1
|
Lee DH, Lee W, Shin D, Im H, Jung G, Lee YB, Choi J. Genomic and metabolomic analysis of Latilactobacillus sakei DCF0720 for black soybean yogurt fermentation. Int J Food Microbiol 2024; 425:110897. [PMID: 39241349 DOI: 10.1016/j.ijfoodmicro.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid bacteria are commonly used in plant-based fermentation to reduce off-flavor and improve sensory characteristics. However, there have been few studies on Latilactobacillus sakei for plant-based yogurt fermentation and, particularly, its metabolic features at the genomic level remain unclear. This study aims to analyze the fermentation characteristics of the L. sakei DCF0720 strain and compare genetics and metabolic relations. For this, DCF0720 was used to ferment the black soybean milk and conduct the physicochemical analysis and sensory test. The genomic and metabolic analyses were performed by complete genome sequencing and 500 MHz 1H NMR, respectively. As a result, DCF0720 exhibited enhanced fermentation performance and sensory evaluations at 37 °C compared to 30 °C, which is generally recognized as the optimal growth temperature for most L. sakei strains. It also produced flavor enhancing volatile compounds such as acetoin and hydroxyacetone, possessing all three key genes for acetoin biosynthesis. DCF0720 lacks 2,3-butanediol dehydrogenase, which leads to the inhibition of acetoin production. DCF0720 possesses a complete pathway to utilize primary black soybean carbon sources such as sucrose, raffinose, and stachyose. DCF0720 also possesses genes for the GH28 family, including the key enzymes in the hydrolysis of pectin substances, which means eliminating the main soybean nonstarch polysaccharides. This study demonstrates that DCF0720 is a suitable starter for plant-based yogurt fermentation, providing a better understanding of fermentation conditions with genetic and metabolic features for black soybean yogurt. Various carbon source utilization abilities with depth metabolic pathway analysis provide that DCF0720 can be employed to develop enhanced starter cultures for black soybean yogurt and diverse plant-based yogurts.
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Wonjong Lee
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Dongho Shin
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Haecheon Im
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Guhun Jung
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| | - Jaekwon Choi
- Central Research Institute, Dr. Chung's Food Co., Ltd., Cheongju-si, Republic of Korea.
| |
Collapse
|
2
|
Qin Y, Chen X, Xu F, Zhu K, Wang P, Zhang Y, Zhang Y. Pectin enhances the inhibition of α-amylase via the mixture of rutin and quercetin. Int J Biol Macromol 2024; 285:138251. [PMID: 39626819 DOI: 10.1016/j.ijbiomac.2024.138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
The human dietary system, which contains a variety of compounds such as polyphenols and polysaccharides, is very complex. Whether polysaccharides affect the inhibitory of polyphenol mixtures on α-amylase needs to be further investigated. The aim of this study was to analyze the effect and mechanism of pectin on the inhibition of α-amylase by a mixture of rutin and quercetin (R-Q). Results revealed that the inhibition and quenching affinity of R-Q for α-amylase was enhanced by pectin. The Stern-Volmer quenching constant of R-Q-α-amylase was increased by pectin from (6.08 ± 0.453) × 103 mL/mg to (9.80 ± 0.285) × 103 mL/mg. Pectin enhanced the ability of R-Q to inhibit α-amylase for two main reasons. On the one hand, it was owing to the binding of pectin to rutin, which increased the opportunity for quercetin to bind to the active center of α-amylase, thus enhancing the inhibitory effect of R-Q on α-amylase. On the other hand, pectin and quercetin simultaneously bound to different sites of α-amylase by noncovalent interactions to form the ternary complex of pectin-α-amylase-quercetin. The conformation of α-amylase and the hydrophobicity of amino acid residues were altered by the ternary complex, thereby enhancing the hydrogen bonding in the reaction system.
Collapse
Affiliation(s)
- Yajuan Qin
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; School of Forest, Northeast Forestry University, Harbin 150040, Heilongjiang, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Ping Wang
- School of Forest, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, China.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
3
|
Feng S, Zhang W, Liu J, Hu Y, Wu J, Ni G, Wang F. Molecular Cloning, Characterization, and Application of a Novel Multifunctional Isoamylase (MIsA) from Myxococcus sp. Strain V11. Foods 2024; 13:3481. [PMID: 39517265 PMCID: PMC11544908 DOI: 10.3390/foods13213481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
A novel multifunctional isoamylase, MIsA from Myxococcus sp. strain V11, was expressed in Escherichia coli BL21(DE3). Sequence alignment revealed that MIsA is a typical isoamylase that belongs to glycoside hydrolase family 13 (GH 13). MIsA can hydrolyze the α-1,6-branches of amylopectin and pullulan, as well as the α-1,4-glucosidic bond in amylose. Additionally, MIsA demonstrates 4-α-D-glucan transferase activity, enabling the transfer of α-1,4-glucan oligosaccharides between molecules, particularly with linear maltooligosaccharides. The Km, Kcat, and Vmax values of the MIsA for amylopectin were 1.22 mM, 40.42 µmol·min-1·mg-1, and 4046.31 mM·min-1. The yields of amylopectin and amylose hydrolyzed into oligosaccharides were 10.16% and 11.70%, respectively. The hydrolysis efficiencies were 55%, 35%, and 30% for amylopectin, soluble starch, and amylose, respectively. In the composite enzyme hydrolysis of amylose, the yield of maltotetraose increased by 1.81-fold and 2.73-fold compared with that of MIsA and MTHase (MCK8499120) alone, respectively.
Collapse
Affiliation(s)
- Siting Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Weiqi Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Jun Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Yusen Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Jialei Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| | - Guorong Ni
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Ecological Restoration Innovation of Zhongke Jiangxi, Nanchang 330045, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.F.); (W.Z.); (J.L.); (Y.H.); (J.W.)
| |
Collapse
|
4
|
Frima FK, Thufail MA, Madhani IN, Nafisah Z, Shofiyah SS, Ulpiyana A, Puspasari F, Aditama R, Ihsanawati I, Natalia D. Probing the function of C-terminal region of recombinant α-amylase BmaN1 from Bacillus megaterium NL3. Microbiol Spectr 2024; 12:e0335123. [PMID: 39212453 PMCID: PMC11448133 DOI: 10.1128/spectrum.03351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
The α-amylase BmaN1 from Bacillus megaterium NL3 is a member of GH13_45 subfamily that has a conserved C-terminal region of approximately 30 residues. This region features a motif of five aromatic amino acids predicted to play a role in starch binding. This study aimed to unravel the role of the C-terminal region in starch hydrolysis. The full-length and C-terminally truncated forms of BmaN1 (BmaN1∆C) were expressed in Escherichia coli ArcticExpress (DE3), resulting in proteins with molecular weights of 56 kDa and 49 kDa, respectively. They exhibited comparable enzymatic activity in the hydrolysis of soluble starch, displaying versatility across a wide range of pH values, temperatures, and NaCl concentrations. BmaN1 and BmaN1∆C activities were inhibited by acarbose and were reduced by SDS and EDTA. In terms of binding and degrading the starch granules, BmaN1∆C showed lower affinity and activity in comparison to BmaN1. Our study indicates that the C-terminal region of BmaN1 significantly enhances its binding affinity and degrading the raw starches.IMPORTANCEα-Amylase (EC 3.2.1.1) stands as an endo-acting enzyme, essential for catalyzing the hydrolysis of α-1,4 glycosidic bonds within starch molecules. The relevance of α-amylases in biotechnological applications is substantial, constituting approximately 30% of the global enzyme market. Among these enzymes, BmaN1 was the first α-amylase identified to possess distinct catalytic residues within the GH13 family. BmaN1 from B. megaterium NL3 belongs to the GH13_45 subfamily. This subfamily is characterized by a conserved C-terminal region consisting of approximately 30 residues that contains a motif of five aromatic residues predicted to be involved in starch binding. Our study shows that the C-terminal effectively contributes to binding and degrading the raw starch granules. This pioneering research on BmaN1 expands our understanding of α-amylases and holds promise for innovative biotechnological advancements.
