1
|
Boye A, Osei SA, Brah AS. Therapeutic prospects of sex hormone receptor signaling in hormone-responsive cancers. Biomed Pharmacother 2024; 180:117473. [PMID: 39326105 DOI: 10.1016/j.biopha.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Globally, hormone-responsive cancers afflict millions of people contributing to cancer-related morbidity and mortality. While hormone-responsive cancers overburden patients, their close families, and even health budgets at the local levels, knowledge of these cancers particularly their biology and possible avenues for therapy remains poorly exploited. Herewith, this review highlights the role of sex hormones (estrogens and androgens) in the pathophysiology of hormone-responsive cancers and the exploration of therapeutic targets. Major scientific databases including but not limited to Scopus, PubMed, Science Direct, Web of Science core collections, and Google Scholar were perused using a string of search terms: Hormone-responsive cancers, androgens and cancers, estrogens and cancer, androgen receptor signalling, estrogen receptor signalling, etc.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Silas Acheampong Osei
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Augustine Suurinobah Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
2
|
Van Espen B, Prideaux EB, Wilson AR, Machado CRL, Sendo S, Parker J, Seumois G, Sacchetti C, Belongia AC, Perumal NB, Vijayanand P, Linnik MD, Benschop RJ, Wang W, Bottini N, Firestein GS, Stanford SM. Laser Capture Microscopy RNA Sequencing for Topological Mapping of Synovial Pathology During Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1243-1251. [PMID: 38556917 DOI: 10.1002/art.42853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune disease in which the joint lining or synovium becomes highly inflamed and majorly contributes to disease progression. Understanding pathogenic processes in RA synovium is critical for identifying therapeutic targets. We performed laser capture microscopy (LCM) followed by RNA sequencing (LCM-RNAseq) to study regional transcriptomes throughout RA synovium. METHODS Synovial lining, sublining, and vessel samples were captured by LCM from seven patients with RA and seven patients with osteoarthritis (OA). RNAseq was performed on RNA extracted from captured tissue. Principal component analysis was performed on the sample set by disease state. Differential expression analysis was performed between disease states based on log2 fold change and q value parameters. Pathway analysis was performed using the Reactome Pathway Database on differentially expressed genes among disease states. Significantly enriched pathways in each synovial region were selected based on the false discovery rate. RESULTS RA and OA transcriptomes were distinguishable by principal component analysis. Pairwise comparisons of synovial lining, sublining, and vessel samples between RA and OA revealed substantial differences in transcriptional patterns throughout the synovium. Hierarchical clustering of pathways based on significance revealed a pattern of association between biologic function and synovial topology. Analysis of pathways uniquely enriched in each region revealed distinct phenotypic abnormalities. As examples, RA lining samples were marked by anomalous immune cell signaling, RA sublining samples were marked by aberrant cell cycle, and RA vessel samples were marked by alterations in heme scavenging. CONCLUSION LCM-RNAseq confirms reported transcriptional differences between the RA synovium and the OA synovium and provides evidence supporting a relationship between synovial topology and molecular anomalies in RA.
Collapse
Affiliation(s)
| | | | | | | | - Sho Sendo
- University of California, San Diego, La Jolla
| | | | | | | | | | | | - Pandurangan Vijayanand
- University of California, San Diego, and La Jolla Institute for Immunology, La Jolla, California
| | | | | | - Wei Wang
- University of California, San Diego, La Jolla
| | - Nunzio Bottini
- University of California, San Diego, La Jolla, and Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | |
Collapse
|
3
|
Lin L, Huang Z, Li W, Liu X, Li X, Gao S, Chen J, Yang C, Min X, Yang H, Gong Q, Wei Y, Tu S, Rao X, Zhang Z, Dong L, Zhong J. Mid1 promotes synovitis in rheumatoid arthritis via ubiquitin-dependent post-translational modification. Pharmacol Res 2024; 205:107224. [PMID: 38777113 DOI: 10.1016/j.phrs.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES To explore the role of Midline-1 (Mid1) in synovial activation. METHODS NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Liman Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiwen Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjuan Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Chenxi Yang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Zhao L, Liu M, Zheng K, Xiao Q, Yuan L, Wu C, Bao J. Fufang Duzheng tablet attenuates adjuvant rheumatoid arthritis by inhibiting arthritis inflammation and gut microbiota disturbance in rats. Heliyon 2024; 10:e32705. [PMID: 39183834 PMCID: PMC11341321 DOI: 10.1016/j.heliyon.2024.e32705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Objective To explore the treatment effect and potential mechanism on gut microbiota, nutrition, and metabolism of Fufang Duzheng Tablet (DZGP) on rheumatoid arthritis (RA). Methods Collagen-induced arthritis rats' models were established and divided into three groups: model control group (FK), DZGP group (FZ, 0.45 g/kg/d), and methotrexate group (FM, 1.35 mg/kg), which were treated by gavage for 28 days. The physiopathologic changes of joints and body weight in each group were recorded; the morphology of synovial and ankle tissues was observed by hematoxylin-eosin staining, and the level of serum TNF-α and IL-1β was tested by ELISA. UPLC/MS-MS and network pharmacological analysis were used to identify the serum components, and 16S rDNA sequencing analysis was applied to the intestinal contents of rats. Results DZGP treatment significantly alleviated arthritis symptoms, pathological manifestations, toe thickness, and TNF-α and IL-1β levels in RA rats. We identified 105 metabolites and 18 components in the serum of DZGP-group rats. The main therapeutic targets of DZGP for anti-RA were TP53, epidermal growth factor receptor, and AKT1. Molecular docking showed that there was good binding efficiency between core components and main targets. 16S rDNA sequencing showed that DZGP treatment regulated the structure of the gut microbiota. Conclusion DZGP showed a good anti-inflammatory effect on RA and played an important role in improving the structure of the gut microbiota in RA rats.
Collapse
Affiliation(s)
- Liming Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Meilin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Zheng
- Forest Seedlings and Wildlife Protection Management Station of Enshi Tujia and Miao Autonomous Prefecture, 445000, Enshi, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, 445000, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, 445000, Enshi, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
5
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
6
|
Wang T, Zeng F, Li X, Wei Y, Wang D, Zhang W, Xie H, Wei L, Xiong S, Liu C, Li S, Wu J. Identification of key genes and pathways associated with sex differences in rheumatoid arthritis based on bioinformatics analysis. Clin Rheumatol 2023; 42:399-406. [PMID: 36173499 DOI: 10.1007/s10067-022-06387-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Women are more likely than men to develop the chronic, progressive autoimmune disease known as rheumatoid arthritis (RA). Although there may be a complex interplay between sex-based differences and autoimmune dysfunction. Their function in RA is largely unknown, though. The purpose of this study was to pinpoint the crucial genes and metabolic pathways that control biological variations in RA between men and women. METHODS First, the Gene Expression Omnibus database's gene expression information for GSE39340 and GSE55457 was downloaded (GEO). R software was used to find each of the individually identified differentially expressed genes (DEGs) between the sexes. DEGs that overlapped were found. The interactions between the overlapping DEGs were then further examined using a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology tools, respectively, were used to perform enrichment analyses. RESULTS According to our findings, there were 1169 DEGs that overlapped between RA males and females, comprising 845 up-regulated genes and 324 down-regulated genes. Ten hub genes, including PIK3R1, RAC1, HRAS, PTPN11, UQCRB, NDUFV1, EGF, UBA1, UBE2G1, and UBE2E1, were discovered in the PPI network. According to a functional enrichment analysis, these genes were primarily enriched in neurodegenerative illnesses, including various disease pathways, MAPK signaling, insulin signaling, and autophagy. CONCLUSION The current data point to the possibility that the MAPK pathway and autophagy may be significant contributors to sex differences in RA. PTPN11, EGF, and UBA1 may be important genes linked to the gender development of RA and are anticipated to be therapeutic targets for the disease. Key Points • Our research point to the possibility that the MAPK pathway and autophagy may be significant contributors to sex differences in RA. • PTPN11, EGF, and UBA1 may be important genes linked to the gender development of RA and are anticipated to be therapeutic targets for the disease. • These findings may aid in the development of novel diagnostic and treatment techniques for RA in men and women.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China, 635000
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China, 635000
| | - Yuanli Wei
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Dongmei Wang
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Weihua Zhang
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Huanhuan Xie
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Lingli Wei
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Siying Xiong
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Caizhen Liu
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China, 635000
| | - Jianhong Wu
- Department of Rheumatology, Dazhou Central Hospital, Sichuan, Dazhou, 635000, China.
