1
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
2
|
Kumar V, Poonia N, Kumar P, Kumar Verma P, Alshammari A, Albekairi NA, Kabra A, Yadav N. Amphiphilic, lauric acid-coupled pluronic-based nano-micellar system for efficient glipizide delivery. Saudi Pharm J 2024; 32:102046. [PMID: 38577487 PMCID: PMC10992704 DOI: 10.1016/j.jsps.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Glipizide; an insulin secretagogue belonging to the sulfonylurea class, is a widely used antidiabetic drug for managing type 2 diabetes. However, the need for life-long administration and repeated doses poses challenges in maintaining optimal blood glucose levels. In this regard, orally active sustained-release nano-formulations can be a better alternative to traditional antidiabetic formulations. The present study explored an innovative approach by formulating orally active sustained-release nano-micelles using the amphiphilic lauric acid-conjugated-F127 (LAF127) block copolymer. LAF127 block copolymer was synthesized through esterification and thoroughly characterized before being employed to develop glipizide-loaded nano-micelles (GNM) via the thin-film hydration technique. The optimized formulation exhibited mean particle size of 341.40 ± 3.21 nm and depicted homogeneous particle size distribution with a polydispersity index (PDI) < 0.2. The formulation revealed a surface charge of -17.11 ± 6.23 mV. The in vitro release studies of glipizide from developed formulation depicted a sustained release profile. Drug loaded micelles exhibited a substantial reduction in blood glucose levels in diabetic rats for a duration of up to 24 h. Notably, neither the blank nano-micelles of LAF127 nor the drug loaded micelles manifested any indications of toxicity in healthy rats. This study provides an insight on suitability of synthesized LAF127 block copolymer for development of effective oral drug delivery systems for anti-diabetic activity without any significant adverse effects.
Collapse
Affiliation(s)
- Vipan Kumar
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa 125055, India
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neera Yadav
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Kim Y, Hamada K, Sekine K. The effect of supplementing the calcium phosphate cement containing poloxamer 407 on cellular activities. J Biomed Mater Res B Appl Biomater 2024; 112:e35335. [PMID: 37772460 DOI: 10.1002/jbm.b.35335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mβ-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (β-TCP). The mβ-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mβ-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mβ-TCP containing poloxamer 407 was similar to that of mβ-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mβ-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mβ-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
4
|
Hu X, Wu H, Yong X, Wang Y, Yang S, Fan D, Xiao Y, Che L, Shi K, Li K, Xiong C, Zhu H, Qian Z. Cyclical endometrial repair and regeneration: Molecular mechanisms, diseases, and therapeutic interventions. MedComm (Beijing) 2023; 4:e425. [PMID: 38045828 PMCID: PMC10691302 DOI: 10.1002/mco2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
The endometrium is a unique human tissue with an extraordinary ability to undergo a hormone-regulated cycle encompassing shedding, bleeding, scarless repair, and regeneration throughout the female reproductive cycle. The cyclical repair and regeneration of the endometrium manifest as changes in endometrial epithelialization, glandular regeneration, and vascularization. The mechanisms encompass inflammation, coagulation, and fibrinolytic system balance. However, specific conditions such as endometriosis or TCRA treatment can disrupt the process of cyclical endometrial repair and regeneration. There is uncertainty about traditional clinical treatments' efficacy and side effects, and finding new therapeutic interventions is essential. Researchers have made substantial progress in the perspective of regenerative medicine toward maintaining cyclical endometrial repair and regeneration in recent years. Such progress encompasses the integration of biomaterials, tissue-engineered scaffolds, stem cell therapies, and 3D printing. This review analyzes the mechanisms, diseases, and interventions associated with cyclical endometrial repair and regeneration. The review discusses the advantages and disadvantages of the regenerative interventions currently employed in clinical practice. Additionally, it highlights the significant advantages of regenerative medicine in this domain. Finally, we review stem cells and biologics among the available interventions in regenerative medicine, providing insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of BiotherapySichuan UniversityChengduSichuanChina
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Shuhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Diyi Fan
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Yibo Xiao
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduSichuanChina
| | | | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhiyong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Vetter VC, Bouten CVC, van der Pol A. Hydrogels for Cardiac Restorative Support: Relevance of Gelation Mechanisms for Prospective Clinical Use. Curr Heart Fail Rep 2023; 20:519-529. [PMID: 37812347 PMCID: PMC10746579 DOI: 10.1007/s11897-023-00630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Cardiac tissue regenerative strategies have gained much traction over the years, in particular those utilizing hydrogels. With our review, and with special focus on supporting post-myocardial infarcted tissue, we aim to provide insights in determining crucial design considerations of a hydrogel and the implications these could have for future clinical use. RECENT FINDINGS To date, two hydrogel delivery strategies are being explored, cardiac injection or patch, to treat myocardial infarction. Recent advances have demonstrated that the mechanism by which a hydrogel is gelated (i.e., physically or chemically cross-linked) not only impacts the biocompatibility, mechanical properties, and chemical structure, but also the route of delivery of the hydrogel and thus its effect on cardiac repair. With regard to cardiac regeneration, various hydrogels have been developed with the ability to function as a delivery system for therapeutic strategies (e.g., drug and stem cells treatments), as well as a scaffold to guide cardiac tissue regeneration following myocardial infarction. However, these developments remain within the experimental and pre-clinical realm and have yet to transition towards the clinical setting.
Collapse
Affiliation(s)
- Valentine C Vetter
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
6
|
Borbolla-Jiménez FV, García-Aguirre IA, Del Prado-Audelo ML, Hernández-Hernández O, Cisneros B, Leyva-Gómez G, Magaña JJ. Development of a Polymeric Pharmacological Nanocarrier System as a Potential Therapy for Spinocerebellar Ataxia Type 7. Cells 2023; 12:2735. [PMID: 38067163 PMCID: PMC10706302 DOI: 10.3390/cells12232735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Ian A. García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico;
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México 07360, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México 14389, Mexico; (F.V.B.-J.); (O.H.-H.)
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México 14380, Mexico; (I.A.G.-A.); (M.L.D.P.-A.)
| |
Collapse
|
7
|
Anilkumar A, Dutta Choudhury S. Self-assembly of Reverse Poloxamine Induced by Saccharide Excipients: Insights from Fluorescence. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
9
|
Gharoonpour A, Simiyari D, Yousefzadeh A, Badragheh F, Rahmati M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front Oncol 2023; 13:1150492. [PMID: 37213283 PMCID: PMC10196239 DOI: 10.3389/fonc.2023.1150492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy regenerates cellular nutrients, recycles metabolites, and maintains hemostasis through multistep signaling pathways, in conjunction with lysosomal degradation mechanisms. In tumor cells, autophagy has been shown to play a dual role as both tumor suppressor and tumor promoter, leading to the discovery of new therapeutic strategies for cancer. Therefore, regulation of autophagy is essential during cancer progression. In this regard, the use of nanoparticles (NPs) is a promising technique in the clinic to modulate autophagy pathways. Here, we summarized the importance of breast cancer worldwide, and we discussed its classification, current treatment strategies, and the strengths and weaknesses of available treatments. We have also described the application of NPs and nanocarriers (NCs) in breast cancer treatment and their capability to modulate autophagy. Then the advantages and disadvantaged of NPs in cancer therapy along with future applications will be disscussed. The purpose of this review is to provide up-to-date information on NPs used in breast cancer treatment and their impacts on autophagy pathways for researchers.
