1
|
Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019; 96:737-752. [DOI: 10.1124/mol.119.117663] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
|
2
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Arnolds KL, Spencer JV. CXCR4: a virus's best friend? INFECTION GENETICS AND EVOLUTION 2014; 25:146-56. [PMID: 24793563 DOI: 10.1016/j.meegid.2014.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Viruses are dependent on their hosts for replication and dispersal in the environment; thus, the most successful viruses are those that co-evolve with their hosts. CXCR4 is a cellular chemokine receptor that plays central roles in development, hematopoiesis, and immune surveillance through signaling induced by its ligand, CXCL12. The CXCR4-CXCL12 axis has been besieged by many pathogens that employ a range of strategies to modify or exploit CXCR4 activity. While CXCR4 was identified as a critical co-factor for entry of HIV into CD4+ T cells early on, other viruses may utilize CXCR4 to gain cell entry as well. Moreover, several viruses have been found to modulate CXCR4 expression or alter its functional activity, with direct effects on cell trafficking, immune responses, cell proliferation, and cell survival. Because CXCR4 is targeted by a diverse group of viral pathogens, modification of host CXCR4 signaling activity is emerging as a common theme in virus persistence and is likely to be important for subversion of the host immune system. This review highlights major viral pathogens that use and abuse CXCR4 and explores the possible reasons why this chemokine receptor has become "a virus's best friend".
Collapse
Affiliation(s)
- Kathleen L Arnolds
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States.
| |
Collapse
|
4
|
Stambouli N, Wei NN, Jlizi A, Aissa S, Abdelmalek R, Kilani B, Slim A, Tiouiri BAH, Dridi M, Hamza A, Ben Ammar Elgaied A. Structural insight into a novel human CCR5-V130I variant associated with resistance to HIV-1 infection. J Biomol Struct Dyn 2013; 32:1202-10. [PMID: 23869485 DOI: 10.1080/07391102.2013.819297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the identification of a novel CC chemokine receptor 5 (CCR5) variant that seems associated with resistance to HIV-1 infection. The V130I mutation of the CCR5 receptor is located in the intracellular loop ICL2 known as DRY box and described in the literature as a nonsynonymous mutation present in nonhuman primates group. Extensive molecular modeling and dynamics simulations were performed to elucidate the mechanism by which the V130I mutation may induce conformational change of the CCR5 folding protein and prevent the interaction with the β-arrestin protein. Our study provides new mechanistic insight into how a specific mutation in the regulatory domain of CCR5 might alter the structural folding of the DRY box and the possible ICL2 loop binding with the β-arrestin protein, as described in our previous computational study. The results from our large-scale simulations complement recent experimental results and clinical features and offer useful insights into the mechanism behind CCR5 protein folding and signal transduction. In order for HIV, the entry of the virus to the cells must fuse with the CCR5 receptor that sits on the surface of T-helper immune cells. The described V130I mutation in the gene encoding the CCR5 protein may results in a defective CCR5-Arrestin binding complex that blocks entry of the virus.
Collapse
Affiliation(s)
- Nejla Stambouli
- a Faculty of Sciences of Tunis, Laboratory of Genetics , Immunology and Human Pathology , Tunis , Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
6
|
Stambouli N, Dridi M, Wei NN, Jlizi A, Bouraoui A, Elgaaied ABA. Structural insight into the binding complex: β-arrestin/CCR5 complex. J Biomol Struct Dyn 2013; 32:866-75. [PMID: 24404772 DOI: 10.1080/07391102.2013.794373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The chemokine receptor 5 (CCR5) belongs to the superfamily of serpentine G protein-coupled receptors (GPCRs). The DRY motif (Asp, Arg, Tyr) of the intracellular loop 2 (ICL2), which is highly conserved in the GPCRs has been shown to be essential for the stability of folding of CCR5 and the interaction with β-arrestin. But the molecular mechanism by which it recognizes and interacts with β-arrestin has not been elucidated. In the present study, we described the active state of the β-arrestin structure using normal mode analysis and characterized the binding cleft of CCR5-ICL2 with β-arrestin using SABRE© docking tool and molecular dynamics simulation. Based on our computational results, we proposed a mode of binding between the ICL2 loop of CCR5 and β-arrestin structure, and modeled the energetically stable β-arrestin/CCR5 complex. In view of CCR5's importance as a therapeutic target for the treatment of HIV, this observation provides novel insight into the β-arrestin/CCR5 pathway. As a result, the current computational study of the detailed β-arrestin/CCR5 binding complex could provide the rationale for the development of next generation of HIV peptide inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Nejla Stambouli
- a Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences , Tunis , Tunisia
| | | | | | | | | | | |
Collapse
|
7
|
Benamar K, Addou S, Yondorf M, Geller EB, Eisenstein TK, Adler MW. Intrahypothalamic injection of the HIV-1 envelope glycoprotein induces fever via interaction with the chemokine system. J Pharmacol Exp Ther 2009; 332:549-53. [PMID: 19906780 DOI: 10.1124/jpet.109.160309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wasting syndrome is a common complication of HIV infection and is marked by progressive weight loss and weakness, often associated with fever. The mechanisms involved in the pathogenesis of these syndromes are not well defined, and neither are the brain areas involved. The present study tests a new hypothesis: that the preoptic anterior hypothalamus (POAH), the main brain area for thermoregulation and fever, has a role in the pathogenesis of fever induced by glycoprotein 120 (gp120), the surface envelope protein used by the HIV to gain access into immune cells, and that the CXC chemokine receptors (CXCR4) that serve as a coreceptor for HIV entry mediate the effect. A sterilized stainless steel C313G cannula guide was implanted into the POAH, and a biotelemetry system was used to monitor the body temperature (Tb) changes. The administration of gp120 into the POAH induced fever in a dose-dependent manner. To demonstrate possible links between the gp120 and CXCR4 in generating the fever, we pretreated the rats with 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] octohydrobromide dihydrate (AMD 3100), an antagonist of stromal cell-derived growth factor (SDF)-1alpha/CXCL12, acting at its receptor, CXCR4, 30 min before administration of gp120. AMD 3100 significantly reduced the gp120-induced fever. The present studies show that the presence of HIV-1 envelope glycoprotein gp120 in the POAH provokes fever via interaction CXCR4 pathway.
Collapse
Affiliation(s)
- Khalid Benamar
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Taub DD, Schaffer E. Biological responses to chemokine superfamily members. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 6:6.12.1-6.12.32. [PMID: 18432804 DOI: 10.1002/0471142735.im0612s38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A detailed summary of all the chemokine subfamily members including alternative names, receptor-ligand pairs, receptor cellular distribution, and leukocyte responsiveness is presented here along with assays to measure the biological activities of chemokines on each of the major leukocyte subsets (i.e., microchemotaxis chambers, fluorescence-based assays, use of nitrocellulose filters and membranes coated with extracellular matrix proteins, cellular adhesion assays, mobilization of intracellular free calcium, actin polymerization, degranulation assays, and the use of chemokine receptor-specific antibodies in flow cytometric analysis and radiolabeled chemokine binding assays).
