1
|
Noh H, Lee J, Seyed Khoei N, Peruchet-Noray L, Kang D, Fervers B, Wagner KH, Shin A, Freisling H. Serum bilirubin levels and risk of colorectal cancer in Korean adults: results from the Korean Genome and Epidemiology Study-Health Examinee (KoGES-HEXA) Cohort Study. Br J Cancer 2024; 131:1635-1643. [PMID: 39379570 PMCID: PMC11555262 DOI: 10.1038/s41416-024-02847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Current evidence on associations between circulating bilirubin and colorectal cancer (CRC) risk is inconsistent. METHODS In this prospective study, we investigated associations of pre-diagnostic circulating levels of total and indirect bilirubin with CRC risk in 78,467 Korean adults aged 40-78 years at recruitment, considering potential non-linearity and sex differences. Hazard ratios (HR) and 95% confidence intervals (CI) for associations with CRC risk were estimated with Cox proportional hazard regression. RESULTS During a median 7.9-year follow-up, 539 incident CRC cases were recorded. In multivariable-adjusted models, higher levels of total bilirubin were associated with a 26% (CI: 42% to 7%) lower risk of CRC among men and women combined, comparing the highest with the lowest tertile (P-linear trend = 0.003). A U-shaped association was observed in men, with the lowest risk at approximately 0.8 mg/dL (=13.7 μmol/L) of total bilirubin (P for non-linearity = 0.01). Although the association was largely null in women, there was no evidence for effect modification by sex (P-interaction = 0.73). Associations between indirect bilirubin and CRC risk were similar. CONCLUSIONS Higher circulating levels of total and indirect bilirubin were inversely associated with the risk of CRC among Korean adults. The associations were strongly inverse and U-shaped among men.
Collapse
Affiliation(s)
- Hwayoung Noh
- Department of Cancer Prevention and Environment, INSERM U1296, Leon Berard Cancer Centre, Lyon, France
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jeeyoo Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nazlisadat Seyed Khoei
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Laia Peruchet-Noray
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Beatrice Fervers
- Department of Cancer Prevention and Environment, INSERM U1296, Leon Berard Cancer Centre, Lyon, France
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| |
Collapse
|
2
|
Wang X, Liao P, Dong H, Liu A, Wang Q, Yang H, Xu X, Chai D, Zhu L, Lyu L. REDUCED CX43 EXPRESSION INDUCES AUTOPHAGY THROUGH ACTIVATION OF THE AMPK-MTOR-ULK1 SIGNALING PATHWAY IN THE COMMON BILE DUCT LIGATION RAT HEART. Shock 2024; 62:386-397. [PMID: 38517263 DOI: 10.1097/shk.0000000000002360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Backgrounds: This study aimed to investigate the relationship between Cx43 expression and autophagy mediated by the AMPK-mTOR-Ulk1 signaling pathway in jaundice heart. Methods: In this study, a jaundice model was established in common bile duct ligation (CBDL) rats. Cardiac injury was assessed using various methods including myocardial injury indicators, echocardiography, transmission electron microscopy, hematoxylin and eosin staining, Masson staining, immunohistochemical analyses, and immunofluorescence staining. We investigated the regulatory relationship between Cx43, autophagy, and the AMPK-mTOR-ULK pathway in vivo by administering autophagy agonists (Rapa), autophagy inhibitors (3-MA), and Cx43 inhibitors (Gap 26). In vitro , we observed the relationship between autophagy and the AMPK-mTOR-ULK1 pathway in cells by exposing them to the AMPK inhibitor Compound C and the AMPK activator AICAR. Results: We found that CBDL induced autophagy through the AMPK-mTOR-ULK pathway, leading to the inhibition of myocardial dysfunction. Rapamycin pretreatment with CBDL3d exhibited a protective effect against myocardial injury and promoted autophagy. In contrast, 3-MA had no impact. Pretreatment with rapamycin at CBDL2w enhanced autophagy and aggravated cardiac injury; however, inhibition of autophagy using 3-MA attenuated cardiac injury. Cell viability was enhanced by AMPK inhibitors and inhibited by AMPK agonists. In addition, we observed that increased autophagy led to decreased Cx43 expression, which negatively affected cardiac function. Conclusions: CBDL induces myocardial injury in rats and activates autophagy through the AMPK-mTOR-ULK pathway, resulting in decreased Cx43 protein levels. A moderate increase in early autophagy in CBDL can improve cardiac injury, while late inhibition of autophagy can reduce myocardial injury.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pingping Liao
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Dong
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijie Liu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Yang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolin Xu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongyue Chai
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Zhu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Lyu
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Janampalli M, Kitchen ST, Vatolin S, Tang N, He M, Bearer CF. Choline supplementation mitigates effects of bilirubin in cerebellar granule neurons in vitro. Pediatr Res 2024; 96:97-103. [PMID: 38172213 DOI: 10.1038/s41390-023-02968-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Premature infants may suffer from high levels of bilirubin that could lead to neurotoxicity. Bilirubin has been shown to decrease L1-mediated ERK1/2 signaling, L1 phosphorylation, and L1 tyrosine 1176 dephosphorylation. Furthermore, bilirubin redistributes L1 into lipid rafts (LR) and decreases L1-mediated neurite outgrowth. We demonstrate that choline supplementation improves L1 function and signaling in the presence of bilirubin. METHODS Cerebellar granule neurons (CGN) were cultured with and without supplemental choline, and the effects on L1 signaling and function were measured in the presence of bilirubin. L1 activation of ERK1/2, L1 phosphorylation and dephosphorylation were measured. L1 distribution in LR was quantified and neurite outgrowth of CGN was determined. RESULTS Forty µM choline significantly reduced the effect of bilirubin on L1 activation of ERK1/2 by 220% (p = 0.04), and increased L1 triggered changes in tyrosine phosphorylation /dephosphorylation of L1 by 34% (p = 0.026) and 35% (p = 0.02) respectively. Choline ameliorated the redistribution of L1 in lipid rafts by 38% (p = 0.02) and increased L1-mediated mean neurite length by 11% (p = 0.04). CONCLUSION Choline pretreatment of CGN significantly reduced the disruption of L1 function by bilirubin. The supplementation of pregnant women and preterm infants with choline may increase infant resilience to the effects of bilirubin. IMPACT This article establishes choline as an intervention for the neurotoxic effects of bilirubin on lipid rafts. This article provides clear evidence toward establishing one intervention for bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into the mechanism of the ameliorative effect of choline on bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Mrinaj Janampalli
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Spencer T Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sergei Vatolin
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Neonatology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Liao P, Wang X, Dong H, Chai D, Yue Z, Lyu L. HYPERBILIRUBINEMIA AGGRAVATES RENAL ISCHEMIA REPERFUSION INJURY BY EXACERBATING PINK1-PARKIN-MEDIATED MITOPHAGY. Shock 2023; 60:262-271. [PMID: 37278995 DOI: 10.1097/shk.0000000000002160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
ABSTRACT Background: Hyperbilirubinemia is a common perioperative complication, which is associated with acute kidney injury. Bilirubin permeabilizes mitochondrial membranes leading to mitochondrial swelling and dysfunction. In this study, we aimed to determine the association between PINK1-PARKIN-mediated mitophagy and renal ischemia-reperfusion (IR) injury aggravated by hyperbilirubinemia. Methods: A C57BL/6 mouse hyperbilirubinemia model was induced via intraperitoneal injection of bilirubin solution. In addition, a hypoxia/reoxygenation (H/R) injury model of TCMK-1 cells was established. In these models, we determined the effects of hyperbilirubinemia on oxidative stress, apoptosis, mitochondrial damage, and fibrosis. Results:In vitro , colocalization of GFP-LC3 puncta and Mito-Tracker Red showed that the number of mitophagosomes increased in TCMK-1 cells under H/R and bilirubin condition. Silencing of PINK1 or inhibition of autophagy alleviated mitochondrial damage, oxidative stress, and apoptosis in H/R injury aggravated by bilirubin and decreased cell death detected by methyl-thiazolyl-tetrazolium. In vivo , hyperbilirubinemia increased serum creatinine level in the renal IR injury mice model. Hyperbilirubinemia enhanced apoptosis induced by renal IR. In addition, hyperbilirubinemia increased mitophagosomes and autophagosomes and disrupted mitochondrial cristae in the IR kidney. Inhibition of PINK1 or autophagy reduced histological damages by alleviating apoptosis in renal IR injury, aggravated by hyperbilirubinemia. 3-MA or PINK1-shRNA-AAV9 treatment decreased the area of collagen and proteins related to fibrosis in renal IR injury, aggravated by hyperbilirubinemia. Conclusions: We have demonstrated that hyperbilirubinemia aggravated oxidative stress, apoptosis, mitochondrial damage, and fibrosis in renal IR injury by exacerbating PINK1-PARKIN-mediated mitophagy.