Collapse
Affiliation(s)
- Fina Khaerunnisa Frima
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
- Department of Chemistry, Faculty of Science, Institut Teknologi Sumatera, Lampung Selatan, Indonesia
| | - Muhammad Akbar Thufail
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Indri Novia Madhani
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Zahrotun Nafisah
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Sofi Siti Shofiyah
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
- Department of Chemistry, Faculty of Science and Marine, Universitas Oso, Pontianak, Indonesia
| | - Ayra Ulpiyana
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Fernita Puspasari
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Reza Aditama
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ihsanawati Ihsanawati
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Dessy Natalia
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
- Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
5
|
Ye LC, Chow SY, Chang SC, Kuo CH, Wang YL, Wei YJ, Lee GC, Liaw SH, Chen WM, Chen SC. Structural and Mutational Analyses of Trehalose Synthase from Deinococcus radiodurans Reveal the Interconversion of Maltose-Trehalose Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18649-18657. [PMID: 39109746 PMCID: PMC11342931 DOI: 10.1021/acs.jafc.4c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.
Collapse
Affiliation(s)
- Li-Ci Ye
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sih-Yao Chow
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - San-Chi Chang
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Chia-Hung Kuo
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Yung-Lin Wang
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yong-Jun Wei
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Guan-Chiun Lee
- Department
of Life Science, National Taiwan Normal
University, No. 162, Sec. 1, Heping East Road, Taipei 116, Taiwan
| | - Shwu-Huey Liaw
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Ming Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Sheng-Chia Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| |
Collapse
|
6
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
7
|
Mareček F, Terrapon N, Janeček Š. Two newly established and mutually related subfamilies GH13_48 and GH13_49 of the α-amylase family GH13. Appl Microbiol Biotechnol 2024; 108:415. [PMID: 38990377 PMCID: PMC11239784 DOI: 10.1007/s00253-024-13251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Currently, the main α-amylase family GH13 has been divided into 47 subfamilies in CAZy, with new subfamilies regularly emerging. The present in silico study was performed to highlight the groups, represented by the maltogenic amylase from Thermotoga neapolitana and the α-amylase from Haloarcula japonica, which are worth of creating their own new GH13 subfamilies. This enlarges functional annotation and thus allows more precise prediction of the function of putative proteins. Interestingly, those two share certain sequence features, e.g. the highly conserved cysteine in the second conserved sequence region (CSR-II) directly preceding the catalytic nucleophile, or the well-preserved GQ character of the end of CSR-VII. On the other hand, the two groups bear also specific and highly conserved positions that distinguish them not only from each other but also from representatives of remaining GH13 subfamilies established so far. For the T. neapolitana maltogenic amylase group, it is the stretch of residues at the end of CSR-V highly conserved as L-[DN]. The H. japonica α-amylase group can be characterized by a highly conserved [WY]-[GA] sequence at the end of CSR-II. Other specific sequence features include an almost fully conserved aspartic acid located directly preceding the general acid/base in CSR-III or well-preserved glutamic acid in CSR-IV. The assumption that these two groups represent two mutually related, but simultaneously independent GH13 subfamilies has been supported by phylogenetic analysis as well as by comparison of tertiary structures. The main α-amylase family GH13 has thus been expanded by two novel subfamilies GH13_48 and GH13_49. KEY POINTS: • In silico analysis of two groups of family GH13 members with characterized representatives • Identification of certain common, but also some specific sequence features in seven CSRs • Creation of two novel subfamilies-GH13_48 and GH13_49 within the CAZy database.
Collapse
Affiliation(s)
- Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, 84551, Bratislava, Slovakia.
| | - Nicolas Terrapon
- Architecture Et Fonction Des Macromolécules Biologiques, UMR CNRS, Aix-Marseille University, USC INRAE, 13288, Marseille, France
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, 84551, Bratislava, Slovakia.
- Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 91701, Trnava, Slovakia.
| |
Collapse
|
8
|
Urbániková Ľ, Janeček Š. Trehalose synthases from the subfamily GH13_16 involved in α-glucan biosynthesis - a focus on their maltokinase domain. Int J Biol Macromol 2024; 268:131680. [PMID: 38641282 DOI: 10.1016/j.ijbiomac.2024.131680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The subfamily GH13_16 trehalose synthase (TreS) converts maltose to trehalose and vice versa. Typically, it consists of three domains, but it may contain a C-terminal extension exhibiting clear sequence features of a maltokinase (MaK). The present in silico study was focused on collection of naturally fused TreS-MaKs and their subsequent detailed bioinformatics analysis. Hence a set of total 3354 unique sequences was compared consisting of 1900 single TreSs, 1426 fused TreS-MaKs and 28 single MaKs. Fused TreS-MaKs were divided into five groups, namely with a standard MaK, with mutations in the maltose-binding site, of the catalytic nucleophile, of the general acid/base and of both catalytic residues. Sequence logos bearing the best conserved sequence regions were prepared for both TreSs and MaKs in an effort to find unique sequence features. In addition, linkers connecting the TreS and MaK parts in the fused enzymes were analysed. This analysis revealed that MaKs in fused enzymes have an extended N-terminal regions compared to single MaKs. Finally, the evolutionary relationships were demonstrated by phylogenetic trees of TreS parts from single TreSs and fused TreS-MaKs from the same organism as well as of single TreSs existing in multiple isoforms in the same organism.
Collapse
Affiliation(s)
- Ľubica Urbániková
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia; Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, SK-91701 Trnava, Slovakia.