Collapse
|
10
|
Liapi A, Pritchett J, Jones O, Fujii N, Parnavelas JG, Nadarajah B. Stromal-Derived Factor 1 Signalling Regulates Radial and Tangential Migration in the Developing Cerebral Cortex. Dev Neurosci 2007; 30:117-31. [DOI: 10.1159/000109857] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/27/2006] [Indexed: 11/19/2022] Open
|
11
|
Jlizi A, Edouard J, Fadhlaoui-Zid K, Frigi S, Debré P, Slim A, Theodorou I, El Gaaied ABA, Carpentier W. Identification of the CCR5-Δ32 HIV resistance allele and new mutations of the CCR5 gene in different Tunisian populations. Hum Immunol 2007; 68:993-1000. [PMID: 18191728 DOI: 10.1016/j.humimm.2007.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 11/19/2022]
Affiliation(s)
- Asma Jlizi
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Melar M, Ott DE, Hope TJ. Physiological levels of virion-associated human immunodeficiency virus type 1 envelope induce coreceptor-dependent calcium flux. J Virol 2006; 81:1773-85. [PMID: 17121788 PMCID: PMC1797554 DOI: 10.1128/jvi.01316-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus (HIV) entry into target cells requires the engagement of receptor and coreceptor by envelope glycoprotein (Env). Coreceptors CCR5 and CXCR4 are chemokine receptors that generate signals manifested as calcium fluxes in response to binding of the appropriate ligand. It has previously been shown that engagement of the coreceptors by HIV Env can also generate Ca(2+) fluxing. Since the sensitivity and therefore the physiological consequence of signaling activation in target cells is not well understood, we addressed it by using a microscopy-based approach to measure Ca(2+) levels in individual CD4(+) T cells in response to low Env concentrations. Monomeric Env subunit gp120 and virion-bound Env were able to activate a signaling cascade that is qualitatively different from the one induced by chemokines. Env-mediated Ca(2+) fluxing was coreceptor mediated, coreceptor specific, and CD4 dependent. Comparison of the observed virion-mediated Ca(2+) fluxing with the exact number of viral particles revealed that the viral threshold necessary for coreceptor activation of signaling in CD4(+) T cells was quite low, as few as two virions. These results indicate that the physiological levels of virion binding can activate signaling in CD4(+) T cells in vivo and therefore might contribute to HIV-induced pathogenesis.
Collapse
Affiliation(s)
- Marta Melar
- Northwestern University, Department of Cell and Molecular Biology, Feinberg School of Medicine, Ward 8-140, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
13
|
Maysami S, Nguyen D, Zobel F, Heine S, Höpfner M, Stangel M. Oligodendrocyte precursor cells express a functional chemokine receptor CCR3: Implications for myelination. J Neuroimmunol 2006; 178:17-23. [PMID: 16828880 DOI: 10.1016/j.jneuroim.2006.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 11/26/2022]
Abstract
Myelination in the central nervous system requires an accurate interplay between oligodendrocyte precursor cells (OPC) and axons. By as yet not fully understood mechanisms, OPC proliferate, migrate to the axon to be myelinated and finally differentiate into mature oligodendrocytes. The recent finding that OPC express CXC chemokine receptors led us to the investigation of the expression and functional importance of CC chemokine receptors. Using RT-PCR, we show that primary OPC from neonatal rats express CCR3, while CCR1, CCR2, CCR4, CCR5, and CCR7 are not expressed. Immunofluorescence staining of OPC could further demonstrate protein expression of CCR3. A rise of intracellular Ca2+ upon stimulation with the appropriate ligand CCL11 showed that this receptor is functional. Moreover, CCL11 led to a concentration specific increase in proliferation, inhibition of migration, and augmentation of differentiation in primary OPC. Thus, CCR3 may influence the process of myelination. This is of general importance for both developmental tissue patterning and for repair processes in demyelinating diseases like multiple sclerosis.
Collapse
Affiliation(s)
- Samaneh Maysami
- Department of Neurology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Israel F Charo
- Gladstone Institute of Cardiovascular Disease and the Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, San Francisco, USA.
| | | |
Collapse
|
15
|
Napier C, Sale H, Mosley M, Rickett G, Dorr P, Mansfield R, Holbrook M. Molecular cloning and radioligand binding characterization of the chemokine receptor CCR5 from rhesus macaque and human. Biochem Pharmacol 2005; 71:163-72. [PMID: 16298345 DOI: 10.1016/j.bcp.2005.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/23/2022]
Abstract
The aim of this study was to determine if macaque represents a suitable species for the pre-clinical evaluation of novel CCR5 antagonists, such as maraviroc (UK-427,857). To do this we cloned and expressed CCR5 from rhesus macaque and compared the binding properties of [125I]-MIP-1beta and [3H]-maraviroc with human recombinant CCR5. [125I]-MIP-1beta bound with similar high affinity to CCR5 from macaque (K(d) = 0.24 +/- 0.05 nM) and human (K(d) = 0.23 +/- 0.05 nM) and with similar kinetic properties. In competition binding studies the affinity of a range of human chemokines for macaque CCR5 was also similar to human CCR5. Maraviroc inhibited binding of [125I]-MIP-1beta to CCR5 from macaque and human with similar potency (IC50 = 17.50 +/- 1.24 nM and 7.18 +/- 0.93 nM, respectively) and antagonised MIP-1beta induced intracellular calcium release mediated through CCR5 from macaque and human with similar potency (IC50 = 17.50 +/- 3.30 nM and 12.07 +/- 1.89, respectively). [3H]-maraviroc bound with high affinity to CCR5 from macaque (K(d) = 1.36+/-0.07 nM) and human (K(d) = 0.86 +/- 0.08 nM), but was found to dissociate approximately 10-fold more quickly from macaque CCR5. However, as with the human receptor, maraviroc was shown to be a high affinity, potent functional antagonist of macaque CCR5 thereby indicating that the macaque should be a suitable species in which to evaluate the pharmacology, safety and potential mechanism-related toxicology of novel CCR5 antagonists.
Collapse
Affiliation(s)
- Carolyn Napier
- Discovery Biology, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent. CT13 9NJ UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ribeiro S, Horuk R. The clinical potential of chemokine receptor antagonists. Pharmacol Ther 2005; 107:44-58. [PMID: 15894378 DOI: 10.1016/j.pharmthera.2005.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 11/19/2022]
Abstract
Chemokines belong to a family of chemotactic cytokines that direct the migration of immune cells towards sites of inflammation. They mediate their biological effects by binding to cell surface receptors, which belong to the G protein-coupled receptor superfamily. Since chemokines and their receptors have been implicated in the pathophysiology of a number of autoinflammatory diseases, chemokine receptor antagonists could prove to be useful therapeutics to target these diseases. Here, we review the role of chemokines in autoimmunity, concentrating mainly on the chemokine receptors CCR1 and CCR5, and discuss the potential utility of antagonists that target these 2 receptors as they progress through the clinic.
