1
|
Xing D, Tang L, Yang H, Yan M, Yuan P, Wu Y, Zhang Y, Yin T, Wang Y, Gou J, Tang X, He H. Effect of mPEG-PLGA on Drug Crystallinity and Release of Long-Acting Injection Microspheres: In Vitro and In Vivo Perspectives. Pharm Res 2024; 41:1271-1284. [PMID: 38839720 DOI: 10.1007/s11095-024-03717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Traditional progesterone (PRG) injections require long-term administration, leading to poor patient compliance. The emergence of long-acting injectable microspheres extends the release period to several days or even months. However, these microspheres often face challenges such as burst release and incomplete drug release. This study aims to regulate drug release by altering the crystallinity of the drug during the release process from the microspheres. METHODS This research incorporates methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) into poly(lactide-co-glycolide) (PLGA) microspheres to enhance their hydrophilicity, thus regulating the release rate and drug morphology during release. This modification aims to address the issues of burst and incomplete release in traditional PLGA microspheres. PRG was used as the model drug. PRG/mPEG-PLGA/PLGA microspheres (PmPPMs) were prepared via an emulsification-solvent evaporation method. Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were employed to investigate the presence of PRG in PmPPMs and its physical state changes during release. RESULTS The addition of mPEG-PLGA altered the crystallinity of the drug within the microspheres at different release stages. The crystallinity correlated positively with the amount of mPEG-PLGA incorporated; the greater the amount, the faster the drug release from the formulation. The bioavailability and muscular irritation of the long-acting injectable were assessed through pharmacokinetic and muscle irritation studies in Sprague-Dawley (SD) rats. The results indicated that PmPPMs containing mPEG-PLGA achieved low burst release and sustained release over 7 days, with minimal irritation and self-healing within this period. PmPPMs with 5% mPEG-PLGA showed a relative bioavailability (Frel) of 146.88%. IN CONCLUSION In summary, adding an appropriate amount of mPEG to PLGA microspheres can alter the drug release process and enhance bioavailability.
Collapse
Affiliation(s)
- Dandan Xing
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Lihua Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Hongyu Yang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Mingjiao Yan
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Panao Yuan
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yulan Wu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanjiao Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
2
|
Kumari K, Singh A, Chaudhary A, Singh RK, Shanker A, Kumar V, Haque R. Neoantigen Identification and Dendritic Cell-Based Vaccines for Lung Cancer Immunotherapy. Vaccines (Basel) 2024; 12:498. [PMID: 38793749 PMCID: PMC11125796 DOI: 10.3390/vaccines12050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Immunotherapies can treat many cancers, including difficult-to-treat cases such as lung cancer. Due to its tolerability, long-lasting therapeutic responses, and efficacy in a wide spectrum of patients, immunotherapy can also help to treat lung cancer, which has few treatment choices. Tumor-specific antigens (TSAs) for cancer vaccinations and T-cell therapies are difficult to discover. Neoantigens (NeoAgs) from genetic mutations, irregular RNA splicing, protein changes, or viral genetic sequences in tumor cells provide a solution. NeoAgs, unlike TSAs, are non-self and can cause an immunological response. Next-generation sequencing (NGS) and bioinformatics can swiftly detect and forecast tumor-specific NeoAgs. Highly immunogenic NeoAgs provide personalized or generalized cancer immunotherapies. Dendritic cells (DCs), which originate and regulate T-cell responses, are widely studied potential immunotherapeutic therapies for lung cancer and other cancers. DC vaccines are stable, reliable, and safe in clinical trials. The purpose of this article is to evaluate the current status, limitations, and prospective clinical applications of DC vaccines, as well as the identification and selection of major histocompatibility complex (MHC) class I and II genes for NeoAgs. Our goal is to explain DC biology and activate DC manipulation to help researchers create extremely potent cancer vaccines for patients.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India; (K.K.); (A.C.)
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Archana Chaudhary
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India; (K.K.); (A.C.)
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya 824236, Bihar, India
| | - Vinay Kumar
- Heart and Vascular Institute, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA;
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India; (K.K.); (A.C.)
| |
Collapse
|
3
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
4
|
Shah SM, Alsaab HO, Rawas-Qalaji MM, Uddin MN. A Review on Current COVID-19 Vaccines and Evaluation of Particulate Vaccine Delivery Systems. Vaccines (Basel) 2021; 9:vaccines9101086. [PMID: 34696194 PMCID: PMC8540464 DOI: 10.3390/vaccines9101086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
First detected in Wuhan, China, a highly contagious coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), also known as COVID-19, spread globally in December of 2019. As of 19 September 2021, approximately 4.5 million people have died globally, and 215 million active cases have been reported. To date, six vaccines have been developed and approved for human use. However, current production and supply capabilities are unable to meet global demands to immunize the entire world population. Only a few countries have been able to successfully vaccinate many of their residents. Therefore, an alternative vaccine that can be prepared in an easy and cost-effective manner is urgently needed. A vaccine that could be prepared in this manner, as well as can be preserved and transported at room temperature, would be of great benefit to public health. It is possible to develop such an alternative vaccine by using nano- or microparticle platforms. These platforms address most of the existing vaccine limitations as they are stable at room temperature, are inexpensive to produce and distribute, can be administered orally, and do not require cold chain storage for transportation or preservation. Particulate vaccines can be administered as either oral solutions or in sublingual or buccal film dosage forms. Besides improved patient compliance, the major advantage of oral, sublingual, and buccal routes of administration is that they can elicit mucosal immunity. Mucosal immunity, along with systemic immunity, can be a strong defense against SARS-CoV-2 as the virus enters the system through inhalation or saliva. This review discusses the possibility to produce a particulate COVID vaccine by using nano- or microparticles as platforms for oral administration or in sublingual or buccal film dosage forms in order to accelerate global vaccination.
