1
|
Schäfer J, Wenck N, Janik K, Linnert J, Stingl K, Kohl S, Nagel-Wolfrum K, Wolfrum U. The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling. Front Cell Dev Biol 2023; 11:1130058. [PMID: 36846582 PMCID: PMC9944737 DOI: 10.3389/fcell.2023.1130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Human Usher syndrome (USH) is the most common form of hereditary combined deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms underlying the disease are far from being understood, especially in the eye and retina. The USH1C gene encodes the scaffold protein harmonin which organizes protein networks due to binary interactions with other proteins, such as all USH proteins. Interestingly, only the retina and inner ear show a disease-related phenotype, although USH1C/harmonin is almost ubiquitously expressed in the human body and upregulated in colorectal cancer. We show that harmonin binds to β-catenin, the key effector of the canonical Wnt (cWnt) signaling pathway. We also demonstrate the interaction of the scaffold protein USH1C/harmonin with the stabilized acetylated β-catenin, especially in nuclei. In HEK293T cells, overexpression of USH1C/harmonin significantly reduced cWnt signaling, but a USH1C-R31* mutated form did not. Concordantly, we observed an increase in cWnt signaling in dermal fibroblasts derived from an USH1C R31*/R80Pfs*69 patient compared with healthy donor cells. RNAseq analysis reveals that both the expression of genes related to the cWnt signaling pathway and cWnt target genes were significantly altered in USH1C patient-derived fibroblasts compared to healthy donor cells. Finally, we show that the altered cWnt signaling was reverted in USH1C patient fibroblast cells by the application of Ataluren, a small molecule suitable to induce translational read-through of nonsense mutations, hereby restoring some USH1C expression. Our results demonstrate a cWnt signaling phenotype in USH establishing USH1C/harmonin as a suppressor of the cWnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Wenck
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Janik
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,*Correspondence: Uwe Wolfrum,
| |
Collapse
|
2
|
Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schäfer J, Sturm D, Fritze J, Gür B, Kaplan L, Andreani T, Goldmann T, Brooks M, Starostik MR, Lokhande A, Apel M, Fath KR, Stingl K, Kohl S, DeAngelis MM, Schlötzer-Schrehardt U, Kim IK, Owen LA, Vetter JM, Pfeiffer N, Andrade-Navarro MA, Grosche A, Swaroop A, Wolfrum U. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet 2023; 32:431-449. [PMID: 35997788 PMCID: PMC9851744 DOI: 10.1093/hmg/ddac211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin R Fadl
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirjana M Becker
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Sturm
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Fritze
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Burcu Gür
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Tommaso Andreani
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tobias Goldmann
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anagha Lokhande
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa Apel
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Karl R Fath
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Department of Biology, Queens College of CUNY, Kissena Blvd, Flushing, NY 11367, USA
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY 14209, USA
| | | | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jan M Vetter
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Antje Grosche
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
3
|
Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Ther Adv Ophthalmol 2020; 12:2515841420952194. [PMID: 32995707 PMCID: PMC7502997 DOI: 10.1177/2515841420952194] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023] Open
Abstract
Usher syndrome has three subtypes, each being clinically and genetically heterogeneous characterised by sensorineural hearing loss and retinitis pigmentosa (RP), with or without vestibular dysfunction. It is the most common cause of deaf–blindness worldwide with a prevalence of between 4 and 17 in 100 000. To date, 10 causative genes have been identified for Usher syndrome, with MYO7A accounting for >50% of type 1 and USH2A contributing to approximately 80% of type 2 Usher syndrome. Variants in these genes can also cause non-syndromic RP and deafness. Genotype–phenotype correlations have been described for several of the Usher genes. Hearing loss is managed with hearing aids and cochlear implants, which has made a significant improvement in quality of life for patients. While there is currently no available approved treatment for the RP, various therapeutic strategies are in development or in clinical trials for Usher syndrome, including gene replacement, gene editing, antisense oligonucleotides and small molecule drugs.
