in the range of 0.8--2.1 microM which is about 250-fold lower than for the model substrate E. coli thioredoxin. Since the turnover of both substrates is similar, the catalytic efficiency of PfTrxR to reduce the isolated PfTrx is at least 250-fold higher than to reduce E. coli thioredoxin. PfTrx contains a cysteine residue in position 43 in addition to the active-site cysteine residues, which is partially responsible for dimer formation of the protein as demonstrated by changing this amino acid into an alanine residue. Using DTNB we showed that all three cysteine residues present in PfTrx are accessible to modification by this compound. Surprisingly the first cysteine residue of the active site motif (Cys30) is less accessible than the second cysteine (Cys33), which is highly prone to the modification. These results suggest a difference in the structure and reaction mechanism of PfTrx compared to other known thioredoxins.
Collapse
Affiliation(s)
- Z Krnajski
- Bernhard Nocht Institute for Tropical Medicine, Biochemical Parasitology, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
| | | | | | | |
Collapse
|
42
|
Müller S, Gilberger TW, Krnajski Z, Lüersen K, Meierjohann S, Walter RD. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum. PROTOPLASMA 2001; 217:43-49. [PMID: 11732337 DOI: 10.1007/bf01289412] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plasmodium falciparum is the causative agent of malaria tropica. Due to the increasing resistance towards the commonly used plasmodicidal drugs there is an urgent need to identify and assess new targets for the chemotherapeutic intervention of parasite development in the human host. It is established that P. falciparum-infected erythrocytes are vulnerable to oxidative stress, and therefore efficient antioxidative systems are required to ensure parasite development within the host cell. The thioredoxin and glutathione redox systems represent two powerful means to detoxify reactive oxygen species and this article summarizes some of the recent work which has led to a better understanding of these systems in the parasite and will help to assess them as potential targets for the development of new chemotherapeutics of malaria.
Collapse
Affiliation(s)
- S Müller
- Department of Parasite Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
43
|
Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 2000; 275:40180-6. [PMID: 11013257 DOI: 10.1074/jbc.m007633200] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most living cells, redox homeostasis is based both on the glutathione and the thioredoxin system. In the malaria parasite Plasmodium falciparum antioxidative proteins represent promising targets for the development of antiparasitic drugs. We cloned and expressed a thioredoxin of P. falciparum (pftrx), and we improved the stable expression of the thioredoxin reductase (PfTrxR) of the parasite by multiple silent mutagenesis. Both proteins were biochemically characterized and compared with the human host thioredoxin system. Intriguingly, the 13-kDa protein PfTrx is a better substrate for human TrxR (K(m) = 2 microm, k(cat) = 3300 min(-)(1)) than for P. falciparum TrxR (K(m) = 10.4 microm, k(cat) = 3100 min(-)(1)). Possessing a midpoint potential of -270 mV, PfTrx was found to reduce the disease-related metabolites S-nitrosoglutathione and GSSG. The rate constant k(2) for the reaction between reduced P. falciparum thioredoxin and GSSG was determined to be 0.039 microm(-)(1) min(-)(1) at 25 degrees C and pH 7.4. The k(2) for thioredoxins from man, Drosophila melanogaster, and Escherichia coli was approximately 5 times lower. Our data suggest that GSSG reduction can be supported at a high rate by the TrxR/Trx system in glutathione reductase-deficient cells; this may be relevant for certain stages of the malarial parasite but also for cells containing high [GSSG] of other organisms like dormant forms of Neurospora, glutathione reductase-deficient yeast mutants, or CD4(+) lymphocytes of AIDS patients.
Collapse
Affiliation(s)
- S M Kanzok
- Center of Biochemistry, Heidelberg University, D-69120 Heidelberg, Research Center for Infectious Diseases, Würzburg University, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
44
|
Bohme CC, Arscott LD, Becker K, Schirmer RH, Williams CH. Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme. J Biol Chem 2000; 275:37317-23. [PMID: 10969088 DOI: 10.1074/jbc.m007695200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homodimeric flavoenzyme glutathione reductase (GR) maintains high intracellular concentrations of the antioxidant glutathione (GSSG + NADPH + H(+) <--> 2 GSH + NADP(+)). Due to its central function in cellular redox metabolism, inhibition of GR from the malarial parasite Plasmodium falciparum represents an important approach to antimalarial drug development; therefore, the catalytic mechanism of GR from P. falciparum has been analyzed and compared with the human host enzyme. The reductive half-reaction is similar to the analogous reaction with GR from other species. The oxidative half-reaction is biphasic, reflecting formation and breakdown of a mixed disulfide between the interchange thiol and GSH. The equilibrium between the E(ox)-EH(2) and GSSG-GSH couples has been modeled showing that the Michaelis complex, mixed disulfide-GSH, is the predominant enzyme form as the oxidative half-reaction progresses; rate constants used in modeling allow calculation of an K(eq) from the Haldane relationship, 0.075, very similar to the K(eq) of the same reaction for the yeast enzyme (0.085) (Arscott, L. D., Veine, D. M., and Williams, C. H., Jr. (2000) Biochemistry 39, 4711-4721). Enzyme-monitored turnover indicates that E(FADH(-))(S-S). NADP(+) and E(FAD)(SH)(2).NADPH are dominant enzyme species in turnover. Since the individual forms of the enzyme differ in their susceptibility to inhibitors, the prevailing states of GR in the cell are of practical relevance.
Collapse
Affiliation(s)
- C C Bohme
- Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48105, Center of Biochemistry, Heidelberg University, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
For 40 years scientists have hotly debated the questions of how chloroquine kills malarial parasites and how resistance to this once first-line antimalarial drug has evolved. While an end to these debates is not in sight, as a result of the complexity of the subject, new findings have come forward that give the discussion a new direction. In this paper we will summarize current knowledge on chloroquine's antimalarial mode of action and the genesis of the resistant phenotype in the human malarial parasite Plasmodium falciparum, with special emphasis on the most recent developments in this field.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Abteilung Parasitologie, Hygiene Institut, Universität Heidelberg, Heidelberg, Germany
| | | |
Collapse
|