1
|
Ogasawara M, Yoshii K, Wada J, Yamamoto Y, Inouye K. Identification of 2'-deoxyguanosine for an α-amylase inhibitor in the extracts of the earthworm Eisenia fetida and characterization of its inhibitory activity against porcine pancreatic α-amylase. Enzyme Microb Technol 2025; 185:110604. [PMID: 39923336 DOI: 10.1016/j.enzmictec.2025.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Inhibitory activity (IA) against porcine pancreatic α-amylase (PPA) has been found in the water extract of Eisenia fetida. IA is recovered mostly in a fraction (U3EE) containing compounds of low molecular mass under 3 kDa. U3EE is treated with 85 % ethanol (EtOH) and the obtained EtOH extract is applied to the solid-phase extraction (SPE) system. An IA fraction named AI is separated from SPE by elution with water, and then a fraction AI* has been obtained by elution with 5 % EtOH. In the previous study, PPA inhibitors of guanine (Gua), guanosine (Guo), and inosine (Ino) have been isolated from AI. In the present study, IA of AI* was examined and a new inhibitor 2'-deoxyguanosine (2'-dGuo) was isolated by RP-HPLC. It was a mixed-type inhibitor showing IC50 of 0.7 ± 0.1 mM and inhibitor constants Ki and Ki' of 2.0 ± 0.5 and 0.9 ± 0.2 mM, respectively, at pH 6 and at 37 °C. PPA inhibitors of U3EE were arranged in the order according to the inhibitory efficiency as Gua> 2'-dGuo> Guo> Ino. This study reports that compounds related to nucleic acids could be PPA inhibitors. These inhibitors as well as U3EE might be suitable for functional foods to prevent obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Masako Ogasawara
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto 612-8374, Japan
| | - Katsuhiro Yoshii
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto 612-8374, Japan
| | - Jun Wada
- Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto 600-8815, Japan
| | - Yoshihiro Yamamoto
- Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-cho, Shimogyo-ku, Kyoto 600-8815, Japan
| | - Kuniyo Inouye
- Research and Development Division, Waki Pharmaceutical Co., Ltd., Room 307, Advanced Chemical Technology Center in Kyoto (ACT Kyoto), 105 Jibu-cho, Fushimi-ku, Kyoto 612-8374, Japan.
| |
Collapse
|
2
|
Visvanathan R, Houghton MJ, Barber E, Williamson G. Structure-function relationships in (poly)phenol-enzyme binding: Direct inhibition of human salivary and pancreatic α-amylases. Food Res Int 2024; 188:114504. [PMID: 38823880 DOI: 10.1016/j.foodres.2024.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Elizabeth Barber
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia.
| |
Collapse
|
3
|
Shi H, He F, Huo C, Wan J, Song H, Du F, Liu R. Molecular mechanisms of polystyrene nanoplastics and alpha-amylase interactions and their binding model: A multidimensional analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170036. [PMID: 38242479 DOI: 10.1016/j.scitotenv.2024.170036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.
Collapse
Affiliation(s)
- Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hengyu Song
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Fei Du
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
4
|
Wang B, Huang D, Cao C, Gong Y. Insect α-Amylases and Their Application in Pest Management. Molecules 2023; 28:7888. [PMID: 38067617 PMCID: PMC10708458 DOI: 10.3390/molecules28237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Amylase is an indispensable hydrolase in insect growth and development. Its varied enzymatic parameters cause insects to have strong stress resistance. Amylase gene replication is a very common phenomenon in insects, and different copies of amylase genes enable changes in its location and function. In addition, the classification, structure, and interaction between insect amylase inhibitors and amylases have also invoked the attention of researchers. Some plant-derived amylase inhibitors have inhibitory activities against insect amylases and even mammalian amylases. In recent years, an increasing number of studies have clarified the effects of pesticides on the amylase activity of target and non-target pests, which provides a theoretical basis for exploring safe and efficient pesticides, while the exact lethal mechanisms and safety in field applications remain unclear. Here, we summarize the most recent advances in insect amylase studies, including its sequence and characteristics and the regulation of amylase inhibitors (α-AIs). Importantly, the application of amylases as the nanocide trigger, RNAi, or other kinds of pesticide targets will be discussed. A comprehensive foundation will be provided for applying insect amylases to the development of new-generation insect management tools and improving the specificity, stability, and safety of pesticides.
