1
|
Rosuvastatin protects against angiotensin II-induced renal injury in a dose-dependent fashion. J Hypertens 2009; 27:599-605. [PMID: 19262227 DOI: 10.1097/hjh.0b013e32831ef369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We showed earlier that statin treatment ameliorates target-organ injury in a transgenic model of angiotensin (Ang) II-induced hypertension. We now test the hypothesis that rosuvastatin (1, 10, and 50 mg/kg/day) influences leukocyte adhesion and infiltration, prevents induction of inducible nitric oxide synthase (iNOS), and ameliorates target-organ damage in a dose-dependent fashion. METHODS We treated rats harboring the human renin and human angiotensinogen genes (dTGR) from week 4 to 8 (n = 20 per group). Untreated dTGR developed severe hypertension, cardiac hypertrophy, and renal damage, with a 100-fold increased albuminuria and focal cortical necrosis. Mortality of untreated dTGR at age 8 weeks was 59%. RESULTS Rosuvastatin treatment decreased mortality dose-dependently. Blood pressure was not affected. Albuminuria was reduced dose-dependently. Interstitial adhesion molecule (ICAM)-1 expression was markedly reduced by rosuvastatin, as were neutrophil and monocyte infiltration. Immunohistochemistry showed an increased endothelial and medial iNOS expression in small vessels, infiltrating cells, afferent arterioles, and glomeruli of dTGR. Immunoreactivity was stronger in cortex than medulla. Rosuvastatin markedly reduced the iNOS expression in both cortex and medulla. Finally, matrix protein (type IV collagen, fibronectin) expression was also dose- dependently reduced by rosuvastatin. CONCLUSION Our findings indicate that rosuvastatin dose- dependently ameliorates angiotensin II-induced-organ damage and almost completely prevents inflammation at the highest dose. The data implicate 3-hydroxy-3-methylglutaryl coenzyme A function in signaling events leading to target-organ damage.
Collapse
|
2
|
Fluvastatin attenuates IGF-1-induced ERK1/2 activation and cell proliferation by mevalonic acid depletion in human mesangial cells. Life Sci 2009; 84:725-31. [DOI: 10.1016/j.lfs.2009.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/22/2009] [Accepted: 02/16/2009] [Indexed: 11/22/2022]
|
3
|
Solomon KR, Pelton K, Boucher K, Joo J, Tully C, Zurakowski D, Schaffner CP, Kim J, Freeman MR. Ezetimibe is an inhibitor of tumor angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1017-26. [PMID: 19179610 DOI: 10.2353/ajpath.2009.080551] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epidemiological and preclinical observations have suggested a role for one or more products of the mevalonate/cholesterol biosynthesis pathway in the progression of prostate cancer. In this study, we used ezetimibe (Zetia), a specific, FDA-approved, cholesterol uptake-blocking drug, in combination with either a hyper- or hypocholesterolemic diet, to show that elevated circulating cholesterol levels promote, whereas a reduction in circulating cholesterol levels retard, the growth of human prostate cancer xenograft tumors in mice. Circulating cholesterol levels also modified tumor angiogenesis; higher cholesterol levels increased microvessel density and other indicators of vascularity. Consistent with these data, the reduction of cholesterol levels also increased the levels of the angiogenesis inhibitor thrombospondin-1 in the xenografts. Our results thus suggest that hypercholesterolemia directly accelerates the growth of prostate carcinomas, and that the pharmacological reduction of serum cholesterol levels may retard prostate cancer growth by inhibiting tumor angiogenesis.
Collapse
Affiliation(s)
- Keith R Solomon
- Dept. of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Solomon KR, Freeman MR. Do the cholesterol-lowering properties of statins affect cancer risk? Trends Endocrinol Metab 2008; 19:113-21. [PMID: 18356074 DOI: 10.1016/j.tem.2007.12.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/28/2007] [Accepted: 12/03/2007] [Indexed: 01/24/2023]
Abstract
The potential of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors ('statins') to reduce the incidence and/or progression of certain malignancies remains uncertain. Some investigators have concluded that statins have no effects on malignancies of any kind. However, results of several epidemiologic studies, including four recent prospective cohort studies, suggest that long-term statin therapy inhibits the progression of prostate cancer. We argue that the principal mechanism of any anticancer effects from statin use arises from prolonged lowering of circulating cholesterol. Evidence suggests that prostate cancer might be particularly sensitive to this intervention. Our hypothesis provides a perspective from which mechanistic studies of cholesterol-lowering drugs and cancer, in addition to prospective trials in patients, might be designed.
Collapse
Affiliation(s)
- Keith R Solomon
- Department of Orthopaedic Surgery, Children's Hospital Boston, Boston, MA 02115, USA.
| | | |
Collapse
|
5
|
Song CY, Kim BC, Lee HS. Lovastatin inhibits oxidized low-density lipoprotein-induced plasminogen activator inhibitor and transforming growth factor-beta1 expression via a decrease in Ras/extracellular signal-regulated kinase activity in mesangial cells. Transl Res 2008; 151:27-35. [PMID: 18061125 DOI: 10.1016/j.trsl.2007.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/29/2022]
Abstract
Oxidized low-density lipoprotein (Ox-LDL) might be involved in the progression of renal disease. Ox-LDL stimulation of plasminogen activator inhibitor-1 (PAI-1) expression via transforming growth factor-beta (TGF-beta)/Smad signaling in mesangial cells required activation of extracellular signal-regulated kinase (ERK). Mevalonate depletion by 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors, or statins, decreases the levels of farnesyl pyrophosphate (FPP) for isoprenylation of Ras. We postulate that statins may ameliorate the Ox-LDL-induced mesangial matrix accumulation by inhibiting Ras/ERK activation with subsequent downregulation of TGF-beta target genes. Quiescent mesangial cells were incubated for 18 h with and without the presence of lovastatin before 50 microg/mL of Ox-LDL treatment for 1 h. Lovastatin inhibited markedly the stimulatory effects of Ox-LDL on ERK1/2 activation, nuclear Smad3 expression, TGF-beta1 and PAI-1 mRNA and protein expression, and PAI-1 luciferase activity. These inhibitory effects of lovastatin were reversed almost completely by mevalonate or FPP. Similar to lovastatin, FTI-277, which is an inhibitor of Ras farnesylation, decreased the Ox-LDL-induced activation of ERK/Smad3 and induction of TGF-beta1/PAI-1. These results indicate that lovastatin prevents the Ox-LDL-induced Ras/ERK activation that results in inhibition of Smad3 activation in mesangial cells with subsequent downregulation of TGF-beta target genes. Thus, statins seem to have antifibrotic effects through their anti-TGF-beta response that are relevant in the treatment of chronic renal disease with dyslipidemia.