Collapse
Affiliation(s)
- Sarthak M. Shah
- College of Pharmacy, Mercer University, Atlanta, GA 31207, USA;
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mutasem M. Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah 26666, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 26666, United Arab Emirates
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 27272, USA
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, Atlanta, GA 31207, USA;
- Correspondence: ; Tel.: +1-678-547-6224
| |
Collapse
|
5
|
Haque S, Swami P, Khan A. S. Typhi derived vaccines and a proposal for outer membrane vesicles (OMVs) as potential vaccine for typhoid fever. Microb Pathog 2021; 158:105082. [PMID: 34265371 DOI: 10.1016/j.micpath.2021.105082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Typhoid fever is a serious systemic infection caused by Salmonella Typhi (S. Typhi), spread by the feco-oral route and closely associated with poor food hygiene and inadequate sanitation. Nearly 93% of S. Typhi strains have acquired antibiotic resistance against most antibiotics. Vaccination is the only promising way to prevent typhoid fever. This review covers the nature and composition of S. Typhi, pathogenecity and mode of infection, epidemiology, and nature of drug resistance. Several components (Vi-polysaccharides, O-antigens, flagellar antigens, full length OMPs, and short peptides from OMPs) of S. Typhi have been utilized for vaccine design for protection against typhoid fever. Vaccine delivery systems also contribute to efficacy of the vaccines. In this study, we propose to develop S. Typhi derived OMVs as vaccine for protection against typhoid fevers.
Collapse
Affiliation(s)
- Shabirul Haque
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Pooja Swami
- Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Azhar Khan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India.
| |
Collapse
|
6
|
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 2021; 28:1397-1418. [PMID: 34184949 PMCID: PMC8248937 DOI: 10.1080/10717544.2021.1938756] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biodegradable microspheres have been widely used in the field of medicine due to their ability to deliver drug molecules of various properties through multiple pathways and their advantages of low dose and low side effects. Poly (lactic-co-glycolic acid) copolymer (PLGA) is one of the most widely used biodegradable material currently and has good biocompatibility. In application, PLGA with a specific monomer ratio (lactic acid and glycolic acid) can be selected according to the properties of drug molecules and the requirements of the drug release rate. PLGA-based biodegradable microspheres have been studied in the field of drug delivery, including the delivery of various anticancer drugs, protein or peptide drugs, bacterial or viral DNA, etc. This review describes the basic knowledge and current situation of PLGA biodegradable microspheres and discusses the selection of PLGA polymer materials. Then, the preparation methods of PLGA microspheres are introduced, including emulsification, microfluidic technology, electrospray, and spray drying. Finally, this review summarizes the application of PLGA microspheres in drug delivery and the treatment of pulmonary and ocular-related diseases.
Collapse
Affiliation(s)
- Yue Su
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bolun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | | | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
Li M, Liu H, Zhuang S, Goda K. Droplet flow cytometry for single-cell analysis. RSC Adv 2021; 11:20944-20960. [PMID: 35479393 PMCID: PMC9034116 DOI: 10.1039/d1ra02636d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/06/2021] [Indexed: 01/22/2023] Open
Abstract
The interrogation of single cells has revolutionised biology and medicine by providing crucial unparalleled insights into cell-to-cell heterogeneity. Flow cytometry (including fluorescence-activated cell sorting) is one of the most versatile and high-throughput approaches for single-cell analysis by detecting multiple fluorescence parameters of individual cells in aqueous suspension as they flow past through a focus of excitation lasers. However, this approach relies on the expression of cell surface and intracellular biomarkers, which inevitably lacks spatial and temporal phenotypes and activities of cells, such as secreted proteins, extracellular metabolite production, and proliferation. Droplet microfluidics has recently emerged as a powerful tool for the encapsulation and manipulation of thousands to millions of individual cells within pico-litre microdroplets. Integrating flow cytometry with microdroplet architectures surrounded by aqueous solutions (e.g., water-in-oil-in-water (W/O/W) double emulsion and hydrogel droplets) opens avenues for new cellular assays linking cell phenotypes to genotypes at the single-cell level. In this review, we discuss the capabilities and applications of droplet flow cytometry (DFC). This unique technique uses standard commercially available flow cytometry instruments to characterise or select individual microdroplets containing single cells of interest. We explore current challenges associated with DFC and present our visions for future development.
Collapse
Affiliation(s)
- Ming Li
- School of Engineering, Macquarie University Sydney NSW 2109 Australia
- Biomolecular Discovery Research Centre, Macquarie University Sydney NSW 2109 Australia
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University Sydney NSW 2109 Australia
| | - Siyuan Zhuang
- School of Engineering, Macquarie University Sydney NSW 2109 Australia
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo Tokyo 113-0033 Japan
- Institute of Technological Sciences, Wuhan University 430072 Hubei PR China
- Department of Bioengineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
8
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Sadeghi I, Byrne J, Shakur R, Langer R. Engineered drug delivery devices to address Global Health challenges. J Control Release 2021; 331:503-514. [PMID: 33516755 PMCID: PMC7842133 DOI: 10.1016/j.jconrel.2021.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
There is a dire need for innovative solutions to address global health needs. Polymeric systems have been shown to provide substantial benefit to all sectors of healthcare, especially for their ability to extend and control drug delivery. Herein, we review polymeric drug delivery devices for vaccines, tuberculosis, and contraception.