Collapse
Affiliation(s)
- Pingping Liao
- Department of Geriatric Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xiaoyu Wang
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - He Dong
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Dongyue Chai
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Ziqi Yue
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | | |
Collapse
|
5
|
Llido JP, Jayanti S, Tiribelli C, Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants (Basel) 2023; 12:1525. [PMID: 37627520 PMCID: PMC10451892 DOI: 10.3390/antiox12081525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular redox status has a crucial role in brain physiology, as well as in pathologic conditions. Physiologic senescence, by dysregulating cellular redox homeostasis and decreasing antioxidant defenses, enhances the central nervous system's susceptibility to diseases. The reduction of free radical accumulation through lifestyle changes, and the supplementation of antioxidants as a prophylactic and therapeutic approach to increase brain health, are strongly suggested. Bilirubin is a powerful endogenous antioxidant, with more and more recognized roles as a biomarker of disease resistance, a predictor of all-cause mortality, and a molecule that may promote health in adults. The alteration of the expression and activity of the enzymes involved in bilirubin production, as well as an altered blood bilirubin level, are often reported in neurologic conditions and neurodegenerative diseases (together denoted NCDs) in aging. These changes may predict or contribute both positively and negatively to the diseases. Understanding the role of bilirubin in the onset and progression of NCDs will be functional to consider the benefits vs. the drawbacks and to hypothesize the best strategies for its manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Sri Jayanti
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16911, Indonesia
| | - Claudio Tiribelli
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| | - Silvia Gazzin
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| |
Collapse
|
6
|
Wang Y, Wang H, Zhang Q, Li S, Mao Y, Lu J, Shen Y, Han Y. Correlation between hyperbilirubinemia risk and immune cell mitochondria parameters in neonates with jaundice. Front Pediatr 2023; 11:1200099. [PMID: 37397145 PMCID: PMC10313225 DOI: 10.3389/fped.2023.1200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose To explore the correlation between mitochondria parameters of immune cells and hyperbilirubinemia risk in hospitalized neonates with jaundice. Methods This retrospective study included jaundiced neonates born between September 2020 and March 2022 at Shaoxing Keqiao Women & Children's Hospital. The neonates were divided into low, intermediate-low, intermediate-high, and high-risk groups according to the hyperbilirubinemia risk. The purpose parameters including percentage, absolute count, mitochondrial mass (MM), and single-cell MM (SCMM) of peripheral blood T lymphocytes detected by flow cytometry were collected. Results Finally, 162 neonates with jaundice (47, 41, 39, and 35 with low, intermediate-low, intermediate-high, and high-risk) were included. CD3+ SCMM was significantly higher in the high-risk group compared with the low and intermediate-low-risk groups (both P < 0.0083), CD4+ SCMM was significantly higher in the high-risk group compared with the three other groups (all P < 0.0083), and CD8+ SCMM was significantly higher in the intermediate-low and high-risk groups compared with the low-risk group (both P < 0.0083). CD3+ (r = 0.34, P < 0.001) and CD4+ (r = 0.20, P = 0.010) SCMM positively correlated with bilirubin levels. Conclusions The mitochondrial SCMM parameters differed significantly among jaundiced neonates with different hyperbilirubinemia risks. CD3+ and CD4+ T cell SCMM values were positively correlated with the serum bilirubin levels, and might correlated with hyperbilirubinemia risk.
Collapse
|
7
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
8
|
Li D, Yuan X, Dong S, Al-Dhamin Z, Du J, Fu N, Nan Y. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through modulating mitochondrial quality control. Acta Physiol (Oxf) 2023; 237:e13918. [PMID: 36602456 DOI: 10.1111/apha.13918] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIM Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) and lacks effective treatment options. Heme oxygenase-1 (HO-1) is a critical defense against oxidative stress and inflammation in the liver injury. This study aims to investigate the protective role and underlying mechanisms of HO-1 in NASH pathogenesis. METHODS The hepatocyte-specific HO-1 knockout (HO-1HEPKO ) mice on a C57BL/6J background (HO-1fl/fl /Alb-Cre) were generated and fed a high-fat/western-style diet (HFD) or methionine-choline-deficient diet (MCD). Changes in mitochondrial ultrastructure were observed by transmission electron microscopy and confocal microscopy. A mitochondrial PCR array was used to identify the crucial genes associated with mitochondrial dysfunction. RESULTS Hepatocyte-specific HO-1HEPKO mice developed steatohepatitis with severe steatosis, ballooning, and necroinflammation. Dysregulated hepatic expression of mitochondria-related proteins, including DRP1, Tomm20, MFN1 and MFN2 were detected in NASH animals. Ultrastructural mitochondrial damage was observed in HO-1HEPKO mice. Mitochondrial dysfunction was recapitulated in HO-1-knockdown cells in vitro, as evidenced by decreased membrane potential, reduced ATP content, and mtDNA damage. Conversely, HO-1 overexpression restored these changes in vitro. Mechanistically, HO-1 deficiency reduced the inhibitory effect on Tomm20, leading to mitochondrial dysfunction, and thereby causing steatohepatitis. CONCLUSIONS HO-1 attenuates diet-induced steatohepatitis by preventing mitochondrial dysfunction, indicating that HO-1 may constitute a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Xiwei Yuan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Shiming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Jinghua Du
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Na Fu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Liver Fibrosis in Chronic Liver Diseases, Shijiazhuang, China
| |
Collapse
|
9
|
Richard CSM, Dey H, Øyen F, Maqsood M, Blencke HM. Outer Membrane Integrity-Dependent Fluorescence of the Japanese Eel UnaG Protein in Live Escherichia coli Cells. BIOSENSORS 2023; 13:232. [PMID: 36831998 PMCID: PMC9953992 DOI: 10.3390/bios13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Reporter genes are important tools in many biological disciplines. The discovery of novel reporter genes is relatively rare. However, known reporter genes are constantly applied to novel applications. This study reports the performance of the bilirubin-dependent fluorescent protein UnaG from the Japanese eel Anguilla japonicas in live Escherichia coli cells in response to the disruption of outer membrane (OM) integrity at low bilirubin (BR) concentrations. Using the E. coli wild-type strain MC4100, its isogenic OM-deficient mutant strain NR698, and different OM-active compounds, we show that BR uptake and UnaG fluorescence depend on a leaky OM at concentrations of 10 µM BR and below, while fluorescence is mostly OM integrity-independent at concentrations above 50 µM BR. We suggest that these properties of the UnaG-BR couple might be applied as a biosensor as an alternative to the OM integrity assays currently in use.
Collapse
|
10
|
Ruan Z, Li D, Chen X, Qiu Z. Association of serum total bilirubin and potential predictors with mortality in acute respiratory failure: A retrospective cohort study. Heart Lung 2023; 57:12-18. [PMID: 35987112 DOI: 10.1016/j.hrtlng.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Total serum bilirubin (TBIL) levels are a risk factor in critically ill patients. However, the relationship between the dynamics of TBIL and the prognosis of acute respiratory failure (ARF) patients is unclear. OBJECTIVES This study aimed to investigate the impact of different levels of TBIL during hospitalization on mortality in ARF patients. METHODS This study used a retrospective cohort study. We extracted information on ARF patients from the Medical Information Bank for Intensive Care (MIMIC)-III (version 1.4). We used propensity score matching (PSM) to adjust for the level of potential baseline-level differences between groups. Cox regression was used to analyze mortality risk factors in patients with ARF. Subgroup analysis was used to explore special populations. RESULTS 2673 patients were included in the study, and 19.7% developed hyperbilirubinemia (TBIL ≥ 2 mg/dL) during their hospitalization. After PSM, multivariate Cox regression showed a 50% and 135% increased risk of death for a maximum value of TBIL ≥ 5 mg/dL and minimum value of TBIL ≥ 2 mg/dL during hospitalization, respectively, compared to the control population. In addition, age ≥ 65 years, previous comorbid malignancies, respiratory rate ≥ 22 beats/min, SpO2 ≥ 95, BUN ≥ 20 mg/dL, lactate ≥ 5 mmol/L, platelet < 100 * 10 ^ 9/L were independent risk factors for 1-year mortality in ARF patients. Subgroup analysis showed that high bilirubin had a greater effect on patients aged less than 65 years (P for interaction < 0.05). CONCLUSIONS Hyper TBIL (TBIL max ≥ 5 mg/dL or TBIL min ≥ 2 mg/dL) was an independent risk factor for 1-year mortality in patients with ARF. This study suggests that clinicians should be aware of TBIL levels and intervene early in these patients.