Collapse
Affiliation(s)
- Chi Young Song
- Department of Pathology, Seoul National University College of Medicine, Chongno-gu, Yongon-dong 28, Seoul, Korea
| | | | | |
Collapse
|
6
|
Floege J, Eitner F, Alpers CE. A New Look at Platelet-Derived Growth Factor in Renal Disease. J Am Soc Nephrol 2007; 19:12-23. [DOI: 10.1681/asn.2007050532] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
7
|
Wali VB, Sylvester PW. Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells. Lipids 2007; 42:1113-23. [PMID: 17701065 DOI: 10.1007/s11745-007-3102-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 07/16/2007] [Indexed: 01/24/2023]
Abstract
Statins are potent inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase and display anticancer activity, but their clinical use is limited by their high-dose toxicity. Similarly, gamma-tocotrienol, an isoform of vitamin E, also reduces HMGCoA reductase activity and displays potent anticancer activity. Studies were conducted to determine if combined low dose treatment of gamma-tocotrienol with individual statins resulted in a synergistic antiproliferative effect on neoplastic mouse +SA mammary epithelial cells. Treatment with 3-4 microM gamma-tocotrienol or 2-8 microM simvastatin, lovastatin or mevastatin alone resulted in a significant decrease, whereas treatment with 10-100 microM pravastatin had no effect on +SA cell growth. However, combined treatment of subeffective doses (0.25 or 10 microM) of individual statins with 0.25-2.0 microM gamma-tocotrienol resulted in a dose-responsive synergistic inhibition in +SA cell proliferation. Additional studies showed that treatment with subeffective doses of individual statins or gamma-tocotrienol alone had no effect, whereas combined treatment of these compounds resulted in a relatively large decrease in intracellular levels of phosphorylated (activated) MAPK, JNK, p38, and Akt. These findings strongly suggest that combined low dose treatment of gamma-tocotrienol with individual statins may have potential value in the treatment of breast cancer without causing myotoxicity that is associated with high dose statin treatment.
Collapse
Affiliation(s)
- Vikram B Wali
- College of Pharmacy, University of Louisiana at Monroe, 700 University Ave., Monroe, LA 71209-0470, USA
| | | |
Collapse
|
8
|
Cerezo-Guisado M, GarcíA-Román N, García-MaríN L, Álvarez-Barrientos A, Bragado M, Lorenzo M. Lovastatin inhibits the extracellular-signal-regulated kinase pathway in immortalized rat brain neuroblasts. Biochem J 2007; 401:175-83. [PMID: 16952276 PMCID: PMC1698684 DOI: 10.1042/bj20060731] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have shown previously that lovastatin, a 3-hydroxy-3-methyl- glutaryl coenzyme A reductase inhibitor, induces apoptosis in spontaneously immortalized rat brain neuroblasts. In the present study, we analysed the intracellular signal transduction pathways by which lovastatin induces neuroblast apoptosis. We showed that lovastatin efficiently inhibited Ras activation, which was associated with a significant decrease in ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Lovastatin also decreased CREB phosphorylation and CREB-mediated gene expression. The effects of lovastatin on the Ras/ERK1/2/CREB pathway were time- and concentration-dependent and fully prevented by mevalonate. In addition, we showed that two MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitors, PD98059 and PD184352, were poor inducers of apoptosis in serum-treated neuroblasts. However, these inhibitors significantly increased apoptosis induced by lovastatin treatment. Furthermore, we showed that pharmacological inhibition of both MEK and phosphoinositide 3-kinase activities was able to induce neuroblast apoptosis with similar efficacy as lovastatin. Our results suggest that lovastatin triggers neuroblast apoptosis by regulating several signalling pathways, including the Ras/ERK1/2 pathway. These findings might also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.