Collapse
Affiliation(s)
- Ilin Sadeghi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - James Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA
| | - Rameen Shakur
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Pagheh AS, Daryani A, Alizadeh P, Hassannia H, Rodrigues Oliveira SM, Kazemi T, Rezaei F, Pereira MDL, Ahmadpour E. Protective effect of a DNA vaccine cocktail encoding ROP13 and GRA14 with Alum nano-adjuvant against Toxoplasma gondii infection in mice. Int J Biochem Cell Biol 2021; 132:105920. [PMID: 33421633 DOI: 10.1016/j.biocel.2021.105920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that can cause serious public health problems. The development of a safe and effective vaccine against T. gondii is urgently needed to prevent and control the spread of toxoplasmosis. The aim of this study was to evaluate the immune responses induced by a pcGRA14 + pcROP13 vaccine cocktail in BALB/c mice. All groups were immunized intramuscularly three times at two-week intervals. The production of anti-Toxoplasma gondii lysate antigen (TLA) antibodies, lymphocyte proliferation, serum levels of IFN-γ and IL-4 cytokines and the survival time were monitored after vaccination and challenged with the virulent RH strain of T. gondii. The results showed that immunization with the pcGRA14 + pcROP13 DNA vaccine significantly increased the production of specific IgG antibodies and cytokines against toxoplasmosis. Interestingly, high levels of IgG2a and IFN-γ were found in animals vaccinated with DNA vaccine cocktail. Furthermore, immunized mice challenged with the RH strain of T. gondii showed prolonged survival time when compared to control groups (P <0.05). The present study demonstrates the potential of a DNA cocktail vaccine expressing pcGRA14 and pcROP13 in developing specific immune responses and providing effective protection against T. gondii infection.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Paria Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Tohid Kazemi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maria de Lourdes Pereira
- CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ehsan Ahmadpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110155] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Stephens LM, Varga SM. Nanoparticle vaccines against respiratory syncytial virus. Future Virol 2020; 15:763-778. [PMID: 33343684 PMCID: PMC7737143 DOI: 10.2217/fvl-2020-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory disease in infants, the elderly and immunocompromised individuals. Despite the global burden, there is no licensed vaccine for RSV. Recent advances in the use of nanoparticle technology have provided new opportunities to address some of the limitations of conventional vaccines. Precise control over particle size and surface properties enhance antigen stability and prolong antigen release. Particle size can also be modified to target specific antigen-presenting cells in order to induce specific types of effector T-cell responses. Numerous nanoparticle-based vaccines are currently being evaluated for RSV including inorganic, polymeric and virus-like particle-based formulations. Here, we review the potential advantages of using different nanoparticle formulations in a vaccine for RSV, and discuss many examples of safe, and effective vaccines currently in both preclinical and clinical stages of testing.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Injectable hydrogel delivering bone morphogenetic protein-2, vascular endothelial growth factor, and adipose-derived stem cells for vascularized bone tissue engineering. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Keshavarz Shahbaz S, Varasteh AR, Koushki K, Ayati SH, Mashayekhi K, Sadeghi M, Moghadam M, Sankian M. Sublingual dendritic cells targeting by aptamer: Possible approach for improvement of sublingual immunotherapy efficacy. Int Immunopharmacol 2020; 85:106603. [PMID: 32485357 DOI: 10.1016/j.intimp.2020.106603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
The efficacy improvement of current sublingual immunotherapy (SLIT) for preventing and treating respiratory airway allergic diseases is the main purpose of many investigations. In this study, we aimed to assess whether ovalbumin (Ova) encapsulated poly (lactic-co-glycolic) acid nanoparticles (PLGA NPs) decorated with dendritic cells (DCs)-specific aptamer could be applied for this purpose.The nanoparticles containing Ova were synthesized by emulsion/solvent evaporation method and attached to DCs-specific aptamer. Ova-sensitized BALB/c mice have been treated in five ways: subcutaneously with free Ova (SCIT), sublingually either with free Ova, Ova-PLGA NPs (two doses), Apt-Ova-PLGA NPs (two doses) and placebo/control Apt-Ova-PLGA NPs. For assessment of immunologic responses, IL-4, IFN-γ, IL-17, IL10, and TGF-β and IgE antibody levels were measured by ELISA and T cell proliferation were evaluated by MTT. In addition, lung and nasal histological examinations, NALF cells counting were carried out. Results declared that the lowest IgE and IL- 4 levels were observed in Apt-Ova-PLGA NPs (both doses). In the other hands, Apt-Ova-PLGA NPs (high dose) showed the highest increase of IFN- γ and TGF- β, decrease of IL-17 levels, total cell count and T-cell proliferation. IL-10 levels showed more decrease in SCIT, Apt-Ova-PLGA NPs (high dose) and Ova-PLGA NPs (high dose) than other groups. Histopathological examinations also confirmed in vitro results. Our findings suggest SLIT with this functionalized delivery system could be a promising approach for promoting the SLIT efficiency by decreasing the required allergen doses through specific delivery of allergen to sublingual DCs and enhancing the suppression of allergic responses.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Koushki
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hasan Ayati
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
16
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Rezaei-Kalat A, Parizadeh SMR, Javanbakht A, Hassanian SM, Ferns GA, Khazaei M, Avan A. Personalized Peptide-based Vaccination for Treatment of Colorectal Cancer: Rational and Progress. Curr Drug Targets 2019; 20:1486-1495. [DOI: 10.2174/1389450120666190619121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with
a high rate of morbidity and mortality. A large proportion of patients with early stage CRC, who undergo
conventional treatments develop local recurrence or distant metastasis and in this group of advanced
disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated
with chemotherapy and chemo-resistance may limit continuing conventional treatment alone.
Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features
of tumors in combination with conventional therapeutic approach could be used to eradicate residual
micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-
based vaccination therapy is one class of cancer treatment that could be used to induce tumorspecific
immune responses, through the recognition of specific antigen-derived peptides in tumor
cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was
to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy
in CRC patients as a novel therapeutic approach in the treatment of CRC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Javanbakht
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Zhu FJ, Tong YL, Sheng ZY, Yao YM. Role of dendritic cells in the host response to biomaterials and their signaling pathways. Acta Biomater 2019; 94:132-144. [PMID: 31108257 DOI: 10.1016/j.actbio.2019.05.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
Strategies to enhance, inhibit, or qualitatively modulate immune responses are important for diverse biomedical applications such as vaccine adjuvant, drug delivery, immunotherapy, cell transplant, tissue engineering, and regenerative medicine. However, the clinical efficiency of these biomaterial systems is affected by the limited understanding of their interaction with complex host microenvironments, for example, excessive foreign body reaction and immunotoxicity. Biomaterials and biomedical devices implanted in the body may induce a highly complicated and orchestrated series of host responses. As macrophages are among the first cells to infiltrate and respond to implanted biomaterials, the macrophage-mediated host response to biomaterials has been well studied. Dendritic cells (DCs) are the most potent antigen-presenting cells that activate naive T cells and bridge innate and adaptive immunity. The potential interaction of DCs with biomaterials appears to be critical for exerting the function of biomaterials and has become an important, developing area of investigation. Herein, we summarize the effects of the physicochemical properties of biomaterials on the immune function of DCs together with their receptors and signaling pathways. This review might provide a complete understanding of the interaction of DCs with biomaterials and serve as a reference for the design and selection of biomaterials with particular effects on targeted cells. STATEMENT OF SIGNIFICANCE: Biomaterials implanted in the body are increasingly applied in clinical practice. The performance of these implanted biomaterials is largely dependent on their interaction with the host immune system. As antigen-presenting cells, dendritic cells (DCs) directly interact with biomaterials through pattern recognition receptors (PRRs) recognizing "biomaterial-associated molecular patterns" and generate a battery of immune responses. In this review, the physicochemical properties of biomaterials that regulate the immune function of DCs together with their receptors and signaling pathways of biomaterial-DC interactions are summarized and discussed. We believe that knowledge of the interplay of DC and biomaterials may spur clinical translation by guiding the design and selection of biomaterials with particular effects on targeted cell for tissue engineering, vaccine delivery, and cancer therapy.