Collapse
Affiliation(s)
| | | | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| |
Collapse
|
5
|
Raut B, Upadhyaya SR, Bashyal J, Parajuli N. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS OMEGA 2023; 8:43617-43631. [PMID: 38027372 PMCID: PMC10666247 DOI: 10.1021/acsomega.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Human pancreatic α-amylase (HPA), situated at the apex of the starch digestion hierarchy, is an attractive therapeutic approach to precisely regulate blood glucose levels, thereby efficiently managing diabetes. Polyphenols offer a natural and multifaceted approach to moderate postprandial sugar spikes, with their slight modulation in carbohydrate digestion and potential secondary benefits, such as antioxidant and anti-inflammatory effects. Taking into consideration the unfavorable side effects of currently available commercial medications, we aimed to study a library of polyphenols attributed to their remarkable antidiabetic properties and screened the most potent HPA inhibitor via a comprehensive in silico study encompassing molecular docking, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculation, molecular dynamics (MD) simulation, density functional theory (DFT) study, and pharmacokinetic properties followed by an in vitro assay. Significant hydrogen bonding with the catalytic triad residues of HPA, prominent MM/GBSA binding energy of -27.03 kcal/mol, and the stable nature of the protein-ligand complex with regard to 100 ns MD simulation screened quercetin as the best HPA inhibitor. Additionally, quercetin showed strong reactivity in the substrate-binding pocket of HPA and exhibited favorable pharmacokinetic properties with a considerable inhibitory concentration (IC50) of 57.37 ± 0.9 μg/mL against α-amylase. This study holds prospects for HPA inhibition and suggests quercetin as an approach to therapy for diabetes; however, it is imperative to conduct further research.
Collapse
Affiliation(s)
- Bimal
K. Raut
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Siddha Raj Upadhyaya
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Jyoti Bashyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| |
Collapse
|
6
|
Zhang Y, Wang K, Huang Q, Shu S. Molecular cloning and characterization of an alpha-amylase inhibitor (TkAAI) gene from Trichosanthes kirilowii Maxim. Biotechnol Lett 2022; 44:1127-1138. [PMID: 35925526 DOI: 10.1007/s10529-022-03277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
Trichosanthes kirilowii Maxim taxonomically belongs to the Cucurbitaceae family and Trichosanthes genus. Its whole fruit, fruit peel, seed and root are widely used in traditional Chinese medicines. A ribosome-inactivating protein with RNA N-glycosidase activity called Trichosanthrip was isolated and purified from the seeds of T. kirilowii in our recent previous research. To further explore the biological functions of Trichosanthrip, the cDNA of T. kirilowii alpha-amylase inhibitor (TkAAI) was cloned through rapid-amplification of cDNA ends and its sequence was analyzed. Also, the heterologous protein was expressed in Escherichia coli and its alpha-amylase activity was further measured under optimized conditions. The full-length cDNA of TkAAI was 613 bp. The speculated open reading frame sequence encoded 141 amino acids with a molecular weight of 16.14 kDa. Phylogenetic analysis demonstrated that the Alpha-Amylase Inhibitors Seed Storage domain sequence of TkAAI revealed significant evolutionary homology with the 2S albumin derived from the other plants in the Cucurbitaceae group. In addition, TkAAI was assembled into pET28a with eGFP to generate a prokaryotic expression vector and was induced to express in E. coli. The TkAAI-eGFP infusion protein was proven to exhibit alpha-amylase inhibitory activity against porcine pancreatic amylase in a suitable reaction system. Analysis of gene expression patterns proved that the relative expression level of TkAAI in seeds is highest. The results presented here forecasted that the TkAAI might play a crucial role during the development of T. kirilowii seeds and provided fundamental insights into the possibility of T. kirilowii derived medicine to treat diabetes related diseases.
Collapse
Affiliation(s)
- Yipeng Zhang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China.
