1
|
Lindner S, Bonin M, Hellmann MJ, Moerschbacher BM. Three intertwining effects guide the mode of action of chitin deacetylase de- and N-acetylation reactions. Carbohydr Polym 2025; 347:122725. [PMID: 39486955 DOI: 10.1016/j.carbpol.2024.122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
Chitosans are promising multi-functional biomolecules for various applications whose performance is dependent on three key structural parameters, including the pattern of acetylation (PA). To date, chitin deacetylases (CDAs) are the only tool to control the PA of chitosan polymers via their specific mode of action during de- or N-acetylation. For a start, this review summarizes the current state of research on the classification of carbohydrate esterase 4 enzymes, the features in sequence and structure of CDAs, and the different PAs produced by different CDAs during de- or N-acetylation. In the main part, we introduce three effects that guide the mode of action of these enzymes: the already established subsite capping effect, the subsite occupation effect, and the subsite preference effect. We show how their interplay controls the PA of CDA products and describe their molecular basis. For one thing, this review aims to equip the reader with the knowledge to understand and analyze CDAs - including a guide for in silico and in vitro analyses. But more importantly, we intend to reform and extend the model explaining their mode of action on chitosans to facilitate a deeper understanding of these important enzymes for biology and biotechnology.
Collapse
Affiliation(s)
- Sandra Lindner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Martin Bonin
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
2
|
Rajoo A, Siva SP, Siew Sia C, Chan ES, Ti Tey B, Ee Low L. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
4
|
Zhang X, Wen M, Li G, Wang S. Chitin Deacetylase Homologous Gene cda Contributes to Development and Aflatoxin Synthesis in Aspergillus flavus. Toxins (Basel) 2024; 16:217. [PMID: 38787069 PMCID: PMC11125919 DOI: 10.3390/toxins16050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.
Collapse
Affiliation(s)
| | | | | | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.W.); (G.L.)
| |
Collapse
|
5
|
Li K, Liang Y, Fang J, Peng J, Tan M. Chitin Deacetylase from Bacillus aryabhattai TCI-16: Heterologous Expression, Characterization, and Deacetylation Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597933 DOI: 10.1021/acs.jafc.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chitin deacetylase (CDA) removes the acetyl group from the chitin molecule to generate chitosan in a uniform, high-quality deacetylation pattern. Herein, BaCDA was a novel CDA discovered from our previously isolated Bacillus aryabhattai strain TCI-16, which was excavated from mangrove soil. The gene BaCDA was cloned and overexpressed in Escherichia coli BL21 (DE3) to facilitate its subsequent purification. The purified recombinant protein BaCDA was obtained at a concentration of about 1.2 mg/mL after Ni2+ affinity chromatography. The molecular weight of BaCDA was around 28 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. In addition, BaCDA exhibited a significant deacetylation effect on colloidal chitin, and the deacetylation degree was measured from the initial 25.69 to 69.23% by Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) observation showed that the surface of colloidal chitin after enzymatic digestion was rough, the crystal fibers disappeared, and the chitin structure was loose and porous with grooves. The results of electrospray ionization mass spectrometry (ESI-MS) showed that BaCDA had full-deacetylation activity against (GlcNAc)4. Molecular docking revealed that BaCDA had an open active pocket capable of binding to the GlcNAc unit. This study not only provides a novel enzymatic resource for the green and efficient application of chitin but also helps to deepen the understanding of the catalytic mechanism of CDA.
Collapse
Affiliation(s)
- Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yingyin Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jianhao Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jieying Peng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Ren Y, Li Y, Ju Y, Zhang W, Wang Y. Insect cuticle and insecticide development. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22057. [PMID: 37840232 DOI: 10.1002/arch.22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Insecticide resistance poses a significant challenge, diminishing the effectiveness of chemical insecticides. To address this global concern, the development of novel and efficient pest management technologies based on chemical insecticides is an ongoing necessity. The insect cuticle, a highly complex and continuously renewing organ, plays a crucial role in this context. On one hand, as the most vital structure, it serves as a suitable target for insecticides. On the other hand, it acts as the outermost barrier, isolating the insect's inner organs from the environment, and thus offering resistance to contact with insecticides, preventing their entry into insect bodies. Our work focuses on key targets concerning cuticle formation and the interaction between the cuticle and contact insecticides. Deeper studying insect cuticles and understanding their structure-function relationship, formation process, and regulatory mechanisms during cuticle development, as well as investigating insecticide resistance related to the barrier properties of insect cuticles, are promising strategies not only for developing novel insecticides but also for discovering general synergists for contact insecticides. With this comprehensive review, we hope to contribute valuable insights into the development of effective pest management solutions and the mitigation of insecticide resistance.
Collapse
Affiliation(s)
- Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
8
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Tanpichai S, Pumpuang L, Srimarut Y, Woraprayote W, Malila Y. Development of chitin nanofiber coatings for prolonging shelf life and inhibiting bacterial growth on fresh cucumbers. Sci Rep 2023; 13:13195. [PMID: 37580357 PMCID: PMC10425451 DOI: 10.1038/s41598-023-39739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
The widespread usage of petroleum-based polymers as single-use packaging has had harmful effects on the environment. Herein, we developed sustainable chitin nanofiber (ChNF) coatings that prolong the shelf life of fresh cucumbers and delay the growth of pathogenic bacteria on their surfaces. ChNFs with varying degrees of acetylation were successfully prepared via deacetylation using NaOH with treatment times of 0-480 min and defibrillated using mechanical blending. With longer deacetylation reaction times, more acetamido groups (-NHCOCH3) in chitin molecules were converted to amino groups (-NH2), which imparted antibacterial properties to the ChNFs. The ChNF morphologies were affected by deacetylation reaction time. ChNFs deacetylated for 240 min had an average width of 9.0 nm and lengths of up to several μm, whereas rod-like structured ChNFs with a mean width of 7.3 nm and an average length of 222.3 nm were obtained with the reaction time of 480 min. Furthermore, we demonstrated a standalone ChNF coating to extend the shelf life of cucumbers. In comparison to the rod-like structured ChNFs, the 120 and 240-min deacetylated ChNFs exhibited a fibril-like structure, which considerably retarded the moisture loss of cucumbers and the growth rate of bacteria on their outer surfaces during storage. Cucumbers coated with these 120 and 240-min deacetylated ChNFs demonstrated a lower weight loss rate of ⁓ 3.9% day-1 compared to the uncoated cucumbers, which exhibited a weight loss rate of 4.6% day-1. This protective effect provided by these renewable ChNFs holds promising potential to reduce food waste and the use of petroleum-based packaging materials.
