1
|
Calabrese RL, Marder E. Degenerate neuronal and circuit mechanisms important for generating rhythmic motor patterns. Physiol Rev 2025; 105:95-135. [PMID: 39453990 DOI: 10.1152/physrev.00003.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/27/2024] Open
Abstract
In 1996, we published a review article (Marder E, Calabrese RL. Physiol Rev 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996. Here, we focus on newer studies that reveal ambiguities that complicate understanding circuit dynamics, despite the enormous technical advances of the recent past. In particular, we highlight recent studies of animal-to-animal variability and our understanding that circuit rhythmicity may be supported by multiple state-dependent mechanisms within the same animal and that robustness and resilience in the face of perturbation may depend critically on the presence of modulators and degenerate circuit mechanisms. Additionally, we highlight the use of computational models to ask whether there are generalizable principles about circuit motifs that can be found across rhythmic motor systems in different animal species.
Collapse
Affiliation(s)
| | - Eve Marder
- Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
2
|
Prelic S, Keesey IW, Lavista-Llanos S, Hansson BS, Wicher D. Innexin expression and localization in the Drosophila antenna indicate gap junction or hemichannel involvement in antennal chemosensory sensilla. Cell Tissue Res 2024; 398:35-62. [PMID: 39174822 PMCID: PMC11424723 DOI: 10.1007/s00441-024-03909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Odor detection in insects is largely mediated by structures on antennae called sensilla, which feature a strongly conserved architecture and repertoire of olfactory sensory neurons (OSNs) and various support cell types. In Drosophila, OSNs are tightly apposed to supporting cells, whose connection with neurons and functional roles in odor detection remain unclear. Coupling mechanisms between these neuronal and non-neuronal cell types have been suggested based on morphological observations, concomitant physiological activity during odor stimulation, and known interactions that occur in other chemosensory systems. For instance, it is not known whether cell-cell coupling via gap junctions between OSNs and neighboring cells exists, or whether hemichannels interconnect cellular and extracellular sensillum compartments. Here, we show that innexins, which form hemichannels and gap junctions in invertebrates, are abundantly expressed in adult drosophilid antennae. By surveying antennal transcriptomes and performing various immunohistochemical stainings in antennal tissues, we discover innexin-specific patterns of expression and localization, with a majority of innexins strongly localizing to glial and non-neuronal cells, likely support and epithelial cells. Finally, by injecting gap junction-permeable dye into a pre-identified sensillum, we observe no dye coupling between neuronal and non-neuronal cells. Together with evidence of non-neuronal innexin localization, we conclude that innexins likely do not conjoin neurons to support cells, but that junctions and hemichannels may instead couple support cells among each other or to their shared sensillum lymph to achieve synchronous activity. We discuss how coupling of sensillum microenvironments or compartments may potentially contribute to facilitate chemosensory functions of odor sensing and sensillum homeostasis.
Collapse
Affiliation(s)
- Sinisa Prelic
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
3
|
Salgado M, Márquez-Miranda V, Ferrada L, Rojas M, Poblete-Flores G, González-Nilo FD, Ardiles ÁO, Sáez JC. Ca 2+ permeation through C-terminal cleaved, but not full-length human Pannexin1 hemichannels, mediates cell death. Proc Natl Acad Sci U S A 2024; 121:e2405468121. [PMID: 38861601 PMCID: PMC11194574 DOI: 10.1073/pnas.2405468121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.