| | - Keyue Wang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Qiyuan Huang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Shaohua Shu
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
7
|
Toward a More Comprehensive View of α-Amylase across Decapods Crustaceans. BIOLOGY 2021; 10:biology10100947. [PMID: 34681046 PMCID: PMC8533441 DOI: 10.3390/biology10100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Decapod crustaceans are a very diverse group and have evolved to suit a wide variety of diets. Alpha-amylases enzymes, responsible for starch and glycogen digestion, have been more thoroughly studied in herbivore and omnivore than in carnivorous species. We used information on the α-amylase of a carnivorous lobster as a connecting thread to provide a more comprehensive view of α-amylases across decapods crustaceans. Omnivorous crustaceans such as shrimps, crabs, and crayfish present relatively high amylase activity with respect to carnivorous crustaceans. Yet, contradictory results have been obtained and relatively high activity in some carnivores has been suggested to be a remnant trait from ancestor species. Here, we provided information sustaining that high enzyme sequence and overall architecture conservation do not allow high changes in activity, and that differences among species may be more related to number of genes and isoforms, as well as transcriptional and secretion regulation. However, recent evolutionary analyses revealed that positive selection might have also occurred among distant lineages with feeding habits as a selection force. Some biochemical features of decapod α-amylases can be related with habitat or gut conditions, while less clear patterns are observed for other enzyme properties. Likewise, while molt cycle variations in α-amylase activity are rather similar among species, clear relationships between activity and diet shifts through development cannot be always observed. Regarding the adaptation of α-amylase to diet, juveniles seem to exhibit more flexibility than larvae, and it has been described variation in α-amylase activity or number of isoforms due to the source of carbohydrate and its level in diets, especially in omnivore species. In the carnivorous lobster, however, no influence of the type of carbohydrate could be observed. Moreover, lobsters were not able to fine-regulate α-amylase gene expression in spite of large changes in carbohydrate content of diet, while retaining some capacity to adapt α-amylase activity to very low carbohydrate content in the diets. In this review, we raised arguments for the need of more studies on the α-amylases of less studied decapods groups, including carnivorous species which rely more on dietary protein and lipids, to broaden our view of α-amylase in decapods crustaceans.
Collapse
|
8
|
Lakshmi SA, Shafreen RB, Priyanga A, Shiburaj S, Pandian SK. A highly divergent α-amylase from Streptomyces spp.: An evolutionary perspective. Int J Biol Macromol 2020; 163:2415-2428. [PMID: 32961188 DOI: 10.1016/j.ijbiomac.2020.09.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022]
Abstract
The present study deals with the genetic changes observed in the protein sequence of an α-amylase from Streptomyces spp. and its structural homologs from Pseudoalteromonas haloplanktis, invertebrates and mammals. The structural homologs are renowned for their important features such as chloride binding triad and a serine-protease like catalytic triad (a triad which is reported to be strictly conserved in all chloride-dependent α-amylases). These conserved regions are essential for allosteric activation of enzyme and conformational stability, respectively. An evaluation of these distinctive features in Streptomyces α-amylases revealed the role of mutations in conserved regions and evolution of chloride-independent α-amylases in Streptomyces spp. Besides, the study also discovers a highly divergent α-amylase from Streptomyces spp. which varies greatly even within the homologs of the same genus. Another very important feature is the number of disulfide bridges in which the structural homologs own eight Cys residues to form four disulfide bridges whereas Streptomyces α-amylases possess only seven Cys to form three disulfide bridges. The study also highlights the unique evolution of carbohydrate binding module 20 domain (CBM20 also known as raw starch binding domain or E domain) in Streptomyces α-amylases which is completely absent in α-amylases of other structural homologs.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | | | - Appasamy Priyanga
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | - Sugathan Shiburaj
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala 695562, India; Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | | |
Collapse
|
9
|
Martinez-Gonzalez AI, Díaz-Sánchez ÁG, de la Rosa LA, Bustos-Jaimes I, Alvarez-Parrilla E. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:437-447. [PMID: 30172871 DOI: 10.1016/j.saa.2018.08.057] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 05/22/2023]
Abstract
Flavonoids are recognized to regulate animals' food digestion processes trough interaction with digestive enzymes. The binding capacity of hesperetin (HES), luteolin (LUT), quercetin (QUE), catechin (CAT) and rutin (RUT) with pancreatic α-amylase were evaluated, using UV-Vis spectroscopy, fluorescence and molecular docking. Using p-nitrophenyl-α-d-maltopentoside (pNPG5) as substrate analog, LUT showed the best inhibitory capacity, even better than that of the positive control, acarbose (ACA). A mixed-type inhibition was observed for HES, LUT and QUE, a competitive-type for ACA, while no inhibition was observed with CAT and RUT. In agreement with kinetic results, α-amylase presented a higher affinity for LUT, when analyzed by fluorescence quenching. The binding of flavonoids to amylase followed a static mechanism, where the binding of one flavonoid per enzyme molecule was observed. Docking analysis showed that flavonoids bound near to enzyme active site, while ACA bound in another site behind the catalytic triad. Extrinsic fluorescence analysis, together with docking analysis pointed out that hydrophobic interactions regulated the flavonoid-α-amylase interactions. The present study provides evidence to understand the relationship of flavonoids structure with their inhibition mechanism.