Collapse
Affiliation(s)
- Sofia Ribeiro
- Department of Molecular Pharmacology, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA
| | | |
Collapse
|
17
|
|
18
|
Abstract
Human immunodeficiency virus (HIV) infection is often complicated by the development of acquired immunodeficiency syndrome (AIDS) dementia complex (ADC). Quinolinic acid (QUIN) is an end product of tryptophan, metabolized through the kynurenine pathway (KP) that can act as an endogenous brain excitotoxin when produced and released by activated macrophages/microglia, the very cells that are prominent in the pathogenesis of ADC. This review examines QUIN's involvement in the features of ADC and its role in pathogenesis. We then synthesize these findings into a hypothetical model for the role played by QUIN in ADC, and discuss the implications of this model for ADC and other inflammatory brain diseases.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | | | | |
Collapse
|
19
|
Wang J, Babcock GJ, Choe H, Farzan M, Sodroski J, Gabuzda D. N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins. Virology 2004; 324:140-50. [PMID: 15183061 DOI: 10.1016/j.virol.2004.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/17/2004] [Accepted: 03/03/2004] [Indexed: 11/26/2022]
Abstract
CXCR4 is a co-receptor along with CD4 for human immunodeficiency virus type 1 (HIV-1). We investigated the role of N-linked glycosylation in the N-terminus of CXCR4 in binding to HIV-1 gp120 envelope glycoproteins. Gp120s from CXCR4 (X4) and CCR5 (R5) using HIV-1 strains bound more efficiently to non-N-glycosylated than to N-glycosylated CXCR4 proteoliposomes in a CD4-dependent manner. Similar results were observed in binding studies using non-N-glycosylated or N-glycosylated CXCR4 expressed on cells. Mutation of the N-glycosylation site N11 in CXCR4 (N11Q-CXCR4) enhanced CD4-dependent binding of X4 and R5 gp120s and allowed more efficient entry of viruses pseudotyped with X4 or R5 HIV-1 envelope glycoproteins. However, the binding of R5 gp120 to N11Q-CXCR4 and entry of R5 HIV-1 viruses into cells expressing N11Q-CXCR4 were 20- and 100- to 1000-fold less efficient, respectively, than the levels achieved using X4 gp120 or X4 HIV-1 viruses. Binding of stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and SDF-1alpha-induced signaling were reduced by the N11Q mutation. These findings demonstrate that N-glycosylation at N11 inhibits the binding of CXCR4 to X4 and R5 HIV-1 gp120, and provide a better understanding of the structural elements of CXCR4 involved in HIV-1 Env-co-receptor interactions.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ambrosini E, Aloisi F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 2004. [PMID: 15139300 DOI: 10.1023/b: nere.0000021246.96864.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.
Collapse
Affiliation(s)
- Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | |
Collapse
|
21
|
Freedman BD, Liu QH, Del Corno M, Collman RG. HIV-1 gp120 chemokine receptor-mediated signaling in human macrophages. Immunol Res 2004; 27:261-76. [PMID: 12857973 DOI: 10.1385/ir:27:2-3:261] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The chemokine receptors CCR5 and CXCR4 serve as the cellular receptors in conjunction with CD4 for HIV-1 entry and infection of target cells. Although the virus has subverted these molecules for its own use, their natural function is to respond to activation and migration signals delivered by extracellular chemokines. A principal research objective of our laboratory is to understand the consequences of virus-chemokine receptor interactions for cellular function, as well as for entry and infection. We hypothesized that CXCR4-using (X4) and CCR5-using (R5) HIV-1 strains might elicit signals through the chemokine receptors that result in aberrant function and/or regulate virus entry or postentry steps of infection. We have focused on primary human macrophages, which express both CXCR4 and CCR5, because macrophages are a principal target for HIV-1 in vivo, inappropriate macrophage activation appears to play a major role in the pathogenesis of certain sequelae of AIDS, such as HIV encephalopathy, and macrophage infection is regulated at several steps subsequent to entry in ways that are linked to envelope- receptor interactions. This review summarizes our recent findings regarding the mechanisms of chemokine-receptor signaling in macrophages, the role of viral envelope glycoproteins in eliciting macrophage signals, and how these activation pathways may participate in macrophage infection and affect cell functions apart from infection.
Collapse
Affiliation(s)
- Bruce D Freedman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, PA 19104, USA.
| | | | | | | |
Collapse
|
22
|
Rosenberg A. Pneumococcus virulence factor sialidase: a new direction in neuro-AIDS research? J Neuroimmunol 2004; 147:33-4. [PMID: 14741424 DOI: 10.1016/j.jneuroim.2003.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this presentation is to invite consideration by the research community of the hypothesis that sialidase, a virulence factor of Streptococcus pneumoniae (pneumococcus) and most other opportunistic co-infectious agents associated with HIV infection, advances progression of HIV infection to neuro-AIDS.
Collapse
Affiliation(s)
- Abraham Rosenberg
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Emory West Campus, Atlanta GA 30306, USA.
| |
Collapse
|
23
|
Abstract
Chemokine receptors belong to one of the most pharmacologically exploited proteins, the G-protein-coupled receptors. Drugs that target these receptors make up greater than 45% of all known marketed medicines. Several excellent reviews published recently have concentrated on the biology, pathophysiology, and molecular mechanisms of action of the chemokines [C. Gerard, B.J. Rollins, Nat. Immunol. 2 (2001) 108; C.R. Mackay, Nat. Immunol. 2 (2001) 95; M. Thelen, Nat. Immunol. 2 (2001) 129] and the reader is directed toward them to gain a thorough understanding of the importance of this growing family of proteins. Although some background will be given here to aid in an understanding of the medical importance of chemokines, this review will focus on the rapid advances that have been made in identifying and characterizing chemokine receptor antagonists, by discussing their efficacy in animal models of disease as well as detailing their progression through human clinical trials. This approach is exemplified by specific reference to CCR1 and CCR5, which are the most advanced chemokine receptor programs.
Collapse
Affiliation(s)
- Richard Horuk
- Department of Immunology, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA.
| |
Collapse
|
24
|
Abstract
Recent studies suggest that molecules important for guiding neuronal migration and axon path-finding also play a role in modulating leukocyte chemotaxis. Neuronal migration and leukocyte chemotaxis may share some common regulatory mechanisms. Intracellular signal transduction mechanisms guiding neuronal migration and leukocyte chemotaxis are beginning to be elucidated. Studying molecular mechanisms modulating cell migration may provide new insights into understanding of endogenous inhibitors of inflammation.
Collapse
Affiliation(s)
- Necat Havlioglu
- Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
25
|
Vita C, Drakopoulou E, Ylisastigui L, Bakri Y, Vizzavona J, Martin L, Parmentier M, Gluckman JC, Benjouad A. Synthesis and characterization of biologically functional biotinylated RANTES. J Immunol Methods 2002; 266:53-65. [PMID: 12133622 DOI: 10.1016/s0022-1759(02)00096-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development of specifically labeled chemokines that retain their biological properties should be useful for analyzing their mechanisms of action both under physiological and pathological conditions. Here, we report the chemical synthesis and characterization of RANTES (regulated upon activation normal T cell expressed and secreted) derivatives that were biotinylated at residues 1, 25, 33, 45, or 67. Gel filtration and ultracentrifugation experiments showed that biotinylation at position 45 or 67 decreased the aggregation tendency of the chemokine to a dimeric state. Competition experiments, using a stably transfected CHO-K1 cell line overexpressing human CCR5, a RANTES receptor, indicated that derivatives biotinylated at positions 1, 25, and 67 bound to CCR5 with the same affinity as native RANTES. Flow cytometry analysis showed that RANTES biotinylated at residue 67 (B67-RANTES) bound more efficiently to primary macrophages than the other derivatives. Such binding was dependent on cell surface glycosaminoglycans (GAGs) since it was reduced when macrophages or HeLa cells expressing or not CCR5 were first treated with GAG-specific enzymes. In addition, B67-RANTES modulated CCR5 expression on lymphocytes and elicited chemotaxis of monocytes in the same manner as unmodified RANTES. Thus, B67-RANTES acts as a CCR5 agonist and may be useful to study the role of RANTES in pathologies such as, for example, human immunodeficiency virus (HIV) infection and inflammatory disorders.