Collapse
Affiliation(s)
- Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Luciano Ferrada
- Centro de Microscopía Avanzada-Biobío, Universidad de Concepción, Concepción4070386, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Gonzalo Poblete-Flores
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Fernando D. González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Álvaro O. Ardiles
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| |
Collapse
|
4
|
Qiao M. Deciphering the genetic code of neuronal type connectivity through bilinear modeling. eLife 2024; 12:RP91532. [PMID: 38857169 PMCID: PMC11164534 DOI: 10.7554/elife.91532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Understanding how different neuronal types connect and communicate is critical to interpreting brain function and behavior. However, it has remained a formidable challenge to decipher the genetic underpinnings that dictate the specific connections formed between neuronal types. To address this, we propose a novel bilinear modeling approach that leverages the architecture similar to that of recommendation systems. Our model transforms the gene expressions of presynaptic and postsynaptic neuronal types, obtained from single-cell transcriptomics, into a covariance matrix. The objective is to construct this covariance matrix that closely mirrors a connectivity matrix, derived from connectomic data, reflecting the known anatomical connections between these neuronal types. When tested on a dataset of Caenorhabditis elegans, our model achieved a performance comparable to, if slightly better than, the previously proposed spatial connectome model (SCM) in reconstructing electrical synaptic connectivity based on gene expressions. Through a comparative analysis, our model not only captured all genetic interactions identified by the SCM but also inferred additional ones. Applied to a mouse retinal neuronal dataset, the bilinear model successfully recapitulated recognized connectivity motifs between bipolar cells and retinal ganglion cells, and provided interpretable insights into genetic interactions shaping the connectivity. Specifically, it identified unique genetic signatures associated with different connectivity motifs, including genes important to cell-cell adhesion and synapse formation, highlighting their role in orchestrating specific synaptic connections between these neurons. Our work establishes an innovative computational strategy for decoding the genetic programming of neuronal type connectivity. It not only sets a new benchmark for single-cell transcriptomic analysis of synaptic connections but also paves the way for mechanistic studies of neural circuit assembly and genetic manipulation of circuit wiring.
Collapse
Affiliation(s)
- Mu Qiao
- LinkedInMountain ViewUnited States
| |
Collapse
|
5
|
Jagielnicki M, Kucharska I, Bennett BC, Harris AL, Yeager M. Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures. BIOLOGY 2024; 13:298. [PMID: 38785780 PMCID: PMC11117596 DOI: 10.3390/biology13050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper functioning is crucial for many processes, including development, physiology, and response to disease and trauma. Abnormal GJC and HC communication can lead to numerous pathological states including inflammation, skin diseases, deafness, nervous system disorders, and cardiac arrhythmias. Over the last 15 years, high-resolution X-ray and electron cryomicroscopy (cryoEM) structures for seven Cx isoforms have revealed conservation in the four-helix transmembrane (TM) bundle of each subunit; an αβ fold in the disulfide-bonded extracellular loops and inter-subunit hydrogen bonding across the extracellular gap that mediates end-to-end docking to form a tight seal between hexamers in the GJC. Tissue injury is associated with cellular Ca2+ overload. Surprisingly, the binding of 12 Ca2+ ions in the Cx26 GJC results in a novel electrostatic gating mechanism that blocks cation permeation. In contrast, acidic pH during tissue injury elicits association of the N-terminal (NT) domains that sterically blocks the pore in a "ball-and-chain" fashion. The NT domains under physiologic conditions display multiple conformational states, stabilized by protein-protein and protein-lipid interactions, which may relate to gating mechanisms. The cryoEM maps also revealed putative lipid densities within the pore, intercalated among transmembrane α-helices and between protomers, the functions of which are unknown. For the future, time-resolved cryoEM of isolated Cx channels as well as cryotomography of GJCs and HCs in cells and tissues will yield a deeper insight into the mechanisms for channel regulation. The cytoplasmic loop (CL) and C-terminal (CT) domains are divergent in sequence and length, are likely involved in channel regulation, but are not visualized in the high-resolution X-ray and cryoEM maps presumably due to conformational flexibility. We expect that the integrated use of synergistic physicochemical, spectroscopic, biophysical, and computational methods will reveal conformational dynamics relevant to functional states. We anticipate that such a wealth of results under different pathologic conditions will accelerate drug discovery related to Cx channel modulation.
Collapse
Affiliation(s)
- Maciej Jagielnicki
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
| | - Iga Kucharska
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
| | - Brad C. Bennett
- Department of Biological and Environmental Sciences, Howard College of Arts and Sciences, Samford University, Birmingham, AL 35229, USA;
| | - Andrew L. Harris
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ 07103, USA;
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
6
|
Zhang X, Wang Y, Cai Z, Wan Z, Aihemaiti Y, Tu H. A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway. Front Immunol 2023; 14:1249436. [PMID: 37928537 PMCID: PMC10620905 DOI: 10.3389/fimmu.2023.1249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
7
|
Almoril-Porras A, Calvo AC, Niu L, Beagan J, Hawk JD, Aljobeh A, Wisdom EM, Ren I, Díaz-García M, Wang ZW, Colón-Ramos DA. Specific configurations of electrical synapses filter sensory information to drive choices in behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551556. [PMID: 37577611 PMCID: PMC10418224 DOI: 10.1101/2023.08.01.551556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Synaptic configurations in precisely wired circuits underpin how sensory information is processed by the nervous system, and the emerging animal behavior. This is best understood for chemical synapses, but far less is known about how electrical synaptic configurations modulate, in vivo and in specific neurons, sensory information processing and context-specific behaviors. We discovered that INX-1, a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies during C. elegans thermotaxis behavior. INX-1 couples two bilaterally symmetric interneurons, and this configuration is required for the integration of sensory information during migration of animals across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold temperature stimuli, resulting in abnormally longer run durations and context-irrelevant tracking of isotherms. Our study uncovers a conserved configuration of electrical synapses that, by increasing neuronal capacitance, enables differential processing of sensory information and the deployment of context-specific behavioral strategies.