Collapse
Affiliation(s)
- Maria Toms
- UCL Institute of Ophthalmology, London, UK; The Francis Crick Institute, London, UK
| | - Waheeda Pagarkar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
4
|
Yao Q, Wang L, Mittal R, Yan D, Richmond MT, Denyer S, Requena T, Liu K, Varshney GK, Lu Z, Liu XZ. Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish. Anat Rec (Hoboken) 2019; 303:527-543. [PMID: 31883312 DOI: 10.1002/ar.24331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Analysis of gene expression has the potential to assist in the understanding of multiple cellular processes including proliferation, cell-fate specification, senesence, and activity in both healthy and disease states. Zebrafish model has been increasingly used to understand the process of hearing and the development of the vertebrate auditory system. Within the zebrafish inner ear, there are three otolith organs, each containing a sensory macula of hair cells. The saccular macula is primarily involved in hearing, the utricular macula is primarily involved in balance and the function of the lagenar macula is not completely understood. The goal of this study is to understand the transcriptional differences in the sensory macula associated with different otolith organs with the intention of understanding the genetic mechanisms responsible for the distinct role each organ plays in sensory perception. The sensory maculae of the saccule, utricle, and lagena were dissected out of adult Et(krt4:GFP)sqet4 zebrafish expressing green fluorescent protein in hair cells for transcriptional analysis. The total RNAs of the maculae were isolated and analyzed by RNA GeneChip microarray. Several of the differentially expressed genes are known to be involved in deafness, otolith development and balance. Gene expression among these otolith organs was very well conserved with less than 10% of genes showing differential expression. Data from this study will help to elucidate which genes are involved in hearing and balance. Furthermore, the findings of this study will assist in the development of the zebrafish model for human hearing and balance disorders. Anat Rec, 303:527-543, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Qi Yao
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Biology, University of Miami, Miami, Florida
| | - Lingyu Wang
- Department of Biology, University of Miami, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Steven Denyer
- Department of Biology, University of Miami, Miami, Florida
| | - Teresa Requena
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kaili Liu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Toms M, Bitner-Glindzicz M, Webster A, Moosajee M. Usher syndrome: a review of the clinical phenotype, genes and therapeutic strategies. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1033403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Tanaka R, Ono T, Sato S, Nakada T, Koizumi F, Hasegawa K, Nakagawa K, Okumura H, Yamashita T, Ohtsuka M, Asagoe K, Yamasaki O, Noguchi Y, Iwatsuki K, Nakayama E. Over-Expression of the Testis-Specific GeneTSGA10in Cancers and Its Immunogenicity. Microbiol Immunol 2013; 48:339-45. [PMID: 15107545 DOI: 10.1111/j.1348-0421.2004.tb03515.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The TSGA10 gene was originally isolated in normal testis by differential mRNA display. TSGA10 is located on chromosome 2q11.2 and consists of 19 exons extending over 3 kb. TSGA10 mRNA expression was investigated in normal and malignant tissues using quantitative real-time RT-PCR. It was predominantly expressed in the testis in adult normal tissues. In malignant tissues, TSGA10 was over-expressed in 4 of 20 hepatocellular carcinomas (HCC), 1 of 20 colon cancers, 7 of 20 ovarian cancers, 3 of 20 prostate cancers, 1 of 21 malignant melanomas, and 8 of 21 bladder cancers. Serological analysis revealed that 3 out of 346 patients with various types of cancer possessed antibody against recombinant TSGA10 protein. They included 2 patients with hepatocellular carcinoma and a patient with malignant melanoma.
Collapse
Affiliation(s)
- Ryo Tanaka
- Departments of Immunology, Okayama University Graduate School of Medicine and Dentistry, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Khateb S, Zelinger L, Ben-Yosef T, Merin S, Crystal-Shalit O, Gross M, Banin E, Sharon D. Exome sequencing identifies a founder frameshift mutation in an alternative exon of USH1C as the cause of autosomal recessive retinitis pigmentosa with late-onset hearing loss. PLoS One 2012; 7:e51566. [PMID: 23251578 PMCID: PMC3520954 DOI: 10.1371/journal.pone.0051566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/02/2012] [Indexed: 11/19/2022] Open
Abstract
We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort.
Collapse
Affiliation(s)
- Samer Khateb
- Department of Ophthalmology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Lina Zelinger
- Department of Ophthalmology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Ben-Yosef
- Genetics Department, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Saul Merin
- Department of Ophthalmology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | | | - Menachem Gross
- Department of Otolaryngology - Head and Neck Surgery, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (EB); (DS)
| | - Dror Sharon
- Department of Ophthalmology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (EB); (DS)
| |
Collapse
|
8
|
Williams DS, Aleman TS, Lillo C, Lopes VS, Hughes LC, Stone EM, Jacobson SG. Harmonin in the murine retina and the retinal phenotypes of Ush1c-mutant mice and human USH1C. Invest Ophthalmol Vis Sci 2009; 50:3881-9. [PMID: 19324851 DOI: 10.1167/iovs.08-3358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C. METHODS Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT). RESULTS Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50 degrees -60 degrees of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities. CONCLUSIONS The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms.
Collapse
Affiliation(s)
- David S Williams
- Jules Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, CA 90095-7008, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Excoffon KJDA, Avenarius MR, Hansen MR, Kimberling WJ, Najmabadi H, Smith RJH, Zabner J. The Coxsackievirus and Adenovirus Receptor: a new adhesion protein in cochlear development. Hear Res 2006; 215:1-9. [PMID: 16678988 DOI: 10.1016/j.heares.2006.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/10/2006] [Accepted: 02/16/2006] [Indexed: 11/23/2022]
Abstract
The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Department of Internal Medicine, Division of Pulmonary Medicine, University of Iowa, 440 EMRB, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802 DOI: 10.1016/j.exer.2005.11.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
Collapse
Affiliation(s)
- Jan Reiners
- Institute of Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
11
|
Yan D, Li F, Hall ML, Sage C, Hu WH, Giallourakis C, Upadhyay G, Ouyang XM, Du LL, Bethea JR, Chen ZY, Yajnik V, Liu XZ. An isoform of GTPase regulator DOCK4 localizes to the stereocilia in the inner ear and binds to harmonin (USH1C). J Mol Biol 2006; 357:755-64. [PMID: 16464467 DOI: 10.1016/j.jmb.2006.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/15/2022]
Abstract
The driving forces for the regulation of cell morphology are the Rho family GTPases that coordinate the assembly of the actin cytoskeleton. This dynamic feature is a result of tight coupling between the cytoskeleton and signal transduction and is facilitated by actin-binding proteins (ABPs). Mutations in the actin bundling and PDZ domain-containing protein harmonin are the causes of Usher syndrome type 1C (USH1C), a syndrome of congenital deafness and progressive blindness, as well as certain forms of non-syndromic deafness. Here, we have used the yeast two-hybrid assay to isolate molecular partners of harmonin and identified DOCK4, an unconventional guanine exchange factor for the Rho family of guanosine triphosphatases (Rho GEF GTPases), as a protein interacting with harmonin. Detailed molecular analysis revealed that a novel DOCK4 isoform (DOCK4-Ex49) is expressed in the brain, eye and inner ear tissues. We have further provided evidence that the DOCK4-Ex49 binds to nucleotide free Rac as effectively as DOCK2 and DOCK4 and it is a potent Rac activator. By immunostaining using a peptide antibody specific to DOCK4-Ex49, we showed its localization in the inner ear within the hair bundles along the stereocilia (SC). Together, our data indicate a possible Rac-DOCK4-ABP harmonin-activated signaling pathway in regulating actin cytoskeleton organization in stereocilia.