| |
Collapse
|
7
|
Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022; 18:1-14. [PMID: 35387158 PMCID: PMC8961303 DOI: 10.1016/j.bioactmat.2022.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and destruction of cartilage, promoted by sustained inflammation. However, current treatments remain unsatisfactory due to lacking of selective and effective strategies for alleviating inflammatory environments in RA joint. Inspired by neutrophil chemotaxis for inflammatory region, we therefore developed neutrophil-derived exosomes functionalized with sub-5 nm ultrasmall Prussian blue nanoparticles (uPB-Exo) via click chemistry, inheriting neutrophil-targeted biological molecules and owning excellent anti-inflammatory properties. uPB-Exo can selectively accumulate in activated fibroblast-like synoviocytes, subsequently neutralizing pro-inflammatory factors, scavenging reactive oxygen species, and alleviating inflammatory stress. In addition, uPB-Exo effectively targeted to inflammatory synovitis, penetrated deeply into the cartilage and real-time visualized inflamed joint through MRI system, leading to precise diagnosis of RA in vivo with high sensitivity and specificity. Particularly, uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. Therefore, nanoenzyme functionalized exosomes hold the great potential for enhanced treatment of RA in clinic. uPB-Exo were firstly developed by combining NE-Exo with sub-5 nm ultrasmall PB nanoparticles via click chemistry. uPB-Exo selectively targeted inflamed joints via neutrophil-targeted biological molecules inherited from neutrophils. uPB-Exo accumulated in active FLS, and eventually scavenged reactive oxygen species and alleviated inflammatory stress. uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. uPB-Exo, as a drug free therapeutical agent, holds the great potential for enhanced treatment of RA in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ziguo Qin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
- Corresponding author.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
8
|
Identification of key somatic oncogenic mutation based on a confounder-free causal inference model. PLoS Comput Biol 2022; 18:e1010529. [PMID: 36137089 PMCID: PMC9499235 DOI: 10.1371/journal.pcbi.1010529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Abnormal cell proliferation and epithelial-mesenchymal transition (EMT) are the essential events that induce cancer initiation and progression. A fundamental goal in cancer research is to develop an efficient method to detect mutational genes capable of driving cancer. Although several computational methods have been proposed to identify these key mutations, many of them focus on the association between genetic mutations and functional changes in relevant biological processes, but not their real causality. Causal effect inference provides a way to estimate the real induce effect of a certain mutation on vital biological processes of cancer initiation and progression, through addressing the confounder bias due to neutral mutations and unobserved latent variables. In this study, integrating genomic and transcriptomic data, we construct a novel causal inference model based on a deep variational autoencoder to identify key oncogenic somatic mutations. Applied to 10 cancer types, our method quantifies the causal effect of genetic mutations on cell proliferation and EMT by reducing both observed and unobserved confounding biases. The experimental results indicate that genes with higher mutation frequency do not necessarily mean they are more potent in inducing cancer and promoting cancer development. Moreover, our study fills a gap in the use of machine learning for causal inference to identify oncogenic mutations. Identifying key mutations of cancers is helpful to better understand the mechanisms of cancer cell transformation and is critical for therapeutic approaches. Besides sequence and structure-based computational approaches, some functional impact-based methods which consider the association between mutation events and the activity of cancer-related biological processes have also been developed to detect key mutations. However, these methods mainly consider the correlation but ignore that the correlation is far from causality due to the existence of observed and unobserved confounding factors. We develop a confounder-free machine learning-based causal inference framework to estimate the causal effect of mutations on abnormal cell proliferation and epithelial-mesenchymal transition (EMT). It fills a gap in the use of causal mechanisms to discover potential driver mutations in cancer biological systems. Applying our method to 10 cancer types, the identified key mutations are highly consistent with public well-verified ones. Additionally, some new key mutations have also been discovered.
Collapse
|
9
|
Nakajima A, Terayama K, Sonobe M, Akatsu Y, Saito J, Norimoto M, Taniguchi S, Kubota A, Aoki Y, Nakagawa K. Serum Reactive Oxygen Metabolites as a Predictor of Clinical Disease Activity Index, Simplified Disease Activity Index, and Boolean Remissions in Rheumatoid Arthritis Patients Treated With Biologic Agents. Cureus 2021; 13:e19759. [PMID: 34938634 PMCID: PMC8685306 DOI: 10.7759/cureus.19759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Reactive oxygen metabolites (ROMs) are metabolite hydroperoxides in the blood, and their serum levels were associated with the disease activity score 28 (DAS28) in patients with rheumatoid arthritis (RA). In this study, we aimed to investigate whether ROMs would be predictive of the clinical disease activity index (CDAI) remission, simplified disease activity index (SDAI) remission, or Boolean remission. Materials and methods Fifty-one biologic agents (BA)-naïve RA patients were included in this observational study. Associations between ROMs, C-reactive protein, matrix metalloproteinase-3, DAS28-erythrocyte sedimentation rate (ESR), CDAI, SDAI, and health assessment questionnaire (HAQ) at 12 weeks and the DAS28, CDAI, SDAI, and Boolean remission rates at 52 weeks were investigated. Results The DAS28, CDAI, SDAI, and Boolean remission rates at 52 weeks were 66.7, 52.9, 54.9, and 54.9%, respectively. A multivariate logistic regression analysis revealed that ROMs and HAQ at 12 weeks were associated with the CDAI, SDAI, and Boolean remission at 52 weeks. Receiver operating characteristic analyses demonstrated that the cut-off value for CDAI, SDAI, and Boolean remission was 389.5 U.Carr. Conclusion Reactive oxygen metabolites at 12 weeks of initial treatment with BAs was a predictor for CDAI, SDAI, and Boolean remission at 52 weeks. Serum levels of ROMs may be a useful biomarker in the current treatment strategy aiming at early remission of RA.
Collapse
Affiliation(s)
- Arata Nakajima
- Orthopaedics and Rehabilitation, Toho University Sakura Medical Center, Sakura, JPN
| | - Keiichiro Terayama
- Rehabilitation Medicine, Toho University Sakura Medical Center, Sakura, JPN
| | - Masato Sonobe
- Orthopaedic Surgery, Toho University Sakura Medical Center, Sakura, JPN
| | - Yorikazu Akatsu
- Orthopaedic Surgery, Toho University Sakura Medical Center, Sakura, JPN
| | - Junya Saito
- Orthopaedic Surgery, Toho University Sakura Medical Center, Sakura, JPN
| | - Masaki Norimoto
- Orthopaedic Surgery, Toho University Sakura Medical Center, Sakura, JPN
| | - Shinji Taniguchi
- Orthopaedic Surgery, Toho University Sakura Medical Center, Sakura, JPN
| | - Ayako Kubota
- Orthopaedic Surgery, Toho University Omori Medical Center, Tokyo, JPN
| | - Yasuchika Aoki
- Orthopaedic Surgery, Eastern Chiba Medical Center, Togane, JPN
| | - Koichi Nakagawa
- Orthopaedic Surgery, Toho University Sakura Medical Center, Sakura, JPN
| |
Collapse
|
10
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Matsumoto T, Kuroda R. Expression profiling of genes in rheumatoid fibroblast-like synoviocytes regulated by Fas ligand via cDNA microarray analysis. Exp Ther Med 2021; 22:1000. [PMID: 34345282 PMCID: PMC8311246 DOI: 10.3892/etm.2021.10432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation in synovial tissues. Hyperplasia of synovial tissues leads to the formation of pannus that invades the joint cartilage and bone, resulting in joint destruction. Fas ligand (FasL), which is a member of the tumor necrosis factor superfamily, contributes to the pathogenesis of autoimmune diseases, including RA. The current study attempted to identify genes whose expressions in rheumatoid fibroblast-like synoviocytes (RA-FLS) were regulated by FasL, using cDNA microarray. A total of four individual lines of primary cultured RA-FLS were incubated either with recombinant human FasL protein or PBS as an unstimulated control for 12 h. Gene expression was detected using a microarray assay. The results revealed the expression profiles of genes in RA-FLS regulated by Fas and investigated the functions of the genes that were regulated. Among the genes in this profile, the mRNA expression changes of the following genes were indicated to be of note using RT-qPCR: Dual specificity phosphatase 6, epiregulin, interleukin 11, angiopoietin-like 7, protein inhibitor of activated STAT 2 and growth differentiation factor 5. These genes may affect the pathogenesis of RA by affecting apoptosis, proliferation, cytokine production, cytokine-induced inflammation, intracellular signaling, angiogenesis, bone destruction and chondrogenesis. To the best of our knowledge, the current study is the first study to reveal the expression profile of genes in RA-FLS regulated by FasL. The data demonstrated that FasL may regulate the expression of a number of key molecules in RA-FLS, thus affecting RA pathogenesis. Further studies of the genes detected may improve the understanding of RA pathogenesis and provide novel treatment targets for RA.
Collapse
Affiliation(s)
- Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yasushi Miura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.,Division of Orthopedic Science, Department of Rehabilitation Science, Kobe University Graduate School of Health Science, Kobe, Hyogo 654-0142, Japan
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
11
|
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 2021; 69:225-238. [PMID: 33983569 DOI: 10.1007/s12026-021-09202-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Collapse
|
12
|
Li Yim AYF, Ferrero E, Maratou K, Lewis HD, Royal G, Tough DF, Larminie C, Mannens MMAM, Henneman P, de Jonge WJ, van de Sande MGH, Gerlag DM, Prinjha RK, Tak PP. Novel Insights Into Rheumatoid Arthritis Through Characterization of Concordant Changes in DNA Methylation and Gene Expression in Synovial Biopsies of Patients With Differing Numbers of Swollen Joints. Front Immunol 2021; 12:651475. [PMID: 33968050 PMCID: PMC8100206 DOI: 10.3389/fimmu.2021.651475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, we sought to characterize synovial tissue obtained from individuals with arthralgia and disease-specific auto-antibodies and patients with established rheumatoid arthritis (RA), by applying an integrative multi-omics approach where we investigated differences at the level of DNA methylation and gene expression in relation to disease pathogenesis. We performed concurrent whole-genome bisulphite sequencing and RNA-Sequencing on synovial tissue obtained from the knee and ankle from 4 auto-antibody positive arthralgia patients and thirteen RA patients. Through multi-omics factor analysis we observed that the latent factor explaining the variance in gene expression and DNA methylation was associated with Swollen Joint Count 66 (SJC66), with patients with SJC66 of 9 or more displaying separation from the rest. Interrogating these observed differences revealed activation of the immune response as well as dysregulation of cell adhesion pathways at the level of both DNA methylation and gene expression. We observed differences for 59 genes in particular at the level of both transcript expression and DNA methylation. Our results highlight the utility of genome-wide multi-omics profiling of synovial samples for improved understanding of changes associated with disease spread in arthralgia and RA patients, and point to novel candidate targets for the treatment of the disease.