Collapse
Affiliation(s)
- Claudio Vita
- CEA, Département d'Ingénierie et d'Etudes des Protéines, CE Saclay, F-91190 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Langford D, Sanders VJ, Mallory M, Kaul M, Masliah E. Expression of stromal cell-derived factor 1alpha protein in HIV encephalitis. J Neuroimmunol 2002; 127:115-26. [PMID: 12044982 DOI: 10.1016/s0165-5728(02)00068-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Analysis of the patterns of stromal cell-derived factor 1alpha (SDF-1alpha) expression in the brains from HIV-positive patients suggests that in neuronal cells, SDF-1alpha might play a role in neuroprotection and neurite extension in response to HIV infection. In all cases analyzed, SDF-1alpha immunoreactivity was primarily present in astroglial cells. Patients with HIV encephalitis (HIVE) showed intense somato-dendritic neuronal SDF-1alpha immunoreactivity, while HIVE negative patients with neurodegeneration had a significant decrease in neuronal SDF-1alpha immunoreactivity. Neuronal cells treated with SDF-1alpha displayed increased neurite outgrowth. Similarly, neurons treated with HIV-Tat, which induced SDF-1alpha expression, also showed neurite outgrowth. Tat-mediated neurite outgrowth was blocked by anti-SDF-1alpha antibody. These results suggest that SDF-1alpha may play a role in the neuronal response to HIV in the brains of AIDS patients.
Collapse
Affiliation(s)
- Dianne Langford
- Department of Pathology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
27
|
Sun J, Barbeau B, Sato S, Boivin G, Goyette N, Tremblay MJ. Syncytium formation and HIV-1 replication are both accentuated by purified influenza and virus-associated neuraminidase. J Biol Chem 2002; 277:9825-33. [PMID: 11781317 DOI: 10.1074/jbc.m110764200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The degree of sialylation has been shown previously to modulate the process of human immunodeficiency virus type-1 (HIV-1) infection by affecting the interaction between the virus and CD4-expressing target cells. In the present study, we investigated whether HIV-1 replication cycle was affected by neuraminidase (NA) derived from the human influenza (flu) virus. We first demonstrate that the level of HIV-1-mediated syncytium formation was greatly enhanced in the presence of purified flu NA. Pretreatment of established monocytic and lymphocytic cell lines as well as primary mononuclear cells with purified flu NA augmented also the process of virus infection. A comparable up-regulating effect was observed when using several strains of UV-inactivated whole flu virus, thereby suggesting that virus-anchored NA enzymes positively modulate the HIV-1 life cycle. Furthermore, flu NA-mediated positive effect on HIV-1 biology was abrogated with zanamivir, a specific flu NA inhibitor. Our results provide a new model allowing the investigation of the potential benefit of using NA inhibitors in the treatment of HIV-1-infected patients suffering from coinfection with NA-bearing pathogens.
Collapse
Affiliation(s)
- Jiangfeng Sun
- Centre de Recherche en Infectiologie, Hôpital du Centre Hospitalier Universitaire de L'Université Laval, Québec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Chronic thrombocytopenia is a common hematologic disorder in patients infected with the human immunodeficiency virus (HIV). Although often asymptomatic, the thrombocytopenia may be associated with a variety of bleeding abnormalities. The underlying pathophysiology includes accelerated peripheral platelet destruction and decreased ('ineffective') production of platelets from the infected megakaryocytes. HIV-related thrombocytopenia (HIV-TP) responds to antiretroviral therapy. Most studies have evaluated the use of AZT (zidovudine) and have shown increased platelet production. Combination therapy (HAART) also resulted in sustained platelet increases. When antiretroviral agents fail to improve the platelet count or cannot be used, other therapies, similar to those used in 'classic' immune thrombocytopenia (ITP), can be employed, including steroids, intravenous immunoglobulin (i.v.intravenous anti-D or splenectomy. Anti-D treatment offers advantages for HIV-TP because the duration of effect appears to be significantly longer than the response duration after i.v. therapy (initial results of our open-arm study were confirmed by our randomized trial). Of note, follow-up of heavily treated patients showed no acceleration of CD4 decline and no change in plasma viral load measurements. Splenectomy has been used to treat HIV-positive patients with refractory thrombocytopenia. Although it is effective therapy, there are concerns about infections and selection of appropriate candidates. Other treatment modalities, such as interferon, vincristine, danazol, low-dose splenic irradiation and staphylococcal protein A immunoadsorption have shown limited success in HIV-TP. Alternatively, thrombocytopenia in HIV-infected patients may be treated with pharmacological hyperstimulation of megakaryocytopoiesis (administration of PEG-rHuMGDF or TPO). Latest evidence indicates that the chemokine receptor CXCR4 (coreceptor for the cellular entry of lymphotropic HIV strains) is expressed on megakaryocytes; as a result, the development of chemokine receptor antagonists may modify the course of the disease.
Collapse
Affiliation(s)
- A Scaradavou
- New York Blood Center and Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
29
|
Tanaka R, Yoshida A, Murakami T, Baba E, Lichtenfeld J, Omori T, Kimura T, Tsurutani N, Fujii N, Wang ZX, Peiper SC, Yamamoto N, Tanaka Y. Unique monoclonal antibody recognizing the third extracellular loop of CXCR4 induces lymphocyte agglutination and enhances human immunodeficiency virus type 1-mediated syncytium formation and productive infection. J Virol 2001; 75:11534-43. [PMID: 11689635 PMCID: PMC114740 DOI: 10.1128/jvi.75.23.11534-11543.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To increase insight into the structural basis of CXCR4 utilization in human immunodeficiency virus type 1 (HIV-1) infection, a new generation of three monoclonal antibodies (MAbs) was developed in WKA rats. The A80 MAb, which binds an epitope in the third extracellular loop (ECL3) of CXCR4, has unique biologic properties that provide novel insights into CXCR4 function. This agent enhanced syncytium formation in activated human peripheral blood mononuclear cells (PBMC) infected with X4 or R5 and CEM cells infected with X4 HIV-1 strains. Exposure to A80 increased the productive infection of activated CD4(+) T cells and CEM cells with R5 and X4 viruses, respectively. This antibody uniquely induced agglutination of PBMC and CEM cells but did not activate calcium mobilization. Agglutination induced by A80 was inhibited by stromal cell-derived factor 1, T22, and phorbol 12-myristate 13-acetate but was not significantly altered by pretreatment of cells with pertussis toxin, wortmannin, or MAbs to LFA-1, ICAM-1, ICAM-2, and ICAM-3. The binding of the A145 and A120 MAbs was mapped to the N-terminal extracellular domain and a conformational epitope involving ECL1 and ECL2, respectively. Both of these MAbs inhibited HIV-1 infection and lacked the novel properties of A80. These results suggest a new role for CXCR4 in homologous lymphocyte adhesion that is ligand independent and in HIV-1 infection.
