1
|
Vijayaragavan K, Cannon BJ, Tebaykin D, Bossé M, Baranski A, Oliveria JP, Bukhari SA, Mrdjen D, Corces MR, McCaffrey EF, Greenwald NF, Sigal Y, Marquez D, Khair Z, Bruce T, Goldston M, Bharadwaj A, Montine KS, Angelo RM, Montine TJ, Bendall SC. Single-cell spatial proteomic imaging for human neuropathology. Acta Neuropathol Commun 2022; 10:158. [PMID: 36333818 PMCID: PMC9636771 DOI: 10.1186/s40478-022-01465-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are characterized by phenotypic changes and hallmark proteopathies. Quantifying these in archival human brain tissues remains indispensable for validating animal models and understanding disease mechanisms. We present a framework for nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing neuropathological features. MIBI facilitated simultaneous, quantitative imaging of 36 proteins on archival human hippocampus from individuals spanning cognitively normal to dementia. Customized analysis strategies identified cell types and proteopathies in the hippocampus across stages of Alzheimer's disease (AD) neuropathologic change. We show microglia-pathologic tau interactions in hippocampal CA1 subfield in AD dementia. Data driven, sample independent creation of spatial proteomic regions identified persistent neurons in pathologic tau neighborhoods expressing mitochondrial protein MFN2, regardless of cognitive status, suggesting a survival advantage. Our study revealed unique insights from multiplexed imaging and data-driven approaches for neuropathologic analysis and serves broadly as a methodology for spatial proteomic analysis of archival human neuropathology. TEASER: Multiplex Ion beam Imaging enables deep spatial phenotyping of human neuropathology-associated cellular and disease features.
Collapse
Affiliation(s)
| | - Bryan J Cannon
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitry Tebaykin
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marc Bossé
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Alex Baranski
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - J P Oliveria
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Erin F McCaffrey
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Diana Marquez
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zumana Khair
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Trevor Bruce
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mako Goldston
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anusha Bharadwaj
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - R Michael Angelo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Dey MR, Reddy K, Yoshida H, Nishiyama N, Zemelman BV, Nishiyama H. Granule Cells Constitute One of the Major Neuronal Subtypes in the Molecular Layer of the Posterior Cerebellum. eNeuro 2022; 9:ENEURO.0289-21.2022. [PMID: 35584915 PMCID: PMC9172288 DOI: 10.1523/eneuro.0289-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 03/07/2022] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
The migration of neurons from their birthplace to their correct destination is one of the most crucial steps in brain development. Incomplete or incorrect migration yields ectopic neurons, which cause neurologic deficits or are negligible at best. However, the granule cells (GCs) in the cerebellar cortex may challenge this traditional view of ectopic neurons. When animals are born, GCs proliferate near the pia mater and then migrate down to the GC layer located deep in the cerebellar cortex. However, some GC-like cells stay in the molecular layer, a layer between the pia mater and GC layer, even in normal adult animals. These cells were named ectopic GCs nearly 50 years ago, but their abundance and functional properties remain unclear. Here, we have examined GCs in the molecular layer (mGCs) with a specific marker for mature GCs and transgenic mice in which GCs are sparsely labeled with a fluorescent protein. Contrary to the previous assumption that mGCs are a minor neuronal population, we have found that mGCs are as prevalent as stellate or basket cells in the posterior cerebellum. They are produced during a similar period as regular GCs (rGCs), and in vivo time-lapse imaging has revealed that mGCs are stably present in the molecular layer. Whole-cell patch-clamp recordings have shown that mGCs discharge action potentials similarly to rGCs. Since axonal inputs differ between the molecular layer and GC layer, mGCs might be incorporated in different micro-circuits from rGCs and have a unique functional role in the cerebellum.
Collapse
Affiliation(s)
- Moushumi R Dey
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Kirthan Reddy
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Hiroichi Yoshida
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Naoko Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Boris V Zemelman
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Hiroshi Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
3
|
Brandenburg C, Smith LA, Kilander MBC, Bridi MS, Lin YC, Huang S, Blatt GJ. Parvalbumin subtypes of cerebellar Purkinje cells contribute to differential intrinsic firing properties. Mol Cell Neurosci 2021; 115:103650. [PMID: 34197921 DOI: 10.1016/j.mcn.2021.103650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Purkinje cells (PCs) are central to cerebellar information coding and appreciation for the diversity of their firing patterns and molecular profiles is growing. Heterogeneous subpopulations of PCs have been identified that display differences in intrinsic firing properties without clear mechanistic insight into what underlies the divergence in firing parameters. Although long used as a general PC marker, we report that the calcium binding protein parvalbumin labels a subpopulation of PCs, based on high and low expression, with a conserved distribution pattern across the animals examined. We trained a convolutional neural network to recognize the parvalbumin subtypes and create maps of whole cerebellar distribution and find that PCs within these areas have differences in spontaneous firing that can be modified by altering calcium buffer content. These subtypes also show differential responses to potassium and calcium channel blockade, suggesting a mechanistic role for variability in PC intrinsic firing through differences in ion channel composition. It is proposed that ion channels drive the diversity in PC intrinsic firing phenotype and parvalbumin calcium buffering provides capacity for the highest firing rates observed. These findings open new avenues for detailed classification of PC subtypes.
Collapse
Affiliation(s)
- Cheryl Brandenburg
- Hussman Institute for Autism, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | - Yu-Chih Lin
- Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Shiyong Huang
- Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Gene J Blatt
- Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Histochemical Characterization of the Vestibular Y-Group in Monkey. THE CEREBELLUM 2020; 20:701-716. [PMID: 33083961 PMCID: PMC8629908 DOI: 10.1007/s12311-020-01200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
The Y-group plays an important role in the generation of upward smooth pursuit eye movements and contributes to the adaptive properties of the vertical vestibulo-ocular reflex. Malfunction of this circuitry may cause eye movement disorders, such as downbeat nystagmus. To characterize the neuron populations in the Y-group, we performed immunostainings for cellular proteins related to firing characteristics and transmitters (calretinin, GABA-related proteins and ion channels) in brainstem sections of macaque monkeys that had received tracer injections into the oculomotor nucleus. Two histochemically different populations of premotor neurons were identified: The calretinin-positive population represents the excitatory projection to contralateral upgaze motoneurons, whereas the GABAergic population represents the inhibitory projection to ipsilateral downgaze motoneurons. Both populations receive a strong supply by GABAergic nerve endings most likely originating from floccular Purkinje cells. All premotor neurons express nonphosphorylated neurofilaments and are ensheathed by strong perineuronal nets. In addition, they contain the voltage-gated potassium channels Kv1.1 and Kv3.1b which suggests biophysical similarities to high-activity premotor neurons of vestibular and oculomotor systems. The premotor neurons of Y-group form a homogenous population with histochemical characteristics compatible with fast-firing projection neurons that can also undergo plasticity and contribute to motor learning as found for the adaptation of the vestibulo-ocular reflex in response to visual-vestibular mismatch stimulation. The histochemical characterization of premotor neurons in the Y-group allows the identification of the homologue cell groups in human, including their transmitter inputs and will serve as basis for correlated anatomical-neuropathological studies of clinical cases with downbeat nystagmus.