Collapse
Affiliation(s)
- D Yan
- Department of Otolaryngology, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Anderson KS, LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 2005; 4:1123-33. [PMID: 16083262 PMCID: PMC2522321 DOI: 10.1021/pr0500814] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The release of proteins from tumors triggers an immune response in cancer patients. These tumor antigens arise from several mechanisms including tumor-specific alterations in protein expression, mutation, folding, degradation, or intracellular localization. Responses to most tumor antigens are rarely observed in healthy individuals, making the response itself a biomarker that betrays the presence of underlying cancer. Antibody immune responses show promise as clinical biomarkers because antibodies have long half-lives in serum, are easy to measure, and are stable in blood samples. However, our understanding of the specificity and the impact of the immune response in early stages of cancer is limited. The immune response to cancer, whether endogenous or driven by vaccines, involves highly specific T lymphocytes (which target tumor-derived peptides bound to self-MHC proteins) and B lymphocytes (which generate antibodies to tumor-derived proteins). T cell target antigens have been identified either by expression cloning from tumor cDNA libraries, or by prediction based on patterns of antigen expression ("reverse immunology"). B cell targets have been similarly identified using the antibodies in patient sera to screen cDNA libraries derived from tumor cell lines. This review focuses on the application of recent advances in proteomics for the identification of tumor antigens. These advances are opening the door for targeted vaccine development, and for using immune response signatures as biomarkers for cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Karen S Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
13
|
Finsterer J, Fellinger J. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. Int J Pediatr Otorhinolaryngol 2005; 69:621-47. [PMID: 15850684 DOI: 10.1016/j.ijporl.2004.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Half of the cases with congenital impaired hearing are hereditary (HIH). HIH may occur as part of a multisystem disease (syndromic HIH) or as disorder restricted to the ear and vestibular system (nonsyndromic HIH). Since nonsyndromic HIH is almost exclusively caused by cochlear defects, affected patients suffer from sensorineural hearing loss. One percent of the total human genes, i.e. 300-500, are estimated to cause syndromic and nonsyndromic HIH. Of these, approximately 120 genes have been cloned thus far, approximately 80 for syndromic HIH and 42 for nonsyndromic HIH. In the majority of the cases, HIH manifests before (prelingual), and rarely after (postlingual) development of speech. Prelingual, nonsyndromic HIH follows an autosomal recessive trait (75-80%), an autosomal dominant trait (10-20%), an X-chromosomal, recessive trait (1-5%), or is maternally inherited (0-20%). Postlingual nonsyndromic HIH usually follows an autosomal dominant trait. Of the 41 mutated genes that cause nonsyndromic HIH, 15 cause autosomal dominant HIH, 15 autosomal recessive HIH, 6 both autosomal dominant and recessive HIH, 2 X-linked HIH, and 3 maternally inherited HIH. Mutations in a single gene may not only cause autosomal dominant, nonsyndromic HIH, but also autosomal recessive, nonsyndromic HIH (GJB2, GJB6, MYO6, MYO7A, TECTA, TMC1), and even syndromic HIH (CDH23, COL11A2, DPP1, DSPP, GJB2, GJB3, GJB6, MYO7A, MYH9, PCDH15, POU3F4, SLC26A4, USH1C, WFS1). Different mutations in the same gene may cause variable phenotypes within a family and between families. Most cases of recessive HIH result from mutations in a single locus, but an increasing number of disorders is recognized, in which mutations in two different genes (GJB2/GJB6, TECTA/KCNQ4), or two different mutations in a single allele (GJB2) are involved. This overview focuses on recent advances in the genetic background of nonsyndromic HIH.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | |
Collapse
|
14
|
Hussain K, Bitner-Glindzicz M, Blaydon D, Lindley KJ, Thompson DA, Kriss T, Rajput K, Ramadan DG, Al-Mazidi Z, Cosgrove KE, Dunne MJ, Aynsley-Green A. Infantile hyperinsulinism associated with enteropathy, deafness and renal tubulopathy: clinical manifestations of a syndrome caused by a contiguous gene deletion located on chromosome 11p. J Pediatr Endocrinol Metab 2004; 17:1613-21. [PMID: 15645695 DOI: 10.1515/jpem.2004.17.12.1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe the clinical features of a new syndrome causing hyperinsulinism in infancy (HI), severe enteropathy, profound sensorineural deafness, and renal tubulopathy in three children born to two pairs of consanguineous parents. This combination of clinical features is explained by a 122-kb contiguous gene deletion on the short arm of chromosome 11. It deletes 22 of the 39 exons of the gene coding for the SUR1 component of the KATP channel on the pancreatic beta-cell thereby causing severe HI. It also deletes all but two of the 28 exons of the USH1C gene, which causes Usher syndrome and is important for the normal development and function of the ear and the eye, the gastrointestinal tract, and the kidney, thereby accounting for the symptoms of deafness, vestibular dysfunction and retinal dystrophy seen in type 1 Usher syndrome, diarrhoea, malabsorption, and tubulopathy. This contiguous gene deletion provides important insights into the normal development of several body organ systems.