| |
Collapse
|
9
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Adebayo MA, Kolawole AN, Falese BA, Kolawole AO. Spectroscopic and in silico evaluation of hesperetin, aglycone flavanone, as a prospective regulatory ligand for human salivary α-amylase. J Biomol Struct Dyn 2024; 42:3177-3192. [PMID: 37382217 DOI: 10.1080/07391102.2023.2225621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/01/2023] [Indexed: 06/30/2023]
Abstract
The insight into the binding mechanism of hesperetin, an aglycone flavanone, with human salivary α-amylase (HSAA), simulated under physiological salivary condition, was explored using various spectroscopic approaches and in silico method. Hesperetin effectively quenched the intrinsic fluorescence of HSAA and the quenching was mixed quenching mechanism. The interaction perturbed the HSAA intrinsic fluorophore microenvironment and the enzyme global surface hydrophobicity. The negative values of ΔG for thermodynamic parameters and in silico study revealed the spontaneity of HSAA-hesperetin complex while the positive values of enthalpy change (ΔH) and entropy change (ΔS) showed noticeable involvement of hydrophobic bonding in the stabilization of the complex. Hesperetin was a mixed inhibitor for HSAA with a KI of 44.60 ± 1.63 μM and having apparent inhibition coefficient (α) of 0.26. Macromolecular crowding, given rise to microviscosity and anomalous diffusion, regulated the interaction. Sodium ion (Na+) created high ionic strength, also, modulated the interaction. The in silico study proposed the preferential binding of hesperetin at the active cleft domain of HSAA with the least energy of -8.0 kcal/mol. This work gives a novel insight on the potentials of hesperetin as a future prospective medicinal candidate in the management of postprandial hyperglycemic condition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Masaudat A Adebayo
- Department of Science Laboratory Technology (Biochemistry Option), School of Science and Technology, Federal Polytechnic, Ede, Osun State, Nigeria
| | - Adejoke N Kolawole
- Biomolecular Structure and Dynamics Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Babatunde A Falese
- Biomolecular Structure and Dynamics Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ayodele O Kolawole
- Biomolecular Structure and Dynamics Unit, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
11
|
Sun N, Xie J, Zheng B, Xie J, Chen Y, Hu X, Yu Q. The inhibition mechanism of bound polyphenols extracted from mung bean coat dietary fiber on porcine pancreatic α-amylase: kinetic, spectroscopic, differential scanning calorimetric and molecular docking. Food Chem 2024; 436:137749. [PMID: 37864970 DOI: 10.1016/j.foodchem.2023.137749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The inhibitory mechanisms of purified bound polyphenols extracted from mung bean coat dietary fiber (pMBDF-BP) on porcine pancreatic α-amylase (PPA) were investigated through inhibition kinetics, fluorescence spectroscopy, circular dichroism, differential scanning calorimetry and molecular docking. It was shown that pMBDF-BP exerted significant reversible inhibition on PPA in a mixed-type inhibition manner (IC50 = 18.57 ± 0.30 μg/mL), and the combination of the three major components exhibited a synergistic inhibitory effect on PPA. Further, pMBDF-BP bound to the active site or form a polyphenol-enzyme complex at the inactive site through hydrogen bonding and hydrophobic forces, via enhancing the hydrophobicity of the microenvironment surrounding tryptophan and tyrosine residues and promoting the secondary structure of PPA towards a more stable conformation, eventually reducing the enzyme activity. This study provided theoretical evidences for the utilization of bound polyphenols extracted from mung bean coat dietary fiber as a functional component in natural inhibitors of α-amylase.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
12
|
Mascelli GM, Garcia CA, Gardner JG. Genetic and enzymatic characterization of Amy13E from Cellvibrio japonicus reclassifies it as a cyclodextrinase also capable of α-diglucoside degradation. Appl Environ Microbiol 2024; 90:e0152123. [PMID: 38084944 PMCID: PMC10807414 DOI: 10.1128/aem.01521-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024] Open
Abstract
Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners. Previous genome sequencing of three Cellvibrio japonicus strains adapted to utilize these α-diglucosides identified multiple, but uncharacterized, mutations in each strain. One of the mutations identified was in the amy13E gene, which was annotated to encode a neopullulanase. In this report, we functionally characterized this gene and determined that it in fact encodes a cyclodextrinase with additional activities on α-diglucosides. Deletion analysis of amy13E found that this gene was essential for kojibiose and isomaltose metabolism in C. japonicus. Interestingly, a Δamy13E mutant was not deficient for cyclodextrin or pullulan utilization in C. japonicus; however, heterologous expression of the gene in E. coli was sufficient for cyclodextrin-dependent growth. Biochemical analyses found that CjAmy13E cleaved multiple substrates but preferred cyclodextrins and maltose, but had no activity on pullulan. Our characterization of the CjAmy13E cyclodextrinase is useful for refining functional enzyme predictions in related bacteria and for engineering enzymes for biotechnology or biomedical applications.IMPORTANCEUnderstanding the bacterial metabolism of cyclodextrins and rare α-diglucosides is increasingly important, as these sugars are becoming prevalent in the foods, supplements, and medicines humans consume that subsequently feed the human gut microbiome. Our analysis of a cyclomaltodextrinase with an expanded substrate range is significant because it broadens the potential applications of the GH13 family of carbohydrate active enzymes (CAZymes) in biotechnology and biomedicine. Specifically, this study provides a workflow for the discovery and characterization of novel activities in bacteria that possess a high number of CAZymes that otherwise would be missed due to complications with functional redundancy. Furthermore, this study provides a model from which predictions can be made why certain bacteria in crowded niches are able to robustly utilize rare carbon sources, possibly to gain a competitive growth advantage.
Collapse
Affiliation(s)
- Giulia M. Mascelli
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| | - Cecelia A. Garcia
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| | - Jeffrey G. Gardner
- Department of Biological Sciences, University of Maryland, Baltimore, USA
| |
Collapse
|
13
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
14
|
Shad M, Sajjad M, Gardner QA, Ahmad S, Akhtar MW. Structural engineering and truncation of α-amylase from the hyperthermophilic archaeon Methanocaldococcus jannaschii. Int J Biol Macromol 2024; 256:128387. [PMID: 38000593 DOI: 10.1016/j.ijbiomac.2023.128387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Alpha amylases catalyse the hydrolysis of α-1, 4-glycosidic bonds in starch, yielding glucose, maltose, dextrin, and short oligosaccharides, vital to various industrial processes. Structural and functional insights on α-amylase from Methanocaldococcus jannaschii were computationally explored to evaluate a catalytic domain and its fusion with a small ubiquitin-like modifier (SUMO). The recombinant proteins' production, characterization, ligand binding studies, and structural analysis of the cloned amylase native full gene (MjAFG), catalytic domain (MjAD) and fusion enzymes (S-MjAD) were thoroughly analysed in this comparative study. The MjAD and S-MjAD showed 2-fold and 2.5-fold higher specific activities (μmol min-1 mg -1) than MjAFG at 95 °C at pH 6.0. Molecular modelling and MD simulation results showed that the removal of the extra loop (178 residues) at the C-terminal of the catalytic domain exposed the binding and catalytic residues near its active site, which was buried in the MjAFG enzyme. The temperature ramping and secondary structure analysis of MjAFG, MjAD and S-MjAD through CD spectrometry showed no notable alterations in the secondary structures but verified the correct folding of MjA variants. The chimeric fusion of amylases with thermostable α-glucosidases makes it a potential candidate for the starch degrading processes.
Collapse
Affiliation(s)
- Mohsin Shad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Qurratulann Afza Gardner
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Saira Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
15
|
Xi S, Ban X, Kong H, Li C, Gu Z, Li Z. Conserved residues at the family and subfamily levels determine enzyme activity and substrate binding in glycoside hydrolase family 13. Int J Biol Macromol 2023; 253:126980. [PMID: 37729992 DOI: 10.1016/j.ijbiomac.2023.126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/24/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Site-directed mutagenesis is a valuable strategy for modifying enzymes, but the lack of understanding of conserved residues regulating glycosidase function hinders enzyme design. We analyzed 1662 enzyme sequences to identify conserved amino acids in maltohexaose-forming amylase at both family and subfamily levels. Several conserved residues at the family level (G37, P45, R52, Y57, D101, V103, H106, G230, R232, D234, E264, H330, D331, and G360) were found, mutations of which resulted in reduced enzyme activity or inactivation. At the subfamily level, several conserved residues (L65, E67, F68, D111, E114, R126, R147, F154, W156, F161, G163, D165, W218H, V342, W345, and F346) were identified, which primarily facilitate substrate binding in the enzyme's active site, as shown by molecular dynamics and kinetic assays. Our findings provide critical insights into conserved residues essential for catalysis and can inform targeted enzyme design in protein engineering.
Collapse
Affiliation(s)
- Shixia Xi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
16
|
Zhang X, Huang G, Liu H, Chen W, Zhao J, Jia Z, Tao F. Screening and Characterization of an α-Amylase Inhibitor from Carya cathayensis Sarg. Peel. Foods 2023; 12:4425. [PMID: 38137229 PMCID: PMC10742785 DOI: 10.3390/foods12244425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inhibiting α-amylase can lower postprandial blood glucose levels and delay glucose absorption, offering an effective approach for the development of antidiabetic diets. In this study, an active constituent with inhibitory activity against α-amylase was isolated and purified by bioassay-guided fractionation from Carya cathayensis Sarg. peel (CCSP). The active constituent was identified by NMR and Q-Exactive Orbitrap Mass Spectrometry as 5-O-p-coumaroylquinic acid (5-CQA). 5-CQA possessed strong inhibitory activity against α-amylase, with an IC50 value of 69.39 µM. In addition, the results of the kinetic study indicated that 5-CQA was a potent, reversible, noncompetitive inhibitor against α-amylase. The findings indicate that 5-CQA derived from CCSP has potential as a novel inhibitor against α-amylase, which can help mitigate postprandial blood sugar spikes, making it suitable for inclusion in antidiabetic diets.