Collapse
Affiliation(s)
- R Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schaniel C, Rolink AG, Melchers F. Attractions and migrations of lymphoid cells in the organization of humoral immune responses. Adv Immunol 2001; 78:111-68. [PMID: 11432203 DOI: 10.1016/s0065-2776(01)78003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- C Schaniel
- Basel Institute for Immunology, CH-4005 Basel, Switzerland.
| | | | | |
Collapse
|
31
|
Chensue SW. Molecular machinations: chemokine signals in host-pathogen interactions. Clin Microbiol Rev 2001; 14:821-35, table of contents. [PMID: 11585787 PMCID: PMC89005 DOI: 10.1128/cmr.14.4.821-835.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemokines and their G-protein-coupled receptors represent an ancient and complex system of cellular communication participating in growth, development, homeostasis and immunity. Chemokine production has been detected in virtually every microbial infection examined; however, the precise role of chemokines is still far from clear. In most cases they appear to promote host resistance by mobilizing leukocytes and activating immune functions that kill, expel, or sequester pathogens. In other cases, the chemokine system has been pirated by pathogens, especially protozoa and viruses, which have exploited host chemokine receptors as modes of cellular invasion or developed chemokine mimics and binding proteins that act as antagonists or inappropriate agonists. Understanding microbial mechanisms of chemokine evasion will potentially lead to novel antimicrobial and anti-inflammatory therapeutic agents.
Collapse
Affiliation(s)
- S W Chensue
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
32
|
Forssmann U, Mägert H, Adermann K, Escher SE, Forssmann W. Hemofiltrate CC chemokines with unique biochemical properties: HCC‐1/CCL14a and HCC‐2/CCL15. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.3.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ulf Forssmann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Hans‐Jürgen Mägert
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Knut Adermann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Sylvia E. Escher
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| | - Wolf‐Georg Forssmann
- IPF PharmaCeuticals GmbH, Institute of the Medical School of Hanover, Section of Pharmacology, D‐30625 Hanover, Germany
| |
Collapse
|
33
|
Mellado M, Rodríguez-Frade JM, Mañes S, Martínez-A C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001; 19:397-421. [PMID: 11244042 DOI: 10.1146/annurev.immunol.19.1.397] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A broad array of biological responses, including cell polarization, movement, immune and inflammatory responses, and prevention of HIV-1 infection, are triggered by the chemokines, a family of structurally related chemoattractant proteins that bind to specific seven-transmembrane receptors linked to G proteins. Here we discuss one of the early signaling pathways activated by chemokines, the JAK/STAT pathway. Through this pathway, and possibly in conjunction with other signaling pathways, the chemokines promote changes in cellular morphology, collectively known as polarization, required for chemotactic responses. The polarized cell expresses the chemokine receptors at the leading cell edge, to which they are conveyed by rafts, a cholesterol-enriched membrane fraction fundamental to the lateral organization of the plasma membrane. Finally, the mechanisms through which the chemokines promote their effect are discussed in the context of the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- M Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, Madrid, E-28049 Spain
| | | | | | | |
Collapse
|
34
|
Nomiyama H, Hieshima K, Nakayama T, Sakaguchi T, Fujisawa R, Tanase S, Nishiura H, Matsuno K, Takamori H, Tabira Y, Yamamoto T, Miura R, Yoshie O. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes. Int Immunol 2001; 13:1021-9. [PMID: 11470772 DOI: 10.1093/intimm/13.8.1021] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liver-expressed chemokine (LEC)/CCL16 is a human CC chemokine selectively expressed in the liver. Here, we investigated its receptor usage by calcium mobilization and chemotactic assays using mouse L1.2 pre-B cell lines stably expressing a panel of 12 human chemokine receptors. At relatively high concentrations, LEC induced calcium mobilization and chemotaxis via CCR1 and CCR2. LEC also induced calcium mobilization, but marginal chemotaxis via CCR5. Consistently, LEC was found to bind to CCR1, CCR2 and CCR5 with relatively low affinities. The binding of LEC to CCR8 was much less significant. In spite of its binding to CCR5, LEC was unable to inhibit infection of an R5-type HIV-1 to activated human peripheral blood mononuclear cells even at high concentrations. In human liver sections, hepatocytes were strongly stained by anti-LEC antibody. HepG2, a human hepatocarcinoma cell line, was found to constitutively express LEC. LEC was also present in the plasma samples from healthy adult donors at relatively high concentrations (0.3--4 nM). Taken together, LEC is a new low-affinity functional ligand for CCR1, CCR2 and CCR5, and is constitutively expressed by liver parenchymal cells. The presence of LEC in normal plasma at relatively high concentrations may modulate inflammatory responses.
Collapse
MESH Headings
- Animals
- Calcium Signaling/immunology
- Cell Line
- Chemokines, CC/biosynthesis
- Chemokines, CC/blood
- Chemokines, CC/metabolism
- Chemokines, CC/physiology
- Chemotaxis/immunology
- HIV Infections/immunology
- HIV-1/immunology
- Hepatocytes/metabolism
- Humans
- Kupffer Cells
- Ligands
- Liver/metabolism
- Mice
- Protein Binding/immunology
- RNA, Messenger/biosynthesis
- Receptors, CCR1
- Receptors, CCR2
- Receptors, CCR5/metabolism
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H Nomiyama
- Department of Biochemistry, Kumamoto University Medical School, Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 2001. [PMID: 11438578 DOI: 10.1523/jneurosci.21-14-05027.2001] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection is associated with numerous effects on the nervous system, including pain and peripheral neuropathies. We now demonstrate that cultured rat dorsal root ganglion (DRG) neurons express a wide variety of chemokine receptors, including those that are thought to act as receptors for the HIV-1 coat protein glycoprotein120 (gp120). Chemokines that activate all of the known chemokine receptors increased [Ca(2+)](i) in subsets of cultured DRG cells. Many neurons responded to multiple chemokines and also to bradykinin, ATP, and capsaicin. Immunohistochemical studies demonstrated the expression of the CXCR4 and CCR4 chemokine receptors on populations of DRG neurons that also expressed substance P and the VR1 vanilloid receptor. RT-PCR analysis confirmed the expression of CXCR4, CX3CR1, CCR4, and CCR5 mRNAs in DRG neurons. Chemokines and gp120 produced excitatory effects on DRG neurons and also stimulated the release of substance P. Chemokines and gp120 also produced allodynia after injection into the rat paw. Thus these results provide evidence that chemokines and gp120 may produce painful effects via direct actions on chemokine receptors expressed by nociceptive neurons. Chemokine receptor antagonists may be important therapeutic interventions in the pain that is associated with HIV-1 infection and inflammation.