Collapse
|
10
|
Ding Y, Wang Y, Li J, Tang M, Chen H, Wang G, Guo J, Gui S. Microemulsion-thermosensitive gel composites as in situ-forming drug reservoir for periodontitis tissue repair through alveolar bone and collagen regeneration strategy. Pharm Dev Technol 2023; 28:30-39. [PMID: 36541732 DOI: 10.1080/10837450.2022.2161574] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A satisfactory clinical effect in treating periodontitis is often difficult to achieve by conventional non-surgical systemic drug delivery due to the narrow anatomical structure of the periodontal pocket and insufficient drug concentration at lesion sites. In addition, the feasibility of combating periodontal tissue lesions by restoring the alveolar bone and allowing collagen regeneration has not been fully explored. The objective of this study was to prepare a microemulsion integrating the anti-inflammatory and osteogenic active ingredients of baicalin and clove oil (BC-MEs). Then, the composite hydrogel obtained by mixing poloxamer 407 and 188 was used as the thermosensitive gel matrix to load BC-MEs and form a drug reservoir (Gel-BC-MEs) injectable in situ. Gel-BC-MEs exhibited a significant, sustained release of baicalin for 12 h, gelation temperature was 33.4 ± 0.36 °C, and pH was 5.45 ± 0.12. The experiment on a rat periodontitis model demonstrated that Gel-BC-MEs significantly improved periodontal tissue repair by collagen regeneration and osteogenesis by inhibiting osteoclast infiltration. This study proposes a novel strategy for periodontal tissue repair by enhancing the therapeutic potential of a microemulsion using an in situ nano-gel delivery system.
Collapse
Affiliation(s)
- Yang Ding
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, Anhui, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hairong Chen
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, Anhui, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, China
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, Anhui, China.,Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, China
| |
Collapse
|
11
|
Zueva OS, Makarova AO, Zvereva ER, Bakhtiyarova YV, Yanushevskaya YS, Turanov AN. Poloxamers and Poloxamines for Dispersion of Carbon Nanomaterials. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Patel V, Parekh P, Khimani M, Yusa SI, Bahadur P. Pluronics® based Penta Block Copolymer micelles as a precursor of smart aggregates for various applications: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Zueva OS, Makarova AO, Zvereva ER, Kh. Kurbanov R, Salnikov VV, Turanov AN, Zuev YF. Industrial block copolymer surfactants: Diversity of associative forms and interaction with carbon nanomaterial. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
A Novel Mutual-Coupling Dipole Model Considering the Interactions between Particles. COATINGS 2022. [DOI: 10.3390/coatings12081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interactions between two or more particles and the calculation of the local electric field are widely applied in many fields, such as those of insulation, biology, medicine, and microfluidics. The dipole approximation model, which is a classical electric field calculation method, has been widely used in many fields to solve for the local electric field in a multi-particle system, but it does not consider the interactions between particles; as a result, it is easily limited by the calculation situation, and it generates a large calculation error when the distance between particles is small. Based on the physical essence of an interaction between two particles, a concept of the mutual-coupling dipole moment caused by the interactions between particles is defined for the first time. Moreover, by combining the calculation process of the dipole moment and the electric field of polarization, a novel mutual-coupling dipole model considering the interactions between particles is proposed in this paper, and analytical expressions of the local electric field that consider the interaction between two particles are obtained, thus compensating for the large error in the electric field calculation caused by the dipole approximation model when the distance between particles is small. In this paper, a mutual-coupling dipole model considering particle interactions is proposed. This model can effectively reflect the interactions between particles when the distance between particles D/R is less than 0.6 and accurately calculate the local electric fields of the particles. These results can be effectively used to investigate the interactions between particles and the control of particles in electric fields in many fields, such as in the calculation of the insulation of mixed dielectrics, the microscopic transport of medicines, the control of bio-cells and micro-fluids in electric fields, and environmental governance.
Collapse
|
15
|
Athirathinam K, Nandakumar S, Kandasamy R. Biopolymers and Osmolytes - A Focus towards the Prospects of Stability and Adjuvanticity of Vaccines. Macromol Res 2022; 30:599-608. [PMID: 35762006 PMCID: PMC9217723 DOI: 10.1007/s13233-022-0068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
‘New-Gen Vaccines’ are grabbing the attention of scientists as they are much suitable for an immune-compromised group of individuals as well as infants. The major drawbacks of these vaccines are lower immunogenicity and instability. The need for a convenient and safe adjuvant is still under exploration. On the other hand, thermal instability leads to the inactivation of the vaccine and becomes detrimental in many cases. Thus, there is a need to incorporate new kinds of excipients into vaccine formulation to enhance the potency/immunogenicity of vaccine antigens and also act as stabilizers. A limited or single excipient in providing the required dual-activity is vital to break the stereotypical usage of the well-entrenched adverse ingredients. In the proposed review, the efficiency of naturally occurring biocompatible carbohydrate polymers and osmolytes and their ‘dual-role’ is briefed. In addition, the information on the possible mechanisms of action of carbohydrate polymers in vaccines as adjuvants and stabilizers are also discussed.
Collapse
Affiliation(s)
- Krubha Athirathinam
- Department of Pharmaceutical Technology, Centre for Excellence in Nano-Bio Translational Research (CENTRE), Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamil Nadu, 620024 India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nano-Bio Translational Research (CENTRE), Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamil Nadu, 620024 India
| |
Collapse
|
16
|
Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS One 2022; 17:e0267257. [PMID: 35560136 PMCID: PMC9106168 DOI: 10.1371/journal.pone.0267257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Silibinin (SB) is shown to have an anticancer properties. However, its clinical therapeutic effects have been restricted due to its low water solubility and poor absorption after oral administration. The aim of this study was to develop SB-loaded PCL/Pluronic F68 nanoparticles for pulmonary delivery in the treatment of lung cancer. A modified solvent displacement process was used to make nanoparticles, which were then lyophilized to make inhalation powder, Nanoparticles were characterized with DSC, FTIR,SEM and In vitro release study. Further, a validated HPLC method was developed to investigate the Biodistribution study, pharmacokinetic parameters. Poly Caprolactone PCL / Pluronic F68 NPs showed the sustained release effect up to 48 h with an emitted (Mass median Aerodynamic diameter)MMAD and (Geometric size distribution)GSD were found to be 4.235 ±0.124 and 1.958±1.23 respectively. More specifically, the SB Loaded PCL/Pluronic F 68 NPs demonstrated long circulation and successful lung tumor-targeting potential due to their cancer-targeting capabilities. SB Loaded PCL/Pluronic F68 NPs significantly inhibited tumour growth in lung cancer-induced rats after inhalable administration. In a pharmacokinetics study, PCL/ Pluronic F68 NPs substantially improved SB bioavailability, with a more than 4-fold rise in AUC when compared to IV administration. These findings indicate that SB-loaded PCL/PluronicF68 nanoparticles may be a successful lung cancer therapy delivery system.