Collapse
|
18
|
Lee AY, Cho MH, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv 2019; 16:757-772. [PMID: 31282221 DOI: 10.1080/17425247.2019.1641083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer commonly occurs at a high incidence worldwide. Application of aerosol gene delivery systems using various kinds of vectors can improve the patient's quality of life by prolonging the survival rate. AREAS COVERED This review provides a recent update on aerosol gene delivery strategies using various kinds of vectors and gene-modification technologies. Peptide-mediated gene therapy achieves specific targeting of cells and highly improves efficacy. Promoter-operating expression and the CRISPR/Cas9 system are novel gene therapy strategies for effective lung cancer treatment. Furthermore, hybrid systems with a combination of vectors or drugs have been recently applied as new trends in gene therapy. EXPERT OPINION Although aerosol gene delivery has many advantages, physiological barriers in the lungs pose formidable challenges. Targeted gene delivery and gene-editing technology are promising strategies for lung cancer therapy. These strategies may allow the development of safety and high efficiency for clinical application. Recently, hybrid gene therapy combining novel and specific vectors has been developed as an advanced strategy. Although gene therapy for lung cancer is being actively researched, aerosol gene therapy strategies are currently lacking, and further studies on aerosol gene therapy are needed to treat lung cancer.
Collapse
Affiliation(s)
- Ah Young Lee
- a Center for Molecular Recognition Research, Materials and Life Science Research Division , Korea Institute of Science and Technology (KIST) , Seoul , Korea
| | - Myung-Haing Cho
- b Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine , Seoul National University , Seoul , Republic of Korea
| | - Sanghwa Kim
- c Cancer Biology Laboratory , Institut Pasteur Korea , Seongnam-si , Korea
| |
Collapse
|
19
|
Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: Effect of polymer end groups. Int J Pharm 2019; 564:1-9. [PMID: 30978487 DOI: 10.1016/j.ijpharm.2019.04.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the influence of end group of poly(lactic-co-glycolic acid) (PLGA) on the drug loading and release behavior of electrospray-generated PLGA microspheres. To this end, doxycycline hyclate (DOX) was selected as a model drug, and PLGA (molecular weight: 17 and 44 kDa) with either an acid or ester end group were electrosprayed with DOX. The processing parameters were optimized to obtain microspheres comparable in size. Drug loading efficiency and release profile were determined by the high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method. PLGA polymers or drug-loaded microspheres were characterized before and after exposure to phosphate buffer saline at 37 °C regarding the wettability of polymers, pH changes of the buffer, molecular weight of PLGA and morphology of the microspheres. The acid end group of PLGA microspheres brought about lower encapsulation efficiency and faster DOX release rate in our study, indicating that different hydrophilicity of polymer and degradation speed were the main reasons causing a difference in encapsulation efficiency and release profile. In addition, DOX released from the PLGA microspheres was active by showing antibacterial effects against Porphyromonas gingivalis as measured using a zone of inhibition test, and varying the end groups showed no impact on the antibacterial efficacy. This study demonstrated that the end group of PLGA can be used as a new tool to regulate drug encapsulation efficiency and release rate to meet different clinical drug delivery requirements.
Collapse
|
20
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
21
|
Saito E, Kuo R, Pearson RM, Gohel N, Cheung B, King NJC, Miller SD, Shea LD. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J Control Release 2019; 300:185-196. [PMID: 30822435 DOI: 10.1016/j.jconrel.2019.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Inflammation associated with autoimmune diseases and chronic injury is an initiating event that leads to tissue degeneration and dysfunction. Inflammatory monocytes and neutrophils systemically circulate and enter inflamed tissue, and pharmaceutical based targeting of these cells has not substantially improved outcomes and has had side effects. Herein, we investigated the design of drug-free biodegradable nanoparticles, notably without any active pharmaceutical ingredient or targeting ligand, that target circulating inflammatory monocytes and neutrophils in the vasculature to inhibit them from migrating into inflamed tissue. Nanoparticles were formed from 50:50 poly(DL-lactide-co-glycolide) (PLG) with two molecular weights (Low, High) and poly(DL-lactide) (PLA) (termed PLG-L, PLG-H, and PDLA, respectively) and were analyzed for their association with monocytes and neutrophils and their impact on disease course along with immune cell trafficking. For particles injected intravenously for 6 consecutive days to mice with experimental autoimmune encephalomyelitis (EAE), PLG-H particles had significantly lower EAE clinical scores than PBS control, while PLG-L and PDLA particles had modest or negligible effect on EAE onset. In vivo and in vitro data suggests that PLG-H particles had high association with immune cells, with preferential association with blood neutrophils relative to other particles. PLG-H particles restrained immune cells from the central nervous system (CNS), with increased accumulation in the spleen, which was not observed for mice receiving PDLA or control treatments. These results demonstrate that the particle composition influences the association with inflammatory monocytes and neutrophils in the vasculature, with the potential to redirect trafficking and ameliorate inflammation.