Collapse
Affiliation(s)
- A I Martinez-Gonzalez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | - Á G Díaz-Sánchez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico.
| | - L A de la Rosa
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico.
| | - I Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| | - E Alvarez-Parrilla
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico.
| |
Collapse
|
10
|
Sun LH, Qin T, Liu Y, Zhao H, Xia X, Lei X. Cloning, expression, and characterization of a porcine pancreatic α-amylase in Pichia pastoris. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:234-240. [PMID: 30140765 PMCID: PMC6104570 DOI: 10.1016/j.aninu.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022]
Abstract
Pancreatic α-amylase (α-1, 4-glucan-4-glucanohydrolase, EC.3.2.1.1) plays a primary role in the intestinal digestion of feed starch and is often deficient in weanling pigs. The objective of this study was to clone, express, and characterize porcine pancreatic α-amylase (PPA). The full-length cDNA encoding the PPA was isolated from pig pancreas by RT-PCR and cloned into the pPICZαA vector. After the resultant pPICZαΑ-PPA plasmid was transferred into Pichia pastoris, Ni Sepharose affinity column was used to purify the over-expressed extracellular recombinant PPA protein (rePPA) that contains a His-tag to the C terminus and was characterized against the natural enzyme (α-amylase from porcine pancreas). The rePPA exhibited a molecular mass of approximately 58 kDa and showed optimal temperature (50 °C), optimal pH (7.5), Km (47.8 mg/mL), and Vmax (2,783 U/mg) similar to those of the natural enzyme. The recombinant enzyme was stable at 40 °C but lost 60% to 90% (P < 0.05) after exposure to heating at ≥50 °C for 30 min. The enzyme activity was little affected by Cu2+ or Fe3+, but might be inhibited (40% to 50%) by Zn2+ at concentrations in pig digesta. However, Ca2+ exhibited a dose-dependent stimulation of the enzyme activity. In conclusion, the present study successfully cloned the porcine pancreatic α-amylase gene and over-expressed the gene in P.pastoris as an extracellular, functional enzyme. The biochemical characterization of the over-produced enzyme depicts its potential and future improvement as an animal feed additive.
Collapse
Affiliation(s)
- Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China.,International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu 611134, China
| | - Tao Qin
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu 611134, China.,Wuhan Chopper Biology Co., LTD, Wuhan 430070, China
| | - Yan Liu
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu 611134, China
| | - Hua Zhao
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu 611134, China
| | - Xinjie Xia
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu 611134, China.,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xingen Lei
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu 611134, China.,Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Rodríguez-Viera L, Perera E, Martos-Sitcha JA, Perdomo-Morales R, Casuso A, Montero-Alejo V, García-Galano T, Martínez-Rodríguez G, Mancera JM. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus. PLoS One 2016; 11:e0158919. [PMID: 27391425 PMCID: PMC4938498 DOI: 10.1371/journal.pone.0158919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase.
Collapse
Affiliation(s)
- Leandro Rodríguez-Viera
- Center for Marine Research, University of Havana, Havana, Cuba
- Department of Biology, University of Cadiz, Puerto Real, Cadiz, Spain
- * E-mail: (LRV); (EP)
| | - Erick Perera
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Puerto Real, Cadiz, Spain
- * E-mail: (LRV); (EP)
| | | | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Antonio Casuso
- Center for Marine Research, University of Havana, Havana, Cuba
| | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | | | | | | |
Collapse
|
12
|
Barkleit A, Heller A, Ikeda-Ohno A, Bernhard G. Interaction of europium and curium with alpha-amylase. Dalton Trans 2016; 45:8724-33. [DOI: 10.1039/c5dt04790k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Batch sorption experiments, potentiometric and spectroscopic titration investigations revealed a fast and strong interaction of Eu(iii) and Cm(iii) with the digestive enzyme α-amylase.