Collapse
Affiliation(s)
- Agustin Almoril-Porras
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ana C. Calvo
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Health Center; Farmington, CT 06030, USA
| | - Jonathan Beagan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Josh D. Hawk
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ahmad Aljobeh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Elias M. Wisdom
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Ivy Ren
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Malcom Díaz-García
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center; Farmington, CT 06030, USA
| | - Daniel A. Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
- Wu Tsai Institute, Yale University; New Haven, CT 06510, USA
- Marine Biological Laboratory; Woods Hole, MA, USA
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico; San Juan 00901, Puerto Rico
| |
Collapse
|
8
|
Ortiz J, Bobkov YV, DeBiasse MB, Mitchell DG, Edgar A, Martindale MQ, Moss AG, Babonis LS, Ryan JF. Independent Innexin Radiation Shaped Signaling in Ctenophores. Mol Biol Evol 2023; 40:7026321. [PMID: 36740225 PMCID: PMC9949713 DOI: 10.1093/molbev/msad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Innexins facilitate cell-cell communication by forming gap junctions or nonjunctional hemichannels, which play important roles in metabolic, chemical, ionic, and electrical coupling. The lack of knowledge regarding the evolution and role of these channels in ctenophores (comb jellies), the likely sister group to the rest of animals, represents a substantial gap in our understanding of the evolution of intercellular communication in animals. Here, we identify and phylogenetically characterize the complete set of innexins of four ctenophores: Mnemiopsis leidyi, Hormiphora californensis, Pleurobrachia bachei, and Beroe ovata. Our phylogenetic analyses suggest that ctenophore innexins diversified independently from those of other animals and were established early in the emergence of ctenophores. We identified a four-innexin genomic cluster, which was present in the last common ancestor of these four species and has been largely maintained in these lineages. Evidence from correlated spatial and temporal gene expression of the M. leidyi innexin cluster suggests that this cluster has been maintained due to constraints related to gene regulation. We describe the basic electrophysiological properties of putative ctenophore hemichannels from muscle cells using intracellular recording techniques, showing substantial overlap with the properties of bilaterian innexin channels. Together, our results suggest that the last common ancestor of animals had gap junctional channels also capable of forming functional innexin hemichannels, and that innexin genes have independently evolved in major lineages throughout Metazoa.
Collapse
Affiliation(s)
| | | | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Dorothy G Mitchell
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,Department of Biology, University of Florida, Gainesville, FL, USA
| | - Anthony G Moss
- Biological Sciences Department, Auburn University, Auburn, AL, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
9
|
Kim J, Rahman MM, Kim AY, Ramasamy S, Kwon M, Kim Y. Genome, host genome integration, and gene expression in Diadegma fenestrale ichnovirus from the perspective of coevolutionary hosts. Front Microbiol 2023; 14:1035669. [PMID: 36876096 PMCID: PMC9981800 DOI: 10.3389/fmicb.2023.1035669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Polydnaviruses (PDVs) exhibit species-specific mutualistic relationships with endoparasitoid wasps. PDVs can be categorized into bracoviruses and ichnoviruses, which have independent evolutionary origins. In our previous study, we identified an ichnovirus of the endoparasitoid Diadegma fenestrale and named it DfIV. Here, DfIV virions from the ovarian calyx of gravid female wasps were characterized. DfIV virion particles were ellipsoidal (246.5 nm × 109.0 nm) with a double-layered envelope. Next-generation sequencing of the DfIV genome revealed 62 non-overlapping circular DNA segments (A1-A5, B1-B9, C1-C15, D1-D23, E1-E7, and F1-F3); the aggregate genome size was approximately 240 kb, and the GC content (43%) was similar to that of other IVs (41%-43%). A total of 123 open reading frames were predicted and included typical IV gene families such as repeat element protein (41 members), cysteine motif (10 members), vankyrin (9 members), polar residue-rich protein (7 members), vinnexin (6 members), and N gene (3 members). Neuromodulin N (2 members) was found to be unique to DfIV, along with 45 hypothetical genes. Among the 62 segments, 54 showed high (76%-98%) sequence similarities to the genome of Diadegma semiclausum ichnovirus (DsIV). Three segments, namely, D22, E3, and F2, contained lepidopteran host genome integration motifs with homologous regions of about 36-46 bp between them (Diadegma fenestrale ichnovirus, DfIV and lepidopteran host, Plutella xylostella). Most of the DfIV genes were expressed in the hymenopteran host and some in the lepidopteran host (P. xylostella), parasitized by D. fenestrale. Five segments (A4, C3, C15, D5, and E4) were differentially expressed at different developmental stages of the parasitized P. xylostella, and two segments (C15 and D14) were highly expressed in the ovaries of D. fenestrale. Comparative analysis between DfIV and DsIV revealed that the genomes differed in the number of segments, composition of sequences, and internal sequence homologies.