Collapse
Affiliation(s)
- Khalid Hussain
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust and Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnston AM, Naselli G, Niwa H, Brodnicki T, Harrison LC, Góñez LJ. Harp (harmonin-interacting, ankyrin repeat-containing protein), a novel protein that interacts with harmonin in epithelial tissues. Genes Cells 2004; 9:967-82. [PMID: 15461667 DOI: 10.1111/j.1365-2443.2004.00776.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the triple PDZ domain-containing protein harmonin have been identified as the cause of Usher deafness syndrome type 1C. Independently, we identified harmonin in a screen for genes expressed in pancreatic beta cells. Using a yeast two-hybrid assay, we show that the first PDZ domain of harmonin interacts with a novel protein, designated harp for harmonin-interacting, ankyrin repeat-containing protein. This interaction was confirmed in an over-expression system and in mammalian cells, and shown to be mediated by the three C-terminal amino acids of harp. Harp is expressed in many of the same epithelia as harmonin and co-localization of native harp and harmonin was demonstrated by confocal microscopy in pancreatic duct epithelium and in a pancreatic beta-cell line. Harp, predicted molecular mass 48 kDa, has a domain structure which includes three ankyrin repeats and a sterile alpha motif. Human harp maps to chromosome 16, and its mouse homologue to chromosome 7. Sequences with similarity to harp include the sans gene, mutations of which are responsible for deafness in the Jackson shaker 2 (js) mutant mouse and in human Usher syndrome type 1G. The functional domain structures of harp and harmonin, their interaction under native conditions and their co-localization suggest they constitute a scaffolding complex to facilitate signal transduction in epithelia.
Collapse
Affiliation(s)
- Anne M Johnston
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Hirai A, Tada M, Furuuchi K, Ishikawa S, Makiyama K, Hamada JI, Okada F, Kobayashi I, Fukuda H, Moriuchi T. Expression of AIE-75 PDZ-domain protein induces G2/M cell cycle arrest in human colorectal adenocarcinoma SW480 cells. Cancer Lett 2004; 211:209-18. [PMID: 15219944 DOI: 10.1016/j.canlet.2004.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2003] [Revised: 02/04/2004] [Accepted: 02/07/2004] [Indexed: 10/26/2022]
Abstract
AIE-75 has been known as a 75-kDa autoantigen detected in the serum of autoimmune enteropathy (AIE) and as a colon cancer-related antigen, and now designated as a gene causative of Usher syndrome type 1C hereditary syndromic hearing loss. It binds to a novel putative tumor suppressor MCC2 that is homologous to MCC (mutated in colon cancer) through a PSD-95/Dlg/ZO-1 (PDZ) domain. To clarify the functional role in colon cancer cells, we transfected AIE-75 gene into SW480 colon cancer cells which do not express AIE-75. Expression of AIE-75 suppressed growth of SW480 cells in vitro in correlation with the expression levels. It was due mainly to G2/M phase cell cycle arrest associated with mitotic slippage, resulting in emergence of hyperploid giant-nucleated or multi-nucleated cells. Screening of proteins that bound to PDZ domains of AIE-75 by a yeast two hybrid system showed that three serine/threonine phosphatase catalytic subunits (PP2AC-alpha, PP2AC-beta, and PPP6C) could bind to AIE-75. Since PP2AC is known to regulate G2/M checkpoint, we suggest that AIE-75 interacts with PP2AC and prevent cells to transit mitotic phase.
Collapse
Affiliation(s)
- Atsuko Hirai
- Divisions of Cancer-Related Genes, Institute for Genetic Medicine, Hokkaido University, N-15 W-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yan Y, Phan L, Yang F, Talpaz M, Yang Y, Xiong Z, Ng B, Timchenko NA, Wu CJ, Ritz J, Wang H, Yang XF. A novel mechanism of alternative promoter and splicing regulates the epitope generation of tumor antigen CML66-L. THE JOURNAL OF IMMUNOLOGY 2004; 172:651-60. [PMID: 14688378 PMCID: PMC3901998 DOI: 10.4049/jimmunol.172.1.651] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This report describes the difference in the epitope generation of two isoforms of self-tumor Ag CML66 and the regulation mechanism. We identified a new CML66 short isoform, termed CML66-S. The previously identified long CML66 is referred to as CML66-L. CML66-S shares the C terminus with CML66-L but has its unique N terminus. CML66-S is predominantly expressed in testis, but is also expressed in very low levels in tumor cells, whereas CML66-L is expressed in tumor cells and testis. Differential expression of CML66-L and CML66-S in tumor cells resulted from regulation at transcription, although alternative splicing also participated in the generation of the isoforms. In addition, Ab titers to a CML66-L peptide were significantly higher than that to CML66-S peptide in the sera from patients with tumors. Finally, the Abs to full-length CML66-L in the sera from patients with tumors were correlated with the Abs in the sera from these patients to CML66-L-38, which is a fusion protein with a CML66-L-specific N terminus. This suggests that the CML66-L isoform is mainly responsible for the epitope generation. Our studies have identified the alternative promoter in combination with alternative splicing as a novel mechanism for regulation of the epitope generation of a self-tumor Ag.