Collapse
Affiliation(s)
- Xiaosan Zhang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.)
| | - Guangrong Huang
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.)
| | - Hua Liu
- Food and Drug Inspection and Testing Center of Chunan County, Hangzhou 310022, China
| | - Wenwei Chen
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.)
| | - Jing Zhao
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.)
| | - Zhenbao Jia
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.)
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
17
|
Edri R, Fisher S, Menor-Salvan C, Williams LD, Frenkel-Pinter M. Assembly-driven protection from hydrolysis as key selective force during chemical evolution. FEBS Lett 2023; 597:2879-2896. [PMID: 37884438 DOI: 10.1002/1873-3468.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The origins of biopolymers pose fascinating questions in prebiotic chemistry. The marvelous assembly proficiencies of biopolymers suggest they are winners of a competitive evolutionary process. Sophisticated molecular assembly is ubiquitous in life where it is often emergent upon polymerization. We focus on the influence of molecular assembly on hydrolysis rates in aqueous media and suggest that assembly was crucial for biopolymer selection. In this model, incremental enrichment of some molecular species during chemical evolution was partially driven by the interplay of kinetics of synthesis and hydrolysis. We document a general attenuation of hydrolysis by assembly (i.e., recalcitrance) for all universal biopolymers and highlight the likely role of assembly in the survival of the 'fittest' molecules during chemical evolution.
Collapse
Affiliation(s)
- Rotem Edri
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Sarah Fisher
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Cesar Menor-Salvan
- Department of Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Moran Frenkel-Pinter
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
18
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Liu P, Ma L, Duan W, Gao W, Fang Y, Guo L, Yuan C, Wu Z, Cui B. Maltogenic amylase: Its structure, molecular modification, and effects on starch and starch-based products. Carbohydr Polym 2023; 319:121183. [PMID: 37567718 DOI: 10.1016/j.carbpol.2023.121183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Maltogenic amylase (MAA) (EC3.2.1.133), a member of the glycoside hydrolase family 13 that mainly produces α-maltose, is widely used to extend the shelf life of bread as it softens bread, improves its elasticity, and preserves its flavor without affecting dough processing. Moreover, MAA is used as an improver in flour products. Despite its antiaging properties, the hydrolytic capacity and thermal stability of MAA can't meet the requirements of industrial application. However, genetic engineering techniques used for the molecular modification of MAA can alter its functional properties to meet application-specific requirements. This review briefly introduces the structure and functions of MAA, its application in starch modification, its effects on starch-based products, and its molecular modification to provide better insights for the application of genetically modified MAA in starch modification.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Li Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenmin Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
20
|
Janeček Š. Advances in Amylases-What's Going on? Molecules 2023; 28:7268. [PMID: 37959687 PMCID: PMC10647339 DOI: 10.3390/molecules28217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
With regard to the CAZy database ( [...].
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia;
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
| |
Collapse
|
21
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
22
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Rhimi M, Da Lage JL, Haser R, Feller G, Aghajari N. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Molecules 2023; 28:5327. [PMID: 37513201 PMCID: PMC10384113 DOI: 10.3390/molecules28145327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. This makes them interesting targets for combating insect pests. Drosophila melanogaster α-amylase, DMA, which belongs to the glycoside hydrolase family 13, sub family 15, has been studied from an evolutionary, biochemical, and structural point of view. Our studies revealed that the DMA enzyme is active over a broad temperature and pH range, which is in agreement with the fluctuating environmental changes with which the insect is confronted. Crystal structures disclosed a new nearly fully solvated metal ion, only coordinated to the protein via Gln263. This residue is only conserved in the subgroup of D. melanogaster and may thus contribute to the enzyme adaptive response to large temperature variations. Studies of the effect of plant inhibitors and the pseudo-tetrasaccharide inhibitor acarbose on DMA activity, allowed us to underline the important role of the so-called flexible loop on activity/inhibition, but also to suggest that the inhibition modes of the wheat inhibitors WI-1 and WI-3 on DMA, are likely different.
Collapse
Affiliation(s)
- Moez Rhimi
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Jean-Luc Da Lage
- Evolution, Génomes, Comportement, Ecologie, UMR 9191 University Paris-Saclay-CNRS-IRD, F-91190 Gif-sur-Yvette, France
| | - Richard Haser
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, Institute of Chemistry B6a, University of Liège, B-4000 Liège, Belgium
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| |
Collapse
|
24
|
Wang X, Yang Z, Shen S, Ji X, Chen F, Liao X, Zhang H, Zhang Y. Inhibitory effects of chlorophylls and its derivative on starch digestion in vitro. Food Chem 2023; 413:135377. [PMID: 36773358 DOI: 10.1016/j.foodchem.2022.135377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Chlorophylls (Chls) have been shown to help regulate blood glucose levels. In this study, the effects of Chls and its derivative, pheophytin a (Phe a), on starch digestion in vitro were investigated. Chls significantly decreased starch hydrolysis while increasing resistant starch content (p < 0.05). SEM revealed that Chls either existed in free form or was absorbed and embedded on the surface of starch granules. Spectroscopic analysis and molecular docking demonstrated that Chls had a dual effect: (1) the phytol chain of Chls formed a double helix structure with starch, which may hinder the starch-enzyme contacts; and (2) the porphyrin ring of Chls interacted with amino acid residues of α-amylase and α-glucosidase to change the characteristics of enzymes, thereby inhibiting their activities. The investigation may serve as motivation for developing healthful starchy foods rich in Chls and enhancing the selection of foods for diabetics and hyperglycemias.
Collapse
Affiliation(s)
- Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen 518083, China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Food Non-Thermal Processing, Beijing 100083, China.
| |
Collapse
|
25
|
van der Ent F, Skagseth S, Lund BA, Sǒan J, Griese JJ, Brandsdal BO, Åqvist J. Computational design of the temperature optimum of an enzyme reaction. SCIENCE ADVANCES 2023; 9:eadi0963. [PMID: 37379391 DOI: 10.1126/sciadv.adi0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Cold-adapted enzymes are characterized both by a higher catalytic activity at low temperatures and by having their temperature optimum down-shifted, compared to mesophilic orthologs. In several cases, the optimum does not coincide with the onset of protein melting but reflects some other type of inactivation. In the psychrophilic α-amylase from an Antarctic bacterium, the inactivation is thought to originate from a specific enzyme-substrate interaction that breaks around room temperature. Here, we report a computational redesign of this enzyme aimed at shifting its temperature optimum upward. A set of mutations designed to stabilize the enzyme-substrate interaction were predicted by computer simulations of the catalytic reaction at different temperatures. The predictions were verified by kinetic experiments and crystal structures of the redesigned α-amylase, showing that the temperature optimum is indeed markedly shifted upward and that the critical surface loop controlling the temperature dependence approaches the target conformation observed in a mesophilic ortholog.
Collapse
Affiliation(s)
- Florian van der Ent
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Susann Skagseth
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| | - Bjarte A Lund
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| | - Jaka Sǒan
- National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Bjørn O Brandsdal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N9037 Tromsø, Norway
| |
Collapse
|
26
|
An Y, Tran PL, Yoo MJ, Song HN, Park KH, Kim TJ, Park JT, Woo EJ. The Distinctive Permutated Domain Structure of Periplasmic α-Amylase (MalS) from Glycoside Hydrolase Family 13 Subfamily 19. Molecules 2023; 28:molecules28103972. [PMID: 37241718 DOI: 10.3390/molecules28103972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Periplasmic α-amylase MalS (EC. 3.2.1.1), which belongs to glycoside hydrolase (GH) family 13 subfamily 19, is an integral component of the maltose utilization pathway in Escherichia coli K12 and used among Ecnterobacteriaceae for the effective utilization of maltodextrin. We present the crystal structure of MalS from E. coli and reveal that it has unique structural features of circularly permutated domains and a possible CBM69. The conventional C-domain of amylase consists of amino acids 120-180 (N-terminal) and 646-676 (C-terminal) in MalS, and the whole domain architecture shows the complete circular permutation of C-A-B-A-C in domain order. Regarding substrate interaction, the enzyme has a 6-glucosyl unit pocket binding it to the non-reducing end of the cleavage site. Our study found that residues D385 and F367 play important roles in the preference of MalS for maltohexaose as an initial product. At the active site of MalS, β-CD binds more weakly than the linear substrate, possibly due to the positioning of A402. MalS has two Ca2+ binding sites that contribute significantly to the thermostability of the enzyme. Intriguingly, the study found that MalS exhibits a high binding affinity for polysaccharides such as glycogen and amylopectin. The N domain, of which the electron density map was not observed, was predicted to be CBM69 by AlphaFold2 and might have a binding site for the polysaccharides. Structural analysis of MalS provides new insight into the structure-evolution relationship in GH13 subfamily 19 enzymes and a molecular basis for understanding the details of catalytic function and substrate binding of MalS.