Collapse
Affiliation(s)
- Juil Kim
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea.,Program of Applied Biology, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea.,Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - A-Young Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | | | - Min Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Republic of Korea
| |
Collapse
|
10
|
Stein W, DeMaegd ML, Benson AM, Roy RS, Vidal-Gadea AG. Combining Old and New Tricks: The Study of Genes, Neurons, and Behavior in Crayfish. Front Physiol 2022; 13:947598. [PMID: 35874546 PMCID: PMC9297122 DOI: 10.3389/fphys.2022.947598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis, is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the ‘Receptor-mediated ovary transduction of cargo’ (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| | - Margaret L. DeMaegd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Center for Neural Sciences, New York University, New York, NY, United States
| | - Abigail M. Benson
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Rajit S. Roy
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| |
Collapse
|
11
|
McDouall A, Zhou KQ, Bennet L, Green CR, Gunn AJ, Davidson JO. Connexins, Pannexins and Gap Junctions in Perinatal Brain Injury. Biomedicines 2022; 10:1445. [PMID: 35740466 PMCID: PMC9220888 DOI: 10.3390/biomedicines10061445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal brain injury secondary to hypoxia-ischemia and/or infection/inflammation remains a major cause of disability. Therapeutic hypothermia significantly improves outcomes, but in randomized controlled trials nearly half of infants still died or survived with disability, showing that additional interventions are needed. There is growing evidence that brain injury spreads over time from injured to previously uninjured regions of the brain. At least in part, this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in many brain cells. Opening of these membrane channels releases adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important role in normal signaling, but pathologically can trigger the assembly of the multi-protein inflammasome complex. The inflammasome complex promotes activation of inflammatory caspases, and release of inflammatory cytokines. Overall, the connexin hemichannel appears to play a primary role in propagation of injury and chronic disease, and connexin hemichannel blockade has been shown to be neuroprotective in multiple animal models. Thus, there is potential for some blockers of connexin or pannexin channels to be developed into targeted interventions that could be used in conjunction with or separate to therapeutic hypothermia.
Collapse
Affiliation(s)
- Alice McDouall
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Kelly Q. Zhou
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Laura Bennet
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Colin R. Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Alistair J. Gunn
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- U1 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (A.M.); (K.Q.Z.); (L.B.); (A.J.G.)