Collapse
|
17
|
Sakhi M, Khan A, Iqbal Z, Khan I, Raza A, Ullah A, Nasir F, Khan SA. Design and Characterization of Paclitaxel-Loaded Polymeric Nanoparticles Decorated With Trastuzumab for the Effective Treatment of Breast Cancer. Front Pharmacol 2022; 13:855294. [PMID: 35359855 PMCID: PMC8964068 DOI: 10.3389/fphar.2022.855294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to design and formulate an antibody-mediated targeted, biodegradable polymeric drug delivery system releasing drug in a controlled manner to achieve a therapeutic goal for the effective treatment of breast cancer. Antibody-mediated paclitaxel-loaded PLGA polymeric nanoformulations were prepared by the solvent evaporation method using different experimental parameters and compatibility studies. The optimized formulations were selected for in vitro and in vivo evaluation and cytotoxicity studies. The in vitro drug release studies show a biphasic release pattern for the paclitaxel-loaded PLGA nanoparticles showing a burst release for 24 h followed by an extended release for 14 days; however, a more controlled and sustained release was observed for antibody-conjugated polymeric nanoparticles. The cytotoxicity of reference drug and paclitaxel-loaded PLGA nanoparticles with and without antibody was determined by performing MTT assay against MCF-7 cells. Rabbits were used as experimental animals for the assessment of various in vivo pharmacokinetic parameters of selected formulations. The pharmacokinetic parameters such as Cmax (1.18–1.33 folds), AUC0-t (39.38–46.55 folds), MRT (10.04–12.79 folds), t1/2 (3.06–4.6 folds), and Vd (6.96–8.38 folds) have been increased significantly while clearance (4.34–4.61 folds) has been decreased significantly for the selected nanoformulations as compared to commercially available paclitaxel formulation (Paclixil®). The surface conjugation of nanoparticles with trastuzumab resulted in an increase in in vitro cytotoxicity as compared to plain nanoformulations and commercially available conventional brand (Paclixil®). The developed PLGA-paclitaxel nanoformulations conjugated with trastuzumab have the desired physiochemical characteristics, surface morphology, sustained release kinetics, and enhanced targeting.
Collapse
Affiliation(s)
- Mirina Sakhi
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
- *Correspondence: Abad Khan, ; Saeed Ahmad Khan,
| | - Zafar Iqbal
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Ismail Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abida Raza
- National Institute of LASER and Optronics, Nilore, Pakistan
| | - Asmat Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
- *Correspondence: Abad Khan, ; Saeed Ahmad Khan,
| |
Collapse
|
18
|
Gegel NO, Shipovskaya AB, Khaptsev ZY, Radionov RV, Belyaeva AA, Kharlamov VN. Thermosensitive Chitosan-Containing Hydrogels: Their Formation, Properties, Antibacterial Activity, and Veterinary Usage. Gels 2022; 8:gels8020093. [PMID: 35200474 PMCID: PMC8871199 DOI: 10.3390/gels8020093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Mixtures of aqueous solutions of chitosan hydrochloride (CS·HCl, 1–4 wt.%) and Pluronic F-127 (Pl F-127, 25 wt.%) were studied using vibrational and rotational viscometry; the optimal aminopolysaccharide concentration (3 wt.%) and the CS·HCl:Pl F-127 ratio (30:70) to obtain a thermosensitive hydrogel were found. It was shown that at 4 °C, such mixed compositions were viscous liquids, while at 37 °C for 1–2 min, they undergo a thermally reversible transition to a shape-stable hydrogel with a developed level of structure formation, satisfactory viscosity and high mucoadhesive parameters (maximum pull-off force Fmax = 1.5 kN/m2; work of adhesion W = 66.6 × 10−3 J). Adding D-ascorbic acid to the hydrogel led to orientational ordering of the supramolecular structure of the mixed system and significantly improved mucoadhesion (Fmax = 4.1 kN/m2, W = 145.1 × 10−3 J). A microbiological study revealed the high antibacterial activity of the hydrogel against Gram-negative and Gram-positive bacterial strains. The treatment of mixed bacterial infection in cows demonstrated the possibility of the in situ formation of a viscoelastic gel and revealed its high therapeutic effect. It has been suggested that our thermosensitive mucoadhesive CS·HCl:Pl F-127 hydrogels could be considered as independent veterinary drugs and pharmaceuticals.
Collapse
Affiliation(s)
- Natalia O. Gegel
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
| | - Anna B. Shipovskaya
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
- Correspondence: ; Tel.: +7-(8452)-516-957
| | - Zaur Yu. Khaptsev
- Microbiology, Biotechnology and Chemistry, Saratov State Vavilov Agrarian University, Sokolovaya St., 335, 410005 Saratov, Russia;
| | - Roman V. Radionov
- Animal Science and Veterinary, Michurian State Agrarian University, International St., 110, 393760 Michurinsk, Russia;
| | - Anastasia A. Belyaeva
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
| | - Vitaly N. Kharlamov
- Department of High-Molecular-Weight Compounds, Saratov State University Named after N.G. Chernyshevsky, Astrakhanskaya St., 83, 410012 Saratov, Russia; (N.O.G.); (A.A.B.); (V.N.K.)
| |
Collapse
|
19
|
Zhang Y, Wang X, Chen J, Qian D, Gao P, Qin T, Jiang T, Yi J, Xu T, Huang Y, Wang Q, Zhou Z, Bao T, Zhao X, Liu H, Zheng Z, Fan J, Zhao S, Li Q, Yin G. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology 2022; 20:56. [PMID: 35093078 PMCID: PMC8801111 DOI: 10.1186/s12951-022-01245-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractSubtalar osteoarthritis (STOA) is often secondary to chronic ankle sprains, which seriously affects the quality of life of patients. Due to its etiology and pathogenesis was not studied equivocally yet, there is currently a lack of effective conservative treatments. Although they have been used for tissue repair, platelet-rich plasma-derived exosomes (PRP-Exo) have the disadvantage of low retention and short-lived therapeutic effects. This study aimed to determine whether incorporation of PRP-Exo in thermosensitive hydrogel (Gel) increased their retention in the joint and thereby playing a therapeutic role on STOA due to chronic mechanical instability established by transecting lateral ligaments (anterior talofibular ligament (ATFL)/calcaneal fibular ligament (CFL)). PRP-Exo incorporated Gel (Exo-Gel) system, composed of Poloxamer-407 and 188 mixture-based thermoresponsive hydrogel matrix in an optimal ratio, was determined by its release ability of Exo and rheology of Gel response to different temperature. The biological activity of Exo-Gel was evaluated in vitro, and the therapeutic effect of Exo-Gel on STOA was evaluated in vivo. Exo released from Exo-Gel continuously for 28 days could promote the proliferation and migration of mouse bone mesenchymal stem cells (mBMSCs) and chondrocytes, at the same time enhance the chondrogenic differentiation of mBMSCs, and inhibit inflammation-induced chondrocyte degeneration. In vivo experiments confirmed that Exo-Gel increased the local retention of Exo, inhibited the apoptosis and hypertrophy of chondrocytes, enhanced their proliferation, and potentially played the role in stem cell recruitment to delay the development of STOA. Thus, Delivery of PRP-Exo incorporated in thermosensitive Gel provides a novel approach of cell-free therapy and has therapeutic effect on STOA.