Collapse
Affiliation(s)
- Supachok Tanpichai
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
- Cellulose and Bio-Based Nanomaterials Research Group, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Laphaslada Pumpuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- International Joint Research Center On Food Security (IJC-FOODSEC), Thailand Science Park, Pathum Thani, 12120, Thailand
| |
Collapse
|
10
|
Chen X, Molenda O, Brown CT, Toth CRA, Guo S, Luo F, Howe J, Nesbø CL, He C, Montabana EA, Cate JHD, Banfield JF, Edwards EA. " Candidatus Nealsonbacteria" Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture. Appl Environ Microbiol 2023; 89:e0002523. [PMID: 37098974 PMCID: PMC10231131 DOI: 10.1128/aem.00025-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023] Open
Abstract
The Candidate Phyla Radiation (CPR), also referred to as superphylum Patescibacteria, is a very large group of bacteria with no pure culture representatives discovered by 16S rRNA sequencing or genome-resolved metagenomic analyses of environmental samples. Within the CPR, candidate phylum Parcubacteria, previously referred to as OD1, is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium. Phylogenetic analyses herein place DGGOD1a within the clade "Candidatus Nealsonbacteria." Because of its persistence over many years, we hypothesized that "Ca. Nealsonbacteria" DGGOD1a must play an important role in sustaining anaerobic benzene metabolism in the consortium. To try to identify its growth substrate, we amended the culture with a variety of defined compounds (pyruvate, acetate, hydrogen, DNA, and phospholipid), as well as crude culture lysate and three subfractions thereof. We observed the greatest (10-fold) increase in the absolute abundance of "Ca. Nealsonbacteria" DGGOD1a only when the consortium was amended with crude cell lysate. These results implicate "Ca. Nealsonbacteria" in biomass recycling. Fluorescence in situ hybridization and cryogenic transmission electron microscope images revealed that "Ca. Nealsonbacteria" DGGOD1a cells were attached to larger archaeal Methanothrix cells. This apparent epibiont lifestyle was supported by metabolic predictions from a manually curated complete genome. This is one of the first examples of bacterial-archaeal episymbiosis and may be a feature of other "Ca. Nealsonbacteria" found in anoxic environments. IMPORTANCE An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny "Candidatus Nealsonbacteria" cells attached to a large Methanothrix cell, revealing a novel episymbiosis.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christopher T. Brown
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
| | - Courtney R. A. Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jane Howe
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Camilla L. Nesbø
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christine He
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Elizabeth A. Montabana
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Ahmed MA, Mohamed AA. The use of chitosan-based composites for environmental remediation: A review. Int J Biol Macromol 2023; 242:124787. [PMID: 37201888 DOI: 10.1016/j.ijbiomac.2023.124787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The presence of hazardous pollutants in water sources as a result of industrial activities is a major environmental challenge that impedes the availability of safe drinking water. Adsorptive and photocatalytic degradative removal of various pollutants in wastewater have been recognized as cost-effective and energy-efficient strategies. In addition to its biological activity, chitosan and its derivatives are considered as promising materials for the removal of various pollutants. The abundance of hydroxyl and amino groups in the chitosan macromolecular structure results in a variety of concurrent pollutant's adsorption mechanisms. Furthermore, adding chitosan to photocatalysts increases the mass transfer while decreasing both the band gap energy and the amount of intermediates produced during photocatalytic processes, improving the overall photocatalytic efficiency. Herein, we have reviewed the current design and preparation of chitosan and its composites, as well as their applications for the removal of various pollutants by adsorption and photocatalysis processes. Effects of operating variables such as the pH, catalyst mass, contact time, light wavelength, initial pollutant's concentration, and catalyst recyclability, are discussed. Various kinetic and isotherm models are presented to elucidate the rates, and mechanisms of pollutant's removal, onto chitosan-based composites, and several case studies are presented. Additionally, the antibacterial activity of chitosan-based composites has been discussed. This review aims to provide a comprehensive and up-to-date overview of the applications of chitosan-based composites in wastewater treatment and put forward new insights for the development of highly effective chitosan-based adsorbents and photocatalysts. Finally, the main challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
12
|
Novikov VY, Derkach SR, Konovalova IN, Dolgopyatova NV, Kuchina YA. Mechanism of Heterogeneous Alkaline Deacetylation of Chitin: A Review. Polymers (Basel) 2023; 15:polym15071729. [PMID: 37050343 PMCID: PMC10097213 DOI: 10.3390/polym15071729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
This review provides an analysis of experimental results on the study of alkaline heterogeneous deacetylation of chitin obtained by the authors and also published in the literature. A detailed analysis of the reaction kinetics was carried out considering the influence of numerous factors: reaction reversibility, crystallinity and porosity of chitin, changes in chitin morphology during washing, alkali concentration, diffusion of hydroxide ions, and hydration of reacting particles. A mechanism for the chitin deacetylation reaction is proposed, taking into account its kinetic features in which the decisive role is assigned to the effects of hydration. It has been shown that the rate of chitin deacetylation increases with a decrease in the degree of hydration of hydroxide ions in a concentrated alkali solution. When the alkali concentration is less than the limit of complete hydration, the reaction practically does not occur. Hypotheses have been put forward to explain the decrease in the rate of the reaction in the second flat portion of the kinetic curve. The first hypothesis is the formation of “free” water, leading to the hydration of chitin molecules and a decrease in the reaction rate. The second hypothesis postulates the formation of a stable amide anion of chitosan, which prevents the nucleophilic attack of the chitin macromolecule by hydroxide ions.
Collapse
|
13
|
Sixto-Berrocal AM, Vázquez-Aldana M, Miranda-Castro SP, Martínez-Trujillo MA, Cruz-Díaz MR. Chitin/chitosan extraction from shrimp shell waste by a completely biotechnological process. Int J Biol Macromol 2023; 230:123204. [PMID: 36634792 DOI: 10.1016/j.ijbiomac.2023.123204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Two lactic bacteria were used in sequential co-cultures to demineralize (DM) and deproteinize (DP) shrimp shells (SS) to obtain chitin. During the first 24 h, Lactobacillus delbrueckii performed the DM in a minimal medium containing 100 g/L SS and 50 g/L glucose. Then, three different conditions were assayed to complete DM and perform the DP stage: 1) Bifidobacterium lactis was added with 35 g/L of glucose (Ld-G → Bl-G); 2) only B. lactis was added (Ld-G → Bl); and 3) a 35 g/L pulse of glucose was added, and at 48 h, B. lactis was inoculated (Ld-G → G → Bl). The highest DM (98.63 %) and DP (88 %) were obtained using a glucose pulse in the DM step and controlling the pH value above 6.0 in the DP step. Finally, a deacetylases cocktail produced by Aspergillus niger catalyzed the deacetylation of the resulting chitin. The chitosan samples had a deacetylation degree higher than 78 % and a solubility of 25 % in 1.0 N acetic acid. The deacetylation yield was 74 % after a mild chemical treatment, with a molecular weight of 71.31 KDa. This work reports an entirely biological process to get chitin and chitosan from SS with high yields.