| |
Collapse
|
12
|
Koval M, Cwiek A, Carr T, Good ME, Lohman AW, Isakson BE. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury. Purinergic Signal 2021; 17:521-531. [PMID: 34251590 PMCID: PMC8273370 DOI: 10.1007/s11302-021-09804-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules. In this review, we describe how Panx1 functions in response to different pro-inflammatory stimuli, focusing mainly on signaling coordinated by the vasculature. How Panx1 mediates ATP release by injured cells is also discussed. The ability of Panx1 to serve as a central component of many diverse physiologic responses has proven to be critically dependent on the context of expression, post-translational modification, interacting partners, and the mode of stimulation.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Aleksandra Cwiek
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thomas Carr
- Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, PO Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
13
|
Neves JH, Rezende-Teixeira P, Palomino NB, Machado-Santelli GM. Molecular and morphological approach to study the innexin gap junctions in Rhynchosciara americana. Open Biol 2021; 11:210224. [PMID: 34753320 PMCID: PMC8580445 DOI: 10.1098/rsob.210224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gap junctions mediate communication between adjacent cells and are fundamental to the development and homeostasis in multicellular organisms. In invertebrates, gap junctions are formed by transmembrane proteins called innexins. Gap junctions allow the passage of small molecules through an intercellular channel, between a cell and another adjacent cell. The dipteran Rhynchosciara americana has contributed to studying the biology of invertebrates and the study of the interaction and regulation of genes during biological development. Therefore, this paper aimed to study the R. americana innexin-2 by molecular characterization, analysis of the expression profile and cellular localization. The molecular characterization results confirm that the message is from a gap junction protein and analysis of the expression and cellular localization profile shows that innexin-2 can participate in many physiological processes during the development of R. americana.
Collapse
Affiliation(s)
- Jorge Henrique Neves
- Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524 – sala 307, São Paulo, SP, Brazil
| | - Paula Rezende-Teixeira
- Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524 – sala 307, São Paulo, SP, Brazil
| | - Natalia Bazan Palomino
- Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524 – sala 307, São Paulo, SP, Brazil
| | - Glaucia Maria Machado-Santelli
- Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524 – sala 307, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Syrjanen J, Michalski K, Kawate T, Furukawa H. On the molecular nature of large-pore channels. J Mol Biol 2021; 433:166994. [PMID: 33865869 PMCID: PMC8409005 DOI: 10.1016/j.jmb.2021.166994] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called "large-pore channel" exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.
Collapse
Affiliation(s)
- Johanna Syrjanen
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kevin Michalski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Fields of Biochemistry, Molecular, and Cell Biology (BMCB), and Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
15
|
Jin EJ, Park S, Lyu X, Jin Y. Gap junctions: historical discoveries and new findings in the Caenorhabditiselegans nervous system. Biol Open 2020; 9:bio053983. [PMID: 32883654 PMCID: PMC7489761 DOI: 10.1242/bio.053983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gap junctions are evolutionarily conserved structures at close membrane contacts between two cells. In the nervous system, they mediate rapid, often bi-directional, transmission of signals through channels called innexins in invertebrates and connexins in vertebrates. Connectomic studies from Caenorhabditis elegans have uncovered a vast number of gap junctions present in the nervous system and non-neuronal tissues. The genome also has 25 innexin genes that are expressed in spatial and temporal dynamic pattern. Recent findings have begun to reveal novel roles of innexins in the regulation of multiple processes during formation and function of neural circuits both in normal conditions and under stress. Here, we highlight the diverse roles of gap junctions and innexins in the C. elegans nervous system. These findings contribute to fundamental understanding of gap junctions in all animals.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seungmee Park
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaohui Lyu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Yoshimura R, Suetsugu T, Kawahara A, Nakata K, Shikata M, Tanaka S, Ono T, Fushiki D, Endo Y. Formation of functional innexin hemichannels, as well as gap junctional channels, in an insect cell line, NIAs-AeAl-2, derived from Asian tiger mosquito Aedes albopictus (Diptera: Culicidae): A partial but significant contribution of innexin 2. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104060. [PMID: 32446763 DOI: 10.1016/j.jinsphys.2020.104060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In vertebrates, gap junctions and hemichannels consisting of connexins are important cell surface structures for communication with neighboring cells and for the regulation of various cell functions. To date, various gap-junction-related proteins have been found, including innexins in invertebrates and pannexins in vertebrates. Significant contributions of gap junctions by innexins and (hemi-)channels by pannexins to numerous functions have been reported. Verification of the presence and functional significance of innexin hemichannels, however, remains a gap in our knowledge in innexin physiology. In this study, we revealed the localization of an innexin protein (innexin 2) on the cell surface in mosquito tissues and cultured cells. Furthermore, we demonstrated the presence of functional hemichannels, as well as gap junctions, in mosquito cells using dye transfer assays. The inward uptake of fluorescent dye was inhibited by anti-innexin 2 antibody. These results suggest that innexin hemichannels are formed to function in cultured mosquito cells, in at least a partially innexin 2-dependent manner. Although only a few studies on insect hemichannels have been published, innexin-based hemichannels, as well as innexin gap junctions, could also significantly contribute to insect intercellular signal transduction.