Collapse
Affiliation(s)
- Yan An
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Food Technology, An Giang University, Long Xuyen 880000, Vietnam
- Vietnam National University-Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Min-Jee Yoo
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyung-Nam Song
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae-Jip Kim
- Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
28
|
Auiewiriyanukul W, Saburi W, Ota T, Yu J, Kato K, Yao M, Mori H. Alteration of Substrate Specificity and Transglucosylation Activity of GH13_31 α-Glucosidase from Bacillus sp. AHU2216 through Site-Directed Mutagenesis of Asn258 on β→α Loop 5. Molecules 2023; 28:molecules28073109. [PMID: 37049872 PMCID: PMC10096246 DOI: 10.3390/molecules28073109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
α-Glucosidase catalyzes the hydrolysis of α-d-glucosides and transglucosylation. Bacillus sp. AHU2216 α-glucosidase (BspAG13_31A), belonging to the glycoside hydrolase family 13 subfamily 31, specifically cleaves α-(1→4)-glucosidic linkages and shows high disaccharide specificity. We showed previously that the maltose moiety of maltotriose (G3) and maltotetraose (G4), covering subsites +1 and +2 of BspAG13_31A, adopts a less stable conformation than the global minimum energy conformation. This unstable d-glucosyl conformation likely arises from steric hindrance by Asn258 on β→α loop 5 of the catalytic (β/α)8-barrel. In this study, Asn258 mutants of BspAG13_31A were enzymatically and structurally analyzed. N258G/P mutations significantly enhanced trisaccharide specificity. The N258P mutation also enhanced the activity toward sucrose and produced erlose from sucrose through transglucosylation. N258G showed a higher specificity to transglucosylation with p-nitrophenyl α-d-glucopyranoside and maltose than the wild type. E256Q/N258G and E258Q/N258P structures in complex with G3 revealed that the maltose moiety of G3 bound at subsites +1 and +2 adopted a relaxed conformation, whereas a less stable conformation was taken in E256Q. This structural difference suggests that stabilizing the G3 conformation enhances trisaccharide specificity. The E256Q/N258G-G3 complex formed an additional hydrogen bond between Met229 and the d-glucose residue of G3 in subsite +2, and this interaction may enhance transglucosylation.
Collapse
Affiliation(s)
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido Unifversity, Sapporo 060-8589, Japan; (W.A.)
- Correspondence: (W.S.); (H.M.); Tel.: +81-11-806-2508 (W.S.); +81-11-706-2497 (H.M.)
| | - Tomoya Ota
- Research Faculty of Agriculture, Hokkaido Unifversity, Sapporo 060-8589, Japan; (W.A.)
| | - Jian Yu
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kato
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido Unifversity, Sapporo 060-8589, Japan; (W.A.)
- Correspondence: (W.S.); (H.M.); Tel.: +81-11-806-2508 (W.S.); +81-11-706-2497 (H.M.)
| |
Collapse
|
29
|
Wu Y, Yu X, Zhou H, Li S, Wu X, Zhao J. Revealing the critical role of Leucine145 of α-glucosidase AglA for enhancing α-arbutin production. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Pcal_0976, a pullulanase homologue from Pyrobaculum calidifontis, displays a glycoside hydrolase activity but no pullulanase activity. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-022-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Huang Y, Condict L, Richardson SJ, Brennan CS, Kasapis S. Exploring the inhibitory mechanism of p-coumaric acid on α-amylase via multi-spectroscopic analysis, enzymatic inhibition assay and molecular docking. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from Flavobacterium sp. No. 92. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248735. [PMID: 36557873 PMCID: PMC9781549 DOI: 10.3390/molecules27248735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In the CAZy database, the α-amylase family GH13 has already been divided into 45 subfamilies, with additional subfamilies still emerging. The presented in silico study was undertaken in an effort to propose a novel GH13 subfamily represented by the experimentally characterized cyclomaltodxtrinase from Flavobacterium sp. No. 92. Although most cyclomaltodextrinases have been classified in the subfamily GH13_20. This one has not been assigned any GH13 subfamily as yet. It possesses a non-specified immunoglobulin-like domain at its N-terminus mimicking a starch-binding domain (SBD) and the segment MPDLN in its fifth conserved sequence region (CSR) typical, however, for the subfamily GH13_36. The searches through sequence databases resulted in collecting a group of 108 homologs forming a convincing cluster in the evolutionary tree, well separated from all remaining GH13 subfamilies. The members of the newly proposed subfamily share a few exclusive sequence features, such as the "aromatic" end of the CSR-II consisting of two well-conserved tyrosines with either glycine, serine, or proline in the middle or a glutamic acid succeeding the catalytic proton donor in the CSR-III. Concerning the domain N of the representative cyclomaltodextrinase, docking trials with α-, β- and γ-cyclodextrins have indicated it may represent a new type of SBD. This new GH13 subfamily has been assigned the number GH13_46.
Collapse
|
33
|
Hoshino T, Fujiwara T. The findings of glucosyltransferase enzymes derived from oral streptococci. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:328-335. [PMID: 36340584 PMCID: PMC9630777 DOI: 10.1016/j.jdsr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Glucosyltransferase enzymes (Gtfs) distribute among some streptococcal species in oral cavity and are known as key enzymes contributing to the development of oral biofilm such as dental plaque. In 18 streptococcal species, 45 glucosyltransferase genes (gtf) are detected from genome database. Gtfs catalyze the synthesis of the glucans, which are polymers of glucose, from sucrose and they are main component of oral biofilm. Especially, the Gtfs from Streptococcus mutans are recognized as one of dental caries pathogens since they contribute to the formation of dental plaque and the establishment of S. mutans in the tooth surface. Therefore, Gtfs has been studied particularly by many researchers in the dentistry field to develop the anti- caries vaccine. However, it is not still accomplished. In these days, the phylogenetic and crystal structure analyses of Gtfs were performed and the study of Gtfs will enter new situation from the technique in the past old viewpoint. The findings from those analyses will affect the development of the anti-caries vaccine very much after this. In this review, we summarize the findings of oral streptococcal Gtfs and consider the perspectives of the dental caries prevention which targeted Gtf.
Collapse
|
34
|
Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review. World J Microbiol Biotechnol 2022; 38:203. [PMID: 35999473 DOI: 10.1007/s11274-022-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.