Collapse
|
5
|
Tepper B, Bartkowska K, Okrasa M, Ngati S, Braszak M, Turlejski K, Djavadian R. Downregulation of TrkC Receptors Increases Dendritic Arborization of Purkinje Cells in the Developing Cerebellum of the Opossum, Monodelphis domestica. Front Neuroanat 2020; 14:56. [PMID: 33013328 PMCID: PMC7511753 DOI: 10.3389/fnana.2020.00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
In therian mammals, the cerebellum is one of the late developing structures in the brain. Specifically, the proliferation of cerebellar granule cells occurs after birth, and even in humans, the generation of these cells continues during the first year of life. The main difference between marsupials and eutherians is that the majority of the brain structures in marsupials develop after birth. Herein, we report that in the newborn laboratory opossum (Monodelphis domestica), the cerebellar primordium is distinguishable in Nissl-stained sections. Additionally, bromodeoxyuridine birthdating experiments revealed that the first neurons form the deep cerebellar nuclei (DCN) and Purkinje cells, and are generated within postnatal days (P) 1 and 5. Three weeks after birth, progenitors of granule cells in the external germinal layer (EGL) proliferate, producing granule cells. These progenitor cells persist for a long time, approximately 5 months. Furthermore, to study the effects of neurotrophic tropomyosin receptor kinase C (TrkC) during cerebellar development, cells were obtained from P3 opossums and cultured for 8 days. We found that TrkC downregulation stimulates dendritic branching of Purkinje neurons, which was surprising. The number of dendritic branches was higher in Purkinje cells transfected with the shRNA TrkC plasmid. However, there was no morphological change in the number of dendritic branches of granule cells transfected with either control or shRNA TrkC plasmids. We suggest that inhibition of TrkC activity enables NT3 binding to the neurotrophic receptor p75NTR that promotes dendritic arborization of Purkinje cells. This effect of TrkC receptors on dendritic branching is cell type specific, which could be explained by the strong expression of TrkC in Purkinje cells but not in granule cells. The data indicate a new role for TrkC receptors in Monodelphis opossum.
Collapse
Affiliation(s)
- Beata Tepper
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Bartkowska
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Okrasa
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Sonia Ngati
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Braszak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Ruzanna Djavadian
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Morona R, López JM, Northcutt RG, González A. Regional chemoarchitecture of the brain of lungfishes based on calbindin D-28K and calretinin immunohistochemistry. J Comp Neurol 2018. [PMID: 29520817 DOI: 10.1002/cne.24422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lungfishes are the closest living relatives of land vertebrates, and their neuroanatomical organization is particularly relevant for deducing the neural traits that have been conserved, modified, or lost with the transition from fishes to land vertebrates. The immunohistochemical localization of calbindin (CB) and calretinin (CR) provides a powerful method for discerning segregated neuronal populations, fiber tracts, and neuropils and is here applied to the brains of Neoceratodus and Protopterus, representing the two extant orders of lungfishes. The results showed abundant cells containing these proteins in pallial and subpallial telencephalic regions, with particular distinct distribution in the basal ganglia, amygdaloid complex, and septum. Similarly, the distribution of CB and CR containing cells supports the division of the hypothalamus of lungfishes into neuromeric regions, as in tetrapods. The dense concentrations of CB and CR positive cells and fibers highlight the extent of the thalamus. As in other vertebrates, the optic tectum is characterized by numerous CB positive cells and fibers and smaller numbers of CR cells. The so-called cerebellar nucleus contains abundant CB and CR cells with long ascending axons, which raises the possibility that it could be homologized to the secondary gustatory nucleus of other vertebrates. The corpus of the cerebellum is devoid of CB and CR and cells positive for both proteins are found in the cerebellar auricles and the octavolateralis nuclei. Comparison with other vertebrates reveals that lungfishes share most of their features of calcium binding protein distribution with amphibians, particularly with salamanders.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| | - R Glenn Northcutt
- Laboratory of Comparative Neurobiology, Scripps Institution of Oceanography and Department of Neurosciences, School of Medicine, , University of California, San Diego, California, USA
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain
| |
Collapse
|
7
|
Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, Ferrante P, Argentinis E, Sattler R, Bowser R. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 2018; 135:227-247. [PMID: 29134320 PMCID: PMC5773659 DOI: 10.1007/s00401-017-1785-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/04/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with no effective treatments. Numerous RNA-binding proteins (RBPs) have been shown to be altered in ALS, with mutations in 11 RBPs causing familial forms of the disease, and 6 more RBPs showing abnormal expression/distribution in ALS albeit without any known mutations. RBP dysregulation is widely accepted as a contributing factor in ALS pathobiology. There are at least 1542 RBPs in the human genome; therefore, other unidentified RBPs may also be linked to the pathogenesis of ALS. We used IBM Watson® to sieve through all RBPs in the genome and identify new RBPs linked to ALS (ALS-RBPs). IBM Watson extracted features from published literature to create semantic similarities and identify new connections between entities of interest. IBM Watson analyzed all published abstracts of previously known ALS-RBPs, and applied that text-based knowledge to all RBPs in the genome, ranking them by semantic similarity to the known set. We then validated the Watson top-ten-ranked RBPs at the protein and RNA levels in tissues from ALS and non-neurological disease controls, as well as in patient-derived induced pluripotent stem cells. 5 RBPs previously unlinked to ALS, hnRNPU, Syncrip, RBMS3, Caprin-1 and NUPL2, showed significant alterations in ALS compared to controls. Overall, we successfully used IBM Watson to help identify additional RBPs altered in ALS, highlighting the use of artificial intelligence tools to accelerate scientific discovery in ALS and possibly other complex neurological disorders.
Collapse
Affiliation(s)
- Nadine Bakkar
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Tina Kovalik
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Ileana Lorenzini
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | | | - Kyle Sponaugle
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Philip Ferrante
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
8
|
El-Shamayleh Y, Kojima Y, Soetedjo R, Horwitz GD. Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum. Neuron 2017. [PMID: 28648497 DOI: 10.1016/j.neuron.2017.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Purkinje cells of the primate cerebellum play critical but poorly understood roles in the execution of coordinated, accurate movements. Elucidating these roles has been hampered by a lack of techniques for manipulating spiking activity in these cells selectively-a problem common to most cell types in non-transgenic animals. To overcome this obstacle, we constructed AAV vectors carrying the channelrhodopsin-2 (ChR2) gene under the control of a 1 kb L7/Pcp2 promoter. We injected these vectors into the cerebellar cortex of rhesus macaques and tested vector efficacy in three ways. Immunohistochemical analyses confirmed selective ChR2 expression in Purkinje cells. Neurophysiological recordings confirmed robust optogenetic activation. Optical stimulation of the oculomotor vermis caused saccade dysmetria. Our results demonstrate the utility of AAV-L7-ChR2 for revealing the contributions of Purkinje cells to circuit function and behavior, and they attest to the feasibility of promoter-based, targeted, genetic manipulations in primates.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA
| | - Yoshiko Kojima
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA
| | - Robijanto Soetedjo
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA
| | - Gregory D Horwitz
- Department of Physiology & Biophysics, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, 1959 NE Pacific St., HSB I-728, UW Mailbox 357290, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Circadian Plasticity of Mammalian Inhibitory Interneurons. Neural Plast 2017; 2017:6373412. [PMID: 28367335 PMCID: PMC5358450 DOI: 10.1155/2017/6373412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/15/2017] [Accepted: 02/19/2017] [Indexed: 12/11/2022] Open
Abstract
Inhibitory interneurons participate in all neuronal circuits in the mammalian brain, including the circadian clock system, and are indispensable for their effective function. Although the clock neurons have different molecular and electrical properties, their main function is the generation of circadian oscillations. Here we review the circadian plasticity of GABAergic interneurons in several areas of the mammalian brain, suprachiasmatic nucleus, neocortex, hippocampus, olfactory bulb, cerebellum, striatum, and in the retina.
Collapse
|
10
|
Verdes JM, de Sant'Ana FJF, Sabalsagaray MJ, Okada K, Calliari A, Moraña JA, de Barros CSL. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural Rabies virus-infected cattle. J Vet Diagn Invest 2016; 28:361-8. [PMID: 27154319 DOI: 10.1177/1040638716644485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rabies has been an enigmatic disease because microscopic findings in central nervous system tissues do not always correlate well with the severity of the clinical illness. Immunohistochemical staining of the calcium-binding protein calbindin (specifically CbD28k) seems to be the technique most used to identify Purkinje neurons under normal and pathological conditions. In the present work, we evaluated CbD28k immunoreactivity in the cerebellar cortex of normal and natural Rabies virus (RABV)-infected cattle. We examined brains from 3 normal cows and from 6 crossbreed cattle with a histologic diagnosis of rabies. Samples were taken from the cerebral cortex, cerebellum, hippocampus, and brainstem. Immunohistochemistry was carried out using the following primary antibodies: anti-RABV, anti-GFAP, and anti-CbD28k. In the cerebellar cortex, RABV infection caused the loss of CbD28k immunostaining in Purkinje cells; some large interneurons in the granular layer maintained their positive CbD28k immunoreaction. The identification of this loss of CbD28k reactivity in cerebellar Purkinje cells of RABV-infected cattle presents a potentially valuable tool to explore the impairment of Ca(2+) homeostasis. In addition, this may become a useful method to identify specific molecular alterations associated with the higher prevalence of Negri bodies in Purkinje cells of cattle. Furthermore, we detected the presence of rabies viral antigens in different regions of the central nervous system, accompanied by microglial proliferation and mild reactive astrogliosis.