Collapse
Affiliation(s)
- Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kuo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | - Nishant Gohel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Cheung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Science, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Barillet S, Fattal E, Mura S, Tsapis N, Pallardy M, Hillaireau H, Kerdine-Römer S. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology 2019; 13:606-622. [DOI: 10.1080/17435390.2018.1564078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S. Barillet
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - E. Fattal
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Mura
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - N. Tsapis
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - M. Pallardy
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - H. Hillaireau
- Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Kerdine-Römer
- UMR-996 Inflammation, Chemokines and Immunopathology, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
23
|
Jia C, Yang T, Liu Y, Zhu A, Yin F, Wang Y, Xu L, Wang Y, Yan M, Cai Q, Liang X, Ju R, Chen J, Wang L. A Novel Human Papillomavirus 16 L1 Pentamer-Loaded Hybrid Particles Vaccine System: Influence of Size on Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35745-35759. [PMID: 30360122 DOI: 10.1021/acsami.8b11556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cervical cancer remains the second-most prevalent female malignancy around the world, leading to a great majority of cancer-related mortality that occurs mainly in developing countries. Developing an effective and low-cost vaccine against human papillomavirus (HPV) infection, especially in medically underfunded areas, is urgent. Compared with vaccines based on HPV L1 viruslike particles (VLPs) in the market, recombinant HPV L1 pentamer expressed in Escherichia coli represents a promising and potentially cost-effective vaccine for preventing HPV infection. Hybrid particles comprising a polymer core and lipid shell have shown great potential compared to conventional aluminum salts adjuvant and is urgently needed for HPV L1 pentamer vaccines. It is well-reported that particle sizes are crucial in regulating immune responses. Nevertheless, reports on the relationship between the particulate size and the resultant immune response have been in conflict, and there is no answer to how the size of particles regulates specific immune response for HPV L1 pentamer-based candidate vaccines. Here, we fabricated HPV 16 L1 pentamer-loaded poly(d,l-lactide- co-glycolide) (PLGA)/lecithin hybrid particles with uniform sizes (0.3, 1, and 3 μm) and investigated the particle size effects on antigen release, activation of lymphocytes, dendritic cells (DCs) activation and maturation, follicular helper CD4+ T (TFH) cells differentiation, and release of pro-inflammatory cytokines and chemokines. Compared with the other particle sizes, 1 μm particles induced more powerful antibody protection and yielded more persistent antibody responses, as well as more heightened anamnestic responses upon repeat vaccination. The superior immune responses might be attributed to sustainable antigen release and robust antigen uptake and transport and then further promoted a series of cascade reactions, including enhanced DCs maturation, increased lymphocytes activation, and augmented TFH cells differentiation in draining lymph nodes (DLNs). Here, a powerful and economical platform for HPV vaccine and a comprehensive understanding of particle size effect on immune responses for HPV L1 pentamer-based candidate vaccines are provided.
Collapse
Affiliation(s)
- Chengcheng Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Ali Zhu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Fei Yin
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yajun Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lan Xu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yan Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Mei Yan
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Qingman Cai
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Xiaoxu Liang
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Ruijun Ju
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Jianping Chen
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
24
|
Microcapsule Technology for Controlled Growth Factor Release in Musculoskeletal Tissue Engineering. Sports Med Arthrosc Rev 2018; 26:e2-e9. [PMID: 29722766 DOI: 10.1097/jsa.0000000000000188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue engineering strategies have relied on engineered 3-dimensional (3D) scaffolds to provide architectural templates that can mimic the native cell environment. Among the several technologies proposed for the fabrication of 3D scaffold, that can be attractive for stem cell cultivation and differentiation, moulding or bioplotting of hydrogels allow the stratification of layers loaded with cells and with specific additives to obtain a predefined microstructural organization. Particularly with bioplotting technology, living cells, named bio-ink, and additives, such as biopolymer microdevices/nanodevices for the controlled delivery of growth factors or biosignals, can be organized spatially into a predesigned 3D pattern by automated fabrication with computer-aided digital files. The technologies for biopolymer microcarrier/nanocarrier fabrication can be strategic to provide a controlled spatiotemporal delivery of specific biosignals within a microenvironment that can better or faster address the stem cells loaded within it. In this review, some examples of growth factor-controlled delivery by biopolymer microdevices/nanodevices embedded within 3D hydrogel scaffolds will be described, to achieve a bioengineered 3D interactive microenvironment for stem cell differentiation. Conventional and recently proposed technologies for biopolymer microcapsule fabrication for controlled delivery over several days will also be illustrated and critically discussed.
Collapse
|
25
|
Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, David CN, McGee CE, Sempowski GD, Shterev I, McKinnon K, Bachelder EM, Ainslie KM, Ting JPY. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release 2018; 270:1-13. [PMID: 29170142 PMCID: PMC5808851 DOI: 10.1016/j.jconrel.2017.11.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 01/06/2023]
Abstract
Most FDA-approved adjuvants for infectious agents boost humoral but not cellular immunity, and have poorly-understood mechanisms. Stimulator of interferon genes (STING, also known as MITA, MPYS, or ERIS) is an exciting adjuvant target due to its role in cyclic dinucleotide (CDN)-driven anti-viral immunity; however, a major hindrance is STING's cytosolic localization which requires intracellular delivery of its agonists. As a result, STING agonists administered in a soluble form have elicited suboptimal immune responses. Delivery of STING agonists via particle platforms has proven a more successful strategy, but the opportunity for improved formulations and bioactivity remains. In this study we evaluated the adjuvant activity of the potent STING agonist, CDN 3'3'-cGAMP (cGAMP), encapsulated in acid-sensitive acetalated dextran (Ace-DEX) polymeric microparticles (MPs) which passively target antigen-presenting cells for intracellular release. This formulation was superior to all particle delivery systems evaluated and maintained its bioactivity following a sterilizing dose of gamma irradiation. Compared to soluble cGAMP, the Ace-DEX cGAMP MPs enhanced type-I interferon responses nearly 1000-fold in vitro and 50-fold in vivo, caused up to a 104-fold boost in antibody titers, increased Th1-associated responses, and expanded germinal center B cells and memory T cells. Furthermore, the encapsulated cGAMP elicited no observable toxicity in animals and achieved protective immunity against a lethal influenza challenge seven months post-immunization when using CDN adjuvant doses up to 100-fold lower than previous reports. For these reasons, Ace-DEX MP-encapsulated cGAMP represents a potent vaccine adjuvant of humoral and cellular immunity.