Collapse
Affiliation(s)
- Zhishen Ruan
- Shandong Traditional Chinese Medicine University, Ji Nan, China
| | - Dan Li
- Shandong Traditional Chinese Medicine University, Ji Nan, China
| | - Xianhai Chen
- Shandong Traditional Chinese Medicine University, Ji Nan, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China.
| | - Zhanjun Qiu
- Shandong Traditional Chinese Medicine University, Ji Nan, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China.
| |
Collapse
|
11
|
Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 2022:10.1038/s41390-022-02351-x. [PMID: 36302856 DOI: 10.1038/s41390-022-02351-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity. METHODS This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research. IMPACT We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity. We point out the pitfalls and translational gaps, and suggest new clinical research challenges. We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.
Collapse
|
12
|
Aronson SJ, Junge N, Trabelsi M, Kelmemi W, Hubert A, Brigatti KW, Fox MD, de Knegt RJ, Escher JC, Ginocchio VM, Iorio R, Zhu Y, Özçay F, Rahim F, El-Shabrawi MHF, Shteyer E, Di Giorgio A, D'Antiga L, Mingozzi F, Brunetti-Pierri N, Strauss KA, Labrune P, Mrad R, Baumann U, Beuers U, Bosma PJ. Disease burden and management of Crigler-Najjar syndrome: Report of a world registry. Liver Int 2022; 42:1593-1604. [PMID: 35274801 DOI: 10.1111/liv.15239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sem J Aronson
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Norman Junge
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Mediha Trabelsi
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis (Laboratory of Human Genetics, Faculty of Medicine of Tunis, Université de Tunis El Manar (University of Tunis El Manar), Tunis, Tunisia.,Service des Maladies Congénitales et Héréditaires (Department of Hereditary and Congenital Disorders), Hôpital Charles Nicolle (Charles Nicolle Hospital), Tunis, Tunisia
| | - Wided Kelmemi
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis (Laboratory of Human Genetics, Faculty of Medicine of Tunis, Université de Tunis El Manar (University of Tunis El Manar), Tunis, Tunisia
| | - Aurelie Hubert
- Department of Hereditary Diseases of Hepatic Metabolism, Hôpital Antoine Béclère, Clamart, France
| | | | - Michael D Fox
- Clinic for Special Children, Strasburg, Pennsylvania, USA.,Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Virginia M Ginocchio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Yan Zhu
- Third Military Medical University, Chongqing, China
| | - Figen Özçay
- Department of Pediatric Gastroenterology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Health research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortada H F El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eyal Shteyer
- Paediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Angelo Di Giorgio
- Department of Paediatric Gastroenterology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Lorenzo D'Antiga
- Department of Paediatric Gastroenterology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, Pennsylvania, USA.,Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Philippe Labrune
- Department of Hereditary Diseases of Hepatic Metabolism, Hôpital Antoine Béclère, Clamart, France
| | - Ridha Mrad
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis (Laboratory of Human Genetics, Faculty of Medicine of Tunis, Université de Tunis El Manar (University of Tunis El Manar), Tunis, Tunisia.,Service des Maladies Congénitales et Héréditaires (Department of Hereditary and Congenital Disorders), Hôpital Charles Nicolle (Charles Nicolle Hospital), Tunis, Tunisia
| | - Ulrich Baumann
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Piter J Bosma
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | |
Collapse
|
13
|
Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes‐like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation 2022. [DOI: https://doi.org/10.1111/xen.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Sugan Paneerselvan
- Department of Hepatology Madras Medical College Chennai Tamil Nadu India
| | - Sangeetha Kandoi
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
- Department of Ophthalmology Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California San Francisco California USA
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Dillip Kumar Bishi
- Department of Biotechnology Rama Devi Women's University Bhubaneswar Odisha India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| |
Collapse
|
14
|
Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes-like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation 2022; 29:e12730. [PMID: 35166406 DOI: 10.1111/xen.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
Liver failure is a critical disease for which regenerative therapies are still being explored. The major limitation in the use of a clinical grade, viable cell-based therapy approach is the scarce availability of sufficient number of in-vitro differentiated hepatocyte-like cells (HLC) that can induce regeneration and ameliorate liver injury. Here, we report for the first time an approach to engineer HLCs using sera of hyperbilirubin patients that act as a reservoir of differentiation factor. Utilizing our humanized approach, mesenchymal stem cells (hMSC) derived from umbilical cord tissue were transdifferentiated into HLC using patient-derived serum along with dimethyl sulfoxide (DMSO). We studied the effects of serum on the proliferation, cell cycle analysis, and apoptosis of hMSC by various differentiation combinations. We optimized the hepatic transdifferentiation ability of hMSC with hyperbilirubin serum treatment for a period of 7 days. Assessment of HLC functionalities was shown by quantifying the HLC spent medium for albumin and urea secretions. Transplantation of HLC in an acute liver injury (ALI) rat model showed an effective improvement in the liver function and histological changes in the liver. The results of this study suggest that hMSC-derived HLC using humanized hepatogenic serum holds a promising potential for cell transplantation, as an efficient therapy modality for liver failure in humans.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sugan Paneerselvan
- Department of Hepatology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Sangeetha Kandoi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.,Department of Ophthalmology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Dillip Kumar Bishi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Ni SD, Chen YL, Chen YQ, Zhou K, Ding HM. Molecular Simulation Studies on the Interactions of Bilirubin at Different States with a Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11707-11715. [PMID: 34570511 DOI: 10.1021/acs.langmuir.1c01613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The unconjugated bilirubin (BR) may penetrate through the cell membrane and cause a severe cytotoxicity. However, the molecular mechanism underlying the penetration of BR into the cell membrane is still largely unknown. In this work, we systematically investigate the interaction of BR and a lipid bilayer under different conditions by using all-atom molecular dynamics simulations. It is found that BR at the Z,Z conformation can easily enter into the interior of the lipid bilayer due to its hydrophobicity. However, when BR transforms from the Z,Z conformation to the E,E conformation (after the blue-light emission), its penetration ability is greatly reduced (especially at its ionized state). This study may offer useful physical insights into the effect of phototherapy on the penetration behavior and the cytotoxicity of the unconjugated BR.
Collapse
Affiliation(s)
- Song-Di Ni
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Ya-Li Chen
- Rugao Guangci Hospital, Nantong 226500, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Kun Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
16
|
Mancuso C. Biliverdin reductase as a target in drug research and development: Facts and hypotheses. Free Radic Biol Med 2021; 172:521-529. [PMID: 34224815 DOI: 10.1016/j.freeradbiomed.2021.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Biliverdin reductase-A (BVR) catalyzes the reduction of heme-derived biliverdin into bilirubin, this latter being a powerful endogenous free radical scavenger. Furthermore, BVR is also endowed with both serine/threonine/tyrosine kinase and scaffold activities, through which it interacts with the insulin receptor kinase, conventional and atypical protein kinase C isoforms, mitogen-activated protein kinases as well as the phosphatidylinositol-3 kinase/Akt system. By regulating this complex array of signal transduction pathways, BVR is involved in the pathogenesis of neurodegenerative, metabolic, cardiovascular and immune-inflammatory diseases as well as in cancer. In addition, both BVR and BVR-B, this latter being an alternate isozyme predominant during fetal development but sometimes detectable through adulthood, have been studied as peripheral biomarkers for an early detection of Alzheimer's disease, atherosclerosis and some types of cancer. However, despite these interesting lines of evidence, to date BVR has not been considered as an appealing drug target. Only limited evidence supports the neuroprotective effects of atorvastatin and ferulic acid through BVR regulation in the aged canine brain and human neuroblastoma cells, whereas interesting results have been reported regarding the use of BVR-based peptides in preclinical models of cardiac diseases and cancer.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
17
|
Jayanti S, Moretti R, Tiribelli C, Gazzin S. Bilirubin: A Promising Therapy for Parkinson's Disease. Int J Mol Sci 2021; 22:6223. [PMID: 34207581 PMCID: PMC8228391 DOI: 10.3390/ijms22126223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Following the increase in life expectancy, the prevalence of Parkinson's disease (PD) as the most common movement disorder is expected to rise. Despite the incredibly huge efforts in research to find the definitive biomarker, to date, the diagnosis of PD still relies mainly upon clinical symptoms. A wide range of treatments is available for PD, mainly alleviating the clinical symptoms. However, none of these current therapies can stop or even slow down the disease evolution. Hence, disease-modifying treatment is still a paramount unmet medical need. On the other side, bilirubin and its enzymatic machinery and precursors have offered potential benefits by targeting multiple mechanisms in chronic diseases, including PD. Nevertheless, only limited discussions are available in the context of neurological conditions, particularly in PD. Therefore, in this review, we profoundly discuss this topic to understand bilirubin's therapeutical potential in PD.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
- Faculty of Medicine, University of Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34139 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
| |
Collapse
|
18
|
Seyed Khoei N, Wagner KH, Carreras-Torres R, Gunter MJ, Murphy N, Freisling H. Associations between Prediagnostic Circulating Bilirubin Levels and Risk of Gastrointestinal Cancers in the UK Biobank. Cancers (Basel) 2021; 13:2749. [PMID: 34206031 PMCID: PMC8198711 DOI: 10.3390/cancers13112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
We investigated associations between serum levels of bilirubin, an endogenous antioxidant, and gastrointestinal cancer risk. In the UK Biobank, prediagnostic serum levels of total bilirubin were measured in blood samples collected from 440,948 participants. In multivariable-adjusted Cox proportional hazard regression, we estimated hazard ratios (HR) and 95% confidence intervals (CI) for associations between bilirubin levels and gastrointestinal cancer risk (colorectum, esophagus, stomach, mouth, pancreas, and liver). After a median follow-up of 7.1 years (interquartile range: 1.4), 5033 incident gastrointestinal cancer cases were recorded. In multivariable-adjusted models, bilirubin levels were negatively associated with risk of esophageal adenocarcinoma (EAC, HR per 1-SD increment in log-total bilirubin levels 0.72, 95%CI 0.56-0.92, p = 0.01). Weak and less robust negative associations were observed for colorectal cancer (CRC, HR per 1-SD increment in log-total bilirubin levels 0.95, 95%CI 0.88-1.02, p = 0.14). Bilirubin levels were positively associated with risk of hepatocellular carcinoma (HCC, HR per 1-SD increment in log-total bilirubin levels 2.07, 95%CI 1.15-3.73, p = 0.02) and intrahepatic bile duct (IBD) cancer (HR per 1-SD increment 1.67, 95%CI 1.07-2.62, p = 0.03). We found no associations with risks of stomach, oral, and pancreatic cancers. Prediagnostic serum levels of bilirubin were negatively associated with risk of EAC and positively associated with HCC and IBD cancer. Further studies are warranted to replicate our findings for specific GI cancers.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 1, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 1, 1090 Vienna, Austria; (N.S.K.); (K.-H.W.)