Collapse
Affiliation(s)
- Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan.
| | - Taeko Suetsugu
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | - Ai Kawahara
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Kana Nakata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Masato Shikata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Souma Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Tsutomu Ono
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Daisuke Fushiki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Yasuhisa Endo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Wang J, Zhang L, Lian S, Qin Z, Zhu X, Dai X, Huang Z, Ke C, Zhou Z, Wei J, Liu P, Hu N, Zeng Q, Dong B, Dong Y, Kong D, Zhang Z, Liu S, Xia Y, Li Y, Zhao L, Xing Q, Huang X, Hu X, Bao Z, Wang S. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nat Ecol Evol 2020; 4:725-736. [PMID: 32203475 DOI: 10.1038/s41559-020-1138-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
The transient larva-bearing biphasic life cycle is the hallmark of many metazoan phyla, but how metazoan larvae originated remains a major enigma in animal evolution. There are two hypotheses for larval origin. The 'larva-first' hypothesis suggests that the first metazoans were similar to extant larvae, with later evolution of the adult-added biphasic life cycle; the 'adult-first' hypothesis suggests that the first metazoans were adult forms, with the biphasic life cycle arising later via larval intercalation. Here, we investigate the evolutionary origin of primary larvae by conducting ontogenetic transcriptome profiling for Mollusca-the largest marine phylum characterized by a trochophore larval stage and highly variable adult forms. We reveal that trochophore larvae exhibit rapid transcriptome evolution with extraordinary incorporation of novel genes (potentially contributing to adult shell evolution), and that cell signalling/communication genes (for example, caveolin and innexin) are probably crucial for larval evolution. Transcriptome age analysis of eight metazoan species reveals the wide presence of young larval transcriptomes in both trochozoans and other major metazoan lineages, therefore arguing against the prevailing larva-first hypothesis. Our findings support an adult-first evolutionary scenario with a single metazoan larval intercalation, and suggest that the first appearance of proto-larva probably occurred after the divergence of direct-developing Ctenophora from a metazoan ancestor.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenkui Qin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuan Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jiankai Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Dexu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sinuo Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xia
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,The Sars-Fang Centre, Ocean University of China, Qingdao, China.
| |
Collapse
|
18
|
Chien J, Wolf FW, Grosche S, Yosef N, Garriga G, Mörck C. The Enigmatic Canal-Associated Neurons Regulate Caenorhabditis elegans Larval Development Through a cAMP Signaling Pathway. Genetics 2019; 213:1465-1478. [PMID: 31619445 PMCID: PMC6893374 DOI: 10.1534/genetics.119.302628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to promote larval development, and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2 mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants, and the arrest phenotype was suppressed by mutations in kin-29 ACY-2 is expressed predominantly in the CANs, and we provide evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose two models for how ACY-2 activity in the CANs regulates KIN-29 in target cells.
Collapse
Affiliation(s)
- Jason Chien
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Fred W Wolf
- Department of Molecular and Cell Biology, University of California, Merced, California 95343
| | - Sarah Grosche
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Nebeyu Yosef
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204
| | - Catarina Mörck
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| |
Collapse
|
19
|
Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019; 13:529. [PMID: 31827424 PMCID: PMC6892400 DOI: 10.3389/fncel.2019.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate organs, acting as building blocks of the gap junctions (GJs) known to play vital roles in the normal function of many organs. Mutations in Cx genes (particularly GJB2, which encodes Cx26) cause approximately half of all cases of congenital hearing loss in newborns. Great progress has been made in understanding GJ function and the molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types of Cxs work together to ensure normal development and function of the cochlea. These findings include many aspects not proposed in the classic K+ recycling theory, such as the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti), the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data, especially those collected from targeted modification of major Cx genes in the mouse cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in the EP generation, given that only Cx26 is required for normal hearing. This article will review our current understanding of the molecular structure, cellular distribution, and major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs on the design and implementation of translational studies of cochlear gene therapies for Cx mutations are also discussed.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Otolaryngology, Head-Neck and Surgery, Xiangya Hospital of Central South University, Changsha, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenjuan Zhang
- Department of Otolaryngology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Li