Collapse
Affiliation(s)
- Andrew Y. F. Li Yim
- R&D GlaxoSmithKline, Stevenage, United Kingdom
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | | | - Marcel M. A. M. Mannens
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Surgery, University Clinic of Bonn, Bonn, Germany
| | - Marleen G. H. van de Sande
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Paul P. Tak
- R&D GlaxoSmithKline, Stevenage, United Kingdom
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology, Ghent University, Ghent, Belgium
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Tian R, Xu J, Luo Q, Hou C, Liu J. Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem 2021; 8:831. [PMID: 33644000 PMCID: PMC7905316 DOI: 10.3389/fchem.2020.00831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nanozyme is a type of nanostructured material with intrinsic enzyme mimicking activity, which has been increasingly studied in the biological field. Compared with natural enzymes, nanozymes have many advantages, such as higher stability, higher design flexibility, and more economical production costs. Nanozymes can be used to mimic natural antioxidant enzymes to treat diseases caused by oxidative stress through reasonable design and modification. Oxidative stress is caused by imbalances in the production and elimination of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This continuous oxidative stress can cause damage to some biomolecules and significant destruction to cell structure and function, leading to many physiological diseases. In this paper, the methods to improve the antioxidant properties of nanozymes were reviewed, and the applications of nanozyme antioxidant in the fields of anti-aging, cell protection, anti-inflammation, wound repair, cancer, traumatic brain injury, and nervous system diseases were introduced. Finally, the future challenges and prospects of nanozyme as an ideal antioxidant were discussed.
Collapse
Affiliation(s)
- Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
14
|
Lipoxin A4-Mediated p38 MAPK Signaling Pathway Protects Mice Against Collagen-Induced Arthritis. Biochem Genet 2020; 59:346-365. [PMID: 33221976 DOI: 10.1007/s10528-020-10016-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
The aim of the article was to study the mechanism of Lipoxin A4 (LXA4)-mediated p38 MAPK pathway protecting mice against collagen-induced arthritis (CIA). The impact of LXA4 (0, 5, 10, 15 nM) on synoviocytes proliferation of CIA mice was detected using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. CIA mice were treated with LXA4, SB203580 (a p38 inhibitor), and/or anisomycin (a p38 agonist), and the arthritis severity score in each mouse was determined. The gene or protein expressions were detected with Western Blotting, ELISA, or qRT-PCR. LXA4 inhibited the synoviocytes proliferation of CIA mice with decreased levels of TNF-α, IL-6, IL-1β, and IFN-γ and reduced p-p38/total p38 expression in synoviocytes in a dose-dependent manner. LXA4 levels were decreased in synovial tissues and plasma of CIA mice, but p-p38/total p38 expression was increased in synovial tissues. LXA4 could downregulate p-p38/total p38 expression in synovial tissues of CIA mice. Both LXA4 and SB203580 reduced arthritis severity score of CIA mice with the reduction of synovial tissue hyperplasia and inflammatory cell infiltration. CIA mice treated with LXA4 and SB203580 had lower levels of TNF-α, IL-6, IL-1β, and IFN-γ, accompanying decreased MDA as well as increased SOD, CAT,and GPx. However, anisomycin could reverse the protect effects of LXA4 on CIA mice regarding the abovementioned inflammatory factors and oxidative stress indexes. LXA4 protected mice against collagen-induced arthritis via inhibiting p38 MAPK signaling pathway, which may be a potential new therapeutic target for rheumatoid arthritis.
Collapse
|
15
|
El-Garawani I, El-Seedi H, Khalifa S, El Azab IH, Abouhendia M, Mahmoud S. Enhanced Antioxidant and Cytotoxic Potentials of Lipopolysaccharides-Injected Musca domestica Larvae. Pharmaceutics 2020; 12:E1111. [PMID: 33227988 PMCID: PMC7699146 DOI: 10.3390/pharmaceutics12111111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023] Open
Abstract
The usage of insects as a sustainable and functional natural products resource is a new promise in complementary and alternative medicine. The present study aimed to investigate the ability of Musca domestica (housefly) larval hemolymph (insect blood) to display the enhanced in vitro antioxidant and cytotoxic effects. The oxidative stress (OS) was elicited by inducing lipopolysaccharides (LPS) treatment as an exogenous stressor. Determination of superoxide dismutase 1 (SOD1), glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC), and mRNA and protein expressions of SOD1, was investigated as confirmatory markers of oxidative stress induction. Cytotoxicity on cancerous MCF-7 and normal Vero cells were also evaluated using an MTT assay at 24 h post-injection. The injection of LPS induced a significant (p < 0.05) increase in SOD, GSH and TAC, whereas, the MDA was diminished. Hemolymph was collected from normal and treated larvae after 6, 12 and 24 h. The M. domestica superoxide dismutase (MdSOD1) transcripts were significantly (p < 0.05) upregulated 6 and 12 h post-treatment, while a significant downregulation was observed after 24 h. Western blot analysis showed that MdSOD1 was expressed in the hemolymph of the treated larvae with an increase of 1.2 folds at 6 and 12 h and 1.6 folds at 24 h relative to the control group. LPS-treated larval hemolymphs exhibited significant cytotoxicity with respect to the untreated ones against MCF-7 while Vero cells showed no cytotoxicity for both hemolymphs. The DPPH free radical scavenging activity was examined and a significant antioxidant potential potency was observed at 6 h (50% maximal inhibitory concentration (IC50): 63.3 ± 3.51 µg/mL) when compared to the control M. domestica larval hemolymph (IC50: 611.7 ± 10.41 µg/mL). Taken together, M. domestica larval hemolymph exhibited enhanced antioxidant and consequently increased cytotoxic capacities under stressed conditions.
Collapse
Affiliation(s)
- Islam El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (M.A.); (S.M.)
| | - Hesham El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden;
- Chemistry Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Shaden Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden;
| | - Islam H. El Azab
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- On Leave from Chemistry Department, Faculty of Science, Aswan University, Aswan, P.O. Box 81528, Aswan 81528, Egypt
| | - Marwa Abouhendia
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (M.A.); (S.M.)
| | - Shaymaa Mahmoud
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt; (M.A.); (S.M.)
| |
Collapse
|
16
|
The Free Radical Scavenging and Anti-Isolated Human LDL Oxidation Activities of Pluchea indica (L.) Less. Tea Compared to Green Tea ( Camellia sinensis). BIOMED RESEARCH INTERNATIONAL 2020; 2020:4183643. [PMID: 33029506 PMCID: PMC7533030 DOI: 10.1155/2020/4183643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Tea is one of the most popular beverages in the world. Camellia sinensis tea (CST) or green tea is widely regarded as a potent antioxidant. In Thailand, Pluchea indica (L.) Less. tea (PIT) has been commercially available as a health-promoting drink. This study focused on free radical scavenging activities of PIT, and its ability to protect isolated human low-density lipoproteins (LDL) from oxidation by chemical agents. A preliminary study to investigate the antioxidant nature of PIT was undertaken. These included common antioxidant assays involving 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), hypochlorous acid (HOCl), and its potential to scavenge peroxynitrite. In separated experiments, isolated human LDL was challenged with either 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), copper (Cu2+), or 3-Morpholinosydnonimine hydrochloride (SIN-1) to induce LDL oxidation. PIT exhibited antioxidant activity in all test systems and performed significantly better than CST in both DPPH (P < 0.05; IC50PIT = 245.85 ± 15.83 and CST = 315.41 ± 24.18 μg/ml) and peroxynitrite scavenging assays. PIT at 75 μg/ml almost fully prevented the peroxynitrite over a 5 h period. Moreover, it displayed similar properties to CST during the antioxidation of isolated human LDL using AAPH, Cu2+, SIN-1, and hypochlorous acid scavenging assays. However, it revealed a significantly lower ABTS scavenging activity than CST (P < 0.05; IC50PIT = 30.47 ± 2.20 and CST = 21.59 ± 0.67 μg/ml). The main constituents of the PIT were identified using LC-MS/MS. It contained 4-O-caffeoylquinic acid (4-CQ), 5-O-caffeoylquinic acid (5-CQ), 3,4-O-dicaffeoylquinic acid (3,4-CQ), 3,5-O-dicaffeoylquinic acid (3,5-CQ), and 4,5-O-dicaffeoylquinic acid (4,5-CQ). In conclusion, caffeoyl derivatives in PIT could play an important role in potent antioxidant properties. So, it may be further developed to be antioxidant beverages for preventing atherosclerosis and cardiovascular diseases associated with oxidative stress.
Collapse
|
17
|
Synergy between 15-lipoxygenase and secreted PLA 2 promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:25679-25689. [PMID: 32973091 DOI: 10.1073/pnas.2005111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damage-associated endogenous molecules induce innate immune response, thus making sterile inflammation medically relevant. Stress-derived extracellular vesicles (stressEVs) released during oxidative stress conditions were previously found to activate Toll-like receptor 4 (TLR4), resulting in expression of a different pattern of immune response proteins in comparison to lipopolysaccharide (LPS), underlying the differences between pathogen-induced and sterile inflammation. Here we report that synergistic activities of 15-lipoxygenase (15-LO) and secreted phospholipase A2 (sPLA2) are needed for the formation of TLR4 agonists, which were identified as lysophospholipids (lysoPLs) with oxidized unsaturated acyl chain. Hydroxy, hydroperoxy, and keto products of 2-arachidonoyl-lysoPI oxidation by 15-LO were identified by mass spectrometry (MS), and they activated the same gene pattern as stressEVs. Extracellular PLA2 activity was detected in the synovial fluid from rheumatoid arthritis and gout patients. Furthermore, injection of sPLA2 promoted K/BxN serum-induced arthritis in mice, whereby ankle swelling was partially TLR4 dependent. Results confirm the role of oxidized lysoPL of stressEVs in sterile inflammation that promotes chronic diseases. Both 15-LO and sPLA2 enzymes are induced during inflammation, which opens the opportunity for therapy without compromising innate immunity against pathogens.