Collapse
MESH Headings
- Alternative Splicing/immunology
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/isolation & purification
- Epitopes/biosynthesis
- Epitopes/genetics
- Epitopes/isolation & purification
- Humans
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic/immunology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Testis/immunology
- Testis/metabolism
Collapse
Affiliation(s)
- Yan Yan
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Leuyen Phan
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Fan Yang
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Moshe Talpaz
- Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Yu Yang
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Zeyu Xiong
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Bernard Ng
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Nikolai A. Timchenko
- Department of Pathology, Baylor College of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Catherine J. Wu
- Center for Hematologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Jerome Ritz
- Center for Hematologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Hong Wang
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Xiao-Feng Yang
- Department of Medicine, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
- Address correspondence and reprint requests to Dr. Xiao-Feng Yang, Section of Immunology, Allergy, and Rheumatology, Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, BCM 285, Suite 672E, Houston, TX 77030-3411.
| |
Collapse
|
18
|
Johnson KR, Gagnon LH, Webb LS, Peters LL, Hawes NL, Chang B, Zheng QY. Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 2003; 12:3075-86. [PMID: 14519688 PMCID: PMC2862298 DOI: 10.1093/hmg/ddg332] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We mapped two new recessive mutations causing circling behavior and deafness to the same region on chromosome 7 and showed they are allelic by complementation analysis. One was named 'deaf circler' (allele symbol dfcr) and the other 'deaf circler 2 Jackson' (allele symbol dfcr-2J). Both were shown to be mutations of the Ush1c gene, the mouse ortholog of the gene responsible for human Usher syndrome type IC and for the non-syndromic deafness disorder DFNB18. The Ush1c gene contains 28 exons, 20 that are constitutive and eight that are alternatively spliced. The dfcr mutation is a 12.8 kb intragenic deletion that eliminates three constitutive and five alternatively spliced exons. The dfcr-2J mutation is a 1 bp deletion in an alternatively spliced exon that creates a transcriptional frame shift, changing 38 amino acid codons before introducing a premature stop codon. Both mutations cause congenital deafness and severe balance deficits due to inner ear dysfunction. The stereocilia of cochlear hair cells are disorganized and splayed in mutant mice, with subsequent degeneration of the hair cells and spiral ganglion cells. Harmonin, the protein encoded by Ush1c, has been shown to bind, by means of its PDZ-domains, with the products of other Usher syndrome genes, including Myo7a, Cdh23 and Sans. The complexes formed by these protein interactions are thought to be essential for maintaining the integrity of hair cell stereocilia. The Ush1c mutant mice described here provide a means to directly investigate these interactions in vivo and to evaluate gene structure-function relationships that affect inner ear and eye phenotypes.
Collapse
|
19
|
Abstract
Association of sensorineural deafness and progressive retinitis pigmentosa with and without a vestibular abnormality is the hallmark of Usher syndrome and involves at least 12 loci among three different clinical subtypes. Genes identified for the more commonly inherited loci are USH2A (encoding usherin), MYO7A (encoding myosin VIIa), CDH23 (encoding cadherin 23), PCDH15 (encoding protocadherin 15), USH1C (encoding harmonin), USH3A (encoding clarin 1), and USH1G (encoding SANS). Transcripts from all these genes are found in many tissues/cell types other than the inner ear and retina, but all are uniquely critical for retinal and cochlear cell function. Many of these protein products have been demonstrated to have direct interactions with each other and perform an essential role in stereocilia homeostasis.
Collapse
Affiliation(s)
- Z M Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | | |
Collapse
|
20
|
Götte K, Usener D, Riedel F, Hörmann K, Schadendorf D, Eichmüller S. Tumor-associated antigens as possible targets for immune therapy in head and neck cancer: comparative mRNA expression analysis of RAGE and GAGE genes. Acta Otolaryngol 2002; 122:546-52. [PMID: 12206267 DOI: 10.1080/00016480260092381] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Specific immune therapy targeting residual areas of cancer cells may emerge as a powerful treatment strategy for head and neck squamous cell carcinoma (HNSCC). In order to define possible targets for immune therapy, we evaluated the frequency of two groups of tumor antigens-the RAGE and GAGE families-by means of reverse transcriptase polymerase chain reaction using primary HNSCCs (n = 28), mucosa specimens as normal controls (n = 10) and HNSCC cell lines (n = 6). By means of specific primer selection we could differentiate between RAGE-1, -2, -3 and -4, as well as between two groups of GAGE genes (GAGE-1,2,7 vs GAGE-3,4,5,6,8). While all mucosa tissues (from smokers and non-smokers) were negative for both antigen families, 24/28 investigated tumors were positive for up to 5 tumor antigens. Among the RAGE genes, RAGE-1-positive tumors were the most abundant (8/28), followed by RAGE-2 (7/28) and RAGE-4 (6/28). Differences in the locations of HNSCCs were reflected by different RAGE family members being expressed most frequently: larynx, RAGE-1; oropharynx, RAGE-2; and hypopharynx, RAGE-4. Primers against GAGE-1,2,7 and GAGE-3,4,5,6,8 revealed 6/27 and 16/27 positive tumors, respectively. This report suggests that RAGE genes and GAGE-3,4,5,6,8 may be promising candidates for specific immune therapy in HNSCC.
Collapse
|
21
|
Ishikawa S, Kobayashi I, Hamada J, Tada M, Hirai A, Furuuchi K, Takahashi Y, Ba Y, Moriuchi T. Interaction of MCC2, a novel homologue of MCC tumor suppressor, with PDZ-domain Protein AIE-75. Gene 2001; 267:101-10. [PMID: 11311560 DOI: 10.1016/s0378-1119(01)00378-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIE-75 is a protein identified as an autoantigen in patients with autoimmune enteropathy and as a colon cancer-related antigen. It has recently been assigned to be a causative gene for Usher type 1C congenital syndromic hearing loss. The novel protein has three PSD-95/Dlg/ZO-1 (PDZ) protein-protein interaction domains and is therefore implicated to function as a molecular anchor or sorter. We have identified a novel protein that binds to AIE-75 by yeast two-hybrid screening. The protein has a high homology to the tumor suppressor MCC (mutated in colon cancer; or MCC1 hereafter) and was named MCC2. MCC2 protein binds the first PDZ domain of AIE-75 with its C-terminal amino acids -DTFL. Since the MCC1 does not bind to AIE-75 and the MCC2 displays different expression patterns in various organs compared to MCC1, they appear to play distinct roles in cells. The MCC2 gene is located on chromosome 19p13 in the vicinity of APCL gene, while MCC1 maps near to APC tumor suppressor gene. Because of negative expression of MCC2 in a panel of cancer cell-lines compared to the corresponding normal tissues, we suggest that further study is necessary to investigate a possible role of MCC2 as a tumor suppressor.