Graphical Abstract
Collapse
|
20
|
Lecot N, Rodríguez G, Stancov V, Fernández M, González M, Glisoni RJ, Cabral P, Cerecetto H. Development of fluorescent- and radio-traceable T1307-polymeric micelles as biomedical agents for cancer diagnosis: biodistribution on 4T1 tumor-bearing mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Hugo Cerecetto
- Universidad de la República, Uruguay; Universidad de la República, Uruguay
| |
Collapse
|
21
|
Szołna-Chodór A, Grzegorzewski B. The Effect of Glucose and Poloxamer 188 on Red-Blood-Cell Aggregation. Metabolites 2021; 11:metabo11120886. [PMID: 34940644 PMCID: PMC8706508 DOI: 10.3390/metabo11120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Glucose metabolism disorders contribute to the development of various diseases. Numerous studies show that these disorders not only change the normal values of biochemical parameters but also affect the mechanical properties of blood. To show the influence of glucose and poloxamer 188 (P188) on the mechanical properties of a red-blood-cell (RBC) suspension, we studied the aggregation of the cells. To show the mechanisms of the mechanical properties of blood, we studied the effects of glucose and poloxamer 188 (P188) on red-blood-cell aggregation. We used a model in which cells were suspended in a dextran 70 solution at a concentration of 2 g/dL with glucose and P188 at concentrations of 0–3 g/dL and 0–3 mg/mL, respectively. RBC aggregation was determined using an aggregometer, and measurements were performed every 4 min for 1 h. Such a procedure enabled the incubation of RBCs in solution. The aggregation index determined from the obtained syllectograms was used as a measure of aggregation. Both the presence of glucose and that of P188 increased the aggregation index with the incubation time until saturation was reached. The time needed for the saturation of the aggregation index increased with increasing glucose and P188 concentrations. As the concentrations of these components increased, the joint effect of glucose and P188 increased the weakening of RBC aggregation. The mechanisms of the observed changes in RBC aggregation in glucose and P188 solutions are discussed.
Collapse
|
22
|
Zhang Z, Li X, Zhang W, Kohane DS. Drug Delivery across Barriers to the Middle and Inner Ear. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008701. [PMID: 34795553 PMCID: PMC8594847 DOI: 10.1002/adfm.202008701] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 05/28/2023]
Abstract
The prevalence of ear disorders has spurred efforts to develop drug delivery systems to treat these conditions. Here, recent advances in drug delivery systems that access the ear through the tympanic membrane (TM) are reviewed. Such methods are either non-invasive (placed on the surface of the TM), or invasive (placed in the middle ear, ideally on the round window [RW]). The major hurdles to otic drug delivery are identified and highlighted the representative examples of drug delivery systems used for drug delivery across the TM to the middle and (crossing the RW also) inner ear.
Collapse
Affiliation(s)
- Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Folle C, Díaz-Garrido N, Sánchez-López E, Marqués AM, Badia J, Baldomà L, Espina M, Calpena AC, García ML. Surface-Modified Multifunctional Thymol-Loaded Biodegradable Nanoparticles for Topical Acne Treatment. Pharmaceutics 2021; 13:pharmaceutics13091501. [PMID: 34575577 PMCID: PMC8471012 DOI: 10.3390/pharmaceutics13091501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| | - Ana Maria Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Kono M, Umar NK, Takeda S, Ohtani M, Murakami D, Sakatani H, Kaneko F, Nanushaj D, Hotomi M. Novel Antimicrobial Treatment Strategy Based on Drug Delivery Systems for Acute Otitis Media. Front Pharmacol 2021; 12:640514. [PMID: 34421583 PMCID: PMC8371970 DOI: 10.3389/fphar.2021.640514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Despite tremendous success of pneumococcal conjugated vaccine and antimicrobial treatment by amoxicillin, acute otitis media (AOM) still remains as a great medical concern. Failure of antimicrobial treatment includes several factors. The middle ear cavity is surrounded by bone tissue, which makes it difficult to maintain sufficient concentration of antibiotics. Tympanic membrane of AOM patients thickens and actually becomes a barrier for topical therapy. This review discusses novel antimicrobial treatment strategies based on drug delivery systems (DDS) for AOM. To deliver drugs enough to kill the pathogenic bacteria without systemic side effects, the development of new antimicrobial treatment strategy applying innovative drug DDS has been expected. The sustained-release DDS can achieve sufficient time for antimicrobial concentrations to exceed minimum inhibitory concentration (MIC) for time-dependent antibiotics as well as enough maximum concentration for dose-dependent antibiotics to eradicate causative pathogens in the middle ear. The development of trans-tympanic membranes of DDS, such as hydrogels with chemical permeation enhancers (CPEs), is another attractive strategy. Phage is a promising strategy for developing DDS-based therapies. The DDS formulations enable antimicrobial treatment of AOM by a single dose and thus, an attractive future antimicrobial treatment for AOM.
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Nafisa K Umar
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Saori Takeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Makiko Ohtani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Fumie Kaneko
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.,Department of Otorhinolaryngology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
25
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|
26
|
Chen Y, Lee JH, Meng M, Cui N, Dai CY, Jia Q, Lee ES, Jiang HB. An Overview on Thermosensitive Oral Gel Based on Poloxamer 407. MATERIALS 2021; 14:ma14164522. [PMID: 34443046 PMCID: PMC8399853 DOI: 10.3390/ma14164522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
In this review, we describe the application of thermosensitive hydrogels composed of poloxamer in medicine, especially for oral cavities. Thermosensitive hydrogels remain fluid at room temperature; at body temperature, they become more viscous gels. In this manner, the gelling system can remain localized for considerable durations and control and prolong drug release. The chemical structure of the poloxamer triblock copolymer leads to an amphiphilic aqueous solution and an active surface. Moreover, the poloxamer can gel by forming micelles in an aqueous solution, depending on its critical micelle concentration and critical micelle temperature. Owing to its controlled-release effect, a thermosensitive gel based on poloxamer 407 (P407) is used to deliver drugs with different characteristics. As demonstrated in studies on poloxamer formulations, an increase in gelling viscosity decreases the drug release rate and gel dissolution time to the extent that it prolongs the drug’s duration of action in disease treatment. This property is used for drug delivery and different therapeutic applications. Its unique route of administration, for many oral diseases, is advantageous over traditional routes of administration, such as direct application and systemic treatment. In conclusion, thermosensitive gels based on poloxamers are suitable and have great potential for oral disease treatment.