Collapse
Affiliation(s)
- Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Anne Heller
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Gert Bernhard
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| |
Collapse
|
13
|
Identification and characterization of a novel raw-starch-degrading α-amylase (AmyASS) from the marine fish pathogen Aeromonas salmonicida ssp. salmonicida. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Lin YS, Yang CC, Hsu CC, Hsu JT, Wu SC, Lin CJ, Cheng WTK. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes. Transgenic Res 2014; 24:61-71. [PMID: 25063310 DOI: 10.1007/s11248-014-9817-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
Abstract
Competition between humans and livestock for cereal and legume grains makes it challenging to provide economical feeds to livestock animals. Recent increases in corn and soybean prices have had a significant impact on the cost of feed for pig producers. The utilization of byproducts and alternative ingredients in pig diets has the potential to reduce feed costs. Moreover, unlike ruminants, pigs have limited ability to utilize diets with high fiber content because they lack endogenous enzymes capable of breaking down nonstarch polysaccharides into simple sugars. Here, we investigated the feasibility of a transgenic strategy in which expression of the fungal cellulase transgene was driven by the porcine pancreatic amylase promoter in pigs. A 2,488 bp 5'-flanking region of the porcine pancreatic amylase gene was cloned by the genomic walking technique, and its structural features were characterized. Using GFP as a reporter, we found that this region contained promoter activity and had the potential to control heterologous gene expression. Transgenic pigs were generated by pronuclear microinjection. Founders and offspring were identified by PCR and Southern blot analyses. Cellulase mRNA and protein showed tissue-specific expression in the pancreas of F1 generation pigs. Cellulolytic enzyme activity was also identified in the pancreas of transgenic pigs. These results demonstrated the establishment of a tissue-specific promoter of the porcine pancreatic amylase gene. Transgenic pigs expressing exogenous cellulase may represent a way to increase the intake of low-cost, fiber-rich feeds.
Collapse
Affiliation(s)
- Y S Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
15
|
In vitro investigations of α-amylase mediated hydrolysis of cyclodextrins in the presence of ibuprofen, flurbiprofen, or benzo[a]pyrene. Carbohydr Res 2012; 362:56-61. [DOI: 10.1016/j.carres.2012.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 11/20/2022]
|
16
|
Bakkialakshmi S, Shanthi B, Bhuvanapriya T. Study of fluorescence quenching of Barley α-amylase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 90:12-17. [PMID: 22297090 DOI: 10.1016/j.saa.2011.12.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/12/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (K(g) &K(e)) have been calculated. From the calculated binding constants (K(g) &K(e)) the free energy changes for the ground (ΔG(g)) and excited (ΔG(e)) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.
Collapse
Affiliation(s)
- S Bakkialakshmi
- Department of Physics, Annamalai University, Annamalainagar, Tamilnadu, India.
| | | | | |
Collapse
|
17
|
Ngernyuang N, Kobayashi I, Promboon A, Ratanapo S, Tamura T, Ngernsiri L. Cloning and expression analysis of the Bombyx mori α-amylase gene (Amy) from the indigenous Thai silkworm strain, Nanglai. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:38. [PMID: 21529256 PMCID: PMC3281462 DOI: 10.1673/031.011.0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
α-Amylase is a common enzyme for hydrolyzing starch. In the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), α-amylase is found in both digestive fluid and hemolymph. Here, the complete genomic sequence of the Amy gene encoding α-amylase from a local Thai silkworm, the Nanglai strain, was obtained. This gene was 7981 bp long with 9 exons. The full length Amy cDNA sequence was 1749 bp containing a 1503 bp open reading frame. The ORF encoded 500 amino acid residues. The deduced protein showed 81-54% identity to other insect α-amylases and more than 50% identity to mammalian enzymes. Southern blot analysis revealed that in the Nanglai strain Amy is a single-copy gene. RT- PCR showed that Amy was transcribed only in the foregut. Transgenic B. mori also showed that the Amy promoter activates expression of the transgene only in the foregut.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- The Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
18
|
Anitha Gopal B, Muralikrishna G. Porcine Pancreatic α-Amylase and its Isoforms: Purification and Kinetic Studies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2009. [DOI: 10.1080/10942910801947755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yúfera M, Martínez-Rodríguez G. Characterization of a partial α-amylase clone from red porgy (Pagrus pagrus): Expression during larval development. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:209-18. [PMID: 16413218 DOI: 10.1016/j.cbpb.2005.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 11/11/2005] [Accepted: 11/13/2005] [Indexed: 10/25/2022]
Abstract
A partial alpha-amylase cDNA was isolated from red porgy (Pagrus pagrus, Teleostei: Sparidae) and its tissue specific expression during larval development was examined. The cDNA was 949 bp long and showed 90% identity with other fish amylases. A 545 bp fragment was used to study amylase expression using in situ hybridization and RT-PCR techniques. Both methods showed a similar pattern: high and relatively constant expression for the first 30 days after hatching (dah), subsequently decreasing until the end of the experiment at 60 dah. The goal of this work was to extend the existing knowledge of the functionality of larval fish digestive systems and to provide new information about alpha-amylase gene expression.