Collapse
|
18
|
Li C, Chen B, Fang Z, Leng YF, Wang DW, Chen FQ, Xu X, Sun ZL. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Joint Bone Spine 2020; 87:425-430. [PMID: 32473419 DOI: 10.1016/j.jbspin.2020.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE A systematic review and analysis of data from several rheumatoid arthritis metabolomics studies attempts to determine which metabolites can be used as potential biomarkers for the diagnosis of rheumatoid arthritis and to explore the pathogenesis of rheumatoid arthritis. METHODS We searched all the subject-related documents published by EMBASE, PubMed, Web of Science, and Cochrane Library from the database to the September 2019 publication. Two researchers independently screened the literature and extracted the data. QUADOMICS tool was used to assess the quality of studies included in this systematic review. RESULTS A total of 10 studies met the inclusion criteria of systematic review, including 502 patients with rheumatoid arthritis and 373 healthy people. Among them, the biological samples utilised for metabolomic analysis include: serum (n=8), urine (n=1) and synovial fluid (n=1). Some metabolites play an important role in rheumatoid arthritis: glucose, lactic acid, citric acid, leucine, methionine, isoleucine, valine, phenylalanine, threonine, serine, proline, glutamate, histidine, alanine, cholesterol, glycerol, and ribose. CONCLUSIONS Metabolomics provides important new opportunities for further research in rheumatoid arthritis and is expected to elucidate the pathogenesis of rheumatoid arthritis that has not been fully understood before.
Collapse
Affiliation(s)
- Cheng Li
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Chen
- Department of nursing, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Zhen Fang
- Medical Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Yu-Fei Leng
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Dan-Wen Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Feng-Qin Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao Xu
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Zhi-Ling Sun
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
19
|
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 2020; 16:316-333. [PMID: 32393826 DOI: 10.1038/s41584-020-0413-5] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
20
|
Small A, Wechalekar MD. Synovial biopsies in inflammatory arthritis: precision medicine in rheumatoid arthritis. Expert Rev Mol Diagn 2020; 20:315-325. [PMID: 31865803 DOI: 10.1080/14737159.2020.1707671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Synovial tissue (ST) is composed of a lining and sublining layer and is the target tissue involved in the inflammatory arthritides (IA), in which there is lining layer hyperplasia, inflammatory cell influx, macrophage recruitment and change in number and behavior of lining fibroblasts. Understanding synovial pathology has been critical in providing insights into pathogenetic mechanisms of disease and therapeutics. Pathobiological insights into ST have been underpinned by progress in molecular analytic methods; research in this area holds promise in individualizing treatment and optimizing response.Areas covered: We explore ST in IA and cover in-depth the utility of synovial biopsy and ST heterogeneity. We review recent advances in ST research and discuss implications with regards to therapeutic response. Finally, we provide perspectives on the identification of new drug targets and new diagnostic and prognostic markers.Expert opinion: ST holds the potential to individualize therapy by detecting biomarkers of diagnosis, therapeutic choice, and treatment modification in IA. Advances in molecular biology including high-throughput omics are likely to provide information that has hitherto remained unknown. ST analyzes pre- and post-treatment needs to be standard of care; only by routinely collecting and analyzing ST will we achieve the precision medicine outcomes described herein.
Collapse
Affiliation(s)
- Annabelle Small
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia.,Rheumatology Department, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
21
|
Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, Mazein A, Bonnet E, Petit-Teixeira E, Niarakis A. RA-map: building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database (Oxford) 2020; 2020:baaa017. [PMID: 32311035 PMCID: PMC7170216 DOI: 10.1093/database/baaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context. However, integration and organization of such data in a systematic manner remains a challenging task. Molecular maps are widely used in biology to provide a useful and intuitive way of depicting a variety of biological processes and disease mechanisms. Recent large-scale collaborative efforts such as the Disease Maps Project demonstrate the utility of such maps as versatile tools to organize and formalize disease-specific knowledge in a comprehensive way, both human and machine-readable. We present a systematic effort to construct a fully annotated, expert validated, state-of-the-art knowledge base for RA in the form of a molecular map. The RA map illustrates molecular and signalling pathways implicated in the disease. Signal transduction is depicted from receptors to the nucleus using the Systems Biology Graphical Notation (SBGN) standard representation. High-quality manual curation, use of only human-specific studies and focus on small-scale experiments aim to limit false positives in the map. The state-of-the-art molecular map for RA, using information from 353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8 phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy navigation and search of molecular pathways implicated in the disease. Furthermore, the RA map can serve as a template for omics data visualization.
Collapse
Affiliation(s)
- Vidisha Singh
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Weill Cornell Medical Center, Weill Department of Medicine, 525 East 68th Street, New York, NY 10065, USA
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Maëva Veyssiere
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Eleftherios Pilalis
- eNIOS Applications P.C., R&D department, Alexandrou Pantou 25, 17671, Kallithea-Athens, Greece
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, 2 rue Gaston Crémieux, CP5706 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Elisabeth Petit-Teixeira
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Anna Niarakis
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| |
Collapse
|
22
|
Aniss NND, Zaazaa AM, Saleh MRA. Anti-arthritic Effects of Platelets Rich Plasma and Hyaluronic Acid on Adjuvant-induced Arthritis in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2020.33.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Su C, Chen Y, Chen Y, Zhou Y, Li L, Lu Q, Liu H, Luo X, Zhu J. Effect of electroacupuncture at the ST36 and GB39 acupoints on apoptosis by regulating the p53 signaling pathway in adjuvant arthritis rats. Mol Med Rep 2019; 20:4101-4110. [PMID: 31545441 PMCID: PMC6797960 DOI: 10.3892/mmr.2019.10674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
p53 and mouse double minute 2 homolog (MDM2) serve key regulatory roles in the apoptosis of synovial cells. The present study aimed to investigate the effects of electroacupuncture (EA) at the 'Zusanli' (ST36) and 'Xuanzhong' (GB39) acupoints on apoptosis in an adjuvant arthritis (AA) rat model. A total of 40 male Sprague‑Dawley rats were randomly divided into Control, AA, AA + EA and AA + sham EA groups (n=10 rats in each group). Rats in all the groups, with the exception of the control group, were injected with Complete™ Freund's adjuvant into the bilateral hindlimb footpad to establish the AA model. Rats in the AA + EA group were treated with EA at the ST36 and GB39 acupoints. Rats in the AA + sham EA group were treated with percutaneous electrical stimulation at a position of 5 mm away from the ST36 and GB39 acupoints. The arthritis index scores and hindlimb paw volumes of the rats in each group were recorded. Subsequently, pathological changes in the synovial tissue were evaluated by hematoxylin and eosin (H&E) staining, and the apoptotic rate of the synovial cells was detected by TUNEL staining. In addition, the expression levels of the apoptosis‑associated proteins, Bax, phorbol‑12‑myristate‑13‑acetate‑induced protein 1 (Noxa) and p53 upregulated modulator of apoptosis (PUMA), were determined by western blot analysis. The expression of both the gene and protein of p53 and MDM2 in synovial tissue was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis, respectively. The results indicated that the arthritis index scores and hindlimb paw volumes upon EA stimulation were significantly decreased compared with those of the AA group (P<0.05). H&E staining revealed that the synovial inflammation of EA stimulation was significantly decreased compared with the AA group (P<0.05). The TUNEL assay results indicated that the apoptotic rate of synovial cells in the AA + EA group was significantly increased compared with that in the AA group (P<0.05). Furthermore, an increased expression of proapoptotic proteins was confirmed by the increased expression levels of Bax, Noxa and PUMA in the AA + EA group. The results of RT‑qPCR and western blot analysis demonstrated that, compared with the AA group, EA stimulation led to a marked increase in p53 (P<0.05) and a significant decrease in MDM2 (P<0.05) gene and protein expression. Taken together, these results demonstrated that EA performed on the ST36 and GB39 acupoints led to a significant amelioration in AA injury of model rats, by regulating the p53 signaling pathway and inducing apoptosis.