Collapse
Affiliation(s)
- Ana María Sixto-Berrocal
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico; Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno, Av. 1° de mayo s/n Colonia Santa Ma. Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico
| | - Marlenne Vázquez-Aldana
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico
| | - Susana Patricia Miranda-Castro
- Área de las Ciencias Biológicas, Químicas y de la Salud, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno, Av. 1° de mayo s/n Colonia Santa Ma. Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico
| | - M Aurora Martínez-Trujillo
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico.
| | - Martín R Cruz-Díaz
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico; Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno, Av. 1° de mayo s/n Colonia Santa Ma. Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico.
| |
Collapse
|
14
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
15
|
Wu T, Cao DH, Liu Y, Yu H, Fu DY, Ye H, Xu J. Mating-Induced Common and Sex-Specific Behavioral, Transcriptional Changes in the Moth Fall Armyworm ( Spodoptera frugiperda, Noctuidae, Lepidoptera) in Laboratory. INSECTS 2023; 14:209. [PMID: 36835778 PMCID: PMC9964209 DOI: 10.3390/insects14020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The intermediate process between mating and postmating behavioral changes in insects is still poorly known. Here, we studied mating-induced common and sex-specific behavioral and transcriptional changes in both sexes of Spodoptera frugiperda and tested whether the transcriptional changes are linked to postmating behavioral changes in each sex. A behavioral study showed that mating caused a temporary suppression of female calling and male courting behavior, and females did not lay eggs until the next day after the first mating. The significant differences on daily fecundity under the presence of males or not, and the same or novel males, suggest that females may intentionally retain eggs to be fertilized by novel males or to be fertilized competitively by different males. RNA sequencing in females revealed that there are more reproduction related GO (gene ontology) terms and KEGG (Kyoto encyclopedia of genes and genomes) pathways (mainly related to egg and zygote development) enriched to upregulated DEGs (differentially expressed genes) than to downregulated DEGs at 0 and 24 h postmating. In males, however, mating induced DEGs did not enrich any reproduction related terms/pathways, which may be because male reproductive bioinformatics is relatively limited in moths. Mating also induced upregulation on soma maintenance (such as immune activity and stress reaction) related processes in females at 0, 6 and 24 h postmating. In males, mating also induced upregulation on soma maintenance related processes at 0 h postmating, but induced downregulation on these processes at 6 and 24 h postmating. In conclusion, this study demonstrated that mating induced sex-specific postmating behavioral and transcriptional changes in both sexes of S. frugiperda and suggested that the transcriptional changes are correlated with postmating physiological and behavioral changes in each sex.
Collapse
Affiliation(s)
- Ting Wu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Da-Hu Cao
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Yu Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- School of Life Science, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
16
|
Liu JH, Dong JC, Gao JJ, Li XP, Hu SJ, Li J, Hu WX, Zhao XY, Wang JJ, Qiu L. Three Chitin Deacetylase Family Members of Beauveria bassiana Modulate Asexual Reproduction and Virulence of Fungi by Mediating Chitin Metabolism and Affect Fungal Parasitism and Saprophytic Life. Microbiol Spectr 2023; 11:e0474822. [PMID: 36786652 PMCID: PMC10101055 DOI: 10.1128/spectrum.04748-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
As an important chitin-modifying enzyme, chitin deacetylase (CDA) has been characterized in many fungi, but its function in the entomopathogenic fungus Beauveria bassiana remains unclear. Three CDAs with conserved domains of the carbohydrate esterase 4 (CE-4) family were identified in B. bassiana. Disruption of CDA1 resulted in growth restriction of the fungus on medium with chitin as a carbon source or without a carbon source. Deletion of CDA1 and CDA2 led to defects in fungal conidial formation and conidial vitality compared with those of the wild type (WT), and the conidial yield decreased by 25.81% to 47.68%. Inactivation of three CDA genes resulted in a decrease of 20.23% to 27% in the blastospore yield. ΔCDA1 and ΔCDA3 showed 29.33% and 23.34% reductions in cuticular infection virulence, respectively. However, the CDA family may not contribute to hemocoel infection virulence. Additionally, the sporulation of the insect carcass showed that the three gene deletion mutants were 68.45%, 63.84%, and 56.65% less than WT. Penetration experiments with cicada wings and enzyme activity assays were used to further explore the effect of the fungus on chitin metabolism after gene deletion. Although the three gene deletion mutants penetrated the cicada wings successfully and continued to grow on the underlying medium, their colony sizes were reduced by 29.12% to 47.76%. The CDA enzyme activity of ΔCDA1 and ΔCDA3 decreased by 84.76% and 83.04%, respectively. These data showed that members of the CDA family play a different role in fungal growth, conidial quality, and virulence. IMPORTANCE In this study, we report the roles of CDA family in entomopathogenic fungus B. bassiana. Our results indicated that CDA modulates asexual development and regulates fungal virulence by altering chitin deacetylation and metabolic capacity. CDA affected the biological control potential and life history of B. bassiana by affecting its parasitic and saprophytic life. These findings provide novel insights into the roles of multiple CDA paralogues existing in fungal biocontrol agents.
Collapse
Affiliation(s)
- Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jing-Chong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jun-Jie Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin-Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Wen-Xiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xian-Yan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
17
|
Wu H, Zhao D, Guo XC, Liu ZR, Li RJ, Lu XJ, Guo W. Group V Chitin Deacetylases Influence the Structure and Composition of the Midgut of Beet Armyworm, Spodoptera exigua. Int J Mol Sci 2023; 24:ijms24043076. [PMID: 36834492 PMCID: PMC9961250 DOI: 10.3390/ijms24043076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Chitin deacetylase (CDA) can accelerate the conversion of chitin to chitosan, influencing the mechanical properties and permeability of the cuticle structures and the peritrophic membrane (PM) in insects. Putative Group V CDAs SeCDA6/7/8/9 (SeCDAs) were identified and characterized from beet armyworm Spodoptera exigua larvae. The cDNAs of SeCDAs contained open reading frames of 1164 bp, 1137 bp, 1158 bp and 1152 bp, respectively. The deduced protein sequences showed that SeCDAs are synthesized as preproteins of 387, 378, 385 and 383 amino acid residues, respectively. It was revealed via spatiotemporal expression analysis that SeCDAs were more abundant in the anterior region of the midgut. The SeCDAs were down-regulated after treatment with 20-hydroxyecdysone (20E). After treatment with a juvenile hormone analog (JHA), the expression of SeCDA6 and SeCDA8 was down-regulated; in contrast, the expression of SeCDA7 and SeCDA9 was up-regulated. After silencing SeCDAV (the conserved sequences of Group V CDAs) via RNA interference (RNAi), the layer of intestinal wall cells in the midgut became more compact and more evenly distributed. The vesicles in the midgut were small and more fragmented or disappeared after SeCDAs were silenced. Additionally, the PM structure was scarce, and the chitin microfilament structure was loose and chaotic. It was indicated in all of the above results that Group V CDAs are essential for the growth and structuring of the intestinal wall cell layer in the midgut of S. exigua. Additionally, the midgut tissue and the PM structure and composition were affected by Group V CDAs.