Collapse
|
35
|
Guan L, Long H, Ren F, Li Y, Zhang H. A Structure—Activity Relationship Study of the Inhibition of α-Amylase by Benzoic Acid and Its Derivatives. Nutrients 2022; 14:nu14091931. [PMID: 35565898 PMCID: PMC9102017 DOI: 10.3390/nu14091931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Phenolic acids are widely found in fruits and vegetables. The inhibitory effect of phenolic acids on α-amylase, a key enzyme for starch digestion, has attracted the attention of researchers. To further investigate the effects of different substituents on the benzene ring of phenolic acid on the inhibition of α-amylase activity, in vitro experiments and molecular docking were used. The structure-activity relationships of 17 phenolic acids with benzoic acid as the parent nucleus were analyzed by determining their half inhibitory concentration (IC50) toward α-amylase. The results showed that 2,3,4-trihydroxybenzoic acid had the strongest inhibitory effect on α-amylase with an IC50 value of 17.30 ± 0.73 mM. According to the structure-activity analysis, the hydroxyl group at the 2-position on the benzene ring had a strong positive effect on the inhibitory activity of α-amylase, while methoxylation at the 2-position and hydroxylation at the 5-position had a negative effect. Molecular docking revealed that hydrogen bonding and hydrophobic interactions were involved in the inhibition, with hydrogen bonding being the primary force. These findings provide a more comprehensive understanding of phenolic acids as inhibitors of α-amylase and provide new ideas for the design of dietary formulations for diabetic patients.
Collapse
Affiliation(s)
- Lei Guan
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.G.); (H.L.)
| | - Haoyuan Long
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.G.); (H.L.)
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100094, China; (F.R.); (Y.L.)
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100094, China; (F.R.); (Y.L.)
| | - Hao Zhang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.G.); (H.L.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100094, China; (F.R.); (Y.L.)
- Correspondence: ; Tel./Fax: +86-10-62736344
| |
Collapse
|
36
|
Yan H, Wen F, Xiang H, Wen Y, Shang D, Liu A, Niu Y, Xia Q, Wang G. Biochemical characterization and overexpression of an α-amylase (BmAmy) in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:251-259. [PMID: 34923696 DOI: 10.1111/imb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Silkworm (Bombyx mori) is the only fully domesticated insect. As an economically important insect, nutrition utilization is important for its productivity. Hence, the present study investigated the expression pattern of BmAmy, an α-amylase, in B. mori. BmAmy protein purification and biochemical characterization were performed, and effects of BmAmy overexpression were assessed. Real-time quantitative reverse transcription polymerase chain reaction indicated that BmAmy transcription was positively correlated with the silkworm's food intate. Moreover, enzymatic activity assay results showed that BmAmy had significant α-amylase activity of about 1 mg/min/mg protein. Furthermore, treatment with mulberry amylase inhibitors MnAI1 and MnAI2 resulted to 89.92% and 93.67% inhibition in BmAmy activity, respectively, and the interaction between BmAmy and MnAI was also confirmed by protein docking analysis. A silkworm line that specifically overexpressed BmAmy in the midgut was generated through piggyBac-based transgenic technology, and compared to those of non-transgenic silkworms, the whole cocoon and cocoon shell weights of these transgenic silkworms increased by 10.13% and 18.32%, respectively, in the female group, and by 5.83% and 6.00%, respectively, in the male group. These results suggested that BmAmy may be a suitable target for breeding better silkworm varieties in the future.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Research and Development Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Haiying Xiang
- Research and Development Center, China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Yuchan Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Deli Shang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Anyang Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yicheng Niu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
37
|
Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Okamoto Y, Ono M, Nakamura Y, Seki M. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava. PLANT MOLECULAR BIOLOGY 2022; 108:413-427. [PMID: 34767147 DOI: 10.1007/s11103-021-01209-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Suppression of starch branching enzymes 1 and 2 in cassava leads to increased resistant starch content through the production of high-amylose and modification of the amylopectin structure. Cassava (Manihot esculenta Crantz) is a starchy root crop used for human consumption as a staple food and industrial applications. Starch is synthesized by various isoforms of several enzymes. However, the function of starch branching enzymes (SBEs) in starch biosynthesis and mechanisms of starch regulation in cassava have not been understood well. In this study, we aimed to suppress the expression of SBEs in cassava to generate starches with a range of distinct properties, in addition to verifying the functional characteristics of the SBEs. One SBE1, two SBE2, and one SBE3 genes were classified by phylogenetic analysis and amino acid alignment. Quantitative real-time RT-PCR revealed tissue-specific expression of SBE genes in the tuberous roots and leaves of cassava. We introduced RNAi constructs containing fragments of SBE1, SBE2, or both genes into cassava by Agrobacterium-mediated transformation, and assessed enzymatic activity of SBE using tuberous roots and leaves from these transgenic plants. Simultaneous suppression of SBE1 and SBE2 rendered an extreme starch phenotype compared to suppression of SBE2 alone. Degree of polymerization of 6-13 chains in amylopectin was markedly reduced by suppression of both SBE1 and SBE2 in comparison to the SBE2 suppression; however, no change in chain-length profiles was observed in the SBE1 suppression alone. The role of SBE1 and SBE2 may have functional overlap in the storage tissue of cassava. Simultaneous suppression of SBE1 and SBE2 resulted in highly resistant starch with increased apparent amylose content compared to suppression of SBE2 alone. This study provides valuable information for understanding starch biosynthesis and suggests targets for altering starch quality.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshie Okamoto
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Ono
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Yasunori Nakamura
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-Nakano, Akita, 010-0195, Japan
- Akita Natural Science Laboratory, 25-44 Oiwake-Nishi, Tennoh, Katagami, Akita, 010-0101, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7- 22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
38
|
Ji H, Li X, Jiang T, Fang Q, Bai Y, Long J, Chen L, Jin Z. A novel amylolytic enzyme from Palaeococcus ferrophilus with malto-oligosaccharide forming ability belonging to subfamily GH13_20. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zhang H, Ye YT, Deng JL, Zhao P, Mao YF, Chen ZX. Rapid unfolding of pig pancreas α-amylase: Kinetics, activity and structure evolution. Food Chem 2022; 368:130795. [PMID: 34411861 DOI: 10.1016/j.foodchem.2021.130795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
α-Amylase plays an important role in food processing and in-vivo digestion. Many biological functions of α-amylase are affected by unfolding. The pre-steady-state rapid unfolding kinetics of α-amylase remains unknown. In this study, the rapid unfolding kinetics of porcine pancreatic α-amylase (PPA) with guanidine hydrochloride (GdmHCl) were investigated by stopped-flow spectroscopy. Structural characterization of PPA by fluorescence spectroscopy, and molecular dynamics simulation showed that the unfolding process of PPA might start from the internal active center, where the β-sheet structure was destroyed, followed by the exposure of hydrophobic amino acid residues. Further research revealed that GdmHCl denaturized PPA not by complexing with PPA. The surrounding H-bond network of water was changed by GdmHCl. This research improves our understanding of the unfolding kinetics of the PPA on the microsecond scale. It also provides the evidence experimentally of the surrounding water contribution to protein denaturization.
Collapse
Affiliation(s)
- Hai Zhang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Tong Ye
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jun-Ling Deng
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pei Zhao
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Fen Mao
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
40
|
Hilda K, Bhuvaragavan S, Kamatchi R, Meenakumari M, Janarthanan S. Cloning, expression and characterization of arcelin and its impact on digestive enzymes of the stored product insect pest, Callosobruchus maculatus (F.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104982. [PMID: 34955175 DOI: 10.1016/j.pestbp.2021.104982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The pulse beetle Callosobruchus maculatus causes potential damage to legume crops by infesting the seeds, leading to a reduction of total protein content. Arcelin found in the wild accessions of the common bean, is an insecticidal protein that has the potency to hamper the metabolism of the bruchid beetle. The arcelin gene from the wild accession of Phaseolus lunatus was isolated and the ORF encoding 158 amino acids was cloned in pET-45b (+) vector. The recombinant clones were transformed in BL21 STAR (DE3) pLysS cells, and the expressed arcelin was purified using Ni-NTA column. The recombinant protein was used in preparing an artificial diet, and the insecticidal activity was elucidated against the bruchid pest C. maculatus. Adult emergence and seed damage were drastically reduced in the treated groups. The response towards ingested diet by digestive enzymes involved in metabolism was elucidated through quantitative gene expression. The highest expression was observed in the aminopeptidase, followed by upregulation of alpha-amylase, glycoside hydrolase family 31 and cathepsin D-like aspartic protease, and downregulation of cathepsin L-like cysteine protease. The recombinant arcelin demonstrates effective insecticidal activity against the bruchid beetle. The changes in digestive enzymes to counteract the anti-nutritional nature of the protein were the strategies of the insect defense mechanism.