Collapse
Affiliation(s)
- Robert D Junkins
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew D Gallovic
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brandon M Johnson
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael A Collier
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebekah Watkins-Schulz
- Curriculum of Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clément N David
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles E McGee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ivo Shterev
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Karen McKinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
A new cell-to-cell interaction model for epithelial microfold cell formation and the enhancing effect of epidermal growth factor. Eur J Pharm Sci 2017; 106:49-61. [DOI: 10.1016/j.ejps.2017.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
|
27
|
Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv 2017. [DOI: 10.1039/c7ra00336f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.
Collapse
Affiliation(s)
- Hugh H. Chan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Department of Neuroscience
| | | | - Ming Ni
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Shuangmu Zhuo
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| |
Collapse
|
28
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
29
|
Glavas L, Odelius K, Albertsson AC. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying. Biomacromolecules 2016; 17:2930-6. [PMID: 27445061 PMCID: PMC5815657 DOI: 10.1021/acs.biomac.6b00747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/20/2016] [Indexed: 11/28/2022]
Abstract
A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lidija Glavas
- Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH, Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Karin Odelius
- Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH, Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Ann-Christine Albertsson
- Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH, Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| |
Collapse
|
30
|
Rahimi M, Mobedi H, Behnamghader A. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation. J Microencapsul 2016; 33:355-64. [DOI: 10.1080/02652048.2016.1194905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Abstract
The use of gene delivery systems for the expression of antigenic proteins is an established means for activating a patient’s own immune system against the cancer they carry. Since tumor cells are poor antigen-presenting cells, cross-presentation of tumor antigens by dendritic cells (DCs) is essential for the generation of tumor-specific cytotoxic T-lymphocyte responses. A number of polymer-based nanomedicines have been developed to deliver genes into DCs, primarily by incorporating tumor-specific, antigen-encoding plasmid DNA with polycationic molecules to facilitate DNA loading and intracellular trafficking. Direct in vivo targeting of plasmid DNA to DC surface receptors can induce high transfection efficiency and long-term gene expression, essential for antigen loading onto major histocompatibility complex molecules and stimulation of T-cell responses. This chapter summarizes the physicochemical properties and biological information on polymer-based non-viral vectors used for targeting DCs, and discusses the main challenges for successful in vivo gene transfer into DCs.
Collapse
Affiliation(s)
- Kenneth A. Howard
- Department of Molecular Biology and Gen, Interdisciplinary Nanoscience Center (i, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Biophysical I, Aarhus University, Aarhus, Denmark
| | - Dan Peer
- Britannia Bldg, 2nd Fl, Rm 226, Tel-Aviv Univ, Dept Cell Research, Tel-Aviv, Israel
| |
Collapse
|
32
|
Kroneková Z, Mikulec M, Petrenčíková N, Paulovičová E, Paulovičová L, Jančinová V, Nosál' R, Reddy PS, Shimoga GD, Chorvát D, Kronek J. Ex Vivo and In Vitro Studies on the Cytotoxicity and Immunomodulative Properties of Poly(2-isopropenyl-2-oxazoline) as a New Type of Biomedical Polymer. Macromol Biosci 2016; 16:1200-11. [DOI: 10.1002/mabi.201600016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zuzana Kroneková
- Department for Biomaterials Research; Polymer Institute; Slovak Academy of Sciences; Dubravska cesta 9 845 41 Bratislava Slovakia
| | - Marcel Mikulec
- Department for Biomaterials Research; Polymer Institute; Slovak Academy of Sciences; Dubravska cesta 9 845 41 Bratislava Slovakia
| | - Nadežda Petrenčíková
- Department for Biomaterials Research; Polymer Institute; Slovak Academy of Sciences; Dubravska cesta 9 845 41 Bratislava Slovakia
| | - Ema Paulovičová
- Institute of Chemistry; Center of Glycomics; Slovak Academy of Sciences; Dubravska cesta 9 84236 Bratislava Slovakia
| | - Lucia Paulovičová
- Institute of Chemistry; Center of Glycomics; Slovak Academy of Sciences; Dubravska cesta 9 84236 Bratislava Slovakia
| | - Viera Jančinová
- Institute of Experimental Pharmacology & Toxicology; Slovak Academy of Sciences; Dubravska cesta 9 841 04 Bratislava Slovakia
| | - Radomír Nosál'
- Institute of Experimental Pharmacology & Toxicology; Slovak Academy of Sciences; Dubravska cesta 9 841 04 Bratislava Slovakia
| | - Palem S. Reddy
- Centre of Polymer Systems; University Institute; Tomas Bata University in Zlin; Trˇída T. Bati 5678; Zlin 760 01 Czech Republic
| | - Ganesh D. Shimoga
- Centre of Polymer Systems; University Institute; Tomas Bata University in Zlin; Trˇída T. Bati 5678; Zlin 760 01 Czech Republic
| | - Dušan Chorvát
- International Laser Centre; Ilkovičova 3 841 04 Bratislava Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research; Polymer Institute; Slovak Academy of Sciences; Dubravska cesta 9 845 41 Bratislava Slovakia
| |
Collapse
|
33
|
Minardi S, Corradetti B, Taraballi F, Sandri M, Martinez JO, Powell ST, Tampieri A, Weiner BK, Tasciotti E. Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1479-1488. [PMID: 26797709 DOI: 10.1002/smll.201503484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release.
Collapse
Affiliation(s)
- Silvia Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Bruna Corradetti
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Francesca Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Monica Sandri
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Jonathan O Martinez
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Sebastian T Powell
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics-CNR (ISTEC-CNR), Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Bradley K Weiner
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
- Department of Orthopedic Surgery, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX, 77030, USA
| |
Collapse
|
34
|
Rouch JD, Scott A, Lei NY, Solorzano-Vargas RS, Wang J, Hanson EM, Kobayashi M, Lewis M, Stelzner MG, Dunn JCY, Eckmann L, Martín MG. Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids. PLoS One 2016; 11:e0148216. [PMID: 26820624 PMCID: PMC4731053 DOI: 10.1371/journal.pone.0148216] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background & Aims Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer’s patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. Methods Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. Results Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. Conclusions Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome.