Collapse
Affiliation(s)
- Yabing Chen
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Jeong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
| | - Mingyue Meng
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Naiyu Cui
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Chun-Yu Dai
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Qi Jia
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
- Correspondence: (E.-S.L.); (H.-B.J.)
| | - Heng-Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
- Correspondence: (E.-S.L.); (H.-B.J.)
| |
Collapse
|
27
|
Maxwell A, Ghate V, Aranjani J, Lewis S. Breaking the barriers for the delivery of amikacin: Challenges, strategies, and opportunities. Life Sci 2021; 284:119883. [PMID: 34390724 DOI: 10.1016/j.lfs.2021.119883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Hypodermic delivery of amikacin is a widely adopted treatment modality for severe infections, including bacterial septicemia, meningitis, intra-abdominal infections, burns, postoperative complications, and urinary tract infections in both paediatric and adult populations. In most instances, the course of treatment requires repeated bolus doses of amikacin, prolonged hospitalization, and the presence of a skilled healthcare worker for administration and continuous therapeutic monitoring to manage the severe adverse effects. Amikacin is hydrophilic and exhibits a short half-life, which further challenges the delivery of sufficient systemic concentrations when administered by the oral or transdermal route. In this purview, the exploitation of novel controlled and sustained release drug delivery platforms is warranted. Furthermore, it has been shown that novel delivery systems are capable of increasing the antibacterial activity of amikacin at lower doses when compared to the conventional formulations and also aid in overcoming the development of drug-resistance, which currently is a significant threat to the healthcare system worldwide. The current review presents a comprehensive overview of the developmental history of amikacin, the mechanism of action in virulent strains as well as the occurrence of resistance, and various emerging drug delivery solutions developed both by the academia and the industry. The examples outlined within the review provides significant pieces of evidence on novel amikacin formulations in the field of antimicrobial research paving the path for future therapeutic interventions that will result in improved clinical outcome.
Collapse
Affiliation(s)
- Amala Maxwell
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Mechatronics Lab, Department of Electronic System Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Jesil Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
28
|
Inhibition of aldehyde dehydrogenase by furazolidone nanoemulsion to decrease cisplatin resistance in lung cancer cells. Ther Deliv 2021; 12:611-625. [PMID: 34286601 DOI: 10.4155/tde-2020-0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: The overexpression of aldehyde dehydrogenase (ALDH) in cancer cells contributes to therapeutic resistance. Furazolidone (FUR) is a strong ALDH inhibitor. Methods: FUR nanoemulsion (NE) was formulated and tested for ALDH inhibitory activity in comparison with free FUR. The cytotoxic potential of cisplatin was evaluated in combination with free FUR and FUR NE. Results: The optimized FUR NE showed droplet size of 167.9 ± 3.1 nm and drug content of 84.2 ± 2.3%. FUR NE inhibited 99.75 ± 2.1% of ALDH activity while 25.0 ± 4.6% was inhibited by free FUR. FUR NE increased the sensitivity to cisplatin in A549 cells by more than tenfold by its ALDH inhibitory effects. Conclusion: This finding can be a promising approach to improve cancer survival in ALDH-positive drug-resistant cancers.
Collapse
|
29
|
Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1939715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chandan Adhikari
- School of Basic Science and Humanities, Institute of Engineering & Management, Kolkata, India
| |
Collapse
|
30
|
Kinetic analysis as an approach to studying specific features of lysozyme—pluronic complexes. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Fonseca ADM, Araújo CDCB, da Silva JH, Honório TDS, Nasciutti LE, Cabral LM, do Carmo FA, de Sousa VP. Development of transdermal based hydrogel formulations of vinorelbine with an evaluation of their in vitro profiles and activity against melanoma cells and in silico prediction of drug absorption. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Thermoresponsive Pluronic based microgels for controlled release of curcumin against breast cancer cell line. Colloids Surf B Biointerfaces 2021; 205:111834. [PMID: 34015731 DOI: 10.1016/j.colsurfb.2021.111834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 01/31/2023]
Abstract
We developed here stimuli responsive curcumin loaded microgels based on Pluronic F-127. These microgels were prepared using coupling reaction between the amine modified Pluronic and EDTA. The microgel exhibited the affinity for hydrophobic drug, curcumin and showed pH as well as temperature-dependent release. Furthermore, the cytotoxicity study demonstrated dose-dependent inhibition of MDA-MB-231 cell growth with the most effective IC50 value (3.8 ± 0.2 μg mL-1 after 24 h). Based on these findings, the fabricated curcumin loaded microgels offered additional advantages over conventional drug therapies for treatment of cancer.
Collapse
|
33
|
Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094305] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that accounts for about 60% of all diagnosed cases of dementia worldwide. Although there are currently several drugs marketed for its treatment, none are capable of slowing down or stopping the progression of AD. The role of the blood-brain barrier (BBB) plays a key role in the design of a successful treatment for this neurodegenerative disease. Nanosized particles have been proposed as suitable drug delivery systems to overcome BBB with the purpose of increasing bioavailability of drugs in the brain. Biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) have been particularly regarded as promising drug delivery systems as they can be surface-tailored with functionalized molecules for site-specific targeting. In this review, a thorough discussion about the most recent functionalization strategies based on PLGA-NPs for AD and their mechanisms of action is provided, together with a description of AD pathogenesis and the role of the BBB in brain targeting.
Collapse
|
34
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
35
|
Agbo CP, Ugwuanyi TC, Ugwuoke WI, McConville C, Attama AA, Ofokansi KC. Intranasal artesunate-loaded nanostructured lipid carriers: A convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria. J Control Release 2021; 334:224-236. [PMID: 33894303 DOI: 10.1016/j.jconrel.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Early treatment with parenteral antimalarials is key in preventing deaths and complications associated with severe and cerebral malaria. This can be challenging in 'hard-to-reach' areas in Africa where transit time to hospitals with facilities to administer drugs parenterally can be more than 6 h. Consequently, the World Health Organization has recommended the use of artesunate (ATS) suppositories for emergency treatment of patients, however, this treatment is only for children under 6 years. The intranasal route (INR) can provide a safe and effective alternative to parenteral and rectal routes for patients of all ages; thus, reducing delays to the initiation of treatment. Hence, we designed ATS-loaded nanostructured lipid carriers (NLCs) for intranasal administration. ATS-NLCs were formulated using varying concentrations of lipid matrices made up of solidified reverse micellar solutions (SRMS) comprising a 1:2 ratio of Phospholipon ® 90H and lipids (Softisan ® 154 or Compritol ®). ATS-NLCs were spherical, and the small sizes of ATS-NLCs obtained for some formulations (76.56 ± 1.04 nm) is an indication that ATS-NLCs can pass through the nasal mucosa and reach the brain or systemic circulation. Encapsulation efficiency of ATS in NLCs was ≥70% for all formulations. ATS-NLCs achieved up to 40% in vitro drug release in 1 h, while ex vivo permeation studies revealed that formulating ATS as NLCs enhanced permeation through pig nasal mucosa better than drug solution. Most importantly, the activity and reduction in parasitaemia [in mice infected with Plasmodium berghei ANKA in a murine cerebral malaria model] by ATS-NLCs administered through the INR (54.70%, 33.28%) was comparable to intramuscular administration (58.80%, 42.18%), respectively. Therefore, intranasal administration of NLCs of ATS has great potentials to serve as a satisfactory alternative to parenteral administration for the treatment of severe and cerebral malaria in both adults and children in remote areas of sub-Saharan Africa.