Collapse
Affiliation(s)
- Karuppiah Hilda
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
41
|
Huang D, Du Z, Chen Y, Dong Z, Wang X, Li M, Zhang F, Chen W, Sun L. Bio-Guided Isolation of Two New Hypoglycemic Triterpenoid Saponins from Polygonum capitatum. Drug Des Devel Ther 2021; 15:5001-5010. [PMID: 34949913 PMCID: PMC8689516 DOI: 10.2147/dddt.s341354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose Diabetes is a common disease caused by a combination of genetic and environmental factors, which was the top three diseases threatening human health. Therefore, it is necessary to seek more efficient hypoglycemic drugs. The main objective of this study was to investigate the potential hypoglycemic effects of compounds from Polygonum capitatum. Materials and Methods Our experiments were divided into three steps: (1) α-amylase test and oral starch tolerance test (OSTT) for screening the biological extract part of P. capitatum; (2) chemical isolation and identification using various separation techniques, and spectrum methods; and (3) evaluation of α-amylase inhibitory activity of isolates and in silico analysis for mechanism investigation. Results The n-butanol fractioned part of P. capitatum was confirmed to be the biological part according to α-amylase test. Then, two new triterpenoid saponins were isolated from the n-butanol part, which were also the first isolated triterpenoid saponins from P. capitatum. The activities of compounds 1 and 2 against α-amylase were 51.9±2.8% and 38.1±2.2%, respectively, which was consistent with the molecular docking analysis. In which, 1 and 2 showed the binding affinity energy for α-amylase was −9.4 kcal/mol and −7.8 kcal/mol, respectively. Conclusion Two new triterpenoid saponins were firstly isolated from P. capitatum, and displays potency as a hypoglycemic agent through blocking α-amylase.
Collapse
Affiliation(s)
- Doudou Huang
- Department of TCM Processing, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zenan Du
- Department of TCM Processing, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanhong Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhiying Dong
- Department of TCM Processing, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiujuan Wang
- Department of TCM Processing, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Mengshuang Li
- Department of TCM Processing, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wansheng Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lianna Sun
- Department of TCM Processing, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
42
|
Han X, Ding N, Ban X, Gu Z, Cheng L, Hong Y, Li C, Li Z. Fusion of maltooligosaccharide-forming amylases from two origins for the improvement of maltopentaose synthesis. Food Res Int 2021; 150:110735. [PMID: 34865754 DOI: 10.1016/j.foodres.2021.110735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
Maltopentaose-forming amylases are promising enzymes for their ability to hydrolyze starch and produce functional maltooligosaccharides. Two maltopentaose-forming amylase genes from Bacillus megaterium (BmMFA) and Saccharophagus degradans (SdMFA) were expressed heterologously and their characteristics were analyzed. BmMFA has substantial thermostability and SdMFA owns superior product specificity. The carbohydrate-binding module of SdMFA was fused with BmMFA and the fused protein showed ideal enzymatic properties and displayed potential for industrial production of maltopentaose. Under the optimized conditions, the final product containing 47.41% maltopentaose was obtained with a conversion rate of 92.67% from starch. This study provides a novel strategy for the directed modification of MFAses through protein fusion approach.
Collapse
Affiliation(s)
- Xu Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Ning Ding
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
43
|
Zhao Y, Wang M, Zhang J, Xiong C, Huang G. The mechanism of delaying starch digestion by luteolin. Food Funct 2021; 12:11862-11871. [PMID: 34734615 DOI: 10.1039/d1fo02173g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the mechanisms of the delay of starch digestion by luteolin were revealed by studying the luteolin-PPA (porcine pancreatic α-amylase) interaction and luteolin-starch interaction. The luteolin-PPA interaction was investigated by inhibitory kinetics analysis, fluorescence quenching, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy and molecular docking. The results of the inhibitory kinetics revealed that luteolin was a mixed-type inhibitor of PPA and that the inhibitory action was reversible. Fluorescence spectroscopy (including fluorescence quenching and thermodynamics) and molecular docking analyses indicated that hydrogen bonds and hydrophobic forces were the main forces between PPA and luteolin. CD and FT-IR spectroscopy analyses showed that the interaction between luteolin and PPA changed the secondary structure of PPA and induced a decline in its activity. In addition, the luteolin-starch interaction was also studied using UV-visible absorption and X-ray diffraction analyses. These indicated that luteolin could bind with PPA, and that hydrogen bonds and van der Waals forces may be present. Overall, luteolin delayed starch digestion not only by binding with PPA but also by binding with starch. Thus, luteolin has the potential to prevent and control diabetes by being added into starch-based food to delay starch digestion.
Collapse
Affiliation(s)
- Yiling Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ming Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
44
|
Conchou L, Martin J, Gonçalves IR, Galisson F, Violot S, Guillière F, Aghajari N, Ballut L. The Candida glabrata glycogen branching enzyme structure reveals unique features of branching enzymes of the Saccharomycetaceae phylum. Glycobiology 2021; 32:343-355. [PMID: 34939121 DOI: 10.1093/glycob/cwab110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Branching enzymes (BE) are responsible for the formation of branching points at the 1,6 position in glycogen and starch, by catalyzing the cleavage of α-1,4-linkages and the subsequent transfer by introducing α-1,6-linked glucose branched points. BEs are found in the large GH13 family, eukaryotic BEs being mainly classified in the GH13_8 subfamily, GH13_9 grouping almost exclusively prokaryotic enzymes. With the aim of contributing to the understanding of the mode of recognition and action of the enzymes belonging to GH13_8, and to the understanding of features distinguishing these enzymes from those belonging to subfamily 13_9 we solved the crystal structure of the glycogen branching enzyme (GBE) from the yeast Candida glabrata, CgGBE, in ligand free forms and in complex with a maltotriose. The structures revealed the presence of a domain already observed in Homo sapiens and Oryza sativa BEs and that we named α-helical N-terminal domain, in addition to the three conserved domains found in BE. We confirmed by phylogenetic analysis that this α-helical N-terminal domain is always present in the GH13_8 enzymes suggesting that it could actually present a signature for this subfamily. We identified two binding sites (BS) in the α-helical N-terminal domain and in the carbohydrate binding module 48 (CBM48), respectively, which show a unique structural organization only present in the Saccharomycotina phylum. Our structural and phylogenetic investigation provides new insight into the structural characterization of GH13_8 GBE revealing unique structural features only present in the Saccharomycotina phylum thereby conferring original properties to this group of enzymes.
Collapse
Affiliation(s)
- Léa Conchou
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Isabelle R Gonçalves
- Microbiologie Adaptation et Pathogénie, UMR 5240 CNRS Université de Lyon, Villeurbanne 69622, France
| | - Frédéric Galisson
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Florence Guillière
- Institut des Sciences Analytiques, UMR 5280 CNRS Université de Lyon, Villeurbanne, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
45
|
Ni G, Zhong L, Xia C, Zhang L, Dai L, Chen R, Zhao Y, Wang F. Phenylalanine 314 is essential for the activity of maltogenic amylase from Corallococcus sp. EGB. Biotechnol Appl Biochem 2021; 69:2240-2248. [PMID: 34775631 DOI: 10.1002/bab.2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the hydrolysis and transglycosylation of maltooligosaccharides and soluble starch into maltose, the sole hydrolysate. This process yields pure maltose with potentially wide applications. Here, we identified and evaluated the role of phenylalanine 314 (F314), a key amino acid located near the active center, in the catalytic activities of the CoMA. Site-directed mutagenesis analysis showed that the activity of a F314L mutant on potato starch substrate decreased to 26% of that of wild-type protein. Compared with the wild-type, F314L exhibited similar substrate specificity, hydrolysis pattern, pH, and temperature requirements. Circular dichroism spectrum data showed that the F314L mutation did not affect the structure of the folded protein. In addition, kinetic analysis demonstrated that F314L exhibited an increased Km value with lower substrate affinity. Homology modeling showed that the benzene ring structure of F314L was involved in π-π conjugation, which might potentially affect the affinity of CoMA toward starch. Taken together, these data demonstrated that F314 is essential for the hydrolytic activity of the CoMA from Corallococcus sp. strain EGB.