Collapse
Affiliation(s)
- Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiao-Chang Guo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Zhao-Rui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Rui-Jun Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiu-Jun Lu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
18
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Hosney A, Ullah S, Barčauskaitė K. A Review of the Chemical Extraction of Chitosan from Shrimp Wastes and Prediction of Factors Affecting Chitosan Yield by Using an Artificial Neural Network. Mar Drugs 2022; 20:675. [PMID: 36354998 PMCID: PMC9693855 DOI: 10.3390/md20110675] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
There are two viable options to produce shrimp shells as by-product waste, either within the shrimp production phases or when the shrimp are peeled before cooking by the end user. This waste is considered a double-edged sword, as it is possible to be either a source of environmental pollution, through dumping and burning, or a promising source from which to produce chitosan as a biodegradable, biocompatible biopolymer which has a variety of agricultural, industrial, and biomedical applications. Chitosan is a deacetylated form of chitin that can be chemically recovered from shrimp shells through the three sequential stages of demineralization, deproteinization, and deacetylation. The main aim of this review paper is to summarize the recent literature on the chemical extraction of chitosan from shrimp shells and to represent the physicochemical properties of chitosan extracted from shrimp shells in different articles, such as chitosan yield, moisture content, solubility, ash content, and degree of deacetylation. Another aim is to analyze the influence of the main predictors of the chemical extraction stages (demineralization, deproteinization, and deacetylation) on the chitosan yield percentage by using a multilayer perceptron artificial neural network. This study showed that the deacetylation alkali concentration is the most crucial parameter, followed by the concentrations of acid and alkali of demineralization and deproteinization, respectively. The current review was conducted to be used in prospective studies for optimizing the chemical extraction of chitosan from shrimp wastes.
Collapse
Affiliation(s)
| | | | - Karolina Barčauskaitė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto Av. 1, Akademija, 58344 Kedainiai, Lithuania
| |
Collapse
|
20
|
Liang YY, Yan LQ, Tan MH, Li GH, Fang JH, Peng JY, Li KT. Isolation, characterization, and genome sequencing of a novel chitin deacetylase producing Bacillus aryabhattai TCI-16. Front Microbiol 2022; 13:999639. [PMID: 36171752 PMCID: PMC9511218 DOI: 10.3389/fmicb.2022.999639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Chitin deacetylase (CDA) is a chitin degradation enzyme that catalyzes the conversion of chitin to chitosan by the deacetylation of N-acetyl-D-glucosamine residues, playing an important role in the high-value utilization of waste chitin. The shells of shrimp and crab are rich in chitin, and mangroves are usually recognized as an active habitat to shrimp and crab. In the present study, a CDA-producing bacterium, strain TCI-16, was isolated and screened from the mangrove soil. Strain TCI-16 was identified and named as Bacillus aryabhattai TCI-16, and the maximum CDA activity in fermentation broth reached 120.35 ± 2.40 U/mL at 36 h of cultivation. Furthermore, the complete genome analysis of B. aryabhattai TCI-16 revealed the chitin-degrading enzyme system at genetic level, in which a total of 13 putative genes were associated with carbohydrate esterase 4 (CE4) family enzymes, including one gene coding CDA, seven genes encoding polysaccharide deacetylases, and five genes encoding peptidoglycan-N-acetyl glucosamine deacetylases. Amino acid sequence analysis showed that the predicted CDA of B. aryabhattai TCI-16 was composed of 236 amino acid residues with a molecular weight of 27.3 kDa, which possessed a conserved CDA active like the known CDAs. However, the CDA of B. aryabhattai TCI-16 showed low homology (approximately 30%) with other microbial CDAs, and its phylogenetic tree belonged to a separate clade in bacteria, suggesting a high probability in structural novelty. In conclusion, the present study indicated that the novel CDA produced by B. aryabhattai TCI-16 might be a promising option for bioconversion of chitin to the value-added chitosan.
Collapse
Affiliation(s)
- Ying-yin Liang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Lu-qi Yan
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ming-hui Tan
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Gang-hui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jian-hao Fang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jie-ying Peng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kun-tai Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
21
|
Crystal structure of ChbG from Klebsiella pneumoniae reveals the molecular basis of diacetylchitobiose deacetylation. Commun Biol 2022; 5:862. [PMID: 36002585 PMCID: PMC9402603 DOI: 10.1038/s42003-022-03824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The chitobiose (chb) operon is involved in the synthesis of chitooligosaccharide and is comprised of a BCARFG gene cluster. ChbG encodes a chitooligosaccharide deacetylase (CDA) which catalyzes the removal of one acetyl group from N,N’-diacetylchitobiose. It is considered a novel type of CDA due to its lack of sequence homology. Although there are various structural studies of CDAs linked to the kinetic properties of the enzyme, the structural information of ChbG is unavailable. In this study, the crystal structure of ChbG from Klebsiella pneumoniae is provided. The molecular basis of deacetylation of diacetylchitobiose by ChbG is determined based on structural analysis, mutagenesis, biophysical analysis, and in silico docking of the substrate, diacetylchitobiose. This study contributes towards a deeper understanding of chitin and chitosan biology, as well as provides a platform to engineer CDA biocatalysts. Structural and functional characterization of Klebsiella pneumonia ChbG (which lacks sequence homology) reveals the mechanism of chitooligosaccharide processing by ChbG.
Collapse
|
22
|
Yang G, Wang Y, Fang Y, An J, Hou X, Lu J, Zhu R, Liu S. A Novel Potent Crystalline Chitin Decomposer: Chitin Deacetylase from Acinetobacter schindleri MCDA01. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165345. [PMID: 36014581 PMCID: PMC9416191 DOI: 10.3390/molecules27165345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Chitosan is a functional ingredient that is widely used in food chemistry as an emulsifier, flocculant, antioxidant, or preservative. Chitin deacetylases (CDAs) can catalyze the hydrolysis of acetyl groups, making them useful in the clean production of chitosan. However, the high inactivity of crystalline chitin catalyzed by CDAs has been regarded as the technical bottleneck of crystalline chitin deacetylation. Here, we mined the AsCDA gene from the genome of Acinetobacter schindleri MCDA01 and identified a member of the uraD_N-term-dom superfamily, which was a novel chitin deacetylase with the highest deacetylation activity. The AsCDA gene was expressed in Escherichia coli BL21 by IPTG induction, whose activity to colloidal chitin, α-chitin, and β-chitin reached 478.96 U/mg, 397.07 U/mg, and 133.27 U/mg, respectively. In 12 h, the enzymatic hydrolysis of AsCDA removed 63.05% of the acetyl groups from α-chitin to prepare industrial chitosan with a degree of deacetylation higher than 85%. AsCDA, as a potent chitin decomposer in the production of chitosan, plays a positive role in the upgrading of the chitosan industry and the value-added utilization of chitin biological resources.