Collapse
Affiliation(s)
- Chinazom Precious Agbo
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria.
| | - Timothy Chukwuebuka Ugwuanyi
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | | | - Christopher McConville
- School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Anthony Amaechi Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Kenneth Chibuzor Ofokansi
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
36
|
Silva D, Sousa R, Salgado A. Hydrogels as delivery systems for spinal cord injury regeneration. Mater Today Bio 2021; 9:100093. [PMID: 33665602 PMCID: PMC7905359 DOI: 10.1016/j.mtbio.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used.
Collapse
Affiliation(s)
- D. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - R.A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - A.J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Fereig SA, El-Zaafarany GM, Arafa MG, Abdel-Mottaleb MMA. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv 2020; 27:662-680. [PMID: 32393082 PMCID: PMC7269080 DOI: 10.1080/10717544.2020.1754527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a dermatological chronic skin condition with underlying autoimmune etiology. It deeply affects patients' quality of life. Therefore, it was an interesting target for researchers throughout the past years. Conventionally, the treatment options include anti-inflammatory agents, immune suppressants, biologic treatment, and phototherapy. Nanotechnology offers promising characteristics that allow for tailoring a drug carrier to achieve dermal targeting, improved efficacy and minimize undesirable effects. Being the safest route, the first line of treatment and a targeted approach, we solely discussed the use of the topical route, combined with advanced drug delivery systems for the management of psoriasis in this article. Advanced systems include polymeric, metallic, lipidic and hybrid nanocarriers incorporating different active agents. All formerly mentioned types of drug delivery systems were investigated through the past decades for the purpose of topical application on psoriatic plaques. Scientists' efforts are promising to reach an optimized formula with a convenient dosage form to improve efficacy, safety, and compliance for the treatment of psoriasis. Accordingly, it will offer a better quality of life for patients.
Collapse
Affiliation(s)
- Salma A. Fereig
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Ghada M. El-Zaafarany
- Faculty of Pharmacy, Department of pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G. Arafa
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Mona M. A. Abdel-Mottaleb
- Faculty of Pharmacy, Department of pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Preparation and characterization of stable fluorescent As4S4/ZnS/Fe3O4 nanosuspension capped by Poloxamer 407 and folic acid. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Li X, Ma Y, Zhong XL, Wang LS. Silver sulfide nanoparticles on MWCNTs stabilized by poloxamer: An enhanced electrochemical sensor for high sensitivity detection of 2,4,6-trinitrotoluene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Abdel-Bar HM, Khater SE, Ghorab DM, Al-mahallawi AM. Hexosomes as Efficient Platforms for Possible Fluoxetine Hydrochloride Repurposing with Improved Cytotoxicity against HepG2 Cells. ACS OMEGA 2020; 5:26697-26709. [PMID: 33110996 PMCID: PMC7581272 DOI: 10.1021/acsomega.0c03569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/24/2020] [Indexed: 05/15/2023]
Abstract
The aim of this study was to investigate the feasibility of hexosomes (HEXs) as competent platforms for fluoxetine hydrochloride (FH) repurposing against HepG2 hepatocellular carcinoma. Different FH-loaded HEX formulations were prepared and optimized by the hot emulsification method. The HEX features such as particle size, ζ potential, and drug entrapment efficiency (EE%) can be tailored by tuning HEX components and fabrication conditions. The composition of the optimized FH hexosome (OFH-HEX) was composed of 3.1, 1.4, 0.5, 0.2, and 94.8% for glyceryl monooleate, oleic acid, pluronic F127, FH, and deionized water, respectively. The anionic OFH-HEX with a particle size of 145.5 ± 2.5 nm and drug EE% of 45.4 ± 1.2% was able to prolong the in vitro FH release, where only 19.5 ± 2.3% released in phosphate-buffered saline (PBS) pH 7.4 after 24 h. Contrarily, HEX rapidly released FH in acetate buffer pH 5.5 and achieved a 90.5 ± 4.7% release after 24 h. The obtained HEX showed an improved cellular internalization in a time-dependent manner and enhanced the cytotoxicity (2-fold higher than FH solution). The current study suggests the potential of FH-HEX as a possible anticancer agent against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hend Mohamed Abdel-Bar
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, 32958 Sadat City, Egypt
| | - Shaymaa Elsayed Khater
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, 32958 Sadat City, Egypt
| | - Dalia Mahmoud Ghorab
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Abdulaziz Mohsen Al-mahallawi
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
- Department
of Pharmaceutics, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 12451 Giza, Egypt
- . Tel: +201008226524
| |
Collapse
|
41
|
Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and Notch pathways. Life Sci 2020; 261:118458. [PMID: 32961231 DOI: 10.1016/j.lfs.2020.118458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
AIM Niclosamide (NIC) is an anthelmintic agent repurposed as a potent anticancer agent. However, its use is hindered by its poor solubility. We investigated the underlying mechanisms of NIC anticancer activity employing a novel oral NIC pluronic-based nanoformulation and tested its effect in thioacetamide-induced hepatocellular carcinoma (HCC) in rats. We evaluated its antitumor effect through regulating Wnt/β-catenin and Notch signaling pathways and apoptosis. MAIN METHODS Niclosamide-loaded pluronic nanoparticles (NIC-NPs) were optimally developed and characterized with sustained release properties up to 7 days. Sixteen weeks after HCC induction, NIC (70 mg/kg) and an equivalent dose of NIC-NPs were administered orally for 3 consecutive weeks. Hepatocyte integrity was assessed by measuring serum levels of aminotransferases, ALP, GGT, bilirubin, albumin and total protein. HCC development was detected by measuring AFP expression. Necroinflammation and fibrosis were scored by histopathological examination. Wnt/β-catenin and Notch signaling were evaluated by measuring hepatic mRNA levels of Wnt3A, Lrp5 and Lrp6 Co-receptors, Dvl-2, Notch1 and Hes1 and β-catenin protein levels. Apoptosis was assessed by measuring mRNA and protein levels of cyclin D1 and caspase-3. KEY FINDING The novel NIC-NPs restored liver integrity, reduced AFP levels and showed improved anticancer and proapoptotic activities compared to drug alone. The inhibitory effect of NIC on Wnt/β-catenin and Notch signaling pathways was potentiated by the NIC-NPs formulation. SIGNIFICANCE We conclude that NIC acts by inhibiting Wnt/β-catenin and Notch signaling and inducing apoptosis in HCC. Developing pluronic-based nanoformulations may be a promising approach to improve NIC solubility and offer the possibility of controlled release.
Collapse
|
42
|
Nezhadi S, Saadat E, Handali S, Dorkoosh F. Nanomedicine and chemotherapeutics drug delivery: challenges and opportunities. J Drug Target 2020; 29:185-198. [PMID: 32772739 DOI: 10.1080/1061186x.2020.1808000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is considered as one of the biggest threats to humans worldwide. Researchers suggest that tumour is not just a single mass, it comprises cancerous cells surrounded by noncancerous cells such as immune cells, adipocytes and cancer stem cells (CSCs) in the extracellular matrix (ECM) containing distinct components such as proteins, glycoproteins and enzymes; thus tumour microenvironment (TME) is partially complex. Multiple interactions happen in the dynamic microenvironment (ME) lead to an acidic, hypoxic and stiff ME that is considered as one of the major contributors to cancer progression and metastasis. Furthermore, TME involves in drug resistance mechanisms and affects enhanced permeability and retention (EPR) in tumours. In such a scenario, the first step to accomplish satisfying results is the identification and recognition of this ME. Then designing proper drug delivery systems can perform selectively towards cancerous cells. In this way, several targeting and stimuli/enzyme responsive drug delivery systems have been designed. More importantly, it is necessary to design a drug delivery system that can penetrate deeper into the tumours, efficiently and selectively. Various drug delivery systems such as exosomes and size-switchable nanocarriers (NCs) could decrease side effects and increase tumour treatment results by selective accumulation in tumours. In this review, TME features, current drug delivery approaches, challenges and promising strategies towards cancer treatment are discussed.