Collapse
Affiliation(s)
- José Manuel Verdes
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Fabiano José Ferreira de Sant'Ana
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - María Jesús Sabalsagaray
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Kosuke Okada
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Aldo Calliari
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - José Antonio Moraña
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| | - Claudio Severo Lombardo de Barros
- Departments of Pathology (Verdes, Sabalsagaray, Okada, Moraña), Faculty of Veterinary, University of the Republic, Montevideo, UruguayMolecular and Cellular Biology (Biophysics) (Verdes, Calliari), Faculty of Veterinary, University of the Republic, Montevideo, UruguayLaboratory of Veterinary Pathology Diagnosis, University of Brasilia, Brasilia, DF, Brazil (Sant'Ana)Laboratory of Veterinary Pathology, Federal University of Santa María, Santa Maria, Rio Grande do Sul, Brazil (de Barros)
| |
Collapse
|
11
|
Wang† WC, Cheng† CF, Tsaur ML. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol 2014; 523:608-28. [DOI: 10.1002/cne.23698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Wan-Chen Wang†
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University; Taipei 112 Taiwan
| | - Chau-Fu Cheng†
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University; Taipei 112 Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University; Taipei 112 Taiwan
| |
Collapse
|
12
|
Bailey K, Rahimi Balaei M, Mannan A, Del Bigio MR, Marzban H. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse). PLoS One 2014; 9:e94327. [PMID: 24722417 PMCID: PMC3983142 DOI: 10.1371/journal.pone.0094327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/15/2014] [Indexed: 12/11/2022] Open
Abstract
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.
Collapse
Affiliation(s)
- Karen Bailey
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashraf Mannan
- Institute of Human Genetics, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Marc R. Del Bigio
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
13
|
Flace P, Lorusso L, Laiso G, Rizzi A, Cagiano R, Nico B, Ribatti D, Ambrosi G, Benagiano V. Calbindin-D28K immunoreactivity in the human cerebellar cortex. Anat Rec (Hoboken) 2014; 297:1306-15. [PMID: 24719368 DOI: 10.1002/ar.22921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 01/16/2023]
Abstract
Calbindin-D28k (CB) is a calcium-binding protein largely distributed in the cerebellum of various species of vertebrates. As regards the human cerebellar cortex, precise data on the distribution of CB have not yet been reported. Aim of the present work was to analyze the distribution of CB in postmortem samples of human cerebellar cortex using light microscopy immunohistochemical techniques. Immunoreactivity to CB was detected within neuronal bodies and processes distributed in all cortex layers. In the molecular layer, the immunoreactivity was observed in subpopulations of stellate and basket neurons. In the Purkinje neuron layer, the immunoreactivity was observed in practically all the Purkinje neurons. In the granular layer, the immunoreactivity was observed in subpopulations of granules, of Golgi neurons, and also of other types of large neurons (candelabrum, Lugaro neurons, etc.). Immunoreactivity to CB was also observed in axon terminals distributed throughout the cortex according to layer-specific patterns of distribution. The qualitative and quantitative patterns of distribution of CB showed no difference among the different lobes of the cerebellar cortex. This study reports that CB is expressed by different neuron types, both inhibitory (GABAergic) and excitatory (glutamatergic), involved in both intrinsic and extrinsic circuits of the human cerebellar cortex. The study provides further insights on the functional role of CB and on the neuronal types of the cerebellar cortex in which it is expressed.
Collapse
Affiliation(s)
- Paolo Flace
- Dip. Scienze Mediche di Base, Neuroscienze e Organi di Senso, Policlinico, Piazza Giulio Cesare, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 2013; 17:241-54. [PMID: 23579055 PMCID: PMC3645327 DOI: 10.1016/j.tics.2013.03.003] [Citation(s) in RCA: 518] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 01/18/2023]
Abstract
The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia.
Collapse
Affiliation(s)
- Andreea C. Bostan
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Richard P. Dum
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Peter L. Strick
- Pittsburgh Veterans Affairs Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Center for the Neural Basis of Cognition, Systems Neuroscience Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
15
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
16
|
Maseko BC, Jacobs B, Spocter MA, Sherwood CC, Hof PR, Manger PR. Qualitative and Quantitative Aspects of the Microanatomy of the African Elephant Cerebellar Cortex. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:40-55. [DOI: 10.1159/000345565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022]
|
17
|
Abstract
Intracellular calcium dynamics is critical for many functions of cerebellar granule cells (GrCs) including membrane excitability, synaptic plasticity, apoptosis, and regulation of gene transcription. Recent measurements of calcium responses in GrCs to depolarization and synaptic stimulation reveal spatial compartmentalization and heterogeneity within dendrites of these cells. However, the main determinants of local calcium dynamics in GrCs are still poorly understood. One reason is that there have been few published studies of calcium dynamics in intact GrCs in their native environment. In the absence of complete information, biophysically realistic models are useful for testing whether specific Ca(2+) handling mechanisms may account for existing experimental observations. Simulation results can be used to identify critical measurements that would discriminate between different models. In this review, we briefly describe experimental studies and phenomenological models of Ca(2+) signaling in GrC, and then discuss a particular biophysical model, with a special emphasis on an approach for obtaining information regarding the distribution of Ca(2+) handling systems under conditions of incomplete experimental data. Use of this approach suggests that Ca(2+) channels and fixed endogenous Ca(2+) buffers are highly heterogeneously distributed in GrCs. Research avenues for investigating calcium dynamics in GrCs by a combination of experimental and modeling studies are proposed.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| |
Collapse
|
18
|
Toledano A, Alvarez MI, Monleón E, Toledano-Díaz A, Badiola JJ, Monzón M. Changes induced by natural scrapie in the calretinin-immunopositive cells and fibres of the sheep cerebellar cortex. THE CEREBELLUM 2012; 11:593-604. [PMID: 22116659 DOI: 10.1007/s12311-011-0335-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calretinin (CR)-immunopositive cells and fibres in the cerebellar cortex (vermal archicerebellum and neocerebellum) of scrapie-affected, ARQ/ARQ, Rasa Aragonesa breed sheep were studied in comparison with healthy, young and aged, ARQ/ARQ, Rasa Aragonesa animals and with Manchega breed sheep. The scrapie-affected sheep showed signs of both cellular involution and hypertrophic/hyperimmunoreactive responses in all neuronal subtypes; the distribution of the neuronal subtypes in the archi- and neocerebellum, however, did not change compared with controls. The results suggest that the different CR expression and/or CR content of cerebellar cortical neurons in scrapie-affected sheep are more related to their specific functions than any neuroprotective response. The reduction in the cell density of some CR-immunopositive neuronal subsets (i.e. unipolar brush cells) is contradictory to the supposed neuroprotective role of the calcium binding protein CR. However, the hyperimmunoreactivity of many CR-immunopositive neuronal subsets (e.g. the Purkinje cells) suggests the involvement of an over-expression of CR (transitory or restricted to selected neurons) as an adaptative mechanism to fight against the neurodegeneration caused by this prion disease. The changes in the number of immunopositive cells and the hypertrophic/hyperimmunoreactive response seen in scrapie-affected and aged sheep suggests that some different and some similar mechanisms are at work in this disease and aging.