Collapse
Affiliation(s)
- Chengguo Su
- Department of Acupuncture‑Moxibustion and Tuina, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yuzhou Chen
- Department of Acupuncture‑Moxibustion and Tuina, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yunfei Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Yin Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Lianbo Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Qunwen Lu
- Department of Acupuncture‑Moxibustion and Tuina, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Huahui Liu
- Department of Acupuncture‑Moxibustion and Tuina, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaochao Luo
- Department of Acupuncture‑Moxibustion and Tuina, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jun Zhu
- Department of Acupuncture‑Moxibustion and Tuina, The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
24
|
Antioxidant effects of gold nanoparticles on early stage of collagen-induced arthritis in rats. Res Vet Sci 2019; 124:32-37. [DOI: 10.1016/j.rvsc.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 01/22/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
|
25
|
Aloke C, Ibiam UA, Obasi NA, Orji OU, Ezeani NN, Aja PM, Alum EU, Mordi JC. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund's adjuvant-induced rheumatoid arthritis in rats. J Food Biochem 2019; 43:e12912. [PMID: 31353723 DOI: 10.1111/jfbc.12912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/20/2019] [Accepted: 05/04/2019] [Indexed: 01/14/2023]
Abstract
The antirheumatoid arthritis potential of ethanol and aqueous extracts of seed pod of Copaifera salikounda (SPCS) was evaluated using the chicken collagen/complete Freund's adjuvant-induced arthritic rats model. Adjuvat-induced rats were treated with varied doses of the extracts (400, 600, and 800 mg/kg body weight) and with reference drug, indomethacin for 21 days. Antiarthritic evaluation was done through measurement of body weight, paw size, inflammatory makers, hematological parameters, cytokines, antioxidant enzymes, reduced glutathione, lipid peroxidation as well as histopathological examinations. Treatment with the ethanol and aqueous extracts of SPCS markedly inhibited the paw size and caused weight gain. The extracts considerably modulated the hematological as well as the antioxidant parameters. Likewise, the extract restored the altered lipid peroxidation, pro-inflammatory mediators, and inflammatory factors which further accentuate the implication in adjuvant-induced arthritis. Thus, the ethanol and aqueous extracts of SPCS showed a significant antiarthritic activity that was statistically analogous to that of indomethacin. Practical applications Copaifera salikounda (Heckel) has been used in treatment of different ailments including rheumatoid arthritis in folklore medicine. This is the first reported proof of the antiarthritic potential of the seed pod. Oxidative stress has been implicated in rheumatoid arthritis. Ethanol extract of SPCS has been shown to be predominantly rich in phenols, terpenoids, alkaloids, and flavonoids which are natural antioxidant. The present study has demonstrated that ethanol and aqueous extracts of SPCS can exert antioxidative and antiinflammatory effects, thus strengthening its antiarthritic potentials.
Collapse
Affiliation(s)
- Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Abakaliki, Nigeria
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Abakaliki, Nigeria
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Nkiru Nwamaka Ezeani
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Abakaliki, Nigeria
| | | |
Collapse
|
26
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Kuroda R. Expression profiling of genes in rheumatoid fibroblast-like synoviocytes regulated by tumor necrosis factor-like ligand 1A using cDNA microarray analysis. Biomed Rep 2019; 1:1-5. [PMID: 31258900 PMCID: PMC6566564 DOI: 10.3892/br.2019.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation in synovial tissues. Hyperplasia of synovial tissue leads to the formation of pannus, which invades joint cartilage and bone resulting in joint destruction. Tumor necrosis factor-like ligand 1A (TL1A), a member of the tumor necrosis factor superfamily (TNFSF15), contributes to the pathogenesis of autoimmune diseases, including RA. In the present study, a cDNA microarray was used to search for genes whose expression in rheumatoid fibroblast-like synoviocytes (RA-FLS) were regulated by TL1A. Four individual lines of primary cultured RA-FLS were incubated either with recombinant human TL1A protein or phosphate-buffered saline, as an unstimulated control, for 12 h. Gene expression was then detected through the microarray assay. The results revealed the expression profiles of genes in RA-FLS regulated by TL1A. The present study also demonstrated the functions of those genes whose expression in RA-FLS was regulated by TL1A. Among the genes in this profile, the present study focused on the following genes: Spectrin repeat-containing nuclear envelope 1, Fc receptor-like 2, PYD (pyrin domain)-containing 1, cell division cycle 45 homolog, signal transducer and activator of transcription 5B, and interferon regulatory factor 4. These genes may affect the pathogenesis of RA, including proliferation, regulation of B cells and T cells, inflammation, and cytokine processing. The present study revealed for the first time, to the best of our knowledge, the expression profile of genes in RA-FLS regulated by TL1A. The data indicate that TL1A may regulate the gene expression of various key molecules in RA-FLS, thus affecting the pathogenesis of RA. Further investigations of the genes detected in the current profiles may provide a deeper understanding of the pathogenesis and a novel target for the treatment of RA.
Collapse
Affiliation(s)
- Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yasushi Miura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan.,Division of Orthopedic Science, Department of Rehabilitation Science, Kobe University Graduate School of Health Science, Kobe, Hyogo 654-0142, Japan
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
27
|
Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid. Eur J Pharm Biopharm 2019; 136:84-92. [DOI: 10.1016/j.ejpb.2019.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
|
28
|
Association between activity and genotypes of paraoxonase1 L55M (rs854560) increases the disease activity of rheumatoid arthritis through oxidative stress. Mol Biol Rep 2018; 46:741-749. [DOI: 10.1007/s11033-018-4530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
|
29
|
Islam S, Mir AR, Abidi M, Talha M, Zafar A, Habib S, Moinuddin. Methylglyoxal modified IgG generates autoimmune response in rheumatoid arthritis. Int J Biol Macromol 2018; 118:15-23. [PMID: 29906533 DOI: 10.1016/j.ijbiomac.2018.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
The detection of autoantibodies generated against modified proteins that stimulate cellular and humoral immune response has developed a lot of interest in the recent years and a search for biomarkers for the early detection of diseases has increased. IgG protein has earned attention for its possible modifications under hyperglycaemic conditions in rheumatoid arthritis, wherein dicarbonyl stress has been reported to alter the structural integrity of the protein. This report suggests that the interaction of the methylglyoxal with the IgG has consequences in the autoimmunopathology of rheumatoid arthritis. Our molecular docking analysis of methylglyoxal and IgG revealed a close interaction between the two molecules. TNBS studies confirmed the interaction by showing a decline in free lysine-arginine content post-MG modifications in IgG. The modified IgG was thermally more stable and showed the generation of glycation adducts N-epsilon-carboxyethyllysine. Rheumatoid arthritis patients showed enhanced carbonyl stress which was expected to induce structural changes in the epitope makeup of IgG. The ELISA studies and gel retardation assay confirmed auto-antibodies against MG modified IgG (MG-IgG) pointing towards the generation of neoepitopes upon IgG after interaction with MG. This study establishes the IgG modification in RA patients under alter carbonyl concentrations.
Collapse
Affiliation(s)
- Sidra Islam
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Talha
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
30
|
Minnelli C, Moretti P, Fulgenzi G, Mariani P, Laudadio E, Armeni T, Galeazzi R, Mobbili G. A Poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: Characterization and protective effect against oxidative damage. Int J Pharm 2018; 552:225-234. [PMID: 30291957 DOI: 10.1016/j.ijpharm.2018.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a polyphenolic catechin from green tea, well known for being bioactive in age-associated pathologies where oxidative stress plays a preeminent role. The activity of this molecule is however contrasted by its high chemical and metabolic instability that determines a poor concentration of the antioxidant within the biological system after administration. In order to protect the molecule and increase its delivery efficiency, we have encapsulated EGCG inside anionic liposomes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesteryl hemisuccinate. To maximize EGCG internalization, magnesium salt was added in the preparation. However stable nanodispersions suitable for drug delivery were obtained only after treatment with Poloxamer-407, a polyethylene-propylene glycol copolymer. The structural and morphological properties of the produced dispersion were studied by X-ray diffraction, which showed a multilamellar structure even after EGCG addition and an ordering effect of Poloxamer-407; Dynamic Light Scattering demonstrated serum stability of the liposomes. The characterization was completed by evaluating both encapsulation efficiency (100%, in the final formulation) and in vitro EGCG release. Since oxidative stress is involved in numerous retinal degenerative diseases, such as age-related macular degeneration, the ability of these liposomes to contrast H2O2-induced cell death was assessed in human retinal cells. Morphological changes at the subcellular level were analyzed by Transmission Electron Microscopy, which showed that mitochondria were better preserved in cells treated with liposomes then those treated with free EGCG. In conclusion, the results demonstrated that the produced formulation enhances the efficacy of EGCG under stress conditions, thus representing a potential formulation for the intracellular delivery of EGCG in diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Cristina Minnelli
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paolo Moretti
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Gianluca Fulgenzi
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Conca, Torrette Polo scientifico didattico Murri, 60131 Ancona, Italy
| | - Paolo Mariani
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Emiliano Laudadio
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Tatiana Armeni
- Dipartimento Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanna Mobbili
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
31
|
Tang MW, Malvar Fernández B, Newsom SP, van Buul JD, Radstake TRDJ, Baeten DL, Tak PP, Reedquist KA, García S. Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 57:909-920. [PMID: 29471421 DOI: 10.1093/rheumatology/kex511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Objective Class 3 semaphorins regulate diverse cellular processes relevant to the pathology of RA, including immune modulation, angiogenesis, apoptosis and invasive cell migration. Therefore, we analysed the potential role of class 3 semaphorins in the pathology of RA. Methods Protein and mRNA expression in RA synovial tissue, SF and fibroblast-like synoviocytes (FLS) were determined by immunoblotting and quantitative PCR (qPCR). RA FLS migration and invasion were determined using wound closure and transwell invasion assays, respectively. PlexinA1, neuropilin-1 and neuropilin-2 expression was knocked down using small interfering RNA (siRNA). Activation of FLS intracellular signalling pathways was assessed by immunoblotting. Results mRNA expression of semaphorins (Sema)3B, Sema3C, Sema3F and Sema3G was significantly lower in the synovial tissue of early arthritis patients at baseline who developed persistent disease compared with patients with self-limiting disease after 2 years follow-up. Sema3B and Sema3F expression was significantly lower in arthritis patients fulfilling classification criteria for RA compared with those who did not. FLS expression of Sema3A was induced after stimulation with TNF, IL-1β or lipopolysaccharides (LPS), while Sema3B and Sema3F expression was downregulated. Exogenously applied Sema3A induced the migration and invasive capacity of FLS, while stimulation with Sema3B or Sema3F reduced spontaneous FLS migration, and platelet-derived growth factor induced cell invasion, effects associated with differential regulation of MMP expression and mediated by the PlexinA1 and neuropilin-1 and -2 receptors. Conclusion Our data suggest that modulation of class 3 semaphorin signaling could be a novel therapeutic strategy for modulating the invasive behaviour of FLS in RA.