Collapse
Affiliation(s)
- Maria Isabel Cerezo-Guisado
- *Departamento de Bioquímica, Biología Molecular y Genética Universidad de Extremadura, E-10071 Cáceres, Spain
| | - Natalia GarcíA-Román
- †Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | - Maria Julia Bragado
- *Departamento de Bioquímica, Biología Molecular y Genética Universidad de Extremadura, E-10071 Cáceres, Spain
| | - Maria Jesús Lorenzo
- *Departamento de Bioquímica, Biología Molecular y Genética Universidad de Extremadura, E-10071 Cáceres, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Khwaja A, Sharpe CC, Noor M, Hendry BM. The role of geranylgeranylated proteins in human mesangial cell proliferation. Kidney Int 2006; 70:1296-304. [PMID: 16929252 DOI: 10.1038/sj.ki.5001713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Rho family of guanine 5'-triphosphatases (GTPases) play a key role in regulating cell proliferation, tubulointerstitial fibrosis, and glomerular hemodynamics. The post-translational prenylation of RhoGTPases by the addition of a geranylgeranyl moiety is critical for cellular localization and signaling activity. This study investigates the effects of (i) inhibiting geranylgeranylation (GG) in human mesangial cell (HMC) proliferation and apoptosis, using GGTI 298, a specific inhibitor of GG and (ii) lovastatin, an HMG-coacetyl A-reductase inhibitor, which depletes the availability of prenylation substrates. HMC proliferation was assessed using an assay of viable cell number and measuring bromodeoxyuridine (BrdU) incorporation. Hoechst 33342 staining was used to determine apoptosis. Extracellular signal-regulated protein kinase (Erk)1/2 and Akt activation were analysed by Western blotting. Rho activation was determined using the Rhotekin pull-down assay. Immunocytochemistry was performed to study the effects on the actin cytoskeleton and RhoA localization. GGTI 298 (10-20 muM) and lovastatin (5-10 muM) potently inhibited platelet-derived growth factor and serum-stimulated HMC proliferation and induced apoptosis. These effects of lovastatin were attenuated by co-incubation with geranylgeranylpyrophosphate. C3 exoenzyme, a clostridial toxin that specifically targets Rho also inhibited BrdU incorporation and promoted apoptosis. GGTI 298 increased cytosolic expression of RhoA, prevented RhoA activation, and inhibited the activation of Erk1/2 and the survival protein Akt. GGTI 298, lovastatin, and C3 exoenzyme inhibit HMC proliferation and promote apoptosis. Inhibiting GG increases cytosolic RhoA expression, disrupts the actin cytoskeleton, and inhibits RhoA activation. These results suggest that targeting geranylgeranylated proteins with statins or GGTI 298 is a promising therapeutic strategy in human mesangioproliferative renal disease.
Collapse
Affiliation(s)
- A Khwaja
- Department of Renal Medicine, GKT School of Medicine, King's College London, Bessemer Road, London, UK
| | | | | | | |
Collapse
|
10
|
Boucher K, Siegel CS, Sharma P, Hauschka PV, Solomon KR. HMG-CoA reductase inhibitors induce apoptosis in pericytes. Microvasc Res 2006; 71:91-102. [PMID: 16427097 DOI: 10.1016/j.mvr.2005.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Pericytes, which surround endothelial cells in precapillary arterioles, capillaries, and postcapillary venules, are important for the development, maturation, and maintenance of the vascular system. Pericytes are also pluripotent cells that can differentiate into a variety of mesenchymal cells including smooth muscle cells and osteoblasts. Possibly because of their vasculature regulating activities and ability to differentiate in situ, pericytes are implicated in several diseases with vascular complications, including diabetic retinopathy, as well as Reynaud's Syndrome, central nervous system dementias, and vascular calcification among others. Statin drugs, which block the conversion of HMG-CoA to mevalonate in the cholesterol synthesis pathway, are known to have apoptotic and growth inhibitory effects on cells in vitro and complex pleiotropic effects on cells and tissues in vivo. Recently, evidence has emerged that statin drug use in human patients results in a significant 20% reduction in cancer incidence. It is not known whether these results are due to direct statin action on normal tissue, growth inhibitory/pro-apoptotic effects on tumor cells, and/or effects on angiogenesis. Because of the role of pericytes in angiogenesis and the effects of statins on cancer incidence, we tested the direct effects of statins on pericytes. Specifically, we demonstrate that 3 statins, simvastatin, lovastatin, and mevastatin induce dose-dependent apoptosis in the TR-PCT1 pericyte cell line, that simvastatin (empirically shown to be the most potent of the 3 statins) induces similar levels of apoptosis in freshly isolated pericytes, and that simvastatin-induced apoptosis in pericytes is cholesterol, caspase-3, and caspase-7 mediated.
Collapse
Affiliation(s)
- Kelly Boucher
- Department Orthopaedic Surgery, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
11
|
Hemmerlin A, Gerber E, Feldtrauer JF, Wentzinger L, Hartmann MA, Tritsch D, Hoeffler JF, Rohmer M, Bach TJ. A review of tobacco BY-2 cells as an excellent system to study the synthesis and function of sterols and other isoprenoids. Lipids 2004; 39:723-35. [PMID: 15638240 DOI: 10.1007/s11745-004-1289-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate (IPP), the universal precursor for isoprenoid biosynthesis. In this paper we review findings and observations made primarily with tobacco BY-2 cells (TBY-2), which have proven to be an excellent system in which to study the two biosynthetic pathways. A major advantage of these cells as an experimental system is their ability to readily take up specific inhibitors and stably- and/or radiolabeled precursors. This permits the functional elucidation of the role of isoprenoid end products and intermediates. Because TBY-2 cells undergo rapid cell division and can be synchronized within the cell cycle, they constitute a highly suitable test system for determination of those isoprenoids and intermediates that act as cell cycle inhibitors, thus giving an indication of which branches of the isoprenoid pathway are essential. Through chemical complementation; and use of precursors, intracellular compartmentation can be elucidated, as well as the extent to which the plastidial and cytosolic pathways contribute to the syntheses of specific groups of isoprenoids (e.g., sterols) via exchange of intermediates across membranes. These topics are discussed in the context of the pertinent literature.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (UPR 2357), Département Fonctions et Biosynthèse des Isoprénoïdes, Université Louis Pasteur, F-67083 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rae FK, Martinez G, Gillinder KR, Smith A, Shooter G, Forrest AR, Grimmond SM, Little MH. Anlaysis of complementary expression profiles following WT1 induction versus repression reveals the cholesterol/fatty acid synthetic pathways as a possible major target of WT1. Oncogene 2004; 23:3067-79. [PMID: 15021918 DOI: 10.1038/sj.onc.1207360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Wilms' tumour suppressor gene, WT1, encodes a zinc-finger protein that is mutated in Wilms' tumours and other malignancies. WT1 is one of the earliest genes expressed during kidney development. WT1 proteins can activate and repress putative target genes in vitro, although the in vivo relevance of such target genes often remains unverified. To better understand the role of WT1 in tumorigenesis and kidney development, we need to identify downstream target genes. In this study, we have expression profiled human embryonic kidney 293 cells stably transfected to allow inducible WT1 expression and mouse mesonephric M15 cells transfected with a WT1 antisense construct to abolish endogenous expression of all WT1 isoforms to identify WT1-responsive genes. The complementary overlap between the two cell lines revealed a pronounced repression of genes involved in cholesterol biosynthesis by WT1. This pathway is transcriptionally regulated by the sterol responsive element-binding proteins (SREBPs). Here, we provide evidence that the C-terminal end of the WT1 protein can directly interact with SREBP, suggesting that WT1 may modify the transcriptional function of SREBPs via a direct protein-protein interaction. Therefore, the tumour suppressor activities of WT1 may be achieved by repressing the mevalonate pathway, thereby controlling cellular proliferation and promoting terminal differentiation.