Collapse
Affiliation(s)
- Sepideh Nezhadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Ir an
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Ir an.,Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Khalin I, Heimburger D, Melnychuk N, Collot M, Groschup B, Hellal F, Reisch A, Plesnila N, Klymchenko AS. Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain. ACS NANO 2020; 14:9755-9770. [PMID: 32680421 DOI: 10.1021/acsnano.0c01505] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Visualizing single organic nanoparticles (NPs) in vivo remains a challenge, which could greatly improve our understanding of the bottlenecks in the field of nanomedicine. To achieve high single-particle fluorescence brightness, we loaded polymer poly(methyl methacrylate)-sulfonate (PMMA-SO3H) NPs with octadecyl rhodamine B together with a bulky hydrophobic counterion (perfluorinated tetraphenylborate) as a fluorophore insulator to prevent aggregation-caused quenching. To create NPs with stealth properties, we used the amphiphilic block copolymers pluronic F-127 and F-68. Fluorescence correlation spectroscopy and Förster resonance energy transfer (FRET) revealed that pluronics remained at the NP surface after dialysis (at one amphiphile per 5.5 nm2) and prevented NPs from nonspecific interactions with serum proteins and surfactants. In primary cultured neurons, pluronics stabilized the NPs, preventing their prompt aggregation and binding to neurons. By increasing dye loading to 20 wt % and optimizing particle size, we obtained 74 nm NPs showing 150-fold higher single-particle brightness with two-photon excitation than commercial Nile Red-loaded FluoSpheres of 39 nm hydrodynamic diameter. The obtained ultrabright pluronic-coated NPs enabled direct single-particle tracking in vessels of mice brains by two-photon intravital microscopy for at least 1 h, whereas noncoated NPs were rapidly eliminated from the circulation. Following brain injury or neuroinflammation, which can open the blood-brain barrier, extravasation of NPs was successfully monitored. Moreover, we demonstrated tracking of individual NPs from meningeal vessels until their uptake by meningeal macrophages. Thus, single NPs can be tracked in animals in real time in vivo in different brain compartments and their dynamics visualized with subcellular resolution.
Collapse
Affiliation(s)
- Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
| | - Doriane Heimburger
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
| | - Farida Hellal
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
- Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Feodor-Lynen-Straße 17, D-81377 Munich, Germany
- Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
44
|
Ma SM, Zhao L, Wang YL, Zhu YL, Lu ZY. The coarse-grained models of poly(ethylene oxide) and poly(propylene oxide) homopolymers and poloxamers in big multipole water (BMW) and MARTINI frameworks. Phys Chem Chem Phys 2020; 22:15976-15985. [PMID: 32632434 DOI: 10.1039/d0cp01006e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyethylene oxide (PEO) and poly(propylene oxide) (PPO), especially their tri-block copolymers PEO-PPO-PEO (poloxamers), have a broad range of applications in biotechnology and medical science. Understanding their specific interactions with biomembranes is the key to unveil the unique features of poloxamers either as membrane-healing or membrane pore-forming agents. Based on the coarse-graining convention of the MARTINI force field and the big multipole water (BMW) model, which has a three charged site topology and can reproduce the correct dipole moment of four-water clusters, we generated coarse-grained (CG) models with analytical and numerical potentials for PEO and PPO homopolymers and poloxamers in dilute solution. The effective bonded interaction potentials between CG beads were determined from the probability distributions of bond lengths, angles and dihedrals that are determined from atomistic simulations. The nonbonded interaction parameters were fine-tuned to reproduce the conformational properties of atomistic PEO and PPO homopolymers and poloxamers via extensive CG simulations of PEO and PPO homopolymers and poloxamers in a BMW water environment. The reported CG models provide a promising framework for a comprehensive understanding of the microstructural, conformational, and dynamic properties of poloxamers and their delicate interactions with other species in an explicit water environment.
Collapse
Affiliation(s)
- Su-Min Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Li Zhao
- College of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden.
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
45
|
Development and validation of RP-HPLC method for simultaneous estimation of docetaxel and ritonavir in PLGA nanoparticles. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 78:398-407. [PMID: 32681903 DOI: 10.1016/j.pharma.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The main objective of the present study was to develop and validate simple, precise, sensitive and accurate RP-HPLC method for the simultaneous estimation of docetaxel (DTX) and ritonavir (RTV) in PLGA nanoparticles (PLGA-NPs). METHODS The DTX and RTV co-loaded PLGA-NPs were developed by the nanoprecipitation technique. The RP-HPLC method was developed by using (Agilent Compact LC-1220) and Zorbax Eclipse plus C18 column (150×4.6mm, 3.5μm, Agilent). Finally, the developed method was validated according to the international conference on harmonization (ICH) guidelines. RESULTS The chromatographic separations of DTX and RTV with good resolutions have been achieved by using the mobile phase Acetonitrile: Water (60:40 v/v) containing 0.1% v/v of orthophosphoric acid at a flow rate of 1.0mL/min, injection volume of 25μL, and at 239nm wavelengths. The validated method found to be linear in the range of 0.001-100μg/mL for DTX and RTV. Detection and quantification limits for DTX were found to be 0.7 and 2.31μg/mL respectively and for RTV it is 0.3 and 2.87μg/mL respectively. The % RSD was found to be less than 2% revealing the precision of the developed method. Besides, the recovery rate was observed close to 100% for both the drugs confirming the accuracy of the method. Minor alterations in the chromatographic conditions have revealed robustness and ruggedness of the developed method. CONCLUSION The developed analytical method is simple, precise, sensitive, and reproducible which can be used for the simultaneous estimation of DTX and RTV in the PLGA-NPs.
Collapse
|
46
|
Hide D, Gil M, Andrade F, Rafael D, Raurell I, Bravo M, Barberá A, Gracia-Sancho J, Vargas V, Augustin S, Genescà J, Schwartz S, Martell M. Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102267. [PMID: 32681987 DOI: 10.1016/j.nano.2020.102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/10/2020] [Accepted: 07/04/2020] [Indexed: 01/14/2023]
Abstract
Chronic liver disease (CLD) has no effective treatments apart from reducing its complications. Simvastatin has been tested as vasoprotective drug in experimental models of CLD showing promising results, but also limiting adverse effects. Two types of Pluronic® carriers loading simvastatin (PM108-simv and PM127-simv) as a drug delivery system were developed to avoid these toxicities while increasing the therapeutic window of simvastatin. PM127-simv showed the highest rates of cell internalization in rat liver sinusoidal endothelial cells (LSECs) and significantly lower toxicity than free simvastatin, improving cell phenotype. The in vivo biodistribution was mainly hepatic with 50% of the injected PM found in the liver. Remarkably, after one week of administration in a model of CLD, PM127-simv demonstrated superior effect than free simvastatin in reducing portal hypertension. Moreover, no signs of toxicity of PM127-simv were detected. Our results indicate that simvastatin targeted delivery to LSEC is a promising therapeutic approach for CLD.