Collapse
Affiliation(s)
- S Ishikawa
- Institute for Genetic Medicine Hokkaido University, Division of Cancer-Related Genes, 060-0815, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Since the discovery of its role in the CNS, glutamate, together with its involvement in signalling at synapses, has been the subject of a vast amount of research. More recently, it has become clear that glutamate signalling is also functional in non-neuronal tissues and occurs in sites as diverse as bone, pancreas and skin. These findings raise the possibility that glutamate acts as a more widespread 'cytokine' and is able to influence cellular activity in a range of tissue types. The impact of these discoveries is significant because they offer a rapid way to advance the development of therapeutics. Agents developed for use in neuroscience applications might be beneficial in the modulation of pathology peripherally, impacting on conditions such as osteoporosis, diabetes and wound healing.
Collapse
Affiliation(s)
- T M Skerry
- Dept of Biology, University of York, PO Box 373, YO10 5YW, UK.
| | | |
Collapse
|
23
|
Ono T, Kurashige T, Harada N, Noguchi Y, Saika T, Niikawa N, Aoe M, Nakamura S, Higashi T, Hiraki A, Wada H, Kumon H, Old LJ, Nakayama E. Identification of proacrosin binding protein sp32 precursor as a human cancer/testis antigen. Proc Natl Acad Sci U S A 2001; 98:3282-7. [PMID: 11248070 PMCID: PMC30645 DOI: 10.1073/pnas.041625098] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Serological expression cloning of antigens eliciting a humoral immune response to a syngeneic mouse sarcoma identified pem (mouse placenta and embryonic expression gene) as a new member of the cancer/testis family. To identify the human homologue of pem, mouse pem sequences and pem-related expressed sequence tags from human testis were used as PCR primers for amplification using human testis cDNA. However, rather than pem, another gene, designated OY-TES-1, was isolated and found to be the human homologue of proacrosin binding protein sp32 precursor originally identified in mouse, guinea pig, and pig. OY-TES-1 maps to chromosome 12p12-p13 and contains 10 exons. Southern blot analysis suggests the presence of two OY-TES-1-related genes in the human genome. In normal tissues, OY-TES-1 mRNA was expressed only in testis, whereas in malignant tissues, a variable proportion of a wide array of cancers, including bladder, breast, lung, liver, and colon cancers, expressed OY-TES-1. Serological survey of 362 cancer patients with a range of different cancers showed antibody to OY-TES-1 in 25 patients. No OY-TES-1 sera reactivity was found in 20 normal individuals. These findings indicate that OY-TES-1 is an additional member of the cancer/testis family of antigens and that OY-TES-1 is immunogenic in humans.
Collapse
Affiliation(s)
- T Ono
- Department of Immunology, Okayama University Medical School, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ono T, Sato S, Kimura N, Tanaka M, Shibuya A, Old LJ, Nakayama E. Serological analysis of BALB/C methylcholanthrene sarcoma Meth A by SEREX: identification of a cancer/testis antigen. Int J Cancer 2000. [PMID: 11093803 DOI: 10.1002/1097-0215(20001215)88:6%3c845::aid-ijc1%3e3.0.co;2-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antigens of BALB/c methylcholanthrene-induced fibrosarcoma Meth A recognized by the host humoral immune response were investigated by serological analysis of antigens by recombinant expression cloning (SEREX). Immunoscreening a cDNA library from Meth A (Kgamma) cells (Meth A retrovirally transfected with murine IFN-gamma cDNA) with sera from BALB/c mice growing parental Meth A transplants identified 10 antigens. One of them, OY-MS-4, showed characteristics of a cancer/testis (CT) antigen. Nucleotide sequence analysis revealed that OY-MS-4 was identical to a mouse placenta and embryonic expression gene (pem) known to be selectively expressed during embryogenesis and in transformed cell lines. In adult mice, expression of OY-MS-4 was restricted to testis and placenta. Four of 6 methylcholanthrene-induced fibrosarcomas in BALB/c mice showed strong expression of OY-MS-4. In 6 T-cell leukemias, only a dimethylbenzanthracene-induced leukemia, EL4 (C57BL), showed strong expression. Two other tumors, A20.2J and P815, induced by ethylnitrosourea and methylcholanthrene, respectively, also strongly expressed OY-MS-4. The other 9 gene products identified in Meth A by SEREX were expressed in all 15 tumors tested and in a range of normal tissues. Sequence analysis of cDNA inserts coding for the SEREX-defined antigens showed no evidence of mutation. Despite the expression of OY-MS-1-10 antigens in methylcholanthrene sarcomas other than Meth A, no antibody was detected in the sera of mice bearing these other sarcomas. The basis for the unique immunogenicity of OY-MS-1-10 presented by Meth A, but not by other syngeneic tumors expressing these gene products, is unknown.