Collapse
Affiliation(s)
- Man Wai Tang
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Malvar Fernández
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon P Newsom
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominique L Baeten
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Tak
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline Research and Development, Stevenage, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kris A Reedquist
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Samuel García
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Zhu N, Hou J, Wu Y, Li G, Liu J, Ma G, Chen B, Song Y. Identification of key genes in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Medicine (Baltimore) 2018; 97:e10997. [PMID: 29851858 PMCID: PMC6392928 DOI: 10.1097/md.0000000000010997] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) comprise the most common forms of arthritis. The aim of this study was to identify differentially expressed genes (DEGs) and associated biological processes between RA and OA using a bioinformatics approach to elucidate their potential pathogenesis.The gene expression profiles of the GSE55457 datasets, originally produced through use of the high-throughput Affymetrix Human Genome U133A Array, were downloaded from the Gene Expression Omnibus (GEO) database. The GSE55457 dataset contains information from 33 samples, including 10 normal control (NC) samples, 13 RA samples, and 10 OA samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed to identify functional categories and associated molecular and biochemical pathways, respectively, for the identified DEGs, and a protein-protein interaction (PPI) network of the DEGs was constructed using Cytoscape software.GO and KEGG results suggested that several biological pathways (ie, "immune response," "inflammation," and "osteoclast differentiation") are commonly involved in the development of both RA and OA, whereas several other pathways (eg, "MAPK signaling pathway," and "ECM-receptor interaction") presented significant differences between these disorders.This study provides further insights into the underlying pathogenesis of RA and OA, which may facilitate the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Naiqiang Zhu
- Second Department of Spinal Surgery, the Affiliated Hospital of Chengde Medical College
| | - Jingyi Hou
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College
| | - Yuanhao Wu
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Geng Li
- China-Japan Friendship Hospital, Beijing, China
| | - Jinxin Liu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - GuiYun Ma
- Second Department of Spinal Surgery, the Affiliated Hospital of Chengde Medical College
| | - Bin Chen
- Second Department of Spinal Surgery, the Affiliated Hospital of Chengde Medical College
| | - Youxin Song
- Second Department of Spinal Surgery, the Affiliated Hospital of Chengde Medical College
| |
Collapse
|
33
|
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-Like Phenotype of Rheumatoid Synovium: Molecular Profiling and Prospects for Precision Medicine. Arthritis Rheumatol 2018; 70:637-652. [PMID: 29287304 PMCID: PMC5920713 DOI: 10.1002/art.40406] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by destructive hyperplasia of the synovium. Fibroblast-like synoviocytes (FLS) are a major component of synovial pannus and actively participate in the pathologic progression of RA. How rheumatoid FLS acquire and sustain such a uniquely aggressive phenotype remains poorly understood. We describe the current state of knowledge of the molecular alterations in rheumatoid FLS at the genomic, epigenomic, transcriptomic, proteomic, and metabolomic levels, which offers a means to reconstruct the pathways leading to rheumatoid pannus. Such data provide new pathologic insight and suggest means to more sensitively assess disease activity and response to therapy, as well as support new avenues for therapeutic development.
Collapse
Affiliation(s)
- Sungyong You
- Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jung Hee Koh
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Lin Leng
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
34
|
Xu XX, Bi JP, Ping L, Li P, Li F. A network pharmacology approach to determine the synergetic mechanisms of herb couple for treating rheumatic arthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:967-979. [PMID: 29731604 PMCID: PMC5923250 DOI: 10.2147/dddt.s161904] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose The purpose of this study was to investigate the therapeutic mechanism(s) of Clematis chinensis Osbeck/Notopterygium incisum K.C. Ting ex H.T (CN). Methods A network pharmacology approach integrating prediction of ingredients, target exploration, network construction, module partition and pathway analysis was used. Results This approach successfully helped to identify 12 active ingredients of CN, interacting with 13 key targets (Akt1, STAT3, TNFsf13, TP53, EPHB2, IL-10, IL-6, TNF, MAPK8, IL-8, RELA, ROS1 and STAT4). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that CN-regulated pathways were mainly classified into signal transduction and immune system. Conclusion The present work may help to illustrate the mechanism(s) of action of CN, and it may provide a better understanding of antirheumatic effects.
Collapse
Affiliation(s)
- Xi-Xi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jian-Ping Bi
- Orthopedics Department, Shandong Provincial Traditional Chinese Medical Hospital, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, People's Republic of China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China.,School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
35
|
Yahyapour R, Amini P, Rezapour S, Cheki M, Rezaeyan A, Farhood B, Shabeeb D, Musa AE, Fallah H, Najafi M. Radiation-induced inflammation and autoimmune diseases. Mil Med Res 2018; 5:9. [PMID: 29554942 PMCID: PMC5859747 DOI: 10.1186/s40779-018-0156-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Currently, ionizing radiation (IR) plays a key role in the agricultural and medical industry, while accidental exposure resulting from leakage of radioactive sources or radiological terrorism is a serious concern. Exposure to IR has various detrimental effects on normal tissues. Although an increased risk of carcinogenesis is the best-known long-term consequence of IR, evidence has shown that other diseases, particularly diseases related to inflammation, are common disorders among irradiated people. Autoimmune disorders are among the various types of immune diseases that have been investigated among exposed people. Thyroid diseases and diabetes are two autoimmune diseases potentially induced by IR. However, the precise mechanisms of IR-induced thyroid diseases and diabetes remain to be elucidated, and several studies have shown that chronic increased levels of inflammatory cytokines after exposure play a pivotal role. Thus, cytokines, including interleukin-1(IL-1), tumor necrosis factor (TNF-α) and interferon gamma (IFN-γ), play a key role in chronic oxidative damage following exposure to IR. Additionally, these cytokines change the secretion of insulin and thyroid-stimulating hormone(TSH). It is likely that the management of inflammation and oxidative damage is one of the best strategies for the amelioration of these diseases after a radiological or nuclear disaster. In the present study, we reviewed the evidence of radiation-induced diabetes and thyroid diseases, as well as the potential roles of inflammatory responses. In addition, we proposed that the mitigation of inflammatory and oxidative damage markers after exposure to IR may reduce the incidence of these diseases among individuals exposed to radiation.
Collapse
Affiliation(s)
- Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Zip code: 8813833435, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Saeed Rezapour
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Zip code: 6135715794, Iran
| | - Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Zip code: 1449614535, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Zip code: 3715835155, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Zip code: 1417613151, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research center for molecular and cellular imaging, Tehran University of Medical Sciences, Tehran, Zip code: 1417613151, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Zip code: 3836119131, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Zip code: 6714869914, Iran.
| |
Collapse
|
36
|
Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K. Rheumatoid arthritis. Nat Rev Dis Primers 2018; 4:18001. [PMID: 29417936 DOI: 10.1038/nrdp.2018.1] [Citation(s) in RCA: 1466] [Impact Index Per Article: 209.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that primarily affects the joints and is associated with autoantibodies that target various molecules including modified self-epitopes. The identification of novel autoantibodies has improved diagnostic accuracy, and newly developed classification criteria facilitate the recognition and study of the disease early in its course. New clinical assessment tools are able to better characterize disease activity states, which are correlated with progression of damage and disability, and permit improved follow-up. In addition, better understanding of the pathogenesis of RA through recognition of key cells and cytokines has led to the development of targeted disease-modifying antirheumatic drugs. Altogether, the improved understanding of the pathogenetic processes involved, rational use of established drugs and development of new drugs and reliable assessment tools have drastically altered the lives of individuals with RA over the past 2 decades. Current strategies strive for early referral, early diagnosis and early start of effective therapy aimed at remission or, at the least, low disease activity, with rapid adaptation of treatment if this target is not reached. This treat-to-target approach prevents progression of joint damage and optimizes physical functioning, work and social participation. In this Primer, we discuss the epidemiology, pathophysiology, diagnosis and management of RA.
Collapse
Affiliation(s)
- Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics and NIHR Manchester Biomedical Research Centre, Manchester Academic Health Sciences Centre, The University of Manchester and Central Manchester Foundation Trust, Manchester, UK
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - Arthur Kavanaugh
- Division of Rheumatology, Allergy and Immunology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Daniel H Solomon
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vibeke Strand
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
37
|
Rao RT, Pierre KK, Schlesinger N, Androulakis IP. The Potential of Circadian Realignment in Rheumatoid Arthritis. Crit Rev Biomed Eng 2017; 44:177-191. [PMID: 28605351 DOI: 10.1615/critrevbiomedeng.2016018812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this short review, we discuss evidence supporting the modulation of peripheral circadian systems as a therapeutic strategy for rheumatoid arthritis (RA). We first review the role of proinflammatory cytokines and oxidative stress, two of the primary mediators of chronic inflammation in RA, and their regulation by circadian clock machinery. We further highlight the role of environmental and metabolic signals in regulating the central and peripheral circadian clocks, with an emphasis on seasonal variations in photoperiod and rhythmic metabolic input, respectively. Finally, we hypothesize that the entrainment and realignment of peripheral clock rhythms have the ability to modulate these mediators, improving clinical outcomes in RA patients. Our discussion emphasizes the use of light therapy and time-restricted feeding for entraining peripheral clocks either via the entrainment of the central circadian clock in suprachiasmatic nuclei (SCN) or directly by uncoupling the peripheral circadian clocks from SCN. In doing so, we highlight the use of nonpharmacologic interventions as a potential strategy for improving clinical outcomes in chronic inflammatory conditions such as RA.