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Avinguda de la Granvia de l’Hospitalet 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| |
Collapse
|
19
|
Waddell J, Rickman NC, He M, Tang N, Bearer CF. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr Res 2021; 89:1414-1419. [PMID: 33027804 PMCID: PMC8024424 DOI: 10.1038/s41390-020-01187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bilirubin is produced by the breakdown of hemoglobin and is normally catabolized and excreted. Neurotoxic accumulation of serum bilirubin often occurs in premature infants. The homozygous Gunn rat lacks uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), the enzyme needed to biotransform bilirubin. This rodent model of hyperbilirubinemia emulates many aspects of bilirubin toxicity observed in the human infant. We demonstrate that choline supplementation in early postnatal development is neuroprotective in the choline-restricted Gunn rat, when hyperbilirubinemia is induced on postnatal day 5. METHODS We first compared behaviors and cerebellar weight of pups born to dams consuming regular rat chow to those of dams consuming choline-restricted diets. Second, we measured behaviors and cerebellar weights of pups born to choline-restricted dams, reared on a choline-restricted diet, supplemented with or without choline, and treated with or without sulfadimethoxine (SDMX). RESULTS A choline-restricted diet did not change the behavioral outcomes, but cerebellar weight was reduced in the choline-restricted group regardless of genotype or SDMX administration. SDMX induced behavioral deficits in jj pups, and choline supplementation improved most behavioral effects and cerebellar weight in SDMX-treated jj rats. CONCLUSIONS These results suggest that choline may be used as a safe and effective neuroprotective intervention against hyperbilirubinemia in the choline-deficient premature infant. IMPACT This article investigates the effect of neonatal jaundice/bilirubin neurotoxicity on cerebellar-mediated behaviors. This article explores the potential use of choline as an intervention capable of ameliorating the effect of bilirubin on the choline-restricted developing brain. This article opens the door for future studies on the action of choline in the presence of hyperbilirubinemia, especially in preterm neonates.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Rickman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
20
|
Vidimce J, Pillay J, Shrestha N, Dong LF, Neuzil J, Wagner KH, Holland OJ, Bulmer AC. Mitochondrial Function, Fatty Acid Metabolism, and Body Composition in the Hyperbilirubinemic Gunn Rat. Front Pharmacol 2021; 12:586715. [PMID: 33762933 PMCID: PMC7982585 DOI: 10.3389/fphar.2021.586715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Circulating bilirubin is associated with reduced adiposity in human and animal studies. A possible explanation is provided by in vitro data that demonstrates that bilirubin inhibits mitochondrial function and decreases efficient energy production. However, it remains unclear whether hyperbilirubinemic animals have similar perturbed mitochondrial function and whether this is important for regulation of energy homeostasis. Aim: To investigate the impact of unconjugated hyperbilirubinemia on body composition, and mitochondrial function in hepatic tissue and skeletal muscle. Materials and Methods: 1) Food intake and bodyweight gain of 14-week old hyperbilirubinemic Gunn (n = 19) and normobilirubinemic littermate (control; n = 19) rats were measured over a 17-day period. 2) Body composition was determined using dual-energy X-ray absorptiometry and by measuring organ and skeletal muscle masses. 3) Mitochondrial function was assessed using high-resolution respirometry of homogenized liver and intact permeabilized extensor digitorum longus and soleus fibers. 4) Liver tissue was flash frozen for later gene (qPCR), protein (Western Blot and citrate synthase activity) and lipid analysis. Results: Female hyperbilirubinemic rats had significantly reduced fat mass (Gunn: 9.94 ± 5.35 vs. Control: 16.6 ± 6.90 g, p < 0.05) and hepatic triglyceride concentration (Gunn: 2.39 ± 0.92 vs. Control: 4.65 ± 1.67 mg g-1, p < 0.01) compared to normobilirubinemic controls. Furthermore, hyperbilirubinemic rats consumed fewer calories daily (p < 0.01) and were less energetically efficient (Gunn: 8.09 ± 5.75 vs. Control: 14.9 ± 5.10 g bodyweight kcal-1, p < 0.05). Hepatic mitochondria of hyperbilirubinemic rats demonstrated increased flux control ratio (FCR) via complex I and II (CI+II) (Gunn: 0.78 ± 0.16 vs. Control: 0.62 ± 0.09, p < 0.05). Similarly, exogenous addition of 31.3 or 62.5 μM unconjugated bilirubin to control liver homogenates significantly increased CI+II FCR (p < 0.05). Hepatic PGC-1α gene expression was significantly increased in hyperbilirubinemic females while FGF21 and ACOX1 was significantly greater in male hyperbilirubinemic rats (p < 0.05). Finally, hepatic mitochondrial complex IV subunit 1 protein expression was significantly increased in female hyperbilirubinemic rats (p < 0.01). Conclusions: This is the first study to comprehensively assess body composition, fat metabolism, and mitochondrial function in hyperbilirubinemic rats. Our findings show that hyperbilirubinemia is associated with reduced fat mass, and increased hepatic mitochondrial biogenesis, specifically in female animals, suggesting a dual role of elevated bilirubin and reduced UGT1A1 function on adiposity and body composition.
Collapse
Affiliation(s)
- Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Johara Pillay
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Nirajan Shrestha
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Lan-Feng Dong
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
21
|
Herrero R, Sánchez G, Asensio I, López E, Ferruelo A, Vaquero J, Moreno L, de Lorenzo A, Bañares R, Lorente JA. Liver-lung interactions in acute respiratory distress syndrome. Intensive Care Med Exp 2020; 8:48. [PMID: 33336286 PMCID: PMC7746785 DOI: 10.1186/s40635-020-00337-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with liver diseases are at high risk for the development of acute respiratory distress syndrome (ARDS). The liver is an important organ that regulates a complex network of mediators and modulates organ interactions during inflammatory disorders. Liver function is increasingly recognized as a critical determinant of the pathogenesis and resolution of ARDS, significantly influencing the prognosis of these patients. The liver plays a central role in the synthesis of proteins, metabolism of toxins and drugs, and in the modulation of immunity and host defense. However, the tools for assessing liver function are limited in the clinical setting, and patients with liver diseases are frequently excluded from clinical studies of ARDS. Therefore, the mechanisms by which the liver participates in the pathogenesis of acute lung injury are not totally understood. Several functions of the liver, including endotoxin and bacterial clearance, release and clearance of pro-inflammatory cytokines and eicosanoids, and synthesis of acute-phase proteins can modulate lung injury in the setting of sepsis and other severe inflammatory diseases. In this review, we summarized clinical and experimental support for the notion that the liver critically regulates systemic and pulmonary responses following inflammatory insults. Although promoting inflammation can be detrimental in the context of acute lung injury, the liver response to an inflammatory insult is also pro-defense and pro-survival. A better understanding of the liver–lung axis will provide valuable insights into new diagnostic targets and therapeutic strategies for clinical intervention in patients with or at risk for ARDS.