Collapse
Affiliation(s)
- T Ono
- Department of Immunology, Okayama University Medical School, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Ono T, Sato S, Kimura N, Tanaka M, Shibuya A, Old LJ, Nakayama E. Serological analysis of BALB/C methylcholanthrene sarcoma Meth A by SEREX: identification of a cancer/testis antigen. Int J Cancer 2000; 88:845-51. [PMID: 11093803 DOI: 10.1002/1097-0215(20001215)88:6<845::aid-ijc1>3.0.co;2-n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antigens of BALB/c methylcholanthrene-induced fibrosarcoma Meth A recognized by the host humoral immune response were investigated by serological analysis of antigens by recombinant expression cloning (SEREX). Immunoscreening a cDNA library from Meth A (Kgamma) cells (Meth A retrovirally transfected with murine IFN-gamma cDNA) with sera from BALB/c mice growing parental Meth A transplants identified 10 antigens. One of them, OY-MS-4, showed characteristics of a cancer/testis (CT) antigen. Nucleotide sequence analysis revealed that OY-MS-4 was identical to a mouse placenta and embryonic expression gene (pem) known to be selectively expressed during embryogenesis and in transformed cell lines. In adult mice, expression of OY-MS-4 was restricted to testis and placenta. Four of 6 methylcholanthrene-induced fibrosarcomas in BALB/c mice showed strong expression of OY-MS-4. In 6 T-cell leukemias, only a dimethylbenzanthracene-induced leukemia, EL4 (C57BL), showed strong expression. Two other tumors, A20.2J and P815, induced by ethylnitrosourea and methylcholanthrene, respectively, also strongly expressed OY-MS-4. The other 9 gene products identified in Meth A by SEREX were expressed in all 15 tumors tested and in a range of normal tissues. Sequence analysis of cDNA inserts coding for the SEREX-defined antigens showed no evidence of mutation. Despite the expression of OY-MS-1-10 antigens in methylcholanthrene sarcomas other than Meth A, no antibody was detected in the sera of mice bearing these other sarcomas. The basis for the unique immunogenicity of OY-MS-1-10 presented by Meth A, but not by other syngeneic tumors expressing these gene products, is unknown.
Collapse
Affiliation(s)
- T Ono
- Department of Immunology, Okayama University Medical School, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Mancini A, Koch A, Stefan M, Niemann H, Tamura T. The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity. FEBS Lett 2000; 482:54-8. [PMID: 11018522 DOI: 10.1016/s0014-5793(00)02036-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have identified the multiple PDZ domain containing protein (MUPP-1 or MPDZ) as a novel binding partner of the human c-Kit. c-Kit binds specifically to the 10th PDZ domain of MUPP-1 via its C-terminal sequence. Furthermore, a kinase negative-mutant receptor interacted more strongly with MUPP-1 than the wild-type c-Kit. Strikingly, a constitutively activated c-Kit (D816V-Kit) did not bind to MUPP-1, although this oncogenic form retains the PDZ binding motif 'HDDV' at the C-terminal end. Deletion of V967 of c-Kit abolished binding to MUPP-1 and drastically reduced its tyrosine kinase activity, suggesting that the structure of the C-terminal tail of c-Kit influences its enzymatic activity.
Collapse
Affiliation(s)
- A Mancini
- Institut für Biochemie, -OE 4310-, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
27
|
Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, Barnes PD, O'Brien RE, Farndon PA, Sowden J, Liu XZ, Scanlan MJ, Malcolm S, Dunne MJ, Aynsley-Green A, Glaser B. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000; 26:56-60. [PMID: 10973248 DOI: 10.1038/79178] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.
Collapse
Affiliation(s)
- M Bitner-Glindzicz
- Department of Clinical and Molecular Genetics, Institute of Child Health, and Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I, Keats BJ, Slim R, Petit C. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 2000; 26:51-5. [PMID: 10973247 DOI: 10.1038/79171] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Usher syndrome type 1 (USH1) is an autosomal recessive sensory defect involving congenital profound sensorineural deafness, vestibular dysfunction and blindness (due to progressive retinitis pigmentosa)1. Six different USH1 loci have been reported. So far, only MYO7A (USH1B), encoding myosin VIIA, has been identified as a gene whose mutation causes the disease. Here, we report a gene underlying USH1C (MIM 276904), a USH1 subtype described in a population of Acadian descendants from Louisiana and in a Lebanese family. We identified this gene (USH1C), encoding a PDZ-domain-containing protein, harmonin, in a subtracted mouse cDNA library derived from inner ear sensory areas. In patients we found a splice-site mutation, a frameshift mutation and the expansion of an intronic variable number of tandem repeat (VNTR). We showed that, in the mouse inner ear, only the sensory hair cells express harmonin. The inner ear Ush1c transcripts predicted several harmonin isoforms, some containing an additional coiled-coil domain and a proline- and serine-rich region. As several of these transcripts were absent from the eye, we propose that USH1C also underlies the DFNB18 form of isolated deafness.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Alleles
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins/biosynthesis
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cell Cycle Proteins
- Cytoskeletal Proteins
- DNA Mutational Analysis
- DNA, Complementary/metabolism
- Exons
- Family Health
- Frameshift Mutation
- Gene Deletion
- Gene Library
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Vestibular/metabolism
- Hearing Loss, Sensorineural/genetics
- Heterozygote
- Humans
- Immunohistochemistry
- Introns
- Mice
- Minisatellite Repeats/genetics
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Pedigree
- Protein Isoforms
- Protein Structure, Tertiary
- RNA Splicing/genetics
- RNA, Messenger/metabolism
- Retinal Degeneration/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- E Verpy
- Unité de Génétique des Déficits Sensoriels, CNRS URA 1968, Institut Pasteur, Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jäger E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jäger D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci U S A 2000; 97:4760-5. [PMID: 10781081 PMCID: PMC18306 DOI: 10.1073/pnas.97.9.4760] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2000] [Indexed: 02/01/2023] Open
Abstract
NY-ESO-1, a member of the cancer-testis family of antigens, is expressed in a subset of a broad range of different human tumor types. Patients with advanced NY-ESO-1-expressing tumors frequently develop humoral immunity to NY-ESO-1, and three HLA A2-restricted peptides were defined previously as targets for cytotoxic CD8(+) T cells in a melanoma patient with NY-ESO-1 antibody. The objectives of the present study were (i) to develop enzyme-linked immunospot (ELISPOT) and tetramer assays to measure CD8(+) T cell responses to NY-ESO-1, (ii) to determine the frequency of CD8(+) T cell responses to NY-ESO-1 in a series of HLA-A2 patients with NY-ESO-1 expressing tumors, (iii) to determine the relation between CD8(+) T cell and humoral immune responses to NY-ESO-1, and (iv) to compare results of NY-ESO-1 ELISPOT assays performed independently in two laboratories with T cells from the same patients. NY-ESO-1 ELISPOT and tetramer assays with excellent sensitivity, specificity, and reproducibility have been developed and found to correlate with cytotoxicity assays. CD8(+) T cell responses to HLA-A2-restricted NY-ESO-1 peptides were detected in 10 of 11 patients with NY-ESO-1 antibody, but not in patients lacking antibody or in patients with NY-ESO-1-negative tumors. The results of ELISPOT assays were concordant in the two laboratories, providing the basis for standardized monitoring of T cell responses in patients receiving NY-ESO-1 vaccines.