Collapse
Affiliation(s)
- M J Darias
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, 11510 Puerto Real, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hokari S, Miura K, Koyama I, Kobayashi M, Matsunaga T, Iino N, Komoda T. Expression of alpha-amylase isozymes in rat tissues. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:63-9. [PMID: 12781974 DOI: 10.1016/s1096-4959(03)00047-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene expressions of alpha-amylase isozymes in rat tissues were analyzed by a reverse transcription-polymerase chain reaction (RT-PCR), followed by EcoRI digestion. This procedure is based on evidence that an RT-PCR product from mouse pancreas RNA is sensitive to EcoRI, but not the product from the salivary gland or liver RNAs. The method was applied to the analysis of alpha-amylase expression in rat liver after partial hepatectomy, in which a potent expression of pancreas type isozyme was observed. However, no expression of the pancreatic isozyme in the regenerating liver was found. We also analyzed the expression of alpha-amylase gene in several additional rat tissues. In intestine, stomach, testis and skeletal muscle, the corresponding PCR products were amplified, but few were detected in heart or spleen. Intestine and stomach expressed a pancreatic isozyme of alpha-amylase. Analyses of the alpha-amylase activity and protein indicated the presence of the enzyme in those tissues. Immunohistochemical analysis also indicated that the amylase proteins were specifically present in epithelial cells of rat intestinal mucosa. This is a convenient method for identification of alpha-amylase isozyme mRNA in rodent tissues.
Collapse
Affiliation(s)
- Shigeru Hokari
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ferey-Roux G, Perrier J, Forest E, Marchis-Mouren G, Puigserver A, Santimone M. The human pancreatic alpha-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:10-20. [PMID: 9774702 DOI: 10.1016/s0167-4838(98)00147-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A rapid method is proposed for isolating the two main components of human pancreatic alpha-amylase (HPA I and HPA II). The isoelectric point of HPA I (7.2), the main component, was determined using an isoelectrofocusing method and found to differ from that of HPA II (6. 6). The molecular mass of HPA I (55862+/-5 Da) and that of HPA II (55786+/-5 Da) were determined by performing mass spectrometry and found to be quite similar to that of the protein moiety calculated from the amino acid sequence (55788 Da), which indicates that the human amylase is not glycosylated. The structure of both HPA I and HPA II was further investigated by performing limited proteolysis. Two fragments with an apparent molecular mass of 41 kDa and 14 kDa were obtained by digesting the isoforms with proteinase K and subtilisin, whereas digestion with papain yielded two cleaved fragments with molecular masses of 38 kDa and 17 kDa. Proteinase K and subtilisin susceptible bonds are located in the L8 loop (A domain), while the papain cut which occurs in the presence of the calcium chelator EDTA is in the L3 loop (B domain). The kinetics of the inhibition of HPA I and HPA II by acarbose, a drug used to treat diabetes and obesity, were studied using an amylose substrate. The Lineweaver-Burk primary plots of HPA I and HPA II, which did not differ significantly, indicated that the inhibition was of the mixed non-competitive type. The secondary plots gave parabolic curves. All in all, these data provide evidence that two acarbose molecules bind to HPA. In conclusion, apart from the pI, no significant differences were observed between HPA I and HPA II as regards either their molecular mass and limited proteolysis or their kinetic behavior. As was to be expected in view of the high degree of structural identity previously found to exist between human and porcine pancreatic amylases, the present data show that the inhibitory effects of acarbose on the kinetic behavior of these two amylases are quite comparable. In particular, the process of amylose hydrolysis catalyzed by HPA as well as by PPA in both cases requires two carbohydrate binding sites in addition to the catalytic site.
Collapse
Affiliation(s)
- G Ferey-Roux
- Laboratoire de Biochimie et Biologie de la Nutrition, CNRS-ESA 6033, Faculté des Sciences et Techniques de St. Jérôme, Université d'Aix-Marseille, 13397 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|