Collapse
Affiliation(s)
- Raquel Herrero
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain. .,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain. .,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.
| | - Gema Sánchez
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Laboratory of Biochemistry, Hospital Universitario de Getafe, Madrid, Spain
| | - Iris Asensio
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Eva López
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Ferruelo
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - Laura Moreno
- CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo. HGU Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Investigación Carlos III, Madrid, Spain
| | - José A Lorente
- Department of Critical Care Medicine, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Investigación Carlos III, Madrid, Spain.,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Seyed Khoei N, Anton G, Peters A, Freisling H, Wagner KH. The Association between Serum Bilirubin Levels and Colorectal Cancer Risk: Results from the Prospective Cooperative Health Research in the Region of Augsburg (KORA) Study in Germany. Antioxidants (Basel) 2020; 9:E908. [PMID: 32987702 PMCID: PMC7598693 DOI: 10.3390/antiox9100908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging studies have suggested that bilirubin, particularly unconjugated bilirubin (UCB), has substantial anti-inflammatory and antioxidant properties that protect against oxidative stress-associated diseases such as cancer. Few observational studies have investigated the etiological role of bilirubin in colorectal cancer (CRC) development. In this case-control study, nested in the population-based prospective cohort of the Cooperative Health Research in the Region of Augsburg (KORA) study in south Germany, pre-diagnostic circulating UCB concentrations were measured by high-performance liquid chromatography in 77 CRC cases and their individually matched controls. Multivariable unconditional logistic regression was used to estimate the odds ratios (OR) and 95% confidence intervals (CI) for associations between log-transformed UCB levels (log-UCB), standardized per one-standard-deviation (one-SD) increment, and CRC risk. The models were a priori stratified by sex based on previous evidence. In the fully adjusted models, each one-SD increment in log-UCB was indicative of a positive association with CRC risk (OR, 1.20; 95% CI, 0.52-2.79) among men, and of an inverse association (OR, 0.76; 95% CI, 0.34-1.84) among women (Pheterogeneity = 0.4 for differences between men and women). We found little evidence for sex-specific associations of circulating bilirubin with CRC risk, and further studies are needed to confirm or refute the potential associations.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Gabriele Anton
- Institute of Epidemiology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; (G.A.); (A.P.)
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; (G.A.); (A.P.)
| | - Heinz Freisling
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France;
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria;
| |
Collapse
|
23
|
Jayanti S, Vítek L, Tiribelli C, Gazzin S. The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E900. [PMID: 32971784 PMCID: PMC7555389 DOI: 10.3390/antiox9090900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| |
Collapse
|
24
|
Seyed Khoei N, Jenab M, Murphy N, Banbury BL, Carreras-Torres R, Viallon V, Kühn T, Bueno-de-Mesquita B, Aleksandrova K, Cross AJ, Weiderpass E, Stepien M, Bulmer A, Tjønneland A, Boutron-Ruault MC, Severi G, Carbonnel F, Katzke V, Boeing H, Bergmann MM, Trichopoulou A, Karakatsani A, Martimianaki G, Palli D, Tagliabue G, Panico S, Tumino R, Sacerdote C, Skeie G, Merino S, Bonet C, Rodríguez-Barranco M, Gil L, Chirlaque MD, Ardanaz E, Myte R, Hultdin J, Perez-Cornago A, Aune D, Tsilidis KK, Albanes D, Baron JA, Berndt SI, Bézieau S, Brenner H, Campbell PT, Casey G, Chan AT, Chang-Claude J, Chanock SJ, Cotterchio M, Gallinger S, Gruber SB, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu L, Huyghe JR, Jenkins MA, Joshi AD, Kampman E, Larsson SC, Le Marchand L, Li CI, Li L, Lindblom A, Lindor NM, Martín V, Moreno V, Newcomb PA, Offit K, Ogino S, Parfrey PS, Pharoah PDP, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Slattery ML, Thibodeau SN, Ulrich CM, van Duijnhoven FJB, Weigl K, Weinstein SJ, White E, Wolk A, Woods MO, Wu AH, Zhang X, Ferrari P, Anton G, Peters A, Peters U, Gunter MJ, Wagner KH, Freisling H. Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses. BMC Med 2020; 18:229. [PMID: 32878631 PMCID: PMC7469292 DOI: 10.1186/s12916-020-01703-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex. METHODS In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10-8) with circulating total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study. RESULTS The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04-1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76-0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02-1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96-1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2). CONCLUSIONS Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Mazda Jenab
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Neil Murphy
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Krasimira Aleksandrova
- Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Magdalena Stepien
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Andrew Bulmer
- School of Medicine, Griffith University, Brisbane, QLD, Australia
- Alliance for Vascular Access Teaching and Research (AVATAR), Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Christine Boutron-Ruault
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Franck Carbonnel
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Department of Gastroenterology, Bicêtre University Hospital, Public Assistance Hospitals of Paris, Le Kremlin Bicêtre, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany
| | - Manuela M Bergmann
- Department of Epidemiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, "M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- Nutritional Epidemiology Group, School of Food and Nutrition, University of Leeds, Leeds, UK
| | | | - Catalina Bonet
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Miguel Rodríguez-Barranco
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria, ibs. GRANADA, Universidad de Granada, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Leire Gil
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, San Sebastian, Spain
| | - Maria-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Eva Ardanaz
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Robin Myte
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Vicente Martín
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick S Parfrey
- The Clinical Epidemiology Unit, Memorial University Medical School, Newfoundland, Canada
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular, and Transplantation Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, CA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pietro Ferrari
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Gabriele Anton
- Institute of Epidemiology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Marc J Gunter
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Heinz Freisling
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France.
| |
Collapse
|
25
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
26
|
Ruiz-Gaspà S, Guañabens N, Jurado S, Dubreuil M, Combalia A, Peris P, Monegal A, Parés A. Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene 2019; 725:144167. [PMID: 31639434 DOI: 10.1016/j.gene.2019.144167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis in advanced cholestatic and end-stage liver disease is related to low bone formation. Previous studies have demonstrated the deleterious consequences of lithocholic acid (LCA) and bilirubin on osteoblastic cells. These effects are partially or completely neutralized by ursodeoxycholic acid (UDCA). We have assessed the differential gene expression of osteoblastic cells under different culture conditions. The experiments were performed in human osteosarcoma cells (Saos-2) cultured with LCA (10 μM), bilirubin (50 μM) or UDCA (10 and 100 μM) at 2 and 24 h. Expression of 87 genes related to bone metabolism and other signalling pathways were assessed by TaqMan micro fluidic cards. Several genes were up-regulated by LCA, most of them pro-apoptotic (BAX, BCL10, BCL2L13, BCL2L14), but also MGP (matrix Gla protein), BGLAP (osteocalcin), SPP1 (osteopontin) and CYP24A1, and down-regulated bone morphogenic protein genes (BMP3 and BMP4) and DKK1 (Dickkopf-related protein 1). Parallel effects were observed with bilirubin, which up-regulated apoptotic genes and CSF2 (colony-stimulating factor 2) and down-regulated antiapoptotic genes (BCL2 and BCL2L1), BMP3, BMP4 and RUNX2. UDCA 100 μM had specific consequences since differential expression was observed, up-regulating BMP2, BMP4, BMP7, CALCR (calcitonin receptor), SPOCK3 (osteonectin), BGLAP (osteocalcin) and SPP1 (osteopontin), and down-regulating pro-apoptotic genes. Furthermore, most of the differential expression changes induced by both LCA and bilirubin were partially or completely neutralized by UDCA. Conclusion: Our observations reveal novel target genes, whose regulation by retained substances of cholestasis may provide additional insights into the pathogenesis of osteoporosis in cholestatic and end-stage liver diseases.
Collapse
Affiliation(s)
- Silvia Ruiz-Gaspà
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Nuria Guañabens
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain.
| | - Susana Jurado
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Marta Dubreuil
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Andres Combalia
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Pilar Peris
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Gordon DM, Adeosun SO, Ngwudike SI, Anderson CD, Hall JE, Hinds TD, Stec DE. CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Arch Biochem Biophys 2019; 672:108072. [PMID: 31422074 PMCID: PMC6718297 DOI: 10.1016/j.abb.2019.108072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 12/30/2022]
Abstract
Obesity is the predominant cause of non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance and diabetes. NAFLD includes a spectrum of pathologies that starts with simple steatosis, which can progress to non-alcoholic steatohepatitis (NASH) with the commission of other factors such as the enhancement of reactive oxygen species (ROS). Biliverdin reductase A (BVRA) reduces biliverdin to the antioxidant bilirubin, which may serve to prevent NAFLD, and possibly the progression to NASH. To further understand the role of BVRA in hepatic function, we used CRISPR-Cas9 technology to target the Blvra gene in the murine hepa1c1c7 hepatocyte cell line (BVRA KO). BVRA activity and protein levels were significantly lower in BVRA KO vs. wild-type (WT) hepatocytes. Lipid accumulation under basal and serum-starved conditions was significantly (p < 0.05) higher in BVRA KO vs. WT cells. The loss of BVRA resulted in the reduction of mitochondria number, decreased expression of markers of mitochondrial biogenesis, uncoupling, oxidation, and fusion, which paralleled reduced mitochondrial oxygen consumption. BVRA KO cells exhibited increased levels of ROS generation and decreased levels of superoxide dismutase mRNA expression. In conclusion, our data demonstrate a critical role for BVRA in protecting against lipid accumulation and oxidative stress in hepatocytes, which may serve as a future therapeutic target for NAFLD and its progression to NASH.