Collapse
Affiliation(s)
- Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuhan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jia An
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongjun Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: ; Tel./Fax: +86-05-15861246008
| |
Collapse
|
23
|
Sadoughi F, Asemi Z, Yousefi B, Mansournia MA, Hallajzadeh J. Cervical cancer and novel therapeutic and diagnostic approaches using chitosan as a carrier: A review. Curr Pharm Des 2022; 28:1966-1974. [PMID: 35549863 DOI: 10.2174/1381612828666220512101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
In our knowledge, using appropriate carriers in delivery of chemotherapeutic drugs, would result in better targeting and therefore it would increase the effectiveness and decrease the side effects of drugs. Chitosan, a natural polymer derived from chitin, has attracted the attention of pharmaceutical industries recently. New research show that chitosan not only can be used in drug delivery but it can also have some usages in prevention and diagnosis of cancer. This means that using chitosan Nanoformulations can be a promising approach for prevention, diagnosis, and specially treatment of cervical cancer, fourth common cancer among the women of the world. We aim to investigate the related papers to find a novel method and preventing more women from suffering.
Collapse
Affiliation(s)
| | - Zatollah Asemi
- Kashan University of Medical Sciences, Kashan, I.R. Iran
| | | | | | | |
Collapse
|
24
|
Li Y, Du X, Jiang Q, Huang Y, Zhao Y. Effects of nanoplastic exposure on the growth performance and molecular characterization of growth-associated genes in juvenile Macrobrachium nipponense. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109278. [PMID: 35077872 DOI: 10.1016/j.cbpc.2022.109278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Nanoplastic pollution has become a major issue in the aquatic environment while there are few studies examined the effects of nanoplastic exposure on crustaceans. To investigate this issue, we exposed juvenile shrimp, Macrobrachium nipponense to 75 nm polystyrene with 0, 5, 10, 20 and 40 mg/L nanoplastics concentrations for 28 days. The effects of nanoplastic exposure on the microstructure of the hepatopancreas, digestive enzyme activity and expression of growth-related genes were studied. The results showed that (1) adverse effects on the hepatopancreas were positively correlated with nanoplastic concentration; (David et al.) the activity of lipase, trypsin and pepsin was initially promoted and then inhibited with increasing nanoplastic concentration, whereas the activity of amylase was not significantly affected; (3) molting-associated genes were initially promoted and then inhibited with increasing nanoplastic concentration; (4) CDK2 gene was first cloned and molecular characteristics were analyzed. (5) polystyrene nanoplastics concentration >10 mg/L showed inhibition effect on CDK2 expression. These results indicated that nanoplastics affect the growth, digestive enzyme activity, hepatopancreas function and growth-related gene expression. Capsule: Our results identified the effects of nanoplastics on the growth performance of Macrobrachium nipponense in terms of digestion and molting.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Yingying Huang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
25
|
Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, Saleki H, Sharifzadeh SO, Far FB, Ashrafizadeh M, Samarghandian S, Khan H, Ghavami S, Zarrabi A, Łos MJ. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166326. [DOI: 10.1016/j.bbadis.2021.166326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
|
26
|
Kostag M, El Seoud OA. Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Onaran A, Bayar Y, Karakurt T, Tokatlı K, Bayram M, Yanar Y. Antifungal activity of chitosan against soil-borne plant pathogens in cucumber and a molecular docking study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abdurrahman Onaran
- Department of Plant Protection, Faculty of Agriculture, Gaziosmanpasa University, Tokat, Turkey
| | - Yusuf Bayar
- Department of Plant Protection, Faculty of Agriculture, Ahi Evran University, Kişehir, Turkey
| | - Tuncay Karakurt
- Department of Chemical Engineering and Process Engineering, Faculty of Engineering-Architecture, Ahi Evran University, Kirşehir, Turkey
| | - Kader Tokatlı
- Department of Chemical Engineering and Process Engineering, Faculty of Engineering-Architecture, Ahi Evran University, Kirşehir, Turkey
| | - Mustafa Bayram
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Yusuf Yanar
- Department of Plant Protection, Faculty of Agriculture, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
29
|
Sarhan A, Fahmy T. Optical Properties, Antibacterial Activity, and Relaxation Behavior Investigation of Chitosan/Green Synthesized Silver Nanoparticles by Thermally Stimulated Depolarization Current Technique. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Ding Z, Ahmed S, Hang J, Mi H, Hou X, Yang G, Huang Z, Lu X, Zhang W, Liu S, Fang Y. Rationally engineered chitin deacetylase from Arthrobacter sp. AW19M34-1 with improved catalytic activity toward crystalline chitin. Carbohydr Polym 2021; 274:118637. [PMID: 34702460 DOI: 10.1016/j.carbpol.2021.118637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022]
Abstract
Chitin and its derivatives have anticoagulant, antimicrobial, and antioxidant properties, but the poor solubility of chitin limits its application in different fields. In this study, site-directed mutagenesis was performed to enhance the deacetylation activity of chitin deacetylases CDA from Arthrobacter (ArCE4). The mutant Mut-2-8 with Y172E/E200S/Y201W showed a 2.84- fold and 1.39-fold increase in catalytic efficiency (kcat/Km) for the deacetylation of (GluNAc)5 and α-chitin, respectively. These results demonstrated that the mutations significantly improved the activation of ArCE4 on crystalline chitin. The molecular docking study confirmed that the enhancement of catalytic efficiency is due to the extra two hydrogen bonds and one acetyl group. In summary, the activity of Mut-2-8 to insoluble chitin was significantly improved by reactional design, which is beneficial to resolve the issues of the expensive cost of the enzymes and low efficiency. Mut-2-8 exhibits potential applications in the chitosan industry.
Collapse
Affiliation(s)
- Zhiwen Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sibtain Ahmed
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiahao Hang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haoyu Mi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhifa Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222000, China.
| |
Collapse
|
31
|
Song L, Chen Y, An X, Ding C, Bu C. Chitin deacetylase 2 is essential for molting and survival of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104962. [PMID: 34802539 DOI: 10.1016/j.pestbp.2021.104962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Chitin metabolism has long been considered promising targets for development of biorational pesticides. Considering the increasing challenges of controlling the twospotted spider mite, Tetranychus urticae Koch, the roles of chitin deacetylases (CDAs) during molting process and mite development are explored. TuCDA1 and TuCDA2 differ in expression patterns during the development process. Feeding of double-strand RNA (dsRNA) against TuCDA1 or TuCDA2 has lethal effects on the mites. Especially TuCDA2 displays a much stronger phenotype than TuCDA1 (p = 0.0003). The treated mites fail to shed the old cuticle and are trapped within exuviate until they die. The aberrant cuticle structure observed by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM) may be responsible for the lethal phenotype of TuCDA1 and TuCDA2 knocked down mites. However, treatment with both dsRNA-CDA1 and dsRNA-CDA2 cannot significantly enhance the lethal effects of dsRNA-CDA2, which indicates partially redundant function of TuCDA1 and TuCDA2. TuCDA2 may play a key role during the molting and development process. Chitin-modifying enzyme such as TuCDA2 is potential target of RNA interference through feeding.