Collapse
|
19
|
Gilbert EA, Lim YH, Vickaryous MK, Armstrong CL. Heterochronic protein expression patterns in the developing embryonic chick cerebellum. Anat Rec (Hoboken) 2012; 295:1669-82. [PMID: 22865685 DOI: 10.1002/ar.22544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/12/2012] [Accepted: 07/11/2012] [Indexed: 12/18/2022]
Abstract
The advantages of the embryonic chick as a model for studying neural development range from the relatively low cost of fertilized eggs to the rapid rate of development. We investigated in ovo cerebellar development in the chick, which has a nearly identical embryonic period as the mouse (19-22 days). We focused on three antigens: Calbindin (CB), Zebrin II (ZII), and Calretinin (CR), and our results demonstrate asynchronous expression patterns during cerebellar development. Presumptive CB+ Purkinje cells are first observed at embryonic day (E)10 in clusters in posterior cerebellum. At E12, corresponding with global expression of CB across the cerebellum, Purkinje cells began to express ZII. By E14-E16, Purkinje cells disperse into a monolayer and develop a pattern of alternating immunopositive and immunonegative ZII stripes. CR is initially expressed by clusters of presumptive Purkinje cells in the nodular zone at E8. However, this expression is transient and at later stages, CR is largely confined to the granule and molecular layers. Before hatch (E18-E20), Purkinje cells adopt a morphologically mature phenotype with complex dendritic arborizations. Comparing this data to that seen in mice, we found that the sequence of Purkinje cell formation, protein expression, and development is similar in both species, but these events consistently begin ∼5-7 days earlier in the precocial chick cerebellum, suggesting an important role for heterochrony in neurodevelopment.
Collapse
Affiliation(s)
- E A Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Joven A, Morona R, Moreno N, González A. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Struct Funct 2012; 218:969-1003. [PMID: 22843286 DOI: 10.1007/s00429-012-0442-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/07/2012] [Indexed: 11/28/2022]
Abstract
The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.
Collapse
Affiliation(s)
- Alberto Joven
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Graña P, Huesa G, Anadón R, Yáñez J. Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baeri). J Comp Neurol 2012; 520:2086-122. [DOI: 10.1002/cne.23030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. THE CEREBELLUM 2012; 10:449-63. [PMID: 20981512 DOI: 10.1007/s12311-010-0226-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of aldolase C (zebrin II)-positive and -negative Purkinje cells (PCs) can be used to define about 20 longitudinally extended compartments in the cerebellar cortex of the rat, which may correspond to certain aspects of cerebellar functional localization. An equivalent compartmental organization may exist in the deep cerebellar nuclei (DCN). This DCN compartmentalization is primarily represented by the afferent projection pattern in the DCN. PC projections and collateral nuclear projections of olivocerebellar climbing fiber axons have a relatively localized terminal arbor in the DCN. Projections of these axons make a closed olivo-cortico-nuclear circuit to connect a longitudinal stripe-shaped cortical compartment to a small subarea in the DCN, which can be defined as a DCN compartment. The actual DCN compartmentalization, which has been revealed by systematically mapping these projections, is quite different from the cortical compartmentalization. The stripe-shaped alternation of aldolase C-positive and -negative narrow longitudinal compartments in the cerebellar cortex is transformed to the separate clustering of positive and negative compartments in the caudoventral and rostrodorsal DCN, respectively. The distinctive projection of aldolase C-positive and -negative PCs to the caudoventral and rostrodorsal DCN underlies this transformation. Accordingly, the medial cerebellar nucleus is divided into the rostrodorsal aldolase C-negative and caudoventral aldolase C-positive parts. The anterior and posterior interposed nuclei generally correspond to the aldolase C-negative and -positive parts, respectively. DCN compartmentalization is important for understanding functional localization in the DCN since it is speculated that aldolase C-positive and -negative compartments are generally associated with somatosensory and other functions, respectively.
Collapse
Affiliation(s)
- Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
23
|
Morona R, López JM, González A. Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia: Gymnophiona) and Its Bearing on the Interpretation of Newly Recognized Neuroanatomical Regions. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:231-69. [DOI: 10.1159/000329521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
|
24
|
Heterogeneity of parvalbumin expression in the avian cerebellar cortex and comparisons with zebrin II. Neuroscience 2011; 185:73-84. [DOI: 10.1016/j.neuroscience.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
|
25
|
Fukuoka T, Sumida K, Yamada T, Higuchi C, Nakagaki K, Nakamura K, Kohsaka S, Saito K, Oeda K. Gene expression profiles in the common marmoset brain determined using a newly developed common marmoset-specific DNA microarray. Neurosci Res 2010; 66:62-85. [DOI: 10.1016/j.neures.2009.09.1709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/28/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
26
|
Verdes JM, Moraña JA, Battes D, Gutiérrez F, Guerrero F, Goicoa A, Fidalgo LE, Barbeito CG, Zanuzzi CN, Portiansky EL, Gimeno EJ. Calbindin D28k expression and the absence of apoptosis in the cerebellum of Solanum bonariense L-intoxicated bovines. Vet Pathol 2009; 47:569-72. [PMID: 20234028 DOI: 10.1177/0300985809358040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solanum bonariense intoxication is characterized by cerebellar neuronal vacuolation, degeneration, and necrosis. Cerebellar Purkinje cells seem especially susceptible, but more research is needed to determine the pathogenesis of neuronal necrosis and the mechanism of Purkinje cell susceptibility. Calbindin D28k (CbD28k) is highly expressed in Purkinje cells and has been used as a marker for normal and degenerative Purkinje cells. The goal of this study was to describe S bonariense-induced disease by ascertaining Purkinje cell-specific degenerative changes using CbD28k expression and to correlate this with apoptosis in Purkinje cells, as determined using TUNEL (transferase-mediated dUTP-biotin nick end-labeling) and ultrastructural changes. In all cases, an increase in both dose and duration of S bonariense intoxication resulted in a decrease in the number of Purkinje cells. CbD28k immunohistochemistry was an excellent marker for Purkinje cells because immunoreactivity did not change in normal or degenerative tissues. This finding suggests that excessive calcium excitatory stimulation does not induce rapid neuronal degeneration and death. As found in previous studies, TUNEL tests and electron microscopy suggest that Purkinje cell degeneration and death are not occurring via an apoptotic process. These findings suggest that S bonariense poisoning induces progressive Purkinje cell death that is not mediated by excitotoxicity or apoptotic activation.
Collapse
Affiliation(s)
- J M Verdes
- Department of Molecular and Cellular Biology (Biophysics), School of Veterinary, Universidad de la República, Av. A. Lasplaces 1550, CP 11600, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Does the cerebellum influence nonmotor behavior? Recent anatomical studies demonstrate that the output of the cerebellum targets multiple nonmotor areas in the prefrontal and posterior parietal cortex, as well as the cortical motor areas. The projections to different cortical areas originate from distinct output channels within the cerebellar nuclei. The cerebral cortical area that is the main target of each output channel is a major source of input to the channel. Thus, a closed-loop circuit represents the major architectural unit of cerebro-cerebellar interactions. The outputs of these loops provide the cerebellum with the anatomical substrate to influence the control of movement and cognition. Neuroimaging and neuropsychological data supply compelling support for this view. The range of tasks associated with cerebellar activation is remarkable and includes tasks designed to assess attention, executive control, language, working memory, learning, pain, emotion, and addiction. These data, along with the revelations about cerebro-cerebellar circuitry, provide a new framework for exploring the contribution of the cerebellum to diverse aspects of behavior.