Collapse
Affiliation(s)
- Rohit T Rao
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Kamau K Pierre
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Naomi Schlesinger
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
38
|
Ahmed OM, Soliman HA, Mahmoud B, Gheryany RR. Ulva lactuca hydroethanolic extract suppresses experimental arthritis via its anti-inflammatory and antioxidant activities. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
39
|
Shahbazi S, Kaur J, Singh S, Achary KG, Wani S, Jema S, Akhtar J, Sobti RC. Impact of novel N-aryl piperamide NO donors on NF-κB translocation in neuroinflammation: rational drug-designing synthesis and biological evaluation. Innate Immun 2017; 24:24-39. [PMID: 29145791 PMCID: PMC6830765 DOI: 10.1177/1753425917740727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
NO donor drugs showed a significant therapeutic effect in the treatment of many
diseases, such as arteriopathies, various acute and chronic inflammatory
conditions, and several degenerative diseases. NO-releasing anti-inflammatory
drugs are the prototypes of a novel class of compounds, combining the
pharmacological activities of anti-inflammatory and anti-nociceptive of drugs
with those of NO, thus possessing potential therapeutic applications in a great
variety of diseases. In this study, we designed and predicted biological
activity by targeting cyclooxygenase type 2 (COX-2) and NF-κB subunits and
pharmacological profiling along with toxicity predictions of various
N-aryl piperamides linked via an ester bond to a spacer
that is bound to a NO-releasing moiety (-ONO2). The result of absorption,
distribution, metabolism and excretion and Docking studies indicated that among
51 designed molecules PA-3′K showed the best binding potential in both the
substrate and inhibitory binding pocket of the COX-2 enzyme with affinity values
of –9.33 and –5.12 for PDB ID 1CVU and 3LN1, respectively, thereby having the
potential to be developed as a therapeutic agent. The results of cell
viabilities indicated that PA-3′k possesses the best cell viability property
with respect to its dose (17.33 ng/ml), with 67.76% and 67.93% viable cells for
CHME3 and SVG cell lines, respectively.
Collapse
Affiliation(s)
- Sajad Shahbazi
- Department of Biotechnology, Panjab
University, Chandigarh, India
- Sajad Shahbazi, Department of Biotechnology,
Panjab University, Chandigarh, 160014, India.
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab
University, Chandigarh, India
| | - Shikha Singh
- Center of Biotechnology, Siksha O
Anusandhan University, Khandagiri, Bhubaneswar, Odisha, India
| | | | - Sameena Wani
- Department of Experimental Medicine and
Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | | | - Jabed Akhtar
- Imgenex India, E5, Infocity,
Bhubaneswar, Odisha, India
| | - Ranbir Chander Sobti
- Department of Biotechnology, Panjab
University, Chandigarh, India
- Babasaheb Bhimrao Ambedkar University,
Lucknow, India
| |
Collapse
|
40
|
Martin C, Li J. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. THE NEW PHYTOLOGIST 2017; 216:699-719. [PMID: 28796289 DOI: 10.1111/nph.14730] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/23/2017] [Indexed: 05/03/2023]
Abstract
Contents 699 I. 699 II. 700 III. 700 IV. 706 V. 707 VI. 714 714 References 714 SUMMARY: Plants make substantial contributions to our health through our diets, providing macronutrients for energy and growth as well as essential vitamins and phytonutrients that protect us from chronic diseases. Imbalances in our food can lead to deficiency diseases or obesity and associated metabolic disorders, increased risk of cardiovascular diseases and cancer. Nutritional security is now a global challenge which can be addressed, at least in part, through plant metabolic engineering for nutritional improvement of foods that are accessible to and eaten by many. We review the progress that has been made in nutritional enhancement of foods, both improvements through breeding and through biotechnology and the engineering principles on which increased phytonutrient levels are based. We also consider the evidence, where available, that such foods do enhance health and protect against chronic diseases.
Collapse
Affiliation(s)
- Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
41
|
Tang Y, Wang B, Sun X, Li H, Ouyang X, Wei J, Dai B, Zhang Y, Li X. Rheumatoid arthritis fibroblast-like synoviocytes co-cultured with PBMC increased peripheral CD4 + CXCR5 + ICOS + T cell numbers. Clin Exp Immunol 2017; 190:384-393. [PMID: 28833034 DOI: 10.1111/cei.13025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
'Circulating' T follicular helper cells (Tfh), characterized by their surface phenotypes CD4+ chemokine receptor 5 (CXCR5)+ inducible co-stimulatory molecule (ICOS)+ , have been identified as the CD4+ T cell subset specialized in supporting the activation, expansion and differentiation of B cells. Fibroblast-like synoviocytes (FLS) are critical in promoting inflammation and cartilage destruction in rheumatoid arthritis (RA), and the interaction between FLS and T cells is considered to facilitate FLS activation and T cell recruitment. However, it remains unknown whether RA-FLS co-cultured with activated peripheral blood mononuclear cells (PBMC) has immunoregulatory effects on peripheral Tfh. In the present study, we co-cultured RA-FLS with or without anti-CD3/CD28-stimulated PBMC. The results showed that RA-FLS co-cultured with stimulated PBMC could increase the numbers of CD4+ CXCR5+ ICOS+ T cells of RA PBMC possibly via the production of interleukin (IL)-6, a critical cytokine involved in the differentiation of Tfh cells. We also observed increased reactive oxygen species (ROS) levels in the co-culture system of RA-FLS and PBMC. The percentage of CD4+ CXCR5+ ICOS+ T cells was decreased when ROS production was inhibited by N-acetyl-L-cysteine (NAC), a specific inhibitor which can decrease ROS production. In addition, we showed that the higher levels of tumour necrosis factor (TNF)-α and IL-1β in the co-culture system and the blocking of TNF receptor 2 (TNF-R2) and IL-1β receptor (IL-1βR) both decreased the numbers of CD4+ CXCR5+ ICOS+ T cells. Our study reveals a novel mechanistic insight into how the interaction of RA-FLS and PBMC participates in the RA pathogenesis, and also provides support for the biologicals application for RA.
Collapse
Affiliation(s)
- Y Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - B Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - X Sun
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - H Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - X Ouyang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - J Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| | - B Dai
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital, Dalian
| | - Y Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - X Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning
| |
Collapse
|
42
|
Rockfield S, Raffel J, Mehta R, Rehman N, Nanjundan M. Iron overload and altered iron metabolism in ovarian cancer. Biol Chem 2017; 398:995-1007. [PMID: 28095368 DOI: 10.1515/hsz-2016-0336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022]
Abstract
Iron is an essential element required for many processes within the cell. Dysregulation in iron homeostasis due to iron overload is detrimental. This nutrient is postulated to contribute to the initiation of cancer; however, the mechanisms by which this occurs remain unclear. Defining how iron promotes the development of ovarian cancers from precursor lesions is essential for developing novel therapeutic strategies. In this review, we discuss (1) how iron overload conditions may initiate ovarian cancer development, (2) dysregulated iron metabolism in cancers, (3) the interplay between bacteria, iron, and cancer, and (4) chemotherapeutic strategies targeting iron metabolism in cancer patients.
Collapse
|
43
|
Roy J, Galano JM, Durand T, Le Guennec JY, Lee JCY. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J 2017; 31:3729-3745. [PMID: 28592639 DOI: 10.1096/fj.201700170r] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
It has been 60 yr since the discovery of reactive oxygen species (ROS) in biology and the beginning of the scientific community's attempt to understand the impact of the unpaired electron of ROS molecules in biological pathways, which was eventually noted to be toxic. Several studies have shown that the presence of ROS is essential in triggering or acting as a secondary factor for numerous pathologies, including metabolic and genetic diseases; however, it was demonstrated that chronic treatment with antioxidants failed to show efficacy and positive effects in the prevention of diseases or health complications that result from oxidative stress. On the contrary, such treatment has been shown to sometimes even worsen the disease. Because of the permanent presence of ROS in organisms, elaborate mechanisms to adapt with these reactive molecules and to use them without necessarily blocking or preventing their actions have been studied. There is now a large body of evidence that shows that living organisms have conformed to the presence of ROS and, in retrospect, have adapted to the bioactive molecules that are generated by ROS on proteins, lipids, and DNA. In addition, ROS have undergone a shift from being molecules that invoked oxidative damage in regulating signaling pathways that impinged on normal physiological and redox responses. Working in this direction, this review unlocks a new conception about the involvement of cellular oxidants in the maintenance of redox homeostasis in redox regulation of normal physiological functions, and an explanation for its essential role in numerous pathophysiological states is noted.-Roy, J., Galano, J.-M., Durand, T., Le Guennec, J.-Y., Lee, J. C.-Y. Physiological role of reactive oxygen species as promoters of natural defenses.