Collapse
Affiliation(s)
- Lihong Song
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangshun An
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chao Ding
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
32
|
Zhang M, Ma PJ, Zhang TT, Gao ZM, Zhao P, Liu XJ, Zhang XY, Liu WM, Yu RR, Moussian B, Zhang JZ. Roles of LmCDA1 and LmCDA2 in cuticle formation in the foregut and hindgut of Locusta migratoria. INSECT SCIENCE 2021; 28:1314-1325. [PMID: 33037856 DOI: 10.1111/1744-7917.12874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Chitin deacetylases (CDAs, including CDA1 and CDA2) are considered key enzymes for body cuticle formation and tracheal morphogenesis in various insect species. However, their functions in the formation of the cuticular intima of the foregut and hindgut are unclear. Here, we investigated the roles of their respective genes LmCDA1 and LmCDA2 in this process, in the hemimetabolous insect Locusta migratoria. Transcripts of LmCDA1 and LmCDA2 were highly expressed both before and after molting in the foregut. In the hindgut, their expression was high only before molting. In both the foregut and hindgut, LmCDA1 protein was localized in the basal half of the chitin matrix (procuticle), whereas LmCDA2 was detected in the upper half of the procuticle. Knockdown of LmCDA1 by RNA interference (RNAi) in 5th-instar nymphs caused no visible defects of the hindgut cuticle. By contrast, the chitinous lamellae of the cuticular intima in the foregut of knockdown animals were less compact than in control animals. RNAi against LmCDA2 led to thickening of both the foregut and hindgut cuticles, with a greater number of thinner laminae than in the respective control cuticles. Taken together, our results show that LmCDA1 and LmCDA2 have distinct, but overlapping, functions in chitin organization in the foregut cuticle. However, in the hindgut, this process seems independent of LmCDA1 activity but requires LmCDA2 function. Thus, the CDAs reflect tissue-specific differences in cuticular organization and function, which need further detailed molecular and histological analyses for full comprehension.
Collapse
Affiliation(s)
- Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Peng-Juan Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Zhi-Mei Gao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Pan Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xiao-Jian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Wei-Min Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Rong-Rong Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- School of Life Science, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Department of Biology, Taiyuan Normal University, Taiyuan, China
- iBV, Université Côte d'Azur, Parc Valrose, France
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
33
|
Mathew GM, Huang CC, Sindhu R, Binod P, Sirohi R, Awsathi MK, Pillai S, Pandey A. Enzymatic approaches in the bioprocessing of shellfish wastes. 3 Biotech 2021; 11:367. [PMID: 34290950 PMCID: PMC8260653 DOI: 10.1007/s13205-021-02912-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Several tonnes of shellfish wastes are generated globally due to the mass consumption of shellfish meat from crustaceans like prawn, shrimp, lobster, crab, Antarctic krill, etc. These shellfish wastes are a reservoir of valuable by-products like chitin, protein, calcium carbonate, and pigments. In the present scenario, these wastes are treated chemically to recover chitin by the chitin and chitosan industries, using hazardous chemicals like HCl and NaOH. Although this process is efficient in removing proteins and minerals, the unscientific dumping of harmful effluents is hazardous to the ecosystem. Stringent environmental laws and regulations on waste disposal have encouraged researchers to look for alternate strategies to produce near-zero wastes on shellfish degradation. The role of enzymes in degrading shellfish wastes is advantageous yet has not been explored much, although it produces bioactive rich protein hydrolysates with good quality chitin. The main objective of the review is to discuss the potential of various enzymes involved in shellfish degradation and their opportunities and challenges over chemical processes in chitin recovery.
Collapse
Affiliation(s)
- Gincy Marina Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum, 695019 India
| | - Chieh Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, South District, Taichung City, 402 Taiwan
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum, 695019 India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum, 695019 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136713 Republic of Korea
| | - Mukesh Kumar Awsathi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4000 South Africa
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| |
Collapse
|
34
|
Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res 2021; 506:108368. [PMID: 34111686 DOI: 10.1016/j.carres.2021.108368] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is the most abundant natural biopolymer, after cellulose. It is mainly derived from the fungi, shrimp's shells, and exoskeleton of crustaceans, through the deacetylation of chitin. The ecological sustainability associated with its exercise and the flexibility of chitosan owing to its active functional hydroxyl and amino groups makes it a promising candidate for a wide range of applications through a variety of modifications. The biodegradability and biocompatibility of chitosan and its derivatives along with their various chemical functionalities make them promising carriers for pharmaceutical, nutritional, medicinal, environmental, agriculture, drug delivery, and biotechnology applications. The present work aims to provide a detailed and organized description of modified chitosan and its derivatives-based nanomaterials for biomedical applications. We addressed the biological and physicochemical benefits of nanocomposite materials made up of chitosan and its derivatives in various formulations, including improved physicochemical stability and cells/tissue interaction, controlled drug release, and increased bioavailability and efficacy in clinical practice. Moreover, several modification techniques and their effective utilization are also reviewed and collected in this review.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khalid A Alamry
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
35
|
Yang XB, Zhou C, Gong MF, Yang H, Long GY, Jin DC. Identification and RNAi-Based Functional Analysis of Four Chitin Deacetylase Genes in Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6333457. [PMID: 34333649 PMCID: PMC8325873 DOI: 10.1093/jisesa/ieab051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 05/12/2023]
Abstract
Chitin deacetylases (CDAs) are chitin-degrading enzymes that play a key role in insect molting. In this study, we identified and characterized four full-length cDNAs of CDAs from Sogatella furcifera (Horváth). Developmental expression showed that SfCDA1 and SfCDA2 were expressed at all nymph developmental stages, SfCDA3 and SfCDA4 were mainly expressed in the third-instar to fifth-instar nymph stages, whereas tissue-specific analyses indicated that four CDA genes were mainly high expressed in the integument and head during the fifth-instar nymph. RNA interference (RNAi) results revealed that SfCDA1, SfCDA2, and SfCDA4 are associated with molting defect and high mortality with nymph-adult molting. Furthermore, transcripts of chitin synthase 1 variants (SfCHS1, SfCHS1a, and SfCHS1b) were significantly downregulated and causing significant changes in the expression levels of trehalases (TRE1 and TRE2) in the SfCDA1, SfCDA2, and SfCDA4 dsRNA treatment groups. By contrast, no significant phenotypic characteristics were observed after dsSfCDA3 injection. Taken together, our results suggest that SfCDA1, SfCDA2, and SfCDA4 play a vital role in nymph-adult transition, and these genes could regulate chitin biosynthesis expression levels.