Collapse
Affiliation(s)
- Fiona Kaven Rae
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu T, Gibson DP, Carr GJ, Torontali SM, Tiesman JP, Chaney JG, Aardema MJ. Identification of a gene expression profile that discriminates indirect-acting genotoxins from direct-acting genotoxins. Mutat Res 2004; 549:5-27. [PMID: 15120960 DOI: 10.1016/j.mrfmmm.2003.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 11/16/2003] [Accepted: 11/17/2003] [Indexed: 04/29/2023]
Abstract
During the safety evaluation process of new drugs and chemicals, a battery of genotoxicity tests is conducted starting with in vitro genotoxicity assays. Obtaining positive results in in vitro genotoxicity tests is not uncommon. Follow-up studies to determine the biological relevance of positive genotoxicity results are costly, time consuming, and utilize animals. More efficient methods, especially for identifying a putative mode of action like an indirect mechanism of genotoxicity (where DNA molecules are not the initial primary targets), would greatly improve the risk assessment for genotoxins. To this end, we are participating in an International Life Sciences Institute (ILSI) project involving studies of gene expression changes caused by model genotoxins. The purpose of the work is to evaluate gene expression tools in general, and specifically for discriminating genotoxins that are direct-acting from indirect-acting. Our lab has evaluated gene expression changes as well as micronuclei (MN) in L5178Y TK(+/-) mouse lymphoma cells treated with six compounds. Direct-acting genotoxins (where DNA is the initial primary target) that were evaluated included the DNA crosslinking agents, mitomycin C (MMC) and cisplatin (CIS), and an alkylating agent, methyl methanesulfonate (MMS). Indirect-acting genotoxins included hydroxyurea (HU), a ribonucleotide reductase inhibitor, taxol (TXL), a microtubule inhibitor, and etoposide (ETOP), a DNA topoisomerase II inhibitor. Microarray gene expression analysis was conducted using Affymetrix mouse oligonucleotide arrays on RNA samples derived from cells which were harvested immediately after the 4 h chemical treatment, and 20 h after the 4 h chemical treatment. The evaluation of these experimental results yields evidence of differentially regulated genes at both 4 and 24 h time points that appear to have discriminating power for direct versus indirect genotoxins, and therefore may serve as a fingerprint for classifying chemicals when their mechanism of action is unknown.
Collapse
Affiliation(s)
- Ting Hu
- The Procter and Gamble Company, Miami Valley Laboratories, P.O. Box 538707 09, Cincinnati, OH 45253-8707, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kamiyama M, Utsunomiya K, Taniguchi K, Yokota T, Kurata H, Tajima N, Kondo K. Contribution of Rho A and Rho kinase to platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells. J Atheroscler Thromb 2003; 10:117-23. [PMID: 12740486 DOI: 10.5551/jat.10.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In order to identify small G protein (s) which contributes to the proliferation of vascular smooth muscle cells (VSMCs), we examined the effect of an HMG-CoA reductase inhibitor (cerivastatin), a farnesyltransferase inhibitor (FTI-277), a geranyl geranyl transferase inhibitor (GGTI-286) and a Rho kinase inhibitor (Y-27632) on the proliferation of cultured rat VSMCs stimulated with 20ng/ml platelet-derived growth factor (PDGF)-BB. Cerivastatin and GGTI-286, but not FTI-277, suppressed the PDGF-BB-induced activation of extracellular signal related kinase (ERK1/2). The inhibitory effect of cerivastatin on the PDGF-BB-induced activation of ERK1/2 was fully recovered by the addition of geranylgeranyl pyrophosphate (GGPP), but not farnesyl pyrophosphate (FPP). Cerivastatin and GGTI-286, but not FTI-277, suppressed the PDGF-BB-induced [3H] thymidine incorporation and activation of ornitine decarboxylase (ODC), both of which were fully recovered by the addition of GGPP, but not FPP. These data indicate that the PDGF-BB-induced activation of ERK1/2 and proliferation of VSMCs depend upon geranylgeranylated small G protein. Immunoblotting analysis revealed the upregulation of Rho A protein in the membrane fractions of VSMCs stimulated by PDGF-BB. Furthermore, Y-27632 suppressed the PDGF-BB-induced activation of ERK1/2 and proliferation of VSMCs. On the basis of these data, we conclude that PDGF-BB stimulates the proliferation of VSMCs via the activation of Rho A. Rho kinase plays an important role in this process as an effector of Rho A.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Choi M, Rolle S, Rane M, Haller H, Luft FC, Kettritz R. Extracellular signal-regulated kinase inhibition by statins inhibits neutrophil activation by ANCA. Kidney Int 2003; 63:96-106. [PMID: 12472772 DOI: 10.1046/j.1523-1755.2003.00718.