Collapse
Affiliation(s)
- Jérôme Roy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Montreal Diabetes Research Center, Department of Nutrition, Université de Montréal, Montreal, Québec, Canada; .,Centre National de la Recherche Scientifique Unité Mixte de Recherche 9214, Inserm Unité 1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5247, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5247, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | - Jean-Yves Le Guennec
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 9214, Inserm Unité 1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
44
|
Zheng K, Zhao Z, Lin N, Wu Y, Xu Y, Zhang W. Protective Effect of Pinitol Against Inflammatory Mediators of Rheumatoid Arthritis via Inhibition of Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22). Med Sci Monit 2017; 23:1923-1932. [PMID: 28430763 PMCID: PMC5408901 DOI: 10.12659/msm.903357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background The aim of the current study was to explore the anti-arthritic effect of pinitol via assessing its effect on various inflammatory mediators and its possible mechanism of action. Material/Method We assessed the anti-arthritic effect of pinitol in a formaldehyde- and CFA-induced arthritic model in Wistar Swiss albino strain rats divided into 6 groups. The rats received different doses of pinitol and indomethacin for 28 days. The arthritic index and body weight were determined at regular intervals, together with hepatic, hematological, and antioxidant parameters. The expression of proinflammatory cytokines (e.g., IL-6, TNF-α, and IL-1β) and inflammatory mediators (e.g., COX-2 and VEGF) were also estimated with histopathological evaluation of the joint tissue of rats. A docking study of pinitol with PTPN22 was also carried out. Results The CFA-induced model rats developed redness and nodules in the tail and front paws, and the arthritic control (AC) group rats showed similar symptoms, which were decreased by pinitol administration. The body weight of AC group rats was decreased, while pinitol-treated rats showed considerably increased body weight. Hematological, hepatic, and antioxidant parameters were altered by pinitol in a dose-dependent manner. Pinitol significantly decreased the elevated concentration of proinflammatory cytokines and inflammatory mediators, with improvement in histopathological condition. The docking study suggested that pinitol efficiently interacted with PTPN22 via Arg59, Tyr60, Leu106, and Lys138 by creating close interatomic hydrogen bonds and hydrophobic contacts. Conclusions Pinitol showed anti-arthritic effects via reduction of proinflammatory cytokines and inflammatory mediators via inhibition of PTPN22.
Collapse
Affiliation(s)
- Kewen Zheng
- Department of Orthopeadic Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Zhixuan Zhao
- Department of Integrated TCM and Western Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Na Lin
- Department of Stomatology, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Yiyan Wu
- College of Pharmacy, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Ying Xu
- Department of Integrated TCM and Western Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Wanli Zhang
- Department of Pediatric Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| |
Collapse
|
45
|
Mbiantcha M, Almas J, Shabana SU, Nida D, Aisha F. Anti-arthritic property of crude extracts of Piptadeniastrum africanum (Mimosaceae) in complete Freund's adjuvant-induced arthritis in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:111. [PMID: 28202019 PMCID: PMC5311858 DOI: 10.1186/s12906-017-1623-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rheumatoid arthritis, disease of unknown causes is a rheumatic and autoimmune pathology, recognised for its increasing frequency and its adverse consequences. It is a disease that occurs in most cases between 50 and 60 years and women are more affected than men. This study aimed at evaluating immunomodulatory and anti-arthritis capacity of aqueous and methanol extracts of stem bark of Piptadeniastrum africanum (Mimosaceae). METHODS ROS production from phagocytes, proliferation of T-cells, TNF-α and IL-1β production and cytotoxicity were performed by using chemiluminescence technique, liquid scintillation counter, ELISA and MTT assay, respectively. Anti-arthritic activity was evaluated using a model of adjuvant induced arthritis. RESULTS Methanol and aqueous extracts of Piptadeniastrum africanum significantly (P < 0.001) inhibited extracellular and intracellular ROS production. These extracts also possess significant (P < 0.001) inhibitory activity on T-cell proliferation other than reduced TNF-α and IL-1β production. Piptadeniastrum africanum also significantly exhibited antiarthritic activity in complete Freund's adjuvant induced arthritis in rat associated with a significant anti-inflammatory and anti-hyperalgesia activity. CONCLUSIONS Immunomodulatory, anti-inflammatory, antihyperalgesia and anti-arthritis potential revealed in this study approve that, Piptadeniastrum africanum is a plant rich in compounds with anti-arthritic properties.
Collapse
Affiliation(s)
- Marius Mbiantcha
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Jabeen Almas
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Simjee U Shabana
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Dastagir Nida
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Faheem Aisha
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
46
|
Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S, Gallagher L, Smith T, Phelan JJ, Ryan J, O'Sullivan J, Ng CT, Veale DJ, Fearon U. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis 2016; 75:2192-2200. [PMID: 27013493 PMCID: PMC5136702 DOI: 10.1136/annrheumdis-2015-208476] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/28/2016] [Accepted: 03/03/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This study examines the relationship between synovial hypoxia and cellular bioenergetics with synovial inflammation. METHODS Primary rheumatoid arthritis synovial fibroblasts (RASF) were cultured with hypoxia, dimethyloxalylglycine (DMOG) or metabolic intermediates. Mitochondrial respiration, mitochondrial DNA mutations, cell invasion, cytokines, glucose and lactate were quantified using specific functional assays. RASF metabolism was assessed by the XF24-Flux Analyzer. Mitochondrial structural morphology was assessed by transmission electron microscopy (TEM). In vivo synovial tissue oxygen (tpO2 mmHg) was measured in patients with inflammatory arthritis (n=42) at arthroscopy, and markers of glycolysis/oxidative phosphorylation (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), PKM2, GLUT1, ATP) were quantified by immunohistology. A subgroup of patients underwent contiguous MRI and positron emission tomography (PET)/CT imaging. RASF and human dermal microvascular endothelial cells (HMVEC) migration/angiogenesis, transcriptional activation (HIF1α, pSTAT3, Notch1-IC) and cytokines were examined in the presence of glycolytic inhibitor 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). RESULTS DMOG significantly increased mtDNA mutations, mitochondrial membrane potential, mitochondrial mass, reactive oxygen species and glycolytic RASF activity with concomitant attenuation of mitochondrial respiration and ATP activity (all p<0.01). This was coupled with altered mitochondrial morphology. Hypoxia-induced lactate levels (p<0.01), which in turn induced basic fibroblast growth factor (bFGF) secretion and RASF invasiveness (all p<0.05). In vivo glycolytic markers were inversely associated with synovial tpO2 levels <20 mm Hg, in contrast ATP was significantly reduced (all p<0.05). Decrease in GAPDH and GLUT1 was paralleled by an increase in in vivo tpO2 in tumour necrosis factor alpha inhibitor (TNFi) responders. Novel PET/MRI hybrid imaging demonstrated close association between metabolic activity and inflammation. 3PO significantly inhibited RASF invasion/migration, angiogenic tube formation, secretion of proinflammatory mediators (all p<0.05), and activation of HIF1α, pSTAT3 and Notch-1IC under normoxic and hypoxic conditions. CONCLUSIONS Hypoxia alters cellular bioenergetics by inducing mitochondrial dysfunction and promoting a switch to glycolysis, supporting abnormal angiogenesis, cellular invasion and pannus formation.
Collapse
Affiliation(s)
- M Biniecka
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - M Canavan
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - T McGarry
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - W Gao
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - J McCormick
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - S Cregan
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - L Gallagher
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - T Smith
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - J J Phelan
- Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - J Ryan
- Department of Radiology, School of Medicine and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - J O'Sullivan
- Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - C T Ng
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
| | - D J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - U Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment. Int J Mol Sci 2016; 17:ijms17111942. [PMID: 27869779 PMCID: PMC5133937 DOI: 10.3390/ijms17111942] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME). It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome.
Collapse
|
48
|
Nakajima A, Aoki Y, Sonobe M, Takahashi H, Saito M, Nakagawa K. Serum level of reactive oxygen metabolites (ROM) at 12 weeks of treatment with biologic agents for rheumatoid arthritis is a novel predictor for 52-week remission. Clin Rheumatol 2016; 36:309-315. [PMID: 27858176 DOI: 10.1007/s10067-016-3479-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023]
Abstract
We have shown that serum levels of reactive oxygen metabolites (ROM) were associated with C-reactive protein (CRP) and disease activity score based on the examination of 28 joints (DAS28) in patients with rheumatoid arthritis (RA); however, their clinical significance as biomarkers has not been elucidated. Forty-eight biologic agent (BA)-naïve RA patients were included in this study. Associations between serum levels of ROM, CRP, matrix metalloproteinase-3 (MMP-3), DAS28-erythrocyte sedimentation rate (ESR), and Health Assessment Questionnaire (HAQ) at 12 weeks of treatment and DAS28 (ESR) remission at 52 weeks (52-week remission) were investigated. The ROM serum level at baseline in the remission group (n = 34) was 527 ± 132 Carratelli units (U.Carr) (normal range <300), decreased to 335 ± 79.1 at 4 weeks, and remained low thereafter. In the non-remission group (n = 14), the ROM serum level at baseline was 592 ± 113 U.Carr, decreased to 450 ± 152 at 4 weeks, but gradually increased thereafter. Among significantly different factors at 12 weeks between the remission and non-remission groups, ROM and DAS28 (ESR) were identified as predictors of 52-week remission (p = 0.045, odds ratio 0.985, 95% confidence interval 0.97-1.000 for ROM). The cutoff value of ROM was determined to be 381.5 U.Carr (sensitivity 0.833, specificity 0.871). These results show that serum ROM levels can predict remission with high accuracy and could be a useful biomarker for achieving remission in the current treat-to-target strategy for RA.
Collapse
Affiliation(s)
- Arata Nakajima
- Department of Orthopaedics, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, 285-8741, Japan.
- Department of Rheumatology, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, 285-8741, Japan.
| | - Yasuchika Aoki
- Department of General Medical Sciences, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane-shi, Chiba, 283-8686, Japan
| | - Masato Sonobe
- Department of Orthopaedics, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, 285-8741, Japan
| | - Hiroshi Takahashi
- Department of Orthopaedics, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, 285-8741, Japan
| | - Masahiko Saito
- Department of Orthopaedics, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, 285-8741, Japan
| | - Koichi Nakagawa
- Department of Orthopaedics, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, 285-8741, Japan
| |
Collapse
|
49
|
|
50
|
PGK1, a glucose metabolism enzyme, may play an important role in rheumatoid arthritis. Inflamm Res 2016; 65:815-25. [DOI: 10.1007/s00011-016-0965-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
|