Collapse
Affiliation(s)
- Xi-Bin Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, China
| | - Cao Zhou
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Ming-Fu Gong
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, China
| | - Hong Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
- Corresponding author, e-mail:
| | - Gui-Yun Long
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, China
| |
Collapse
|
36
|
Ghosh T, Singh R, Nesamma AA, Jutur PP. Marine Polysaccharides: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
37
|
Li J, Tian X, Hua T, Fu J, Koo M, Chan W, Poon T. Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles. ACS APPLIED BIO MATERIALS 2021; 4:4014-4038. [PMID: 35006820 DOI: 10.1021/acsabm.1c00078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the textile industry has been seeking to develop innovative products. It is a good choice to organically combine materials with superior functional characteristics and commercial textiles to form products with excellent performance. In particular, textiles made of biological functional materials are often beneficial to human health, which is an interesting research direction. As a biopolymer material, chitosan has the advantages of strong availability, low cost, excellent safety, outstanding performance, etc., particularly the antibacterial property, and has broad application prospects in the textile field. This review provides an overview of the latest literature and summarizes recent innovations and state-of-the-art technologies that can add value to textiles. To this end, preparation of chitosan fiber, synthesis of chitosan nanofiber, antibacterial activity of chitosan fiber, antibacterial activity of chitosan nanofiber, etc., will be discussed. Furthermore, the challenges and prospects of chitosan-based materials used in textiles are evaluated. Importantly, this review can not only help researchers understand the development status of antibacterial textiles, but also help researchers discover and solve problems in this field through comparative reading.
Collapse
Affiliation(s)
- Jianhui Li
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Xiao Tian
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Tao Hua
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Jimin Fu
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Mingkin Koo
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Wingming Chan
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Tszyin Poon
- Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
38
|
Wang Y, Li D, Liu M, Xia C, Fan Q, Li X, Lan Z, Shi G, Dong W, Li Z, Cui Z. Preparation of Active Chitooligosaccharides with a Novel Chitosanase AqCoA and Their Application in Fungal Disease Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3351-3361. [PMID: 33688732 DOI: 10.1021/acs.jafc.0c07802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, AqCoA, from Aquabacterium sp. A7-Y. The enzyme showed a specific activity of 18 U/mg toward 95% deacetylated chitosan at pH 5.0 and 40 °C. AqCoA also showed activity toward sodium carboxymethylcellulose, indicating substrate promiscuity. AqCoA hydrolyzed chitosan into chitooligosaccharides (CoA-COSs) with degrees of polymerization (DPs) of 3-5 but showed no activity toward CoA-COSs with DPs <6, indicating an endo-type activity. At 2.5 μg/mL, AqCoA inhibited appressorium formation of Magnaporthe oryzae; the produced CoA-COSs also inhibited the growth of M. oryzae and Fusarium oxysporum. Furthermore, CoA-COSs acted as immune elicitors in rice by inducing the reactive oxygen species burst and the expression of defense genes. These results demonstrated that AqCoA and its resulting CoA-COSs might be effective tools for protecting plants against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, P. R. China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095 Nanjing, P. R. China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zejun Lan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 211800 Nanjing, P. R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| |
Collapse
|
39
|
Zhao D, Liu ZR, Wu H, Fu CR, Li YZ, Lu XJ, Guo W. RNA interference-mediated functional characterization of Group I chitin deacetylases in Holotrichia parallela Motschulsky. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104770. [PMID: 33771270 DOI: 10.1016/j.pestbp.2021.104770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Chitin deacetylases (CDAs, EC 3.5.1.41) catalyze the N-deacetylation of chitin to produce chitosan, which is essential for insect survival. Hence, CDAs are promising targets for the development of novel insecticidal drugs. In this study, the putative Group I chitin deacetylase genes HpCDA1, HpCDA2-1 and HpCDA2-2 were identified from Holotrichia parallela. Conserved domain database search identified a chitin-binding peritrophin-A domain (ChBD), a low-density lipoprotein receptor class A domain (LDLa), and a putative CDA-like catalytic domain. RT-qPCR analysis showed that the Group I HpCDAs were expressed in various tissues and predominant in the integument. The developmental expression patterns from the first-instar to third-instar larvae showed that HpCDAs were highly expressed on the first day and gradually declined after molting. The functional characteristics of the Group I CDAs in cuticle organization were examined using RNA interference (RNAi) and transmission electron microscopy (TEM) methods. Administration of double-stranded HpCDA (dsHpCDA) through larval injection could suppress the expression levels of HpCDA1 and HpCDA2, thus resulting in abnormal or lethal phenotypes. TEM analysis revealed that RNAi of either HpCDA1 or HpCDA2 remarkably affected the cuticle integrity, as evidenced by cuticle disorganization and chitin laminae disruption, suggesting the crucial role of CDAs in chitin modification. These experimental results demonstrate the important contribution of putative key genes involved in chitin metabolism, and provide a foundation for developing new strategies to control H. parallela.
Collapse
Affiliation(s)
- Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhao-Rui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Han Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Chao-Ran Fu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ya-Zi Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiu-Jun Lu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
40
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
41
|
Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021; 26:E384. [PMID: 33450939 PMCID: PMC7828457 DOI: 10.3390/molecules26020384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.
Collapse
Affiliation(s)
- Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Raniv D. Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
43
|
Ma Q, Gao X, Tu L, Han Q, Zhang X, Guo Y, Yan W, Shen Y, Wang M. Enhanced Chitin Deacetylase Production Ability of Rhodococcus equi CGMCC14861 by Co-culture Fermentation With Staphylococcus sp. MC7. Front Microbiol 2020; 11:592477. [PMID: 33362742 PMCID: PMC7758288 DOI: 10.3389/fmicb.2020.592477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Chitin deacetylase (CDA) can hydrolyze the acetamido group of chitin polymers and its deacetylated derivatives to produce chitosan, an industrially important biopolymer. Compared with traditional chemical methods, biocatalysis by CDA is more environment-friendly and easy to control. However, most reported CDA-producing microbial strains show low CDA producing capabilities. Thus, the enhancement of CDA production has always been a challenge. In this study, we report co-culture fermentation to significantly promote the CDA production of Rhodococcus equi CGMCC14861 chitin deacetylase (ReCDA). Due to co-culture fermentation with Staphylococcus sp. MC7, ReCDA yield increased to 21.74 times that of pure culture of R. equi. Additionally, the enhancement was demonstrated to be cell-independent by adding cell-free extracts and the filtrate obtained by 10 kDa ultrafiltration of Staphylococcus sp. MC7. By preliminary characterization, we found extracellular, thermosensitive signal substances produced by Staphylococcus that were less than 10 kDa. We investigated the mechanism of promotion of ReCDA production by transcriptomic analysis. The data showed that 328 genes were upregulated and 1,258 genes were downregulated. The transcription level of the gene encoding ReCDA increased 2.3-fold. These findings provide new insights into the research of co-culture fermentation for the production of CDA and quorum sensing regulation.