Collapse
|
36
|
Jagodzinski PP, Trzeciak WH. Additive effect of tunicamycin and dextran sulfate on the binding of monoclonal antibody to the V2 domain of the envelope glycoprotein 120 of human immunodeficiency virus type 1. Biomed Pharmacother 2001; 55:308-12. [PMID: 11478581 DOI: 10.1016/s0753-3322(01)00066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Using flow cytometry or immunoprecipitation analysis in cells chronically infected with HIV-1 IIIB Supt-1, we noticed an additive effect of tunicamycin and low molecular weight dextran (LMDS) on the binding of the G3-4 monoclonal antibody to monomeric and oligomeric forms of glycoprotein 120 (gp120). The inhibition of glycosylation by tunicamycin reduced the number of monomeric and oligomeric forms of gp120. The inhibition of the binding of the G3-4 antibody to monomeric and oligomeric forms of gp120 was more pronounced in the presence of LMDS. We also found that the G3-4 antibody can not recognise the nascent polypeptide chain of the envelope glycoprotein.
Collapse
Affiliation(s)
- P P Jagodzinski
- Department of Biochemistry and Molecular Biology, University of Medical Science Poznan 6, Poland.
| | | |
Collapse
|
37
|
Sun J, Barbeau B, Sato S, Tremblay MJ. Neuraminidase from a Bacterial Source Enhances Both HIV-1-Mediated Syncytium Formation and the Virus Binding/Entry Process. Virology 2001; 284:26-36. [PMID: 11352665 DOI: 10.1006/viro.2001.0889] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuraminidases, also termed sialidases, which catalyze the removal of sialic acid residues from various glycoconjugates, have been previously reported to modulate HIV-1 replication. Given that some of the known opportunistic microbes found in patients infected with HIV-1 harbor neuraminidase (NA) activity, we speculated that pathogen-derived NA might be envisaged as an important factor in the pathogenesis of this retroviral infection. In the present study, we have monitored the putative modulation of HIV-1-mediated syncytium formation and virus replication by highly purified bacterial-derived NA from Arthrobacter ureafaciens. Taking advantage of a luciferase-based syncytium quantitative assay, we demonstrate here that the level of HIV-1-mediated syncytium formation is enhanced in the presence of NA and that it necessitates interaction between gp120 and CD4/chemokine coreceptor. By using pseudotyped recombinant luciferase-encoding HIV-1 particles, we found that NA treatment of human CD4-positive target cells (i.e., T lymphoid, monocytoid, and peripheral blood mononuclear cells) significantly augmented single-round infection by T- and macrophage-tropic isolates of HIV-1. The observed increase in HIV-1 infection was linked with an enhancement in the initial steps of the virus replicative cycle as monitored by viral binding and entry assays. Interestingly, NA treatment also enhances infectivity of HIV-1 pseudotypes with envelope glycoprotein from the amphotropic murine leukemia virus or the vesicular stomatitis virus. Taken together, our results provide useful information regarding the possible contribution of microbial agents carrying NA activity to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- J Sun
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Canada
| | | | | | | |
Collapse
|
38
|
Bounou S, Dumais N, Tremblay MJ. Attachment of human immunodeficiency virus-1 (HIV-1) particles bearing host-encoded B7-2 proteins leads to nuclear factor-kappa B- and nuclear factor of activated T cells-dependent activation of HIV-1 long terminal repeat transcription. J Biol Chem 2001; 276:6359-69. [PMID: 11096063 DOI: 10.1074/jbc.m002198200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that human immunodeficiency virus type-1 (HIV-1) can incorporate several surface proteins of host origin. Recent findings indicate that host-encoded cell surface constituents retain their functionality when found embedded into the viral envelope. The primary objective of the current study was to define whether interaction between some specific virion-bound host proteins with their natural cognate ligands present on target cells could mediate intracellular signaling cascade(s). For this purpose, we have generated a whole series of isogenic virus stocks (NL4-3 backbone) bearing or not bearing on their surface foreign CD28, CD54 (ICAM-1), CD80 (B7-1) or CD86 (B7-2) proteins. Our results indicate that incubation of human T lymphoid cells with virions bearing host-derived B7-2 proteins and anti-CD3 antibody can potently activate HIV-1 long terminal repeat-driven gene expression. This up-regulating effect necessitates the involvement of nuclear factor-kappa B (NF-kappa B) and nuclear factor of activated T cells (NFAT) as revealed by the use of vectors coding for dominant negative versions of both transcription factors (i.e. I kappa B alpha S32A/36A and dnNFAT) and band shift assays. The increase of NF-kappa B activity was abolished when infection with B7-2-bearing HIV-1 particles was performed in the presence of the fusion protein CTLA-4 Ig suggesting that the interaction between virally embedded B7-2 and CD28 on the target cell is responsible for the observed NF-kappa B induction. The findings presented here provide the first demonstration that host-encoded proteins acquired by HIV-1 can mediate signal transduction events.
Collapse
Affiliation(s)
- S Bounou
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Ste-Foy, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
39
|
Zafiropoulos A, Baritaki S, Sioumpara M, Spandidos DA, Krambovitis E. V3 induces in human normal cell populations an accelerated macrophage-mediated proliferation--apoptosis phenomenon of effector T cells when they respond to their cognate antigen. Biochem Biophys Res Commun 2001; 281:63-70. [PMID: 11178961 DOI: 10.1006/bbrc.2001.4300] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The semi-conserved domain of V3 of HIV-1 was synthesised in a lipopeptide form to be presented on the surface of liposome particles. Composite liposomes were constructed with entrapped tetanus toxoid as a recall antigen (lipo-V3/TT liposomes) to study the influence of V3 on effector T cells of human normal peripheral lymphocyte populations. We demonstrated that lipo-V3/TT liposomes induce a V3-specific response characterised by an early, enhanced proliferation of effector CD4+ T cells, followed by a sharp apoptosis. The phenomenon required the presence of monocyte-derived macrophages and CD4+ T cells, but it was qualitatively and quantitatively distinct from the normal soluble antigen-mediated antigen presenting cell: T cell interaction. Presence of the beta-chemokine RANTES in the culture medium inhibited the phenomenon, suggesting that V3 plays a costimulatory role that involves the chemokine receptor CCR5 pathway during the process of antigen presentation to T cells. This observation may be very important if it occurs also in HIV-1 infection, as it may explain the selective and progressive depletion of non-infected effector CD4+ T cells.
Collapse
Affiliation(s)
- A Zafiropoulos
- Department of Applied Biochemistry and Immunology, Institute of Molecular Biology and Biotechnology, Vassilika Vouton, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
40
|
Bannert N, Schenten D, Craig S, Sodroski J. The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J Virol 2000; 74:10984-93. [PMID: 11069993 PMCID: PMC113178 DOI: 10.1128/jvi.74.23.10984-10993.2000] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry of primate immunodeficiency viruses into cells is dependent on the interaction of the viral envelope glycoproteins with receptors, CD4, and specific members of the chemokine receptor family. Although in many cases the tropism of these viruses is explained by the qualitative pattern of coreceptor expression, several instances have been observed where the expression of a coreceptor on the cell surface is not sufficient to allow infection by a virus that successfully utilizes the coreceptor in a different context. For example, both the T-tropic simian immunodeficiency virus (SIV) SIVmac239 and the macrophagetropic (M-tropic) SIVmac316 can utilize CD4 and CCR5 as coreceptors, and both viruses can infect primary T lymphocytes, yet only SIVmac316 can efficiently infect CCR5-expressing primary macrophages from rhesus monkeys. Likewise, M-tropic strains of human immunodeficiency virus type 1 (HIV-1) do not infect primary rhesus monkey macrophages efficiently. Here we show that the basis of this restriction is the low level of CD4 on the surface of these cells. Overexpression of human or rhesus monkey CD4 in primary rhesus monkey macrophages allowed infection by both T-tropic and M-tropic SIV and by primary M-tropic HIV-1. By contrast, CCR5 overexpression did not specifically compensate for the inefficient infection of primary monkey macrophages by T-tropic SIV or M-tropic HIV-1. Apparently, the limited ability of these viruses to utilize a low density of CD4 for target cell entry accounts for the restriction of these viruses in primary rhesus monkey macrophages.