Collapse
Affiliation(s)
- Peter L Strick
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
28
|
Morona R, González A. Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. J Comp Neurol 2009; 515:503-37. [DOI: 10.1002/cne.22060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Ariel M, Ward KC, Tolbert DL. Topography of Purkinje Cells and Other Calbindin-Immunoreactive Cells Within Adult and Hatchling Turtle Cerebellum. THE CEREBELLUM 2009; 8:463-76. [PMID: 19548045 DOI: 10.1007/s12311-009-0123-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/05/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Ariel
- Department of Pharmacological & Physiological Science, Saint Louis University, School of Medicine, Saint Louis, MO 63104, USA.
| | | | | |
Collapse
|
30
|
Calretinin-immunopositive cells and fibers in the cerebellar cortex of normal sheep. THE CEREBELLUM 2009; 7:417-29. [PMID: 18592332 DOI: 10.1007/s12311-008-0044-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calretinin (CR)-immunopositive cells and fibers in the cerebellar cortex (vermal archicerebellum--lobules X and IX--and neocerebellum--lobules VIIb and VIII) of two and 4-year-old Manchega and Rasa Aragonesa sheep were studied. CR-immunoreactivity was seen in subsets of all neurons and afferent fibers described in the cerebellar cortex. Generally, immunopositive cells were seen in very high densities in lobules X and IX, and in low density in lobule VIIb. Apparently, all unipolar brush cells were CR-immunopositive and showed a greater variety of shape than had been reported in other species. CR-immunoreactivity of Purkinje cells was either absent or varied from low to medium intensity. Few granule cell perikarya were immunostained (<5%) but a large number of their axons were CR-immunopositive. Subsets of stellate and basket cells were CR-immunoreactive--quite different to what is seen in most of mammalian species. Strongly CR-immunopositive mossy and climbing fibers, isolated or grouped, were observed in all lobules. Although we found neither a difference in CR-immunoreactivity between the two breds of sheep, nor between the two ages examined, we observed important differences in CR-immunoreactivity between sheep and other mammalian species. Our observation of neuronal clusters and groups of fibers with very high CR-immunopositivity supports the idea of a heterogeneous species-specific functional organization for the cerebellar cortex within an apparent homogeneous histological structure maintained throughout mammalian evolution. The results also suggest that the varied levels of CR expression may be related to the specific functions of these immunopositive neurons and fibers rather than to a general neuroprotective role played by calretinin in the cerebellar cortex.
Collapse
|
31
|
Different protein profiles in inferior colliculus and cerebellum: A comparative proteomic study. Neuroscience 2008; 154:233-44. [DOI: 10.1016/j.neuroscience.2008.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 11/22/2022]
|
32
|
Hong SM, Lee JH, Yeo SG, Cha CI, Park BR. Temporal Changes of the Calcium-binding Proteins in the Medial Vestibular Nucleus following Unilateral Labyrinthectomy in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:95-99. [PMID: 20157401 PMCID: PMC2817552 DOI: 10.4196/kjpp.2008.12.3.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Calcium (Ca(2+)) is an intracellular second messenger associated with neuronal plasticity of the central nervous system. The calcium-binding proteins regulate the Ca(2+)-mediated signals in the cytoplasm and buffer the calcium concentration. This study examined temporal changes of three calcium-binding proteins (calretinin, calbindin and parvalbumin) in the medial vestibular nucleus (MVN) during vestibular compensation after unilateral labyrinthectomy (UL) in rats. Rats underwent UL, and the changes in the expression of these proteins at 2, 6, 12, 24, 48, and 72 h were examined by immunofluorescence staining. The expression levels of all three proteins increased immediately after UL and returned to the control level by 48 h. However, the level of calretinin showed changes different from the other two proteins, being expressed at significantly higher level in the contralateral MVN than in the ipsilateral MVN 2 h after UL, whereas the other two proteins showed similar expression levels in both the ipsilateral and contralateral MVN. These results suggest that the calcium binding proteins have some protective activity against the increased Ca(2+) levels in the MVN. In particular, calretinin might be more responsive to neuronal activity than calbindin or parvalbumin.
Collapse
Affiliation(s)
- Seok Min Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Chuncheon Sacred Hospital, Hallym University College of Medicine, Chuncheon 200-704, Korea
| | - Jae Hee Lee
- Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University, Iksan 570-749, Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology and Head & Neck Surgery, College of Medicine, KyungHee University, Seoul 130-702, Korea
| | - Chang Il Cha
- Department of Otorhinolaryngology and Head & Neck Surgery, College of Medicine, KyungHee University, Seoul 130-702, Korea
| | - Byung Rim Park
- Department of Physiology, Wonkwang University School of Medicine and Vestibulocochlear Research Center at Wonkwang University, Iksan 570-749, Korea
| |
Collapse
|
33
|
Kalinichenko SG, Pushchin II. Calcium-binding proteins in the cerebellar cortex of the bottlenose dolphin and harbour porpoise. J Chem Neuroanat 2008; 35:364-70. [PMID: 18455363 DOI: 10.1016/j.jchemneu.2008.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/25/2008] [Accepted: 03/09/2008] [Indexed: 10/22/2022]
Abstract
Studying the distribution of Ca2+-binding proteins allows one to discover specific neuron chemotypes involved in the regulation of the activity of various neural elements. While extensive data exist on Ca2+-binding proteins in the nervous system, in particular, in the cerebellar cortex of terrestrial mammals, the localization of these proteins in the cerebellar cortex of marine mammals has not been studied. We studied the localization of calretinin, calbindin, and parvalbumin immunoreactivity in the cerebellar cortex of the bottlenose dolphin Tursiops truncates and harbour porpoise Phocoena phocoena. In both species, most Purkinje cells were calbindin-immunoreactive, while calretinin and parvalbumin were expressed in a small portion of Purkinje cells. In addition, calretinin-immunoreactive unipolar brush and granule cells and calbindin- and parvalbumin-immunoreactive basket, stellate, and Golgi cells were observed. Calretinin-immunoreactive corticopetal (mossy and climbing) fibers were found. Based on the length of the primary dendrite, short-, middle-, and long-dendrite unipolar brush cells could be distinguished. The validity of this classification was supported using cluster analysis suggesting the presence of several natural types of these cells. The distribution of Ca2+-binding proteins in the cerebellar cortex of the cetaceans studied was generally similar to that reported for terrestrial mammals, suggesting that this trait is evolutionarily conservative in mammals.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Laboratory of Cell Physiology, Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| | | |
Collapse
|
34
|
Roda E, Coccini T, Acerbi D, Castoldi A, Bernocchi G, Manzo L. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat. J Chem Neuroanat 2008; 35:285-94. [PMID: 18358697 DOI: 10.1016/j.jchemneu.2008.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 11/27/2022]
Abstract
The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.
Collapse
Affiliation(s)
- Elisa Roda
- University of Pavia, Department of Internal Medicine and Therapeutics, Toxicology Division, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment. J Neurosci Methods 2007; 168:42-7. [PMID: 17961663 DOI: 10.1016/j.jneumeth.2007.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 11/30/2022]
Abstract
In a study of human Purkinje cell (PC) number, a striking mismatch between the number of PCs observed with the Nissl stain and the number of PCs immunopositive for calbindin-D28k (CB) was identified in 2 of the 10 brains examined. In the remaining eight brains this mismatch was not observed. Further, in these eight brains, analysis of CB immunostained sections counterstained with the Nissl stain revealed that more than 99% Nissl stained PCs were also immunopositive for CB. In contrast, in the two discordant brains, only 10-20% of CB immunopositive PCs were also identified with the Nissl stain. Although this finding was unexpected, a historical survey of the literature revealed that Spielmeyer [Spielmeyer W. Histopathologie des nervensystems. Julius Springer: Berlin; 1922. p. 56-79] described human cases with PCs that lacked the expected Nissl staining intensity, an important historical finding and critical issue when studying postmortem human brains. The reason for this failure in Nissl staining is not entirely clear, but it may result from premortem circumstances since it is not accounted for by postmortem delay or processing variables. Regardless of the exact cause, these observations suggest that Nissl staining may not be a reliable marker for PCs and that CB is an excellent alternative marker.