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) may modulate cellular inflammatory functions independent of serum cholesterol. We tested the hypothesis that statins decrease respiratory burst activity of human polymorphonuclear neutrophils (PMN) in response to anti-neutrophil cytoplasmic antibodies (ANCA). METHODS Neutrophils were isolated from healthy human volunteers, human immunoglobulins were isolated from patients with proteinase-3 (PR3)- and myeloperoxidase (MPO)-ANCA. Superoxide generation was measured by the ferricytochrome C assay and the nitro blue tetrazolium (NBT) test. ANCA antigen expression was measured by flow cytometry and phosphorylation of mitogen-activated protein kinase (MAPK) was assessed by Western blotting. RESULTS Cerivastatin and simvastatin inhibited respiratory burst activity to ANCA dose-dependently (1 to 25 micromol/L). Tumor necrosis factor-alpha (TNF-alpha)-primed neutrophils released 26.7 +/- 2.8 nmol O2-/0.75 x 106 PMN/45 min and 10 micromol/L simvastatin reduced this amount to 18.0 +/- 2.1 nmol. The inhibitory effect was confirmed by the NBT test. The respiratory burst decrease could not be reversed by 500 micromol/L mevalonic acid (MVA). In this assay, both statins also inhibited the response to human ANCA. PR3-ANCA resulted in 19.4 +/- 2.0 nmol O2- nmol. This amount was decreased to 6.0 +/- 1.2 nmol by preincubation with 10 micromol/L simvastatin (P < 0.01). For MPO-ANCA, the values were 22.6 +/- 2.8 nmol for controls versus 16.7 +/- 3.1 nmol with statin (P < 0.01). By FACS, simvastatin decreased TNF-alpha-mediated ANCA antigen translocation (from 219 +/- 33 to 180 +/- 35 MFI for PR3 and 24.0 +/- 2.4 to 18.3 +/- 1.1 for MPO). Finally, since p38 MAPK and ERK control TNF-alpha priming, we studied the effects of both statins on MAPK. Western blotting showed that statins inhibited TNF-alpha-induced ERK phosphorylation in a dose dependent fashion, but had no effect on p38. CONCLUSION These findings demonstrate that HMG-CoA reductase inhibitors decrease respiratory burst activity of human PMN in response to ANCA. This effect was independent of mevalonate, but involved inhibition of ERK activation during TNF-alpha priming. Our data suggest that HMG-CoA reductase inhibitors may help limit inflammatory responses.
Collapse
Affiliation(s)
- Mira Choi
- HELIOS Klinkum-Berlin Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Canuto RA, Muzio G, Maggiora M, Trombetta A, Martinasso G, Autelli R, Costelli P, Bonelli G, Baccino FM. Apoptosis induced by clofibrate in Yoshida AH-130 hepatoma cells: role of HMG-CoA reductase. J Lipid Res 2003; 44:56-64. [PMID: 12518023 DOI: 10.1194/jlr.m200072-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clofibrate is a hypolipidemic drug belonging to the peroxisome proliferator (PP) family. PPs are well-recognized hepatocarcinogens, though only for rodents and not for humans. Their oncogenicity is usually ascribed to mitogenic or antiapoptotic action. However, we have reported that clofibrate can trigger fast and extensive apoptosis in rodent and human tumor cell lines. The present study examines the possible mechanisms involved in clofibrate-induced apoptosis in AH-130 hepatoma cells. The results show that the apoptogenic effect of clofibrate does not depend on induction of peroxisome proliferator activated receptors (PPARs), but on interference with HMG-CoA reductase (HMGR), a key enzyme that regulates cholesterol biosynthesis and production of isoprenoid units for protein farnesylation. The level and activity of HMGR mRNA are reduced in clofibrate-treated AH-130 cells and apoptosis can be partially prevented by addition of mevalonate. Moreover, cholesterol and cholesterol ester content decreases early in mitochondria, and cytocrome c is released in the cytosol. On the contrary, perturbations at the level of protein farnesylation are not important in determining the fast apoptogenic effect, since treatment of AH-130 cells with an inhibitor of farnesyltransferase induces apoptosis only after 4 h. In conclusion, inhibition of HMGR and decreased cholesterol content are crucial events in clofibrate-induced apoptosis in AH-130 hepatoma cells.
Collapse
Affiliation(s)
- Rosa A Canuto
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Corso Raffaello 30, 10125 Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cheng Q, Gerald Robison W, Samuel Zigler J. Geranylgeranyl pyrophosphate counteracts the cataractogenic effect of lovastatin on cultured rat lenses. Exp Eye Res 2002; 75:603-9. [PMID: 12457872 DOI: 10.1006/exer.2002.2053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins are commonly prescribed cholesterol-lowering agents which inhibit the rate-limiting enzyme of the cholesterol biosynthetic pathway. In addition to inhibiting cholesterol synthesis, statins also inhibit the synthesis of other sterol and non-sterol compounds produced by the pathway including the isoprenoids, farnesyl (FP) and geranylgeranyl pyrophosphate (GGP). Certain proteins, most notably small GTP-binding proteins of the Ras superfamily, must be post-translationally modified by addition of a farnesyl or geranylgeranyl moiety in order to be properly targeted to membranes and to be active. Statins have been shown to affect cellular processes such as proliferation, signaling and apoptosis and it is likely that these effects are due, at least in part, to decreased isoprenoid synthesis. Certain statins have been shown to produce cataracts in experimental animals. We have previously demonstrated that lenses exposed to lovastatin during organ culture may develop cataracts as well, and we proposed that this resulted from decreased prenylation of small GTP-binding proteins. To test our hypothesis, rat lenses were exposed to lovastatin in organ culture with concomitant supplementation of the medium with GGP and/or FP. The results clearly demonstrated that GGP strongly inhibited lovastatin-induced lens opacification in this system while FP had little effect. GGP also markedly reduced the histological changes and the increased epithelial cell apoptosis induced in the cultured lenses by lovastatin. The data indicate that inhibition of protein prenylation, perhaps of Rho GTPases, is an important factor in the lovastatin-induced cataract in vitro.