Collapse
Affiliation(s)
- Joshua D. Rouch
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew Scott
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nan Ye Lei
- Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - R. Sergio Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jiafang Wang
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elaine M. Hanson
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Masae Kobayashi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael Lewis
- Department of Pathology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Matthias G. Stelzner
- Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - James C. Y. Dunn
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Martín G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Hong E, Usiskin IM, Bergamaschi C, Hanlon DJ, Edelson RL, Justesen S, Pavlakis GN, Flavell RA, Fahmy TM. Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity. J Biol Chem 2015; 291:8931-50. [PMID: 26719339 DOI: 10.1074/jbc.m115.695304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/08/2023] Open
Abstract
Here we report a "configuration-dependent" mechanism of action for IL-15:IL-15Rα (heterodimeric IL-15 or hetIL-15) where the manner by which IL-15:IL-15Rα molecules are presented to target cells significantly affects its function as a vaccine adjuvant. Although the cellular mechanism of IL-15 trans-presentation via IL-15Rα and its importance for IL-15 function have been described, the full effect of the IL-15:IL-15Rα configuration on responding cells is not yet known. We found that trans-presenting IL-15:IL-15Rα in a multivalent fashion on the surface of antigen-encapsulating nanoparticles enhanced the ability of nanoparticle-treated dendritic cells (DCs) to stimulate antigen-specific CD8(+) T cell responses. Localization of multivalent IL-15:IL-15Rα and encapsulated antigen to the same DC led to maximal T cell responses. Strikingly, DCs incubated with IL-15:IL-15Rα-coated nanoparticles displayed higher levels of functional IL-15 on the cell surface, implicating a mechanism for nanoparticle-mediated transfer of IL-15 to the DC surface. Using artificial antigen-presenting cells to highlight the effect of IL-15 configuration on DCs, we showed that artificial antigen-presenting cells presenting IL-15:IL-15Rα increased the sensitivity and magnitude of the T cell response, whereas IL-2 enhanced the T cell response only when delivered in a paracrine fashion. Therefore, the mode of cytokine presentation (configuration) is important for optimal immune responses. We tested the effect of configuration dependence in an aggressive model of murine melanoma and demonstrated significantly delayed tumor progression induced by IL-15:IL-15Rα-coated nanoparticles in comparison with monovalent IL-15:IL-15Rα. The novel mechanism of IL-15 transfer to the surface of antigen-processing DCs may explain the enhanced potency of IL-15:IL-15Rα-coated nanoparticles for antigen delivery.
Collapse
Affiliation(s)
- Enping Hong
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Ilana M Usiskin
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Cristina Bergamaschi
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | - Douglas J Hanlon
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Richard L Edelson
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sune Justesen
- the Department of Science, University of Copenhagen, Copenhagen 1017, Denmark
| | - George N Pavlakis
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | | | - Tarek M Fahmy
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, the Departments of Immunobiology and
| |
Collapse
|
36
|
Salvador A, Sandgren KJ, Liang F, Thompson EA, Koup RA, Pedraz JL, Hernandez RM, Loré K, Igartua M. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int J Pharm 2015; 496:371-81. [DOI: 10.1016/j.ijpharm.2015.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
37
|
Ahmad E, Zia Q, Fatima MT, Owais M, Saleemuddin M. Vaccine potential of plasma bead-based dual antigen delivery system against experimental murine candidiasis. Int J Biol Macromol 2015; 81:100-11. [DOI: 10.1016/j.ijbiomac.2015.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/23/2023]
|
38
|
Three-dimensional printing of antibiotics-loaded poly-ε-caprolactone/poly(lactic-co-glycolic acid) scaffolds for treatment of chronic osteomyelitis. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0014-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Ito F, Kawakami H. Facile technique for the preparation of monodispersed biodegradable polymer nanospheres using a solvent evaporation method. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Salari F, Varasteh AR, Vahedi F, Hashemi M, Sankian M. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice. Int Immunopharmacol 2015; 29:672-678. [PMID: 26404189 DOI: 10.1016/j.intimp.2015.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/07/2015] [Accepted: 09/13/2015] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate whether poly (lactic-co-glycolic) acid (PLGA) nanoparticles could enhance sublingual immunotherapy (SLIT) efficacy. BALB/c mice sensitized to rChe a 3 were treated sublingually either with soluble rChe a 3 (100μg/dose) or PLGA-encapsulated rChe a 3 (5, 25, or 50μg/dose). SLIT with PLGA-encapsulated rChe a 3 (equivalent to 25 and 50μg rChe a 3 per dose) led to significantly increased antigen-specific IgG2a, along with no effect on allergen-specific IgE and IgG1 antibody levels. In addition, interleukin 4 (IL-4) levels in restimulated splenocytes were significantly less, while interferon-γ (IFN-γ), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) levels, as well as Foxp3 expression, were significantly greater than in the control groups. Our findings suggest that PLGA nanoparticle-based vaccination may help rational development of sublingual immunotherapy through reduction of the needed allergen doses and also significantly enhanced systemic T regulatory (Treg) and T helper 1 (Th1) immune responses.
Collapse
Affiliation(s)
- Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Abdol-Reza Varasteh
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, Ontario, Canada; Biotechnology Department, Razi Vaccine and Serum Research Institute, Mashhad, Iran.