- Department of Pharmacy, Changsha Hospital of Traditional Medicine, Changsha, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Xu Y, Pi W, Rudic RD. Old and New Roles and Evolving Complexities of Cardiovascular Clocks. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:283-290. [PMID: 31249489 PMCID: PMC6585526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cardiovascular (CV) system has been established to be significantly influenced by the molecular components of circadian rhythm. Oscillations of circadian rhythm occur within the circulation to affect thrombosis and blood pressure and within CV tissues including arteries, heart, and kidney to control function. Physiologic and molecular oscillations of circadian rhythm have been well connected via global, tissue-specific, and transgenic reporter mouse models of key core clock signals such as Bmal1, Period, and Clock, which can produce both pathology and protection with their mutation. With different nuances of CV clock action continuing to emerge in studies of the cardiovascular system, new questions are raised in both new and old mouse model system observations that underscore the importance, complexity, and continued study of the circadian clock mechanism in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - R. D. Rudic
- To whom all correspondence should be addressed: Dan Rudic, Augusta University, 1120 15th Street, Augusta, GA, 30912, CB3620; Tel:706 721-7649, Fax 706 721-2347, E-mail:
| |
Collapse
|
21
|
Abstract
BACKGROUND Gap junctions (GJ) are one of the most common forms of intercellular communication. GJs are assembled from proteins that form channels connecting the cytoplasm of adjacent cells. They are considered to be the main or the only type of intercellular channels and the universal feature of all multicellular animals. Two unrelated protein families are currently considered to be involved in this function, namely, connexins and pannexins (pannexins/innexins). Pannexins were hypothesized to be the universal GJ proteins of multicellular animals, distinct from connexins that are characteristic of chordates only. Here we have revised this supposition by applying growing high throughput sequencing data from diverse metazoan species. RESULTS Pannexins were found in Chordates, Ctenophores, Cnidarians, and in the most major groups of bilateral protostomes. Yet some metazoans appear to have neither connexins nor pannexins in their genomes. We detected no connexins or pannexins/innexins homologues in representatives of all five classes of echinoderms and their closest relatives hemichordates with available genomic sequences. Despite this, our intracellular recordings demonstrate direct electrical coupling between blastomeres at the 2-cell embryo of the echinoderm (starfish Asterias rubens). In these experiments, carboxyfluorescein fluorescent dye did not diffuse between electrically coupled cells. This excludes the possibility that the observed electrical coupling is mediated by incomplete cytoplasm separation during cleavage. CONCLUSION Functional GJs are present in representatives of the clade that lack currently recognized GJ protein families. New undiscovered protein families utilized for intercellular channels are predicted. It is possible that the new type(s) of intercellular channels are present in parallel to pannexin and connexin gap junctions in animal groups, other than Echinodermata.
Collapse
Affiliation(s)
- Georgy A Slivko-Koltchik
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| | - Victor P Kuznetsov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| | - Yuri V Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994.
- A.N. Belozersky Institute of Physico-Chemical Biology Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
22
|
Güiza J, Barría I, Sáez JC, Vega JL. Innexins: Expression, Regulation, and Functions. Front Physiol 2018; 9:1414. [PMID: 30364195 PMCID: PMC6193117 DOI: 10.3389/fphys.2018.01414] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
Abstract
The innexin (Inx) proteins form gap junction channels and non-junctional channels (named hemichannels) in invertebrates. These channels participate in cellular communication playing a relevant role in several physiological processes. Pioneer studies conducted mainly in worms and flies have shown that innexins participate in embryo development and behavior. However, recent studies have elucidated new functions of innexins in Arthropoda, Nematoda, Annelida, and Cnidaria, such as immune response, and apoptosis. This review describes emerging data of possible new roles of innexins and summarizes the data available to date.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Iván Barría
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
23
|
Dong A, Liu S, Li Y. Gap Junctions in the Nervous System: Probing Functional Connections Using New Imaging Approaches. Front Cell Neurosci 2018; 12:320. [PMID: 30283305 PMCID: PMC6156252 DOI: 10.3389/fncel.2018.00320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
Gap junctions are channels that physically connect adjacent cells, mediating the rapid exchange of small molecules, and playing an essential role in a wide range of physiological processes in nearly every system in the body, including the nervous system. Thus, altered function of gap junctions has been linked with a plethora of diseases and pathological conditions. Being able to measure and characterize the distribution, function, and regulation of gap junctions in intact tissue is therefore essential for understanding the physiological and pathophysiological roles that gap junctions play. In recent decades, several robust in vitro and in vivo methods have been developed for detecting and characterizing gap junctions. Here, we review the currently available methods with respect to invasiveness, signal-to-noise ratio, temporal resolution and others, highlighting the recently developed chemical tracers and hybrid imaging systems that use novel chemical compounds and/or genetically encoded enzymes, transporters, channels, and fluorescent proteins in order to map gap junctions. Finally, we discuss possible avenues for further improving existing techniques in order to achieve highly sensitive, cell type-specific, non-invasive measures of in vivo gap junction function with high throughput and high spatiotemporal resolution.