Collapse
Affiliation(s)
- Diana Hide
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mar Gil
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Fernanda Andrade
- Drug Delivery and Targeting group, CIBBIM-Nanomedicine, Vall d'Hebron Institut Recerca (VHIR), Barcelona, Spain.
| | - Diana Rafael
- Drug Delivery and Targeting group, CIBBIM-Nanomedicine, Vall d'Hebron Institut Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Imma Raurell
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miren Bravo
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Aurora Barberá
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic, Barcelona, Spain..
| | - Víctor Vargas
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Salvador Augustin
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Joan Genescà
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Simo Schwartz
- Drug Delivery and Targeting group, CIBBIM-Nanomedicine, Vall d'Hebron Institut Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Martell
- Liver Unit, Department of Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
47
|
Chernysheva MG, Shnitko AV, Ksenofontov AL, Arutyunyan AM, Petoukhov MV, Badun GA. Structural peculiarities of lysozyme - PLURONIC complexes at the aqueous-air and liquid-liquid interfaces and in the bulk of aqueous solution. Int J Biol Macromol 2020; 158:721-731. [PMID: 32387357 DOI: 10.1016/j.ijbiomac.2020.04.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Interaction between proteins and synthetic polymers that represent a perspective potential in drug delivery or/and already used in medicine plays a key role in biological functioning of both molecules along with a system as a whole. In present study association between hen egg white lysozyme and Pluronic triblock-copolymers (L121, P123 and F127) in the bulk of the solution as well as at the aqueous-air and liquid-liquid interfaces was analyzed by means of spectroscopic and radiochemical assay. In protein-Pluronic complexes lysozyme keeps the secondary structure (CD and SAXS data results), while fluorescence and UV-analysis indicates changes in the local surrounding of fluorophoric amino acid residues. Radiochemical assay in combination with molecular docking reveals the formation of the complexes, in which proline residues turned to the interface between water and hydrophobic medium.
Collapse
Affiliation(s)
| | - Alexey V Shnitko
- Dpt. Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Maxim V Petoukhov
- A. V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, 119071 Moscow, Russia
| | - Gennadii A Badun
- Dpt. Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
48
|
Liang P, Wu H, Zhang Z, Jiang S, Lv H. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int J Pharm 2020; 583:119375. [PMID: 32344021 DOI: 10.1016/j.ijpharm.2020.119375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
A novel nanocrystals delivery system of parthenolide (PTL) was designed to combined application with sorafenib (Sora) for advanced hepatocellular carcinoma (HCC) therapy, attempting to not only improve the poor aqueous solubility of PTL, but also enhance the synergistic therapeutic effects with Sora. The PTL nanocrystals (PTL-NCs) were prepared by precipitation-high-pressure homogenization method. The formed PTL-NCs with rod morphology possessed size of 126.9 ± 2.31 nm, zeta potential of -11.18 ± 0.59 mV and drug loading of 31.11 ± 1.99%. Meanwhile, PTL in PTL-NCs exhibited excellent storage stability and sustained release behavior. The combination therapy of Sora and PTL-NCs (Sora/PTL-NCs) in vitro for HepG2 cells presented superior therapeutic effects over that of individual PTL and Sora on intracellular uptake, cell proliferation inhibition and migration inhibition. Meanwhile the strongest anti-tumor effect with 81.86% inhibition rate and minimized systemic toxicity of Sora/PTL-NCs in vivo were obtained on tumor-bearing mice compared with that of PTL (48.84%) and Sora (58.83%). Thus, these findings suggested that PTL-NCs as an effective delivery system for the synergistically used with Sora to gain an optimal response against HCC, for referenced in the industrialization of nanocrystals products for intravenous administration.
Collapse
Affiliation(s)
- Pan Liang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining, Shandong 272000, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
49
|
Kamlungmak S, Rugmai S, Tinpun K, Nakpheng T, Srichana T. Phase behavior, in vitro drug release, and antibacterial activity of thermoresponsive
poloxamer–
polyvinyl alcohol hydrogel‐loaded mupirocin nanoparticles. J Appl Polym Sci 2020. [DOI: 10.1002/app.49325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sukanjana Kamlungmak
- Drug Delivery System Excellence CenterPrince of Songkla University Hat Yai Songkhla Thailand
- Department of the Pharmaceutical Technology, Faculty of Pharmaceutical SciencesPrince of Songkla University Hat Yai, Songkhla Thailand
| | - Supagorn Rugmai
- Synchrotron Light Research Institute Nakhon Ratchasima Thailand
| | - Kittiya Tinpun
- Drug Delivery System Excellence CenterPrince of Songkla University Hat Yai Songkhla Thailand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence CenterPrince of Songkla University Hat Yai Songkhla Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence CenterPrince of Songkla University Hat Yai Songkhla Thailand
- Department of the Pharmaceutical Technology, Faculty of Pharmaceutical SciencesPrince of Songkla University Hat Yai, Songkhla Thailand
| |
Collapse
|
50
|
Sayed S, Abdelmoteleb M, Amin MM, Khowessah OM. Effect of Formulation Variables and Gamma Sterilization on Transcorneal Permeation and Stability of Proniosomal Gels as Ocular Platforms for Antiglaucomal Drug. AAPS PharmSciTech 2020; 21:87. [PMID: 32016607 DOI: 10.1208/s12249-020-1626-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/08/2020] [Indexed: 11/30/2022] Open
Abstract
This study aims to evaluate the effect of different formulation variables (surfactant type and HLB value) adopting full factorial design (51. 21) using coacervation phase technique on in vitro characterization of dorzolamide hydrochloride (DZ)-loaded proniosomal gels, namely, entrapment efficiency percentage (EE%), vesicle size distribution, polydispersion index (PDI), and in vitro DZ release. The optimum formula F2 with a desirability value of 0.937 composed of 40 mg DZ, 500 mg span 60, 500 mg of L-α-Lethicin, and 55.5 mg cholesterol showing EE% of 84.5 ± 1.5%, PS of 189.5 ± 35.76 nm with PDI 0.8 ± 0.28 and 58.51% ± 1.00 of DZ released after 8 h was further evaluated using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The effect of gamma sterilization on transcorneal permeation and stability of DZ from the selected formulation (F2) revealed that F2 was significantly tolerable, stable, and competent to corneal permeation confirmed by histological examination, confocal laser microscopy, and intraocular pressure (IOP) measurement. Significant corneal bioavailability was attained from formula F2 (370.6 mg. h/m) compared to the market product Trusopt® eye drops (92.59 mg. h/ml) following IOP measurement, thereby proniosomal gels could be considered as tolerable and competent ocular platforms for improving the transcorneal permeation of DZ.
Collapse
|