Collapse
Affiliation(s)
- Darren M Gordon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA
| | | | - Christopher D Anderson
- Departments of Surgery and Medicine, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - John E Hall
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA
| | - Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA.
| |
Collapse
|
28
|
Hao W, Song J, Li G. Neuroprotective Effect of ω-3 Polyunsaturated Fatty Acids on Bilirubin Encephalopathy In Vitro and In Vivo. Med Sci Monit 2018; 24:2631-2638. [PMID: 29704452 PMCID: PMC5944401 DOI: 10.12659/msm.907131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Bilirubin encephalopathy is a serious complication in neonatal jaundice and is associated with high mortality and disability in newborns. The present study aimed to investigate the neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on bilirubin encephalopathy in vitro and in vivo. Material/Methods The cytotoxicity of unconjugated bilirubin (UCB) to neurons and neuroprotection of ω-3 PUFA were investigated using MTT assays and apoptosis evaluations. Superoxide dismutase (SOD) and catalase (CAT) enzyme activity were measured to investigate the anti-oxidative effect of ω-3 PUFA. The differences between eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also compared. The in vivo neuroprotective effect of DHA was demonstrated in neonatal rats with bilirubin encephalopathy by bilirubin monitoring, neuron-specific enolase (NSE) monitoring, H&E staining of brain tissue, and apoptosis rate evaluations. Results Omega-3 PUFA reduced the rate of apoptosis induced by UCB and increased SOD and CAT enzyme activity for anti-oxidation. DHA did not reduce the bilirubin in the serum of neonatal rats with bilirubin encephalopathy, but did reduce the damage caused by bilirubin with decreased NSE and apoptosis rate as well as improved neuron morphology. Conclusions Omega-3 PUFA, particularly DHA, can reduce neurological damage in neonatal rats with bilirubin encephalopathy by increasing anti-apoptosis and anti-oxidation effects against UCB, providing a theoretical basis for the clinical treatment of bilirubin encephalopathy in newborns.
Collapse
Affiliation(s)
- Wei Hao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Jia Song
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Gang Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
29
|
Zhu L, Wang L, Cao F, Liu P, Bao H, Yan Y, Dong X, Wang D, Wang Z, Gong P. Modulation of transport and metabolism of bile acids and bilirubin by chlorogenic acid against hepatotoxicity and cholestasis in bile duct ligation rats: involvement of SIRT1-mediated deacetylation of FXR and PGC-1α. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2018; 25:195-205. [PMID: 29360226 DOI: 10.1002/jhbp.537] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lili Zhu
- Department of Gynaecology and Obstetrics; The First Affiliated Hospital of Dalian Medical University; Dalian China
| | - Lei Wang
- Department of Anesthesiology; The First Affiliated Hospital of Dalian Medical University; Dalian China
| | - Fei Cao
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Dalian Medical University; 222 Zhongshan Road Dalian 116011 China
| | - Peng Liu
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Dalian Medical University; 222 Zhongshan Road Dalian 116011 China
| | - Haidong Bao
- Department of Gastrointestinal Endoscopy; The First Affiliated Hospital of Dalian Medical University; Dalian China
| | - Yumei Yan
- Department of Ultrasound; The First Affiliated Hospital of Dalian Medical University; Dalian China
| | - Xin Dong
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Dalian Medical University; 222 Zhongshan Road Dalian 116011 China
| | - Dong Wang
- Department of Hepatobiliary Surgery; Dalian Municipal Central Hospital Affiliated of Dalian Medical University; Dalian China
| | - Zhongyu Wang
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Dalian Medical University; 222 Zhongshan Road Dalian 116011 China
| | - Peng Gong
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Dalian Medical University; 222 Zhongshan Road Dalian 116011 China
| |
Collapse
|
30
|
Current insights on the role of iron and copper dyshomeostasis in the pathogenesis of bilirubin neurotoxicity. Life Sci 2017; 191:34-45. [PMID: 29030087 DOI: 10.1016/j.lfs.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023]
|
31
|
KEMELO MK, KUTINOVÁ CANOVÁ N, HORINEK A, FARGHALI H. Sirtuin-Activating Compounds (STACs) Alleviate D-Galactosamine/Lipopolysaccharide-Induced Hepatotoxicity in Rats: Involvement of Sirtuin 1 and Heme Oxygenase 1. Physiol Res 2017; 66:497-505. [DOI: 10.33549/physiolres.933488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sirtuin activating compounds (STACs) attenuate various type of liver insults through mechanisms which are not fully understood. In the present study, we investigated the ameliorative potential of quercetin (natural polyphenol) and SRT1720 (synthetic SIRT1 activator) against D-galactosamine/lipopolysaccharide-induced hepatotoxicity (an experimental model of acute liver failure). Moreover, we compared and contrasted the roles of stress responsive enzymes, sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) in hepatoprotection/ hepatotoxicity. Liver injury was induced in male Wistar rats by intraperitoneal injection of D-galactosamine (400 mg/kg) and lipopolysaccharide (10 µg/kg). Some animals were pretreated with quercetin (50 mg/kg i.p.) or SRT1720 (5 mg/kg i.p.). Twenty-four hours later, the effects of these treatments were evaluated by biochemical studies and Western blot. D-GalN/LPS treatment upregulated HO-1 expression, downregulated SIRT1 expression, decreased AST:ALT ratio and markedly increased bilirubin, catalase and conjugated diene levels. Pretreatment of D-GalN/LPS rats with either quercetin or SRT1720 returned SIRT1 expression, HO-1 expression and all the aforementioned markers towards normal. Collectively, these findings suggest that elevated HO-1 and low SIRT1 expressions are involved in the pathogenesis of D-GalN/LPS-induced hepatotoxicity. Drugs that downregulate HO-1 and/or upregulate SIRT1 seem to have antihepatotoxic effects and need further exploration.
Collapse
Affiliation(s)
- M. K. KEMELO
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | | | | | | |
Collapse
|
32
|
Mancuso C. Bilirubin and brain: A pharmacological approach. Neuropharmacology 2017; 118:113-123. [PMID: 28315352 DOI: 10.1016/j.neuropharm.2017.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/01/2023]
Abstract
For many decades, the world scientific literature has accounted for a number of works on the biological effects of bilirubin-IXalpha (BR). The first studies focused on the neurotoxic effects of the excessive production of BR, in particular regarding both physiological neonatal jaundice and the more severe ones, typically as consequences of severe hemolysis or other underlying diseases. Only since 1987, has significant evidence, however, underlined the neuroprotective role of BR linked to the scavenging effect of free radicals as reactive oxygen species and nitric oxide and its congeners. Despite the presence in the literature of many excellent papers dealing with the multiple roles played by BR in health and disease, there were very few and somewhat dated reviews that summarize the key findings related to the neuroprotective and neurotoxic effects of the bile pigment and underlying mechanisms. In light of the previous statements, the aim of this review is to provide a summary of the main discoveries in the last years on the effects of BR on the central nervous system. An analytical description about the synthesis of BR, its distribution in the systemic circulation, liver metabolism and elimination through feces and urine will be provided, together with the main mechanisms claimed to describe the neurotoxicity and neuroprotection by the bile pigment. Finally, the possible translational aspects of pharmacological modulation in the production of BR in order to prevent or counteract toxic effects or enhance the protective actions, will be discussed.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1-00168 Rome, Italy.