Collapse
|
36
|
Purkinje cell axon collaterals terminate on Cat-301+ neurons in Macaca monkey cerebellum. Neuroscience 2007; 149:834-44. [PMID: 17936513 DOI: 10.1016/j.neuroscience.2007.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/06/2007] [Accepted: 09/18/2007] [Indexed: 12/30/2022]
Abstract
The monoclonal antibody Cat-301 identifies perineuronal nets around specific neuronal types, including those in the cerebellum. This report finds in adult Macaca monkey that basket cells in the deep molecular layer; granule cell layer (GCL) interneurons including Lugaro cells; large neurons in the foliar white matter (WM); and deep cerebellar nuclei (DCN) neurons contain subsets of Cat-301 positive (+) cells. Most Cat-301+ GCL interneurons are glycine+ and all are densely innervated by a meshwork of calbindin+/glutamic acid decarboxylase+ Purkinje cell collaterals and their synapses. DCN and WM Cat-301+ neurons also receive a similar but less dense innervation. Due to the heavy labeling of adjacent Purkinje cell dendrites, the innervation of Cat-301+ basket cells was less certain. These findings suggest that several complex feedback circuits from Purkinje cell to cerebellar interneurons exist in primate cerebellum whose function needs to be investigated. Cat-301 labeling begins postnatally in WM and DCN, but remains sparse until at least 3 months of age. Because the appearance of perineuronal nets is associated with maturation of synaptic circuits, this suggests that the Purkinje cell feedback circuits develop for some time after birth.
Collapse
|
37
|
Ashwell KWS, Paxinos G, Watson CRR. Cyto- and Chemoarchitecture of the Cerebellum of the Short-Beaked Echidna (Tachyglossus aculeatus). BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:71-89. [PMID: 17510548 DOI: 10.1159/000102970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/20/2006] [Indexed: 11/19/2022]
Abstract
The monotremes (echidnas and platypus) have been claimed by some authors to show 'avian' or 'reptilian' features in the gross morphology and microscopic anatomy of the cerebellum. We have used Nissl staining in conjunction with enzyme histochemistry to acetylcholinesterase and cytochrome oxidase and immunohistochemistry to non-phosphorylated neurofilament protein (SMI-32 antibody), calcium binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase to examine the cyto- and chemoarchitecture of the cerebellar cortex and deep cerebellar nuclei in the short-beaked echidna. Immunoreactivity for non-phosphorylated neurofilament (SMI-32 antibody) was found in the deep cerebellar nuclei and in Purkinje cells of most regions except the nodule. Purkinje cells identified with SMI-32 immunoreactivity were clearly mammalian in morphology. Parvalbumin and calbindin immunoreactivity was found in Purkinje cells with some regional variation in staining intensity and in Purkinje cell axons traversing cerebellar white matter or terminating on Lugaro cells. Calbindin immunoreactivity was also present in inferior olivary complex neurons. Calretinin immunoreactivity was found in pontocerebellar fibers and small cells in the deep granule cell layer of the ansiform lobule. We found that, although the deep cerebellar nuclei were much less clearly demarcated than in the rodent cerebellum, it was possible to distinguish medial, interposed and lateral nuclear components in the echidna. As far as we can determine from our techniques, the cerebellum of the echidna shows all the gross and cytological features familiar from the cerebellum of therian mammals.
Collapse
Affiliation(s)
- K W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
38
|
Marzban H, Hawkes R. Fibroblast growth factor promotes the development of deep cerebellar nuclear neurons in dissociated mouse cerebellar cultures. Brain Res 2007; 1141:25-36. [PMID: 17300764 DOI: 10.1016/j.brainres.2007.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 01/24/2023]
Abstract
Neurons of the deep cerebellar nuclei and excitatory cerebellar interneurons arise from the rhombic lip of the cerebellar anlage. In contrast, Purkinje cells and inhibitory interneurons arise in the neuroepithelium of the fourth ventricle. During development, the projection neurons of the cerebellar nuclei are born first (embryo age (E)9-E12 in mouse) followed closely by the Purkinje cells (E10-E13). Cerebellar interneurons arise later and differentiate postnatally. We have examined the development of cerebellar nuclear neurons in primary cultures. Embryonic cerebella from E15 to E18 pups were cultured 21 days in vitro. Three distinct classes of large neurons were identified: those expressing calbindin, typical of Purkinje cells; those expressing neurogranin (Golgi cells); and a third class expressing parvalbumin but not calbindin, consistent with the morphology of large projection neurons of the cerebellar nuclei. These neurons also express Tbr1, a specific antigenic marker of cerebellar nuclear neurons. Birthdating by using BrdU incorporation shows that the putative DCN neurons are not born in vitro. To confirm their identity the E18 cerebellum was dissected into cerebellar nuclear-containing (ventral) and -lacking (dorsal) halves, which were then dissociated and cultured separately. Only the ventral cultures produce putative cerebellar nuclear neurons. In contrast to E15-E18 cultures, dissociated E13-E14 cerebella in vitro do not yield putative cerebellar nuclear neurons. However, E14 cultures do produce them when fibroblast growth factors are added to the medium. We conclude that FGF signaling is required for the maturation of cerebellar nuclear neurons.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
39
|
Roda E, Avella D, Pisu MB, Bernocchi G. Monoamine receptors and immature cerebellum cytoarchitecture after cisplatin injury. J Chem Neuroanat 2007; 33:42-52. [PMID: 17156972 DOI: 10.1016/j.jchemneu.2006.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/02/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The experimental model of cisplatin treatment provides the opportunity to identify the precise function of the neurotransmitters in some crucial events of brain development, and their interactions or modulatory roles. The serotonin and noradrenaline monoamines influence the formation of the cerebellar cortex circuitry. In this study we found changes in the expression of the serotonin and noradrenaline receptors after a single injection of cisplatin in 10-day-old rats. The growth of Pc dendrites was early altered in lobules VI-VIII of cerebellum vermis. In these lobules, at postnatal day (PD) 17, the cisplatin-induced increase of the serotoninergic receptor 5-HT2AR, a factor that inhibits Pc dendrite growth by acting post-synaptically, occurred in all cerebellar layers, suggesting also alteration of granule cell proliferation and migration. The decreased labelling of beta l adrenergic receptor (beta1AR) in the soma of some Pc at PD11 can be correlated with the altered expression of glutamate receptors and GAD65 (glutamic acid decarboxylase) of and on Pc we have previously described [Pisu, M.B., Guioli, S., Conforti, E., Bernocchi, G., 2003. Signal molecules and receptors in the differential development of cerebellum lobules. Acute effects of cisplatin on nitric oxide and glutamate system in Purkinje cell population. Dev. Brain Res. 145, 229-240; Pisu, M.B., Roda, E., Avella, D., Bernocchi, G., 2004. Developmental plasticity of rat cerebellar cortex after cisplatin injury: inhibitory synapses and differentiating Purkinje neurons. Neuroscience 129, 655-664]. Moreover, beta1AR seems to be the key factor in the cerebellar reorganization between PD17 and PD30. The expression of this receptor was maintained in the molecular layer (ML), in particular in the inhibitory interneurons, despite their different distributions. The labelling of 5-HT1AR in the ML areas lacking Pc dendrite branches could contribute to the recovery phase of the cerebellar cytoarchitecture in cisplatin-treated rats. In general these findings should be taken into consideration in therapeutic interventions for developmental CNS disorders with a morphological basis.
Collapse
Affiliation(s)
- E Roda
- Dipartimento di Biologia Animale, Laboratorio di Biologia Cellulare e Neurobiologia, Università di Pavia, Italy
| | | | | | | |
Collapse
|
40
|
Crook J, Hendrickson A, Robinson FR. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex. Neuroscience 2006; 141:1951-9. [PMID: 16784818 DOI: 10.1016/j.neuroscience.2006.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/27/2006] [Accepted: 05/09/2006] [Indexed: 11/21/2022]
Abstract
Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density of 120 cells/linear mm. Their morphology indicates that they include Golgi and Lugaro cell types with the majority containing both glycine and GABA or glutamic acid decarboxylase. These data are consistent with the proposal that, as in the rat cerebellum, these granular cell layer interneurons corelease glycine and GABA in the primate cerebellum. The patterns of labeling for glycine and GABA within Golgi and Lugaro cells also indicate that there are biochemical sub-types which are morphologically similar. Further, we find that glycine, GABA and glutamic acid decarboxylase identified candelabrum cells adjacent to the Purkinje cells which is the first time that this interneuron has been reported in primate cerebellar cortex. We propose that candelabrum cells, like the majority of Golgi and Lugaro cells, release both glycine and GABA.