Collapse
Affiliation(s)
- N Bannert
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
41
|
Li QJ, Lu S, Ye RD, Martins-Green M. Isolation and characterization of a new chemokine receptor gene, the putative chicken CXCR1. Gene 2000; 257:307-17. [PMID: 11080597 DOI: 10.1016/s0378-1119(00)00385-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study delineates the isolation and characterization of a novel chemokine receptor gene, the putative chicken CXC receptor 1 (cCXCR1). Using a human CXCR1 probe, we isolated several positive clones from a chicken genomic library. One of the clones contained a fragment of approximately 5000bp that hybridized strongly with the hCXCR1 probe. This fragment was sequenced and subjected to a variety of computer analyses. The open reading frame for this gene predicts a seven transmembrane domain protein with all the characteristics of a chemokine receptor and with 67% sequence homology to hCXCR1, 65% to hCXCR2 and also with considerable sequence homology to other human chemokine receptors such as hCXCR4 (50%), hCCR2 (49%) and hCCR1 (49%). However, the homology to a previously isolated potential G-protein-coupled receptor for chickens (AvCRL1) is only 47%. Using 5' RACE, two transcription initiation sites were identified suggesting the potential for the expression of two protein isoforms (I and II) in vivo. The promoter for the putative cCXCR1 contains a variety of consensus transcription factor binding elements that can potentially be involved in the expression of this chicken receptor upon stimulation by stress-inducing agents. RT-PCR analysis was used to determine the pattern of expression of the larger isoform (I) of this receptor in a variety of tissues. This form of the receptor is expressed primarily in the organs of the gastrointestinal tract, tissues that are frequently exposed to stress-inducing agents, but not in the central nervous system, tissues that are protected from insult by the blood barrier. Using the same RT-PCR approach we show that stress-inducing agents, such as 'first-hand' and 'second-hand' cigarette smoke components, tumor promoters and thrombin, differentially stimulate the expression of the isoform I in primary fibroblasts. Thrombin is an enzyme that plays many important roles in thrombosis, angiogenesis and wound healing and exposure to both cigarette smokes and/or to tumor promoters can lead to tumorigenesis. Therefore, upregulation of chemokines and their receptors by stress-inducing agents can confer highly regulated modulation of cellular responses to traumatic and pathological situations.
Collapse
Affiliation(s)
- Q J Li
- Interdepartmental Graduate Program in Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
42
|
McLeod B, Burroughs N. Defective deletion mutant amplification. J Theor Biol 2000; 206:449-64. [PMID: 11013108 DOI: 10.1006/jtbi.2000.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defective deletion mutants can be replicated in superinfected cells by parasitism of the intact virus' replication machinery, and through replication with the host cell. We show by analysis of a mathematical model that dynamic stability of superinfected cell growth is crucial in determining the frequency of deletion mutant infected cells, i.e. there is a critical infectivity threshold rho(sc)below which the density of proliferative virus is significantly reduced by the presence of defective deletion mutants. Above rho(sc), proliferative virus principally occurs as superinfected cells (wild type with defective deletion mutant). The threshold rho(sc), and the interference effects of the deletion mutant, increase with deletion mutant parasitism of the wild-type replication machinery in superinfected cells. The interaction of virally infected cells with host homeostasis determines whether immune escape by deletion mutant infected cells is necessary for the interference window to exist. Only when the deletion mutant has a detrimental effect on infected host cell replication did we observe periodic behaviour.
Collapse
Affiliation(s)
- B McLeod
- The Mathematics Institute, Coventry, CV4 7AL, UK
| | | |
Collapse
|
43
|
Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 2000. [DOI: 10.1182/blood.v96.8.2887.h8002887_2887_2894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between cell surface receptors are important regulatory elements in the complex host responses to infections. In this study, it is shown that a classic chemotactic factor, the bacterial chemotactic peptide N-formyl-methionyl-leucylphenyl-alanine (fMLF), rapidly induced a protein-kinase-C–mediated serine phosphorylation and down-regulation of the chemokine receptor CCR5, which serves as a major human immunodeficiency virus (HIV)-1 coreceptor. The fMLF binding to its receptor, formyl peptide receptor (FPR), resulted in significant attenuation of cell responses to CCR5 ligands and in inhibition of HIV-1-envelope-glycoprotein–mediated fusion and infection of cells expressing CD4, CCR5, and FPR. The finding that the expression and function of CCR5 can be regulated by peptides that use an unrelated receptor may provide a novel approach to the design of anti-inflamatory and antiretroviral agents.
Collapse
|
44
|
Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 2000. [DOI: 10.1182/blood.v96.8.2887] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Interactions between cell surface receptors are important regulatory elements in the complex host responses to infections. In this study, it is shown that a classic chemotactic factor, the bacterial chemotactic peptide N-formyl-methionyl-leucylphenyl-alanine (fMLF), rapidly induced a protein-kinase-C–mediated serine phosphorylation and down-regulation of the chemokine receptor CCR5, which serves as a major human immunodeficiency virus (HIV)-1 coreceptor. The fMLF binding to its receptor, formyl peptide receptor (FPR), resulted in significant attenuation of cell responses to CCR5 ligands and in inhibition of HIV-1-envelope-glycoprotein–mediated fusion and infection of cells expressing CD4, CCR5, and FPR. The finding that the expression and function of CCR5 can be regulated by peptides that use an unrelated receptor may provide a novel approach to the design of anti-inflamatory and antiretroviral agents.
Collapse
|
45
|
Nookhai S, Ruxrungtham K, Phanuphak P, Oelrichs R. Prevalence of CCR2-64I, SDF1-3'A and CCR5-Delta32 alleles in healthy Thais. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2000; 27:153-7. [PMID: 10940085 DOI: 10.1046/j.1365-2370.2000.00218.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genetic survey was performed of 200 healthy Thai blood donors for the frequency of three alleles that influence susceptibility to HIV infection and the rate of progression to HIV disease. The CCR5-Delta32 allele was not detected in this population. The CCR2-64I allele was detected at a frequency similar to that found in other Asian populations (15.7%). SDF1-3'A was detected at 33.2%, supporting a cline of increasing frequency of this allele from African and Caucasian to Asian (particularly Australasian) populations. These results have implications for the role of host genetic background in the biology and pathology of HIV in Thailand, and indicate that a systematic survey of non-Caucasian populations may reveal novel alleles important in HIV disease.