Collapse
Affiliation(s)
- Guorong Ni
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Lixia Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Longhua Dai
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Ruyi Chen
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, China.,Institute of Botany Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Fei Wang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
46
|
Kim SY, Kim H, Kim YJ, Jung DH, Seo DH, Jung JH, Park CS. Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium. Int J Biol Macromol 2021; 193:1340-1349. [PMID: 34740684 DOI: 10.1016/j.ijbiomac.2021.10.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
A putative type II pullulanase gene, pulP, was identified in Bifidobacterium adolescentis P2P3. PulP possesses an α-amylase domain at the N-terminus and a pullulanase type I domain at the C-terminus, as well as three carbohydrate-binding modules (one CBM25 and two CBM41s) between them. The native PulP and four truncated mutant recombinant proteins (PulPΔCΔP, PulPΔP, PulPΔAΔC, and PulPΔA), in which each of the two catalytic domains and/or the CBMs were deleted, were produced in Escherichia coli and their specific properties were characterized. The removal of either catalytic domain abolished the corresponding catalytic activity of the wild-type enzyme. Deletion of the C-terminal domain resulted in a drastic decrease in the optimal temperature and thermostability, indicating that the pullulanase domain might be related to the temperature dependency of the enzyme. In addition, the elimination of the CBMs in the mutant proteins led to a loss of binding affinity toward raw substrates as well as the loss of their hydrolysis activities compared to the wild-type enzyme. HPAEC and TLC analyses proved that PulP and its mutants could hydrolyze α-glucans into maltotriose as their main product. These results suggest that PulP may play an important role in α-glucan metabolism in B. adolescentis P2P3.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyeran Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
47
|
Yu J, Wang K, Beckles DM. Starch branching enzymes as putative determinants of postharvest quality in horticultural crops. BMC PLANT BIOLOGY 2021; 21:479. [PMID: 34674662 PMCID: PMC8529802 DOI: 10.1186/s12870-021-03253-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Starch branching enzymes (SBEs) are key determinants of the structure and amount of the starch in plant organs, and as such, they have the capacity to influence plant growth, developmental, and fitness processes, and in addition, the industrial end-use of starch. However, little is known about the role of SBEs in determining starch structure-function relations in economically important horticultural crops such as fruit and leafy greens, many of which accumulate starch transiently. Further, a full understanding of the biological function of these types of starches is lacking. Because of this gap in knowledge, this minireview aims to provide an overview of SBEs in horticultural crops, to investigate the potential role of starch in determining postharvest quality. A systematic examination of SBE sequences in 43 diverse horticultural species, identified SBE1, 2 and 3 isoforms in all species examined except apple, olive, and Brassicaceae, which lacked SBE1, but had a duplicated SBE2. Among our findings after a comprehensive and critical review of published data, was that as apple, banana, and tomato fruits ripens, the ratio of the highly digestible amylopectin component of starch increases relative to the more digestion-resistant amylose fraction, with parallel increases in SBE2 transcription, fruit sugar content, and decreases in starch. It is tempting to speculate that during the ripening of these fruit when starch degradation occurs, there are rearrangements made to the structure of starch possibly via branching enzymes to increase starch digestibility to sugars. We propose that based on the known action of SBEs, and these observations, SBEs may affect produce quality, and shelf-life directly through starch accumulation, and indirectly, by altering sugar availability. Further studies where SBE activity is fine-tuned in these crops, can enrich our understanding of the role of starch across species and may improve horticulture postharvest quality.
Collapse
Affiliation(s)
- Jingwei Yu
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Graduate Group of Horticulture & Agronomy, University of California, Davis, CA, 95616, USA
- Present Address: Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Keyun Wang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
48
|
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021; 26:6231. [PMID: 34684812 PMCID: PMC8537225 DOI: 10.3390/molecules26206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.
Collapse
Affiliation(s)
- Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
49
|
Structural Insight into a Yeast Maltase-The BaAG2 from Blastobotrys adeninivorans with Transglycosylating Activity. J Fungi (Basel) 2021; 7:jof7100816. [PMID: 34682239 PMCID: PMC8539097 DOI: 10.3390/jof7100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
An early-diverged yeast, Blastobotrys (Arxula) adeninivorans (Ba), has biotechnological potential due to nutritional versatility, temperature tolerance, and production of technologically applicable enzymes. We have biochemically characterized from the Ba type strain (CBS 8244) the GH13-family maltase BaAG2 with efficient transglycosylation activity on maltose. In the current study, transglycosylation of sucrose was studied in detail. The chemical entities of sucrose-derived oligosaccharides were determined using nuclear magnetic resonance. Several potentially prebiotic oligosaccharides with α-1,1, α-1,3, α-1,4, and α-1,6 linkages were disclosed among the products. Trisaccharides isomelezitose, erlose, and theanderose, and disaccharides maltulose and trehalulose were dominant transglycosylation products. To date no structure for yeast maltase has been determined. Structures of the BaAG2 with acarbose and glucose in the active center were solved at 2.12 and 2.13 Å resolution, respectively. BaAG2 exhibited a catalytic domain with a (β/α)8-barrel fold and Asp216, Glu274, and Asp348 as the catalytic triad. The fairly wide active site cleft contained water channels mediating substrate hydrolysis. Next to the substrate-binding pocket an enlarged space for potential binding of transglycosylation acceptors was identified. The involvement of a Glu (Glu309) at subsite +2 and an Arg (Arg233) at subsite +3 in substrate binding was shown for the first time for α-glucosidases.
Collapse
|
50
|
Janíčková Z, Janeček Š. In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites. Molecules 2021; 26:molecules26185704. [PMID: 34577174 PMCID: PMC8467227 DOI: 10.3390/molecules26185704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study brings a detailed bioinformatics analysis of fungal and chloride-dependent α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences), GH13_32 (140 sequences) and GH13_42 (3 sequences). Eight conserved sequence regions (CSRs) characteristic for the family GH13 were identified in all sequences and respective sequence logos were analysed in an effort to identify unique sequence features of each subfamily. The main emphasis was given on the subfamily GH13_32 since it contains both fungal α-amylases and their bacterial chloride-activated counterparts. In addition to in silico analysis focused on eventual ability to bind the chloride anion, the property typical mainly for animal α-amylases from subfamilies GH13_15 and GH13_24, attention has been paid also to the potential presence of the so-called secondary surface-binding sites (SBSs) identified in complexed crystal structures of some particular α-amylases from the studied subfamilies. As template enzymes with already experimentally determined SBSs, the α-amylases from Aspergillus niger (GH13_1), Bacillus halmapalus, Bacillus paralicheniformis and Halothermothrix orenii (all from GH13_5) and Homo sapiens (saliva; GH13_24) were used. Evolutionary relationships between GH13 fungal and chloride-dependent α-amylases were demonstrated by two evolutionary trees—one based on the alignment of the segment of sequences spanning almost the entire catalytic TIM-barrel domain and the other one based on the alignment of eight extracted CSRs. Although both trees demonstrated similar results in terms of a closer evolutionary relatedness of subfamilies GH13_1 with GH13_42 including in a wider sense also the subfamily GH13_5 as well as for subfamilies GH13_32, GH13_15 and GH13_24, some subtle differences in clustering of particular α-amylases may nevertheless be observed.
Collapse
Affiliation(s)
- Zuzana Janíčková
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia;
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia;
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|