Collapse
Affiliation(s)
- J Crook
- Department of Biological Structure and the Washington National Primate Research Center, Box 357420, University of Washington, Seattle, WA 98195-7420, USA
| | | | | |
Collapse
|
41
|
Bearzatto B, Servais L, Roussel C, Gall D, Baba-Aïssa F, Schurmans S, de Kerchove d'Exaerde A, Cheron G, Schiffmann SN. Targeted calretinin expression in granule cells of calretinin-null mice restores normal cerebellar functions. FASEB J 2005; 20:380-2. [PMID: 16352645 DOI: 10.1096/fj.05-3785fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ca2 binding proteins such as calretinin, characterized by the presence of EF-hand motifs that bind Ca2+ ions, are involved in the shaping of intraneuronal Ca2+ fluxes. In the cerebellar cortex, information processing tightly relies on variations in intracellular Ca2+ concentration in Purkinje and granule cells. Calretinin-deficient (Cr-/-) mice present motor discoordination, suggesting cellular and network cerebellar dysfunctions. To determine the cell specificity of these alterations, we constructed transgenic Cr-/- mice exhibiting a selective reexpression of calretinin in granule cells through the promoter function of the GABAA receptor alpha6 subunit gene. Normal granule cell excitability and wild-type Purkinje cell firing behavior in awake mice were restored while the emergence of high-frequency oscillations was abolished. Behavioral analysis of these calretinin-rescue mice revealed that normal motor coordination was restored as compared with Cr-/- mice. These results demonstrate that calretinin is required specifically in granule cells for correct computation in the cerebellar cortex and indicate that the finetuning of granule cell excitability through regulation of Ca2+ homeostasis plays a crucial role for information coding and storage in the cerebellum.
Collapse
Affiliation(s)
- Bertrand Bearzatto
- Laboratory of Neurophysiology CP601, Université Libre de Bruxelles, route de Lennik 808, Brussels 1070, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Servais L, Bearzatto B, Schwaller B, Dumont M, De Saedeleer C, Dan B, Barski JJ, Schiffmann SN, Cheron G. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k. Eur J Neurosci 2005; 22:861-70. [PMID: 16115209 DOI: 10.1111/j.1460-9568.2005.04275.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Calbindin is a fast Ca2+-binding protein expressed by Purkinje cells and involved in their firing regulation. Its deletion produced approximately 160-Hz oscillation sustained by synchronous, rhythmic Purkinje cells in the cerebellar cortex of mice. Parvalbumin is a slow-onset Ca2+-binding protein expressed in Purkinje cells and interneurons. In order to assess its function in Purkinje cell firing regulation, we studied the firing behavior of Purkinje cells in alert mice lacking parvalbumin (PV-/-), calbindin (CB-/-) or both (PV-/- CB-/-) and in wild-type controls. The absence of either protein resulted in Purkinje cell firing alterations (decreased complex spike duration and pause, increased simple spike firing rate) that were more pronounced in CB-/- than in PV-/- mice. Cumulative effects were found in complex spike alterations in PV-/- CB-/- mice. PV-/- and CB-/- mice manifested approximately 160-Hz oscillation that was sustained by Purkinje cells firing rhythmically and synchronously along the parallel fiber axis. This oscillation was dependent on GABA(A), N-methyl-D-aspartate and gap junction transmission. PV-/- CB-/- mice exhibited a dual-frequency (110 and 240 Hz) oscillation. The instantaneous spectral densities of both components were inversely correlated. Simple and complex spikes of Purkinje cells were phase-locked to one of the two oscillation frequencies. Mono- and dual-frequency oscillations presented similar pharmacological properties. These results demonstrate that the absence of the Ca2+ buffers parvalbumin and calbindin disrupts the regulation of Purkinje cell firing rate and rhythmicity in vivo and suggest that precise Ca2+ transient control is required to maintain the normal spontaneous arrhythmic and asynchronous firing pattern of the Purkinje cells.
Collapse
Affiliation(s)
- L Servais
- Laboratoire d'électrophysiologie, Université de Mons Hainaut, 24 Avenue du Champ de Mars, 7000 Mons, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin SC, Huck JHJ, Roberts JDB, Macklin WB, Somogyi P, Bergles DE. Climbing Fiber Innervation of NG2-Expressing Glia in the Mammalian Cerebellum. Neuron 2005; 46:773-85. [PMID: 15924863 DOI: 10.1016/j.neuron.2005.04.025] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/04/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
The molecular layer of the cerebellar cortex is populated by glial progenitors that express ionotropic glutamate receptors and extend numerous processes among Purkinje cell dendrites. Here, we show that release of glutamate from climbing fiber (CF) axons produces AMPA receptor currents with rapid kinetics in these NG2-immunoreactive glial cells (NG2+ cells) in cerebellar slices. NG2+ cells may receive up to 70 discrete inputs from one CF and, unlike mature Purkinje cells, are often innervated by multiple CFs. Paired Purkinje cell-NG2+ cell recordings show that one CF can innervate both cell types. CF boutons make direct synaptic junctions with NG2+ cell processes, indicating that this rapid neuron-glia signaling occurs at discrete sites rather than through ectopic release at CF-Purkinje cell synapses. This robust activation of Ca2+-permeable AMPA receptors in NG2+ cells expands the influence of the olivocerebellar projection to this abundant class of glial progenitors.
Collapse
Affiliation(s)
- Shih-Chun Lin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
44
|
Baizer JS, Baker JF. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 2005; 164:78-91. [PMID: 15662522 PMCID: PMC1201542 DOI: 10.1007/s00221-004-2211-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 11/22/2004] [Indexed: 12/18/2022]
Abstract
The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, Buffalo, NY, 14214-3078, USA.
| | | |
Collapse
|
45
|
Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M. Cell type- and region-specific expression of protein kinase C-substrate mRNAs in the cerebellum of the macaque monkey. J Comp Neurol 2003; 467:135-49. [PMID: 14595765 DOI: 10.1002/cne.10850] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We performed nonradioactive in situ hybridization histochemistry in the monkey cerebellum to investigate the localization of protein kinase C-substrate (growth-associated protein-43 [GAP-43], myristoylated alanine-rich C-kinase substrate [MARCKS], and neurogranin) mRNAs. Hybridization signals for GAP-43 mRNA were observed in the molecular and granule cell layers of both infant and adult cerebellar cortices. Signals for MARCKS mRNA were observed in the molecular, Purkinje cell, and granule cell layers of both infant and adult cortices. Moreover, both GAP-43 and MARCKS mRNAs were expressed in the external granule cell layer of the infant cortex. In the adult cerebellar vermis, signals for both GAP-43 and MARCKS mRNAs were more intense in lobules I, IX, and X than in the remaining lobules. In the adult hemisphere, both mRNAs were more intense in the flocculus and the dorsal paraflocculus than in other lobules. Such lobule-specific expressions were not prominent in the infant cerebellar cortex. Signals for neurogranin, a postsynaptic substrate for protein kinase C, were weak or not detectable in any regions of either the infant or adult cerebellar cortex. The prominent signals for MARCKS mRNA were observed in the deep cerebellar nuclei, but signals for both GAP-43 and neurogranin mRNAs were weak or not detectable. The prominent signals for both GAP-43 and MARCKS mRNAs were observed in the inferior olive, but signals for neurogranin were weak or not detectable. The cell type- and region-specific expression of GAP-43 and MARCKS mRNAs in the cerebellum may be related to functional specialization regarding plasticity in each type of cell and each region of the cerebellum.