Collapse
Affiliation(s)
- Qiufang Cheng
- Laboratory of Mechanisms of Ocular Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
18
|
van de Donk NWCJ, Kamphuis MMJ, Lokhorst HM, Bloem AC. The cholesterol lowering drug lovastatin induces cell death in myeloma plasma cells. Leukemia 2002; 16:1362-71. [PMID: 12094262 DOI: 10.1038/sj.leu.2402501] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Accepted: 01/17/2002] [Indexed: 11/08/2022]
Abstract
Lovastatin is an irreversible inhibitor of HMG-CoA reductase and blocks the production of mevalonate, a critical compound in the production of cholesterol and isoprenoids. Isoprenylation of target proteins, like the GTP-binding protein Ras, is essential for their membrane localization and subsequent participation in intracellular signaling cascades. Lovastatin effectively decreased the viability of plasma cells from cell lines (n = 10) and myeloma patients' samples (n = 8) in a dose- and time-dependent way. Importantly, co-incubation of lovastatin with dexamethasone had a synergistic effect in inducing plasma cell cytotoxity. This effect was not the consequence of a change in the protein expression levels of Bcl-2 or Bax induced by lovastatin. The decrease in plasma cell viability was the result of induction of apoptosis and inhibition of proliferation. Mevalonate effectively reversed the cytotoxic and cytostatic effects of lovastatin in plasma cells. The cytotoxic activity of lovastatin was higher in Pgp expressing cell lines, but did not correlate with the multidrug resistance (MDR)-related proteins LRP, Bcl-2 and Bax. Lovastatin treatment resulted in a shift of Ras localization from the membrane to the cytosol that was reversed by mevalonate. The data presented in this paper warrant study of lovastatin alone or in combination with therapeutic drugs, in the treatment of myeloma patients.
Collapse
Affiliation(s)
- N W C J van de Donk
- Department of Immunology, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
19
|
He JS, Horikoshi S, Funabiki K, Shirato I, Tomino Y. Cerivastatin inhibits fetal calf serum-induced DNA synthesis in cultured rat mesangial cells. Nephrology (Carlton) 2002. [DOI: 10.1046/j.1440-1797.2002.00077.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Ownby SE, Hohl RJ. Farnesol and geranylgeraniol: prevention and reversion of lovastatin-induced effects in NIH3T3 cells. Lipids 2002; 37:185-92. [PMID: 11908910 DOI: 10.1007/s11745-002-0879-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mevalonic acid-derived intermediates in the cholesterol biosynthetic pathway have been recognized as being critical to the isoprenylation of a variety of growth-regulating proteins, including those of the RAS superfamily. Treatment of cells with lovastatin, a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, depletes cells of mevalonic acid and thus blocks the isoprenylation of proteins in the RAS superfamily. In NIH3T3 cells pretreated with lovastatin, subsequent addition of farnesol (FOH), but not geranylgeraniol (GGOH), reverses lovastatin's block of RAS isoprenylation. Neither FOH nor GGOH prevents lovastatin-induced inhibition of RAS isoprenylation when added to cells concurrently with lovastatin. In intact cells, 167 microM FOH and 125 microM GGOH decrease incorporation of [14C]acetate into cholesterol by approximately 50 and 75%, respectively. Results suggest that the radio-label from either [3H]FOH or [3H]GGOH is incorporated into cholesterol. Co-treatment of cells with lovastatin or mevalonic acid did not significantly alter [3H]FOH or [3H]GGOH incorporation into cholesterol. Lovastatin induces cell rounding; GGOH, but not FOH, both prevents and reverses lovastatin-induced cell rounding. These results provide additional evidence for the existence of a novel "isoprenoid shunt" that differentially utilizes FOH and GGOH as metabolic precursors for isoprenoids that have been depleted by lovastatin treatment.