| |
Collapse
|
33
|
Dizier S, Forel JM, Ayzac L, Richard JC, Hraiech S, Lehingue S, Loundou A, Roch A, Guerin C, Papazian L. Early Hepatic Dysfunction Is Associated with a Worse Outcome in Patients Presenting with Acute Respiratory Distress Syndrome: A Post-Hoc Analysis of the ACURASYS and PROSEVA Studies. PLoS One 2015; 10:e0144278. [PMID: 26636318 PMCID: PMC4670098 DOI: 10.1371/journal.pone.0144278] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/14/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Bilirubin is well-recognized marker of hepatic dysfunction in intensive care unit (ICU) patients. Multiple organ failure often complicates acute respiratory distress syndrome (ARDS) evolution and is associated with high mortality. The effect of early hepatic dysfunction on ARDS mortality has been poorly investigated. We evaluated the incidence and the prognostic significance of increased serum bilirubin levels in the initial phase of ARDS. Methods The data of 805 patients with ARDS were retrospectively analysed. This population was extracted from two recent multicenter, prospective and randomised trials. Patients presenting with ARDS with a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen < 150 mmHg measured with a PEEP ≥ 5 cm of water were included. The total serum bilirubin was measured at inclusion and at days 2, 4, 7 and 14. The primary objective was to analyse the bilirubin at inclusion according to the 90-day mortality rate. Results The 90-day mortality rate was 33.8% (n = 272). The non-survivors were older, had higher Sepsis-related Organ Failure Assessment (SOFA) score and were more likely to have a medical diagnosis on admission than the survivors. At inclusion, the SOFA score without the liver score (10.3±2.9 vs. 9.0±3.0, p<0.0001) and the serum bilirubin levels (36.1±57.0 vs. 20.5±31.5 μmol/L, p<0.0001) were significantly higher in the non-survivors than in the survivors. Age, the hepatic SOFA score, the coagulation SOFA score, the arterial pH level, and the plateau pressure were independently associated with 90-day mortality in patients with ARDS. Conclusion Bilirubin used as a surrogate marker of hepatic dysfunction and measured early in the course of ARDS was associated with the 90-day mortality rate.
Collapse
Affiliation(s)
- Stéphanie Dizier
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Jean-Marie Forel
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Louis Ayzac
- Hospices Civils de Lyon, Hôpital Henri Gabrielle, CClin Sud Est, 69230, Saint Genis Aval, France
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Réanimation médicale et Surveillance Continue, 69004, Lyon, France
| | - Sami Hraiech
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Samuel Lehingue
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Anderson Loundou
- Unité d'Aide Méthodologique à la Recherche clinique DRRC/AP-HM, Laboratoire de Santé Publique Faculté de Médecine, 13005, Marseille, France
| | - Antoine Roch
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
| | - Claude Guerin
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Réanimation médicale et Surveillance Continue, 69004, Lyon, France
| | - Laurent Papazian
- Assistance Publique - Hôpitaux de Marseille, Hôpital Nord, Réanimation des Détresses Respiratoires et des Infections Sévères, 13015, Marseille, France
- Aix-Marseille Université, Faculté de médecine, URMITE UMR CNRS 7278, 13005, Marseille, France
- * E-mail:
| | | | | |
Collapse
|
34
|
Hu H, Yu T, Arpiainen S, Lang MA, Hakkola J, Abu-Bakar A. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6. Toxicol Appl Pharmacol 2015; 289:30-9. [PMID: 26343999 DOI: 10.1016/j.taap.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6.
Collapse
Affiliation(s)
- Hao Hu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Ting Yu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Satu Arpiainen
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Matti A Lang
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| | - Jukka Hakkola
- Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - A'edah Abu-Bakar
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
Palmela I, Correia L, Silva RFM, Sasaki H, Kim KS, Brites D, Brito MA. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro study. Front Neurosci 2015; 9:80. [PMID: 25821432 PMCID: PMC4358072 DOI: 10.3389/fnins.2015.00080] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022] Open
Abstract
Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Inês Palmela
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Leonor Correia
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rui F M Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Hiroyuki Sasaki
- Division of Fine Morphology, Core Research Facilities, The Jikei University School of Medicine Tokyo Japan
| | - Kwang S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine Baltimore, MA, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Maria A Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
36
|
Muhsain SNF, Lang MA, Abu-Bakar A. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress. Toxicol Appl Pharmacol 2015; 282:77-89. [DOI: 10.1016/j.taap.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
|
37
|
Lidong Z, Xiaoquan W, Tao C, Weiwei G, Chang L, Shiming Y. Hyperbilirubinemia and Auditory Neuropathy. J Otol 2013. [DOI: 10.1016/s1672-2930(13)50001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Kamp MA, Dibué M, Etminan N, Steiger HJ, Schneider T, Hänggi D. Evidence for direct impairment of neuronal function by subarachnoid metabolites following SAH. Acta Neurochir (Wien) 2013. [PMID: 23180171 DOI: 10.1007/s00701-012-1559-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dysfunction of neuronal signal processing and transmission occurs after subarachnoid hemorrhage (SAH) and contributes to the high morbidity and mortality of this pathology. The underlying mechanisms include early brain injury due to elevation of the intracranial pressure, disruption of the blood-brain barrier, brain edema, reduction of cerebral blood flow, and neuronal cell death. Direct influence of subarachnoid blood metabolites on neuronal signaling should be considered. After SAH, some metabolites were shown to directly induce disruption of neuronal integrity and neuronal signaling, whereas the effects of other metabolites on neurotoxicity and neuronal signaling have not yet been investigated. Therefore, this mini-review will discuss recent evidence for a direct influence of subarachnoid blood and its metabolites on neuronal function.
Collapse
Affiliation(s)
- Marcel A Kamp
- Department of Neurosurgery, University Hospital, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Dennery PA. Evaluating the beneficial and detrimental effects of bile pigments in early and later life. Front Pharmacol 2012; 3:115. [PMID: 22737125 PMCID: PMC3381237 DOI: 10.3389/fphar.2012.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 12/28/2022] Open
Abstract
The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigments with important cellular functions. The impact of bile pigments on health and disease are reviewed, as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronosyl transferase gene (UGTA1), which is key to the elimination of excess bilirubin and to the prevention of its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| |
Collapse
|
40
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|
41
|
Cardoso FL, Kittel Á, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 2012; 7:e35919. [PMID: 22586454 PMCID: PMC3346740 DOI: 10.1371/journal.pone.0035919] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/27/2012] [Indexed: 11/21/2022] Open
Abstract
Background Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Methodology/Principal Findings Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. Conclusions LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.
Collapse
Affiliation(s)
- Filipa L. Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Veszelka
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Inês Palmela
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Andrea Tóth
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Dora Brites
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mária A. Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Maria A. Brito
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
42
|
Brito MA, Zurolo E, Pereira P, Barroso C, Aronica E, Brites D. Cerebellar axon/myelin loss, angiogenic sprouting, and neuronal increase of vascular endothelial growth factor in a preterm infant with kernicterus. J Child Neurol 2012; 27:615-24. [PMID: 22190497 DOI: 10.1177/0883073811423975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We performed histologic and immunohistochemical analysis of cerebellar sections from a preterm infant (32 weeks 5 days) dead on the 4th day of life with the diagnosis of kernicterus and compared the results with 1 age-matched nonicteric patient. Poorer Luxol fast blue-periodic acid Schiff and Bodian-Luxol fast blue stainings as well as neurofilament expression were observed in the kernicterus case, indicating loss of axon neurites and myelin fibers. Elevated claudin-5 and cluster of differentiation 34 expression associated with increased blood vessel density suggests bilirubin-induced angiogenic sprouting. Upregulation of vascular endothelial growth factor and its receptor 2 was observed in nucleus dentatus and Purkinje neurons. Although upregulation of multidrug resistance-associated protein 1 was increased in cerebellar neurons, it was not able to prevent bilirubin-induced neurotoxicity. These data add new insights into the pathophysiology of kernicterus, revealing vascular endothelial growth factor and its receptor 2, as well as angiogenic sprouting, as new players in neurologic damage by unconjugated bilirubin.
Collapse
Affiliation(s)
- Maria A Brito
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
43
|
Yang D, Yang J, Shi D, Deng R, Yan B. Scoparone potentiates transactivation of the bile salt export pump gene and this effect is enhanced by cytochrome P450 metabolism but abolished by a PKC inhibitor. Br J Pharmacol 2012; 164:1547-57. [PMID: 21649640 DOI: 10.1111/j.1476-5381.2011.01522.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyperbilirubinaemia and cholestasis are two major forms of liver abnormality. The Chinese herb Yin Chin has been used for thousands of years to treat liver dysfunctions. In mice, this herb and its principal ingredient scoparone were found to accelerate the clearance of bilirubin accompanied by the induction of uridine diphosphate-5'-glucuronosyltransferase-1A1 (UGT1A1), a bilirubin processing enzyme. The aim of this study was to determine whether scoparone induces the expression of human UGT1A1. In addition, the expression of the bile salt export pump (BSEP), a transporter of bile acids, was determined. EXPERIMENTAL APPROACH Primary human hepatocytes and hepatoma line Huh7 were treated with scoparone, chenodeoxycholic acid (CDCA) or both. The expression of UGT1A1 and BSEP mRNA was determined. The activation of the human BSEP promoter reporter by scoparone was determined in Huh7 cells by transient transfection and in mice by bioluminescent imaging. The metabolism of scoparone was investigated by recombinant CYP enzymes and pooled human liver microsomes. KEY RESULTS Scoparone did not enhance the expression of either human BSEP or, surprisingly, UGT1A1. However, scoparone significantly potentiated the expression of BSEP induced by CDCA. Consistent with this, scoparone potentiated the stimulant effect of CDCA on the human BSEP promoter. This potentiation was enhanced by co-transfection of cytochrome P4501A2 but abolished by the PKC inhibitor GF109203X. CONCLUSIONS AND IMPLICATIONS Scoparone and Yin Chin normalize liver function primarily by enhancing the secretion of bile acids, and this effect probably varies depending on the metabolic rate of scoparone.