Collapse
Affiliation(s)
- Noriyuki Higo
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | | | |
Collapse
|
46
|
Hsu YH, Huang HY, Tsaur ML. Contrasting expression of Kv4.3, an A-type K+ channel, in migrating Purkinje cells and other post-migratory cerebellar neurons. Eur J Neurosci 2003; 18:601-12. [PMID: 12911756 DOI: 10.1046/j.1460-9568.2003.02786.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kv4.3, an A-type K+ channel, is the only channel molecule showing anterior-posterior (A-P) compartmentalization in the granular layer of mammalian cerebellum known so far. Kv4.3 mRNA has been detected from the posterior but not anterior granular layer in adult rat cerebellum. To characterize this A-P compartmentalization further, we examined Kv4.3 protein expression in rat cerebellum by immunohistochemistry at the embryonic, early postnatal and adult stages. Specificity of the Kv4.3 antibody was confirmed by both Western blot and immunoprecipitation analysis. In adulthood, Kv4.3 was detected from the somatodendritic domain of posterior granule cells, with a restriction boundary in the vermal lobule VI extending laterally to the hemispheric crus 1 ansiform lobules. At the early postnatal stage, this A-P pattern first appeared on postnatal day 8, when significant numbers of granule cells had migrated into the posterior granular layer and started to express Kv4.3. Similar Kv4.3 expression in the somatodendritic domain of post-migratory neurons in the cerebellum was also observed in basket cells, stellate cells, a subset of GABAergic deep neurons, Lugaro cells and, probably, deep Lugaro cells. However, none of them showed A-P compartmentalization. Strikingly, we found Kv4.3 in several clusters of migrating Purkinje cells with mediolateral compartmentalization. These Purkinje cells no longer expressed Kv4.3 after completing the migration. By contrasting the expression in migrating and post-migratory neurons, our results suggest that Kv4.3 may play an important role in the development of cerebellum, as well as in the mature cerebellum.
Collapse
Affiliation(s)
- Yi-Hua Hsu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | |
Collapse
|
47
|
Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 2003; 89:634-9. [PMID: 12522208 DOI: 10.1152/jn.00626.2002] [Citation(s) in RCA: 466] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have used retrograde transneuronal transport of neurotropic viruses to examine the organization of the projections from the dentate nucleus of the cerebellum to "motor" and "nonmotor" areas of the cerebral cortex. To perform this analysis we created an unfolded map of the dentate. Plotting the results from current and prior experiments on this unfolded map revealed important features about the topography of function in the dentate. We found that the projections to the primary motor and premotor areas of the cerebral cortex originated from dorsal portions of the dentate. In contrast, projections to prefrontal and posterior parietal areas of cortex originated from ventral portions of the dentate. Thus the dentate contains anatomically separate and functionally distinct motor and nonmotor domains.
Collapse
Affiliation(s)
- Richard P Dum
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
48
|
Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2003; 2:242-62. [PMID: 14964684 DOI: 10.1080/14734220310022289] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calcium plays a fundamental role in the cell as second messenger and is principally regulated by calcium-binding proteins. Although these proteins share in common their ability to bind calcium, they belong to different subfamilies. They present, in general, specific developmental and distribution patterns. Most Purkinje cells express the fast and slow calcium buffer proteins calbindin-D28k and parvalbumin, whereas basket, stellate and Golgi cells the slow buffer parvalbumin only. They are, almost all, calretinin negative. Granule, Lugaro and unipolar brush cells present an opposite immunoreactivity profile, most of them being calretinin positive while lacking calbindin-D28k and parvalbumin. The developmental pattern of appearance of these proteins seems to follow the maturation of neurons. Calbindin-D28k appears early, shortly after cessation of mitosis when neurons become ready to start migration and differentiation while parvalbumin is expressed later in parallel with an increase in neuronal activity. The other proteins are generally detected later. During development, some of these proteins, like calretinin, are transiently expressed in specific cellular subpopulations. The function of these proteins is not fully understood, although strong evidence supports a prominent role in physiological settings with altered calcium concentrations. These proteins regulate and are regulated by intracellular calcium level. For example, they may directly or indirectly enable sensitization or desensitization of calcium channels, and may further block calcium entry into the cells, like the calcium-sensor proteins, that have been shown to be potent and specific modulators of ion channels, which may allow for feedback control of current function and hence signaling. The absence of calcium buffer proteins results in marked abnormalities in cell firing; with alterations in simple and complex spikes or transformation of depressing synapses into facilitating synapses. Calcium-binding protein implication in resistance to degeneration is still a controversial issue. Neurons rich in calcium-binding proteins, especially calbindin-D28k and parvalbumin, seem to be relatively resistant to degeneration in a variety of acute and chronic disorders. However other data support that an absence of calcium-binding proteins may also have a neuroprotective effect. It is not unlikely that neurons may face a dual action mechanism where a decrease in calcium-binding proteins has a first short-term beneficial effect while it becomes detrimental for the cell over the long term.
Collapse
|
49
|
Schwaller B, Meyer M, Schiffmann S. 'New' functions for 'old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. CEREBELLUM (LONDON, ENGLAND) 2002; 1:241-58. [PMID: 12879963 DOI: 10.1080/147342202320883551] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calretinin (CR), calbindin D-28k (CB) and parvalbumin (PV) belong to the large family of EF-hand calcium-binding proteins, which comprises more than 200 members in man. Structurally these proteins are characterized by the presence of a variable number of evolutionary well-conserved helix-loop-helix motives, which bind Ca2+ ions with high affinity. Functionally, they fall into two groups: by interaction with target proteins, calcium sensors translate calcium concentrations into signaling cascades, whereas calcium buffers are thought to modify the spatiotemporal aspects of calcium transients. Although CR, CB and PV are currently being considered calcium buffers, this may change as we learn more about their biology. Remarkable differences in their biophysical properties have led to the distinction of fast and slow buffers and suggested functional specificity of individual calcium buffers. Evaluation of the physiological roles of CR, CB and PV has been facilitated by the recent generation of mouse strains deficient in these proteins. Here, we review the biology of these calcium-binding proteins with distinct reference to the cerebellum, since they are particularly enriched in specific cerebellar neurons. CR is principally expressed in granule cells and their parallel fibres, while PV and CB are present throughout the axon, soma, dendrites and spines of Purkinje cells. PV is additionally found in a subpopulation of inhibitory interneurons, the stellate and basket cells. Studies on deficient mice together with in vitro work and their unique cell type-specific distribution in the cerebellum suggest that these calcium-binding proteins have evolved as functionally distinct, physiologically relevant modulators of intracellular calcium transients. Analysis of different brain regions suggests that these proteins are involved in regulating calcium pools critical for synaptic plasticity. Surprisingly, a major role of any of these three calcium-binding proteins as an endogenous neuroprotectant is not generally supported.
Collapse
Affiliation(s)
- Beat Schwaller
- Institute of Histology and General Embryology, University of Fribourg, Fribourg, Switzerland.
| | | | | |
Collapse
|
50
|
Leonard RB, Kevetter GA. Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 2002; 928:8-17. [PMID: 11844467 DOI: 10.1016/s0006-8993(01)03268-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vestibular afferents have different physiological properties that can be at least partially correlated with the morphology that the peripheral ending makes with type I and type II hair cells. If the location of the ending in the sensory epithelium is included, the correlations are further improved. It is also known that vestibular afferents can be immunohistochemically stained for a variety of different substances. We have concentrated on three of these markers, calretinin, calbindin and peripherin, because the sources of afferents to the vestibular nuclear complex that contain these substances are restricted, in two cases to the primary afferents. We demonstrate that calretinin is found only in the calyx-only afferents that are located at the apex of the cristae ampullaris and along the striola of the maculae. The area containing stained calyces is equal to or slightly smaller than the central zone of the cristae as defined by the Goldberg group [J. Neurophysiol. 60 (1988) 167]. Calbindin is also found in calyces at the apex of the cristae and along the striola of the otoliths. Examination of adjacent sections of all endorgans indicates that calbindin staining overlaps with calretinin, but is always several hair cells wider on each side. Peripherin also stains fibers in the neuroepithelium. The greatest density of staining is in the peripheral zone of the cristae, i.e. at the base and toward the planum semilunatum. We suggest that these substances are useful markers for specific sets of vestibular afferents.
Collapse
Affiliation(s)
- Robert B Leonard
- Department of Anatomy and Neurosciences, Marine Biological Institute, University of Texas Medical Branch, 301 University Dr., Galveston, TX 77555-1043, USA.
| | | |
Collapse
|