Collapse
Affiliation(s)
- Susan E Ownby
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City 52242-1081, USA
| | | |
Collapse
|
21
|
HE JS, HORIKOSHI S, FUNABIKI K, SHIRATO I, TOMINO Y. Effect of NK-104 on proliferation of cells. Int J Organ Transplant Med 2001. [DOI: 10.1016/s1561-5413(09)60061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Satoh K, Ichihara K, Landon EJ, Inagami T, Tang H. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors block calcium-dependent tyrosine kinase Pyk2 activation by angiotensin II in vascular endothelial cells. involvement of geranylgeranylation of small G protein Rap1. J Biol Chem 2001; 276:15761-7. [PMID: 11278472 DOI: 10.1074/jbc.m009165200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We recently reported the calcium-dependent activation of tyrosine kinase Pyk2 by angiotensin II (Ang II) in pulmonary vein endothelial cells (PVEC). Since Pyk2 has no calcium binding domain, and neither Ca(2+) nor Ca(2+)/calmodulin directly activates Pyk2, it is not clear how Ca(2+) transduces the signal to activate Pyk2, a key tyrosine kinase, in the early events of Ang II signaling. In the present study, we investigated the mechanism of the calcium-dependent activation of Pyk2 in response to Ang II by using 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors and isoprenoid intermediates in PVEC. We have obtained substantial evidence indicating that Ang II activates Pyk2 through calcium-mediated activation of the geranylgeranylated small G protein Rap1 and the Rap1 association with Pyk2. Thus, the small G protein Rap1 is an intermediary signaling molecule linking Ang II-induced calcium signal to Pyk2 activation in PVEC. In addition, our results indicate that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, a class of cholesterol-lowering drugs, could interrupt Ang II signaling independent of cholesterol lowering in endothelial cells.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Calcimycin/pharmacology
- Calcium/metabolism
- Calcium/pharmacology
- Calmodulin/pharmacology
- Cell Membrane/metabolism
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Activation/drug effects
- Focal Adhesion Kinase 2
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Protein Prenylation
- Protein-Tyrosine Kinases/metabolism
- Pulmonary Veins
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/physiology
- Simvastatin/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- rap1 GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- K Satoh
- Departments of Biochemistry and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
23
|
Skaletz-Rorowski A, Müller JG, Kroke A, Waltenberger J, Pulawski E, Pinkernell K, Breithardt G. Lovastatin blocks basic fibroblast growth factor-induced mitogen-activated protein kinase signaling in coronary smooth muscle cells via phosphatase inhibition. Eur J Cell Biol 2001; 80:207-12. [PMID: 11322384 DOI: 10.1078/0171-9335-00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have recently reported that the activation of mitogen-activated protein kinase (MAPK) through specific protein kinase C (PKC) isoforms is required for basic fibroblast growth factor (bFGF)-induced proliferation of coronary smooth muscle cells (cSMC). In this study, we investigated the effects of the 3hydroxy-3-methyl glutaryl coenzyme A (HMG CoA) reductase inhibitor lovastatin on bFGF-induced signal transduction in cSMC. The present study shows that lovastatin inhibits bFGF-stimulated DNA synthesis in cSMC, and that this inhibition is reversed by mevalonate (50 micromol/l) and by geranylgeranyl-pyrophosphate (1-5 micromol/l). Although lovastatin prevented Ras farnesylation the amount of bFGF-stimulated MAPK phosphorylation decreased only partially after lovastatin treatment. In addition, lovastatin pretreatment resulted in a sustained phosphorylation of MAPK. We observed a dose-dependent lovastatin-dependent increase in PKC activity, which could be prevented by mevalonate. This increase was comparable to the one induced by calyculin A (2 nmol/l), an inhibitor of protein phosphatase PP-1 and PP-2A. Lovastatin inhibited the expression of the PP-1 protein, which is involved in bFGF-induced DNA synthesis in cSMC. Thus, our data suggest that, lovastatin possibly affects the dephosphorylation processes of PKC and MAPK by inhibition of PP-1/PP-2A protein phosphatases which are involved in the bFGF-induced mitogenesis in cSMC.
Collapse
Affiliation(s)
- A Skaletz-Rorowski
- Institute for Arteriosclerosis Research, University of Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Genersch E, Hayess K, Neuenfeld Y, Haller H. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J Cell Sci 2000; 113 Pt 23:4319-30. [PMID: 11069776 DOI: 10.1242/jcs.113.23.4319] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelial expression of matrix metalloproteinase-9 (MMP-9), which degrades native type IV collagen, was implicated as a prerequisite for angiogenesis. Therefore, the aim of this study was to determine signaling requirements that regulate MMP-9 expression in endothelial cells. Both, primary and permanent human umbilical vein endothelial cells (HUVEC and ECV304, respectively) were stimulated with phorbol 12-myristate 13-acetate (PMA) and the cytokine tumor necrosis factor-(alpha) (TNF(alpha)) to induce MMP-9 expression. While both cell types responded to PMA at the protein, mRNA and promoter level by induction of MMP-9, TNF(alpha) caused this response only in ECV304. Inhibitors specific for mitogen-activated protein/ERK kinase 1/2 (MEK1/2), protein kinase C (PKC), and Ras and co-transfections of wild-type and mutant Raf were used to elucidate the signaling cascades involved. Thus, we could show that the Raf/MEK/ERK cascade is mainly responsible for MMP-9 induction in endothelial cells and that this cascade is regulated independently of PKC and Ras subsequent to TNF(alpha) stimulation and in a PKC-dependent manner as a result of PMA treatment. In addition, PMA triggers a Ras-dependent signal transduction pathway bypassing the phosphorylation of ERK. Finally, we provide evidence that sustained phosphorylation of ERK1/2 is necessary but not sufficient for expression of MMP-9.
Collapse
Affiliation(s)
- E Genersch
- Franz Volhard Clinic at the Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Wiltberg Strasse 50, Germany.