Collapse
Affiliation(s)
- Qinyuan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xiuzhen Gao
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Xing Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yabo Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqin Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
44
|
Kou SG, Peters LM, Mucalo MR. Chitosan: A review of sources and preparation methods. Int J Biol Macromol 2020; 169:85-94. [PMID: 33279563 DOI: 10.1016/j.ijbiomac.2020.12.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Chitosan, derived from chitin, has many desirable biomedical attributes. This review aims to explore different sources of chitin and methods of chitosan production with industrial consideration. This article first discussed different sources of chitin for industrial scale production, with considerations given to both their environmental impacts and commercialization potential. Secondly, this article reviews the two categories of chitosan preparation - chemical methods and biological methods - based on existing publications which used lobster by-products as a feedstock source. The mechanisms of the chemical methods are firstly summarized, and then the different chemical agents and reaction parameters used are discussed. Next, both enzymatic and fermentation-based approaches are reviewed under biological methods and compared with chemical methodologies, with lactic fermentation methods as the major focus. This article concludes that lobster cephalothorax could be an ideal source for chitosan preparation on an industrial scale; and chemical methods involve simpler processing overall, while producing chitosan with stronger bioactivities because of the lower molecular weight (MW) and higher degree of deacetylation (DD) achieved by the products. Moreover, due to biological methods inevitably necessitating further chemical processing, an approach involving some unconventional chemical methods has been regarded as a more suitable strategy for industrial scale chitosan production.
Collapse
|
45
|
Li K, Xing R, Liu S, Li P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12203-12211. [PMID: 33095004 DOI: 10.1021/acs.jafc.0c05316] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chitin and chitosan are natural polysaccharides with huge application potential in agriculture, such as promoting plant growth, eliciting plant resistance against biotic and abiotic stress, and activating symbiotic signaling between plants and beneficial microorganisms. Chitin and chitosan offer a sustainable alternative for future crop production. The bioactivities of chitin and chitosan closely depend on their structural factors, including molecular size, degree of acetylation, and pattern of acetylation. It is of great significance to identify the key fragments in chitin and chitosan chains that are responsible for these agricultural bioactivities. Herein, we review the recent progress in the structure-function relationship of chitin and chitosan in the field of agriculture application. The preparation of chitin and chitosan fragments and their action mode for plant protection and growth are also discussed.
Collapse
Affiliation(s)
- Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
46
|
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int J Mol Sci 2020; 21:ijms21217835. [PMID: 33105791 PMCID: PMC7660110 DOI: 10.3390/ijms21217835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.
Collapse
|
47
|
Yang X, Koči J, Smith AA, Zhuang X, Sharma K, Dutta S, Rana VS, Kitsou C, Yas OB, Mongodin EF, Pal U. A novel tick protein supports integrity of gut peritrophic matrix impacting existence of gut microbiome and Lyme disease pathogens. Cell Microbiol 2020; 23:e13275. [PMID: 33006213 DOI: 10.1111/cmi.13275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023]
Abstract
The peritrophic matrix (PM) is an acellular membrane that covers the gut epithelium in arthropods and physically separates it from the lumen. The structure is thought to play an important role in tick biology. The PM is also known to impact the persistence of tick-borne pathogens like Borrelia burgdorferi, although limited information is available about its molecular constituents or their biological significance. Herein, we characterise a novel PM-associated gut protein in Ixodes scapularis ticks, annotated as Peritrophic Membrane Chitin Binding Protein (PM_CBP), for its role in the integrity and function of the matrix. The PM_CBP displays homology to the chitin deacetylase metalloenzyme, shows upregulation during tick feeding, and is localized at the luminal surface of the gut epithelium. The structural integrity of the PM was impaired both by the knock down of PM_CBP expression via RNA interference and by treatment with anti-PM_CBP antibodies, as revealed by its electron microscopic appearance. Additionally, the duration of tick engorgement on mice and the passage of experimentally-inoculated fluorescent dextran molecules across the PM are affected by the knock down of PM_CBP expression. The transfer of anti-PM_CBP antibodies into the tick gut impacted the overall composition of the resident microbiome, and also influenced B. burgdorferi acquisition in ticks and its transmission to mice. Taken together, these data highlight the biological significance of the Ixodes PM and suggest that the targeting of its molecular constituents may contribute to the development of novel interventions against tick-borne infections.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Juraj Koči
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Xuran Zhuang
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Ozlem B Yas
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, İstanbul, Turkey
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA.,Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
48
|
Jadhav H, Jadhav A, Takkalkar P, Hossain N, Nizammudin S, Zahoor M, Jamal M, Mubarak NM, Griffin G, Kao N. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02287-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Lu Q, Zhang W, Fang J, Zheng J, Dong C, Xiong S. Mycobacterium tuberculosis Rv1096, facilitates mycobacterial survival by modulating the NF-κB/MAPK pathway as peptidoglycan N-deacetylase. Mol Immunol 2020; 127:47-55. [PMID: 32927163 DOI: 10.1016/j.molimm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that can infect and replicate in macrophages. Peptidoglycan (PGN) is a major component of the mycobacterial cell wall and is recognized by host pattern recognition receptors (PRRs). Many bacteria modulate and evade the immune defenses of their hosts through PGN deacetylation. Rv1096 was previously characterized as a PGN N-deacetylase gene in Mtb. However, the underlying mechanism by which Rv1096 regulates host immune defenses during macrophage infection remains unclear. In the present study, we investigated the role of Rv1096 in evading host immunity using a recombinant M. smegmatis expressing exogenous Rv1096 and Rv1096-deleted Mtb strain H37Rv mutant. We found that Rv1096 promoted intracellular bacillary survival and inhibited the inflammatory response in M. smegmatis- or Mtb-infected macrophages. The inhibition of mycobacteria-induced inflammatory response in macrophages was at least partially due to NF-κB and MAPK activation downstream of TLR and NOD signaling pathways. Furthermore, we found that Rv1096 inhibitory effect on inflammatory response was associated with TLR2, TLR4 and NOD2. Finally, we demonstrated the PGN deacetylase activity of Rv1096 by Fourier transform IR and Rv1096 NODB deficient mutant. Our findings suggest that Rv1096 may deacetylate PGNs to evade PRRs recognition, thus protecting Mtb from host immune surveillance and clearance in macrophages.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jun Fang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jianjian Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
50
|
Rahim M, Mas Haris MRH, Saqib NU. An overview of polymeric nano-biocomposites as targeted and controlled-release devices. Biophys Rev 2020; 12:1223-1231. [PMID: 32901426 DOI: 10.1007/s12551-020-00750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, controlled drug delivery has become an important area of research. Nano-biocomposites can fulfil the necessary requirements of a targeted drug delivery device. This review describes use of polymeric nano-biocomposites in controlled drug delivery devices. Selection of suitable biopolymer and methods of preparation are discussed.
Collapse
Affiliation(s)
- Muhammad Rahim
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Penang, Malaysia.
| | | | - Najm Us Saqib
- Department of Zoology, University of Buner, Buner, KP, Pakistan
| |
Collapse
|