Collapse
Affiliation(s)
- Dongfang Yang
- Department of Biomedical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
44
|
Silva SL, Vaz AR, Diógenes MJ, van Rooijen N, Sebastião AM, Fernandes A, Silva RFM, Brites D. Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 2012; 62:2398-408. [PMID: 22361233 DOI: 10.1016/j.neuropharm.2012.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 12/28/2022]
Abstract
Neuronal oxidative damage and cell death by unconjugated bilirubin (UCB) showed to be mediated by overstimulation of glutamate receptors and nitric oxide (NO) production, which was abrogated by the bile acid glycoursodeoxycholic acid (GUDCA). Microglia, a crucial mediator of CNS inflammation, evidenced to react to UCB by releasing glutamate and NO before becoming senescent. Our studies demonstrated that neurite outgrowth deficits are produced in neurons exposed to UCB and that conditioned media from these UCB-treated neurons further stimulate NO production by microglia. Nevertheless, microglia protective and/or harmful effects in neonatal jaundice are poorly understood, or unrecognized. Here, we investigated the role of microglia, glutamate and NO in the impairment of neurite sprouting by UCB. Therapeutic potential of the anti-inflammatory cytokine interleukin (IL)-10 and GUDCA was also evaluated. By using MK-801 (a NMDA glutamate-subtype receptor antagonist) and L-NAME (a non-specific NO synthase inhibitor) we found that glutamate and NO are determinants in the early and enduring deficits in neurite extension and ramification induced by UCB. Both GUDCA and IL-10 prevented these effects and decreased the production of glutamate and NO. Only GUDCA was able to counteract neuronal death and synaptic changes. Data from organotypic-cultured hippocampal slices, depleted or non-depleted in microglia, supported that microglia participate in glutamate homeostasis and contribute to NO production and cell demise, which were again abrogated by GUDCA. Collectively our data suggest that microglia is a key player in UCB-induced neurotoxicity and that GUDCA might be a valuable preventive therapy in neonates at risk of UCB encephalopathy.
Collapse
Affiliation(s)
- Sandra L Silva
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Giraudi PJ, Bellarosa C, Coda-Zabetta CD, Peruzzo P, Tiribelli C. Functional induction of the cystine-glutamate exchanger system Xc(-) activity in SH-SY5Y cells by unconjugated bilirubin. PLoS One 2011; 6:e29078. [PMID: 22216172 PMCID: PMC3246462 DOI: 10.1371/journal.pone.0029078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022] Open
Abstract
We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na+ -independent cystine∶glutamate exchanger System Xc− (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System Xc−, without the contribution of the others two cystine transporters (XAG− and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System Xc− is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System Xc−, and this renders the cell less prone to oxidative damage.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Centro Studi Fegato, Fondazione Italiana Fegato, Trieste, Italy
| | | | | | | | | |
Collapse
|
46
|
Khan NM, Poduval TB. Immunomodulatory and immunotoxic effects of bilirubin: molecular mechanisms. J Leukoc Biol 2011; 90:997-1015. [PMID: 21807743 DOI: 10.1189/jlb.0211070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunomodulatory and immunotoxic effects of purified UCB have not been evaluated previously at clinically relevant UCB concentrations and UCB:BSA ratios. To delineate the molecular mechanism of UCB-induced immunomodulation, immune cells were exposed to clinically relevant concentrations of UCB. It inhibited LPS-induced B cell proliferation and cytokine production from splenic macrophages. UCB (≥25 μM) was toxic to unfractionated splenocytes, splenic T cells, B cells, macrophages, LPS-stimulated CD19(+) B cells, human PBMCs, and RBCs. Purified UCB also was found to be toxic to splenocytes and human PBMCs. UCB induced necrosis and apoptosis in splenocytes. UCB activated the extrinsic and intrinsic pathways of apoptosis, as reflected by the markers, such as CD95, caspase-8, Bax, MMP, cytoplasmic Ca(+2), caspase-3, and DNA fragmentation. UCB depleted GSH and activated p38MAPK. NAC, caspase inhibitors, and p38MAPK inhibitor attenuated the UCB-induced apoptosis. In vivo administration of ≥25 mg/kbw UCB induced atrophy of spleen, depletion of bone marrow cells, and leukopenia and decreased lymphocyte count and the T and B cell response to mitogens. UCB administration to mice led to induction of oxidative stress, activation of p38MAPK, and cell death in splenocytes. These parameters were attenuated by the injection of NAC and the p38MAPK inhibitor. Our results demonstrate for the first time that clinically relevant concentrations of UCB induce apoptosis and necrosis in immune cells by depleting cellular GSH. These findings should prove useful in understanding the immunosuppression associated with hyperbilirubinemia.
Collapse
Affiliation(s)
- Nazir M Khan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
47
|
Vaz AR, Silva SL, Barateiro A, Fernandes A, Falcão AS, Brito MA, Brites D. Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Exp Neurol 2011; 229:381-90. [DOI: 10.1016/j.expneurol.2011.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/07/2011] [Indexed: 01/30/2023]
|
48
|
Abstract
Encephalopathy by hyperbilirubinemia in infants has been described for decades, but neither the underlying cellular and molecular mechanisms nor the selective pattern of bilirubin deposition in the brain is well understood. The brain is composed of highly specialized and diverse populations of cells, represented by neurons and glia that comprise astrocytes, oligodendrocytes, and microglia. Although microscopic evaluation of icteric brain sections revealed bilirubin within neurons, neuronal processes, and microglia, cell dependent-sensitivity to bilirubin toxicity and the role of each nerve cell type are poorly understood. Even less considered are glial and neuronal pathologic alterations as integrated phenomena. The available knowledge on reactivity of glial cells to bilirubin and on the impairment to neuronal network dynamics that it causes, here summarized, suggests that a better comprehension of the interplay between neurons and glia is essential to understand bilirubin neurotoxicity and highlight potential molecular targets that may lead to disease-modifying therapeutic approaches.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines and Pharmaceutical Sciences (iMedUL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
49
|
Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RF, Brites D. Features of bilirubin-induced reactive microglia: From phagocytosis to inflammation. Neurobiol Dis 2010; 40:663-75. [DOI: 10.1016/j.nbd.2010.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/26/2010] [Accepted: 08/11/2010] [Indexed: 01/05/2023] Open
|
50
|
Oakes GH, Bend JR. Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. J Biochem Mol Toxicol 2010; 24:73-88. [PMID: 20196124 DOI: 10.1002/jbt.20313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elevated concentrations of unconjugated bilirubin (UCB) are responsible for neonatal jaundice and can eventually lead to kernicterus or death. The molecular mechanism of UCB toxicity is incompletely elucidated. The purpose of this study was to analyze changes in gene regulation mediated by UCB to determine novel pathways that contribute to UCB-mediated toxicity. We employed microarray analysis to determine changes in gene regulation mediated by UCB at both pro- (50 microM) and antioxidant (70 nM) concentrations in Hepa 1c1c7 cells at 1 and 6 h. The changes observed in select genes were validated with qPCR. Using immunoblot analysis, we validated these changes at the protein level for select genes and documented the activation of two proteins involved in the endoplasmic reticulum (ER) stress pathway, eIF2 alpha and PERK. Following treatment with 50 microM UCB, microarray analysis revealed the upregulation of many genes involved in ER stress (ATF3, BiP, CHOP, Dnajb1, and Herp). We demonstrate that upregulation of the proapoptotic transcription factor CHOP results in increased intracellular protein content. It was determined that activation of proteins involved in ER stress was an early event in UCB toxicity as eIF2 alpha and PERK were both phosphorylated and activated by 1 h posttreatment. We also demonstrate that procaspase-12 content, a proposed initiator caspase in ER stress-mediated apoptosis, is decreased by 4 h posttreatment. In conclusion, this study demonstrates that elevated concentrations of UCB (50 microM) are able to activate select components of the ER stress pathway in Hepa 1c1c7 cells, which may contribute to UCB-mediated apoptosis.
Collapse
Affiliation(s)
- Garth H Oakes
- Department of Physiology & Pharmacology, Siebens-Drake Medical Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1400 Western Road, London, Ontario, Canada
| | | |
Collapse
|