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Kazazi-Hyseni F, van Vuuren S, van der Giezen D, Pieters E, Ramazani F, Rodriguez S, Veldhuis G, Goldschmeding R, van Nostrum C, Hennink W, Kok R. Release and pharmacokinetics of near-infrared labeled albumin from monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcapsular renal injection. Acta Biomater 2015; 22:141-54. [PMID: 25929814 DOI: 10.1016/j.actbio.2015.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/25/2015] [Accepted: 04/21/2015] [Indexed: 01/02/2023]
Abstract
Subcapsular renal injection is a novel administration method for local delivery of therapeutics for the treatment of kidney related diseases. The aim of this study was to investigate the feasibility of polymeric microspheres for sustained release of protein therapeutics in the kidney and study the subsequent redistribution of the released protein. For this purpose, monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) (PLHMGA) microspheres (40 μm in diameter) loaded with near-infrared dye-labeled bovine serum albumin (NIR-BSA) were prepared by a membrane emulsification method. Rats were injected with either free NIR-BSA or with NIR-BSA loaded microspheres (NIR-BSA-ms) and the pharmacokinetics of the released NIR-BSA was studied for 3 weeks by ex vivo imaging of organs and blood. Quantitative release data were obtained from kidney homogenates and possible metabolism of the protein was investigated by SDS-PAGE analysis of the samples. The ex vivo images showed a rapid decrease of the NIR signal within 24h in kidneys injected with free NIR-BSA, while, importantly, the signal of the labeled protein was still visible at day 21 in kidneys injected with NIR-BSA-ms. SDS-PAGE analysis of the kidney homogenates showed that intact NIR-BSA was released from the microspheres. The locally released NIR-BSA drained to the systemic circulation and subsequently accumulated in the liver, where it was degraded and excreted renally. The in vivo release of NIR-BSA was calculated after extracting the protein from the remaining microspheres in kidney homogenates. The in vivo release rate was faster (89 ± 4% of the loading in 2 weeks) compared to the in vitro release of NIR-BSA (38 ± 1% in 2 weeks). In conclusion, PLHMGA microspheres injected under the kidney capsule provide a local depot from which a formulated protein is released over a prolonged time-period.
Collapse
|
42
|
Rahimi M, Mobedi H, Behnamghader A. In situforming poly(lactic acid-co-glycolic acid) implants containing leuprolide acetate/β-cyclodextrin complexes: preparation, characterization, andin vitrodrug release. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1055633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Abstract
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Kazazi-Hyseni F, Zandstra J, Popa E, Goldschmeding R, Lathuile A, Veldhuis G, Van Nostrum C, Hennink W, Kok R. Biocompatibility of poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection. Int J Pharm 2015; 482:99-109. [DOI: 10.1016/j.ijpharm.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
45
|
Prajapati VD, Jani GK, Kapadia JR. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv 2015; 12:1283-99. [DOI: 10.1517/17425247.2015.1015985] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Amini-Fazl MS, Mobedi H, Barzin J. Incorporation of HSA Microparticles Within the Taxol-Loaded In Situ Forming PLGA Microspheres: Synthesis, Characterization, and Drug Release. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.854237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Salvador A, Igartua M, Hernández RM, Pedraz JL. Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic-polycytidilic acid. J Microencapsul 2014; 31:560-6. [PMID: 24697189 DOI: 10.3109/02652048.2014.885608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vaccination using proteins and peptides is currently gaining importance. One of the major drawbacks of this approach is the lack of an efficient immune response when the antigens are administered without adjuvants. In this study, we have taken the advantage of a combined adjuvant system in order to improve the immunogenicity of the SPf66 malarial antigen. For that purpose, we have combined poly (lactic-co-glycolic) acid microspheres, alginate, and polyinosinic polycytidilic acid. Our results show that microspheres can enhance the IgG production obtained with Freund's complete adjuvant. We have attributed this improvement to the presence of polyinosinic polycytidilic acid, since formulations comprising this adjuvant overcame the immune response from the others. In addition, our microspheres produced both IgG1 and IgG2a, leading to mixed Th1/Th2 activation, optimal for malaria vaccination. In conclusion, we have designed a preliminary formulation with a high potential for the treatment of malaria.
Collapse
Affiliation(s)
- Aiala Salvador
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria, Spain and
| | | | | | | |
Collapse
|
48
|
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Am J Cancer Res 2014; 4:240-55. [PMID: 24505233 PMCID: PMC3915088 DOI: 10.7150/thno.6914] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022] Open
Abstract
Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery.
Collapse
|
49
|
Köping-Höggård M, Sánchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines 2014; 4:185-96. [PMID: 15889992 DOI: 10.1586/14760584.4.2.185] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
At present, there is considerable excitement within the nanotechnology field with regard to the potential use of nanosystems as carriers for mucosal vaccine delivery. Indeed, many of the vaccines available, including protein antigens and DNA vaccines, are very unstable and need to be protected from degradation in the biologic environment. In addition, their efficacy is limited by their poor capacity to cross biologic barriers and reach the target sites. As a consequence, the design of appropriate antigen carriers that could help overcome these problems has become a significant challenge. The goal of the present article is to review the recent advances in the design of polymeric nanosystems intended to be used as carriers for nasal vaccine delivery. More specifically, the authors present nanocarriers that have been made of safe materials, such as biodegradable polyesters and polysaccharides. The information accumulated regarding the in vivo behavior of these nanocarriers indicates that they are able to facilitate the transport of the associated antigen across the nasal epithelium, thus leading to efficient antigen presentation to the immune system. Furthermore, the results suggest that not only the size and surface properties but also the polymer composition and the structural architecture of the nanosystems are critical for the optimization of these antigen carriers. In conclusion, future studies intended to provide increased knowledge regarding these properties and how they relate to the efficiency of the immune responses, will undoubtedly affect the design of new and more effective nasal vaccine delivery strategies.
Collapse
Affiliation(s)
- Magnus Köping-Höggård
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
50
|
Abstract
Pulmonary disease has been the primary target of inhaled therapeutics for over 50 years. During that period, increasing interest has arisen in the use of this route of administration to gain access to the systemic circulation for the treatment of a number of diseases beyond the airways. In order to effectively employ this route, the barriers to transport from the lungs following deposition of aerosols must be considered, including the nature of the disease (whether proximal, as in pulmonary hypertension, or distal, as in diabetes). Delivery to the systemic circulation begins with the efficiency of aerosol generation and subsequent deposition in the airways and proceeds to the influence of mechanisms of clearance, including absorption, metabolism, and mucociliary and cell-mediated transport, on the residence time of the drugs in the lungs. The nature of the drug (small or large molecules/low or high molecular weight), susceptibility to degradation and general physicochemical properties play a role in the chemistry of its formulation, physics of aerosol delivery and biology of disposition.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- Systems & Translational Sciences, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| | - Anthony J. Hickey
- Technology for Industry and the Environment, Discovery – Sciences – Technologies Group, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| |
Collapse
|