Collapse
Affiliation(s)
- E Jäger
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, 60488 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Güre AO, Stockert E, Arden KC, Boyer AD, Viars CS, Scanlan MJ, Old LJ, Chen YT. CT10: a new cancer-testis (CT) antigen homologous to CT7 and the MAGE family, identified by representational-difference analysis. Int J Cancer 2000; 85:726-32. [PMID: 10699956 DOI: 10.1002/(sici)1097-0215(20000301)85:5<726::aid-ijc21>3.0.co;2-f] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Assays relying on humoral or T-cell-based recognition of tumor antigens to identify potential targets for immunotherapy have led to the discovery of a significant number of immunogenic gene products, including cancer-testis (CT) antigens predominantly expressed in cancer cells and male germ cells. The search for cancer-specific antigens has been extended via the technique of representational-difference analysis and SK-MEL-37, a melanoma cell line expressing a broad range of CT antigens. Using this approach, we have isolated CT antigen genes, genes over-expressed in cancer, e. g., PRAME and KOC, and genes encoding neuro-ectodermal markers. The identified CT antigen genes include the previously defined MAGE-A6, MAGE-A4a, MAGE-A10, CT7/MAGE-C1, as well as a novel gene designated CT10, which shows strong homology to CT7/MAGE-C1 both at cDNA and at genomic levels. Chromosome mapping localized CT10 to Xq27, in close proximity to CT7/MAGE-C1 and MAGE-A genes. CT10 mRNA is expressed in testis and in 20 to 30% of various human cancers. A serological survey identified 2 melanoma patients with anti-CT10 antibody, demonstrating the immunogenicity of CT10 in humans.
Collapse
Affiliation(s)
- A O Güre
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Scanlan MJ, Gordan JD, Williamson B, Stockert E, Bander NH, Jongeneel V, Gure AO, Jäger D, Jäger E, Knuth A, Chen YT, Old LJ. Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int J Cancer 1999; 83:456-64. [PMID: 10508479 DOI: 10.1002/(sici)1097-0215(19991112)83:4<456::aid-ijc4>3.0.co;2-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The screening of cDNA expression libraries derived from human tumors with autologous antibody (SEREX) is a powerful method for defining the structure of tumor antigens recognized by the humoral immune system. Sixty-five distinct antigens (NY-REN-1 to NY-REN-65) reactive with autologous IgG were identified by SEREX analysis of 4 renal cancer patients and were characterized in terms of cDNA sequence, mRNA expression pattern, and reactivity with allogeneic sera. REN-9, -10, -19, and -26 have a known association with human cancer. REN-9 (LUCA-15) and REN-10 (gene 21) map to the small cell lung cancer tumor suppressor gene locus on chromosome 3p21.3. REN-19 is equivalent to LKB1/STK11, a gene that is defective in Peutz-Jeghers syndrome and cancer. REN-26 is encoded by the bcr gene involved in the [t(9:22)] bcr/abl translocation. Genes encoding 3 of the antigens in the series showed differential mRNA expression; REN-3 displays a pattern of tissue-specific isoforms, and REN-21 and REN-43 are expressed at a high level in testis in comparison to 15 other normal tissues. The other 62 antigens were broadly expressed in normal tissues. With regard to immunogenicity, 20 of the 65 antigens reacted only with autologous sera. Thirty-three antigens reacted with sera from normal donors, indicating that their immunogenicity is not restricted to cancer. The remaining 12 antigens reacted with sera from 5-25% of the cancer patients but not with sera from normal donors. Seventy percent of the renal cancer patients had antibodies directed against one or more of these 12 antigens. Our results demonstrate the potential of the SEREX approach for the analysis of the humoral immune response against human cancer.
Collapse
MESH Headings
- Aged
- Antibodies, Neoplasm/metabolism
- Antibody Specificity
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Blotting, Northern
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Chromosome Mapping
- Female
- Gene Library
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Male
- Middle Aged
- Neoplasms/immunology
- Organ Specificity
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Serologic Tests
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M J Scanlan
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|