| | | | | | | |
Collapse
|
25
|
Park JK, Müller DN, Mervaala EM, Dechend R, Fiebeler A, Schmidt F, Bieringer M, Schäfer O, Lindschau C, Schneider W, Ganten D, Luft FC, Haller H. Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects. Kidney Int 2000; 58:1420-30. [PMID: 11012877 DOI: 10.1046/j.1523-1755.2000.00304.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Statins are effective in prevention of end-organ damage; however, the benefits cannot be fully explained on the basis of cholesterol reduction. We used an angiotensin II (Ang II)-dependent model to test the hypothesis that cerivastatin prevents leukocyte adhesion and infiltration, induction of inducible nitric oxide synthase (iNOS), and ameliorates end-organ damage. METHODS We analyzed intracellular targets, such as mitogen-activated protein kinase and transcription factor (nuclear factor-kappaB and activator protein-1) activation. We used immunohistochemistry, immunocytochemistry, electrophoretic mobility shift assays, and enzyme-linked immunosorbent assay techniques. We treated rats transgenic for human renin and angiotensinogen (dTGR) chronically from week 4 to 7 with cerivastatin (0.5 mg/kg by gavage). RESULTS Untreated dTGR developed hypertension, cardiac hypertrophy, and renal damage, with a 100-fold increased albuminuria and focal cortical necrosis. dTGR mortality at the age of seven weeks was 45%. Immunohistochemistry showed increased iNOS expression in the endothelium and media of small vessels, infiltrating cells, afferent arterioles, and glomeruli of dTGR, which was greater in cortex than medulla. Phosphorylated extracellular signal regulated kinase (p-ERK) was increased in dTGR; nuclear factor-kappaB and activator protein-1 were both activated. Cerivastatin decreased systolic blood pressure compared with untreated dTGR (147 +/- 14 vs. 201 +/- 6 mm Hg, P < 0.001). Albuminuria was reduced by 60% (P = 0.001), and creatinine was lowered (0.45 +/- 0.01 vs. 0.68 +/- 0.05 mg/dL, P = 0. 003); however, cholesterol was not reduced. Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression was diminished, while neutrophil and monocyte infiltration in the kidney was markedly reduced. ERK phosphorylation and transcription factor activation were reduced. In addition, in vitro incubation of vascular smooth muscle cells with cerivastatin (0.5 micromol/L) almost completely prevented the Ang II-induced ERK phosphorylation. CONCLUSION Cerivastatin reduced inflammation, cell proliferation, and iNOS induction, which led to a reduction in cellular damage. Our findings suggest that 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibition ameliorates Ang II-induced end-organ damage. We suggest that these effects were independent of cholesterol.
Collapse
Affiliation(s)
- J K Park
- Franz Volhard Clinic, Medical Faculty of the Charité, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim SI, Kim HJ, Han DC, Lee HB. Effect of lovastatin on small GTP binding proteins and on TGF-beta1 and fibronectin expression. KIDNEY INTERNATIONAL. SUPPLEMENT 2000; 77:S88-92. [PMID: 10997696 DOI: 10.1046/j.1523-1755.2000.07714.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown that lovastatin, an inhibitor of 3 hydroxy-3-methylglutary coenzyme A (HMG CoA) reductase, delays development and progression of diabetic nephropathy in streptozotocine-induced diabetic rats through suppression of glomerular transforming growth factor (TGF)-beta1 mRNA expression. We have also shown that lovastatin suppresses both control and high glucose (HG)-induced TGF-beta1 and fibronectin mRNA expression and protein synthesis by rat mesangial cell (RMC) and that this down-regulation by lovastatin is reversed by mevalonate. It was postulated that this down-regulation may be linked to signaling of small guanine triphosphate (GTP)-binding proteins and mediated by the limitation of isoprenoids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) in RMC. To determine the isoprenoid and small GTP-binding proteins involved in TGF-beta1 and fibronectin expression. FPP or GGPP was added alone or in combination to RMC treated with lovastatin cultured under normal or high glucose condition. Suppression of TGF-beta1 and fibronectin expression by lovastatin was reversed effectively when GGPP was added alone. Partial reversal of lovastatin effect on fibronectin and TGF-beta1 expression was found when FPP was added alone. Adding both GGPP and FPP resulted in complete reversal of lovastatin effect on fibronectin but not TGF-beta1 suggesting that fibronectin and TGF-beta1 are regulated differently. Furthermore, luciferase activity of RMC cotransfected with fibronectin promoter reporter system and plasmid-expressing C3 exoenzyme (a specific inactivator of Rho family GTP binding proteins, pEFC3) was completely suppressed when compared with RMC cotransfected with empty vector, pEF. Because geranylgeranylation is usually involved in post-translational modification and membrane targeting of Rho family small GTP binding proteins, these data indicate that Rho family small GTP-binding proteins rather than Ras family small GTP binding proteins may play a key role in the TGF-beta1 and fibronectin expression in RMC.
Collapse
Affiliation(s)
- S I Kim
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | | | | | | |
Collapse
|
27
|
Allampallam K, Dutt D, Nair C, Shetty V, Mundle S, Lisak L, Andrews C, Ahmed B, Mazzone L, Zorat F, Borok R, Muzammil M, Gundroo A, Ansaarie I, Raza A. The clinical and biologic significance of abnormal lipid profiles in patients with myelodysplastic syndromes. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:247-55. [PMID: 10813538 DOI: 10.1089/152581600319469] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Serum lipid profiles were obtained in 108 patients with myelodysplastic syndrome (MDS) and compared to 28 healthy volunteers. Serum cholesterol and low-density and high-density lipoproteins (LDL and HDL) were found to be significantly lower in MDS patients than in normals (p = 0.0001, 0.0038 and 0.037, respectively). This difference was significant for all MDS categories. Serum cholesterol and HDL were negatively related to biopsy cellularity (p = 0.001 and 0.0001, respectively), and serum triglycerides were negatively related to labeling index (p = 0.0003). No differences were noted in the lipid profiles of MDS patients with normal versus abnormal karyotypes. However, low-risk MDS patients with abnormal karyotypes had significantly lower triglyceride levels compared with the high-risk patients (p = 0.027), as did low-risk patients with normal cytogenetics (p = 0.015). Serum HDL levels were significantly higher for the low-risk group with normal cytogenetics as well (p = 0.003). We conclude that serum cholesterol, LDL, and HDL are significantly reduced in MDS patients, probably indicating excessive intracellular lipid biosynthesis in the expanding clone. These relatively simple measurements could serve as important prognostic markers and reliable indicators of disease activity in individual patients. Prospective studies to determine their utility as independent variables that guide the need for active therapeutic intervention are warranted.
Collapse
Affiliation(s)
- K Allampallam
- Rush Cancer Institute, Rush-Presbyterian St. Luke's Medical Center, Chicago, IL 60612-3515, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|