Collapse
Affiliation(s)
- S Nookhai
- Thai Red Cross AIDS Research Centre, Pathumwan, Bangkok, Thailand
| | | | | | | |
Collapse
|
46
|
Oishi K, Hayano M, Yoshimine H, Tugume SB, Kebba A, Mugerwa R, Mugyenyi P, Kumatori A, Matsushima K, Nagatake T. Expression of chemokine receptors on CD4+ T cells in peripheral blood from HIV-infected individuals in Uganda. J Interferon Cytokine Res 2000; 20:597-602. [PMID: 10888116 DOI: 10.1089/10799900050044796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CXCR4, a coreceptor for T cell (T)-tropic HIV-1, is preferentially expressed on naive T cells, whereas CCR5, a coreceptor for macrophage (M)-tropic HIV-1, is preferentially expressed on previously activated memory T cells and the Th1 subset of CD4+ T cells. CCR4 is preferentially expressed on the Th2 subset of CD4+ T cells. A cross-sectional flow cytometry study was conducted to evaluate the expression of CXCR4, CCR5, and CCR4 on the peripheral blood CD4+ T cells from African HIV-1-infected and uninfected Ugandan adults. The plasma viral load in HIV-1-infected individuals was also examined. Upregulation of CCR4 and CCR5 expression but no decrease in CXCR4 expression on CD4+ T cells were obtained in peripheral blood from African adults with progression of the disease. Plasma HIV-1 viremia significantly and inversely correlated with the peripheral CD4+ T cell count but did not correlate with the degree of CCR4 and CCR5 expression on the peripheral CD4+ T cells in HIV-1-infected individuals. Our present data suggest an increase in percentage of activated memory CD4+ T cells in the advanced stage of HIV-1 infection among African adults. There was no evidence of a Th1 to Th2 shift in terms of chemokine receptor expression profile with advancing disease in the peripheral blood of these subjects.
Collapse
Affiliation(s)
- K Oishi
- Department of Internal Medicine, Institute of Tropical Medicine, Nagasaki University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu QH, Williams DA, McManus C, Baribaud F, Doms RW, Schols D, De Clercq E, Kotlikoff MI, Collman RG, Freedman BD. HIV-1 gp120 and chemokines activate ion channels in primary macrophages through CCR5 and CXCR4 stimulation. Proc Natl Acad Sci U S A 2000; 97:4832-7. [PMID: 10758170 PMCID: PMC18318 DOI: 10.1073/pnas.090521697] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
HIV type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 as coreceptors for entry into target cells. Here we show that the HIV-1 envelope gp120 (Env) activates multiple ionic signaling responses in primary human macrophages, which are important targets for HIV-1 in vivo. Env from both CCR5-dependent JRFL (R5) and CXCR4-dependent IIIB (X4) HIV-1 opened calcium-activated potassium (K(Ca)), chloride, and calcium-permeant nonselective cation channels in macrophages. These signals were mediated by CCR5 and CXCR4 because macrophages lacking CCR5 failed to respond to JRFL and an inhibitor of CXCR4 blocked ion current activation by IIIB. MIP-1beta and SDF-1alpha, chemokine ligands for CCR5 and CXCR4, respectively, also activated K(Ca) and Cl(-) currents in macrophages, but nonselective cation channel activation was unique to gp120. Intracellular Ca(2+) levels were also elevated by gp120. The patterns of activation mediated by CCR5 and CXCR4 were qualitatively similar but quantitatively distinct, as R5 Env activated the K(Ca) current more frequently, elicited Cl(-) currents that were approximately 2-fold greater in amplitude, and elevated intracellular Ca(+2) to higher peak and steady-state levels. Env from R5 and X4 primary isolates evoked similar current responses as the corresponding prototype strains. Thus, the interaction of HIV-1 gp120 with CCR5 or CXCR4 evokes complex and distinct signaling responses in primary macrophages, and gp120-evoked signals differ from those activated by the coreceptors' chemokine ligands. Intracellular signaling responses of macrophages to HIV-1 may modulate postentry steps of infection and cell functions apart from infection.
Collapse
Affiliation(s)
- Q H Liu
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debré P, Théodorou I, Combadière C. Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 2000; 287:2274-7. [PMID: 10731151 DOI: 10.1126/science.287.5461.2274] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human immunodeficiency virus (HIV) enters cells in vitro via CD4 and a coreceptor. Which of 15 known coreceptors are important in vivo is poorly defined but may be inferred from disease-modifying mutations, as for CCR5. Here two single nucleotide polymorphisms are described in Caucasians in CX3CR1, an HIV coreceptor and leukocyte chemotactic/adhesion receptor for the chemokine fractalkine. HIV-infected patients homozygous for CX3CR1-I249 M280, a variant haplotype affecting two amino acids (isoleucine-249 and methionine-280), progressed to AIDS more rapidly than those with other haplotypes. Functional CX3CR1 analysis showed that fractalkine binding is reduced among patients homozygous for this particular haplotype. Thus, CX3CR1-I249 M280 is a recessive genetic risk factor in HIV/AIDS.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/genetics
- Acquired Immunodeficiency Syndrome/physiopathology
- Acquired Immunodeficiency Syndrome/virology
- CX3C Chemokine Receptor 1
- Case-Control Studies
- Chemokine CX3CL1
- Chemokines, CX3C
- Chemokines, CXC/metabolism
- Chromosomes, Human, Pair 3
- Cohort Studies
- Disease Progression
- Genetic Variation
- Genotype
- HIV/physiology
- HIV Infections/genetics
- HIV Infections/physiopathology
- HIV Infections/virology
- Haplotypes
- Homozygote
- Humans
- Leukocytes, Mononuclear/metabolism
- Linkage Disequilibrium
- Membrane Proteins/metabolism
- Mutation
- Polymorphism, Restriction Fragment Length
- Polymorphism, Single Nucleotide
- Polymorphism, Single-Stranded Conformational
- Receptors, Cytokine/genetics
- Receptors, Cytokine/physiology
- Receptors, HIV/genetics
- Receptors, HIV/physiology
- Survival Analysis
- White People/genetics
Collapse
Affiliation(s)
- S Faure
- Laboratoire d'Immunologie Cellulaire et Tissulaire, Centre National de la Recherche Scientifique UMR 7627, Hôpital Pitié-Salpétrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zujovic V, Benavides J, Vig� X, Carter C, Taupin V. Fractalkine modulates TNF-? secretion and neurotoxicity induced by microglial activation. Glia 2000. [DOI: 10.1002/(sici)1098-1136(20000215)29:4<305::aid-glia2>3.0.co;2-v] [Citation(s) in RCA: 253] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Abstract
A better understanding of the potent immune responses elicited by HIV before infected patients become immunocompromised should enable therapeutic immunomodulation to prevent disease progression. We review the nature of the immune response in HIV infected long-term nonprogressor patients; how and why the immune system fails; and whether it may be feasible to harness the immune system to control viraemia and extend the asymptomatic period in HIV infected persons. Finally we discuss the possibility of inducing sterilizing immunity to enable the host to rid itself of the virus.
Collapse
Affiliation(s)
- Frances Gotch
- Department of Immunology, Imperial College of Science, Technology and Medicine, Chelsea and Westminster Hospital, London, UK
| | | |
Collapse
|