Collapse
Affiliation(s)
- Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Simin Liu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
24
|
Oshima A. Structure of an innexin gap junction channel and cryo-EM sample preparation. Microscopy (Oxf) 2018; 66:371-379. [PMID: 29036409 PMCID: PMC6084585 DOI: 10.1093/jmicro/dfx035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023] Open
Abstract
Gap junction channels are essential for mediating intercellular communication in most multicellular organisms. Two gene families encode gap junction channels, innexin and connexin. Although the sequence similarity between these two families based on bioinformatics is not conclusively determined, the gap junction channels encoded by these two gene families are structurally and functionally analogous. We recently reported an atomic structure of an invertebrate innexin gap junction channel using single-particle cryo-electron microscopy. Our findings revealed that connexin and innexin families share several structural properties with regard to their monomeric and oligomeric structures, while simultaneously suggesting a diversity of gap junction channels in nature. This review summarizes cutting-edge progress toward determining an innexin gap junction channel structure, as well as essential tips for preparing cryo-electron microscopy samples for high-resolution structural analysis of an innexin gap junction channel.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
25
|
Jezzini SH, Merced A, Blagburn JM. Shaking-B misexpression increases the formation of gap junctions but not chemical synapses between auditory sensory neurons and the giant fiber of Drosophila melanogaster. PLoS One 2018; 13:e0198710. [PMID: 30118493 PMCID: PMC6097648 DOI: 10.1371/journal.pone.0198710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
The synapse between auditory Johnston's Organ neurons (JONs) and the giant fiber (GF) of Drosophila is structurally mixed, being composed of cholinergic chemical synapses and Neurobiotin- (NB) permeable gap junctions, which consist of the innexin Shaking-B (ShakB). Previous observations showed that misexpression of one ShakB isoform, ShakB(N+16), in a subset of JONs that do not normally form gap junctions results in their de novo dye coupling to the GF. Misexpression of the transcription factor Engrailed (En) in these neurons also has this effect, and in addition causes the formation of new chemical synapses. These results, along with earlier studies suggesting that gap junctions are required for the development of some chemical synapses, led to the hypothesis that ShakB would, like En, have an instructive effect on the distribution of mixed chemical/electrical contacts. To test this, we first confirmed quantitatively that ShakB(N+16) misexpression increased the dye-coupling of JONs with the GF, indicating the formation of ectopic gap junctions. Conversely, expression of the 'incorrect' isoform, ShakB(N), abolished dye coupling. Immunocytochemistry of the ShakB protein showed that ShakB(N+16) increased gap junctional plaques in JON axons but ShakB(N) did not. To test our hypothesis, fluorescently-labeled presynaptic active zone protein (Brp) was expressed in JONs and the changes in its distribution on the GF dendrites was assayed with confocal microscopy in animals with misexpression of ShakB(N+16), ShakB(N) or, as a positive control, En. Using different methods of image analysis, we confirmed our previous result that En misexpression increased the chemical synapses with the GF and the amount of GF medial dendrite branching. However, contrary to our hypothesis, misexpression of ShakB did not increase these parameters. Immunostaining showed no association between presynaptic active zones and the new ShakB plaques, further evidence against the hypothesis. We conclude that both subsets of JON form chemical synapses onto the GF dendrites but only one population forms gap junctions, comprised of ShakB(N+16). Misexpression of this isoform in all JONs does not instruct the formation of new mixed chemical/electrical synapses, but results in the insertion of new gap junctions, presumably at the sites of existing chemical synaptic contacts with the GF.
Collapse
Affiliation(s)
- Sami H. Jezzini
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Amelia Merced
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| |
Collapse
|
26
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Wang H, Dewell RB, Zhu Y, Gabbiani F. Feedforward Inhibition Conveys Time-Varying Stimulus Information in a Collision Detection Circuit. Curr Biol 2018; 28:1509-1521.e3. [PMID: 29754904 DOI: 10.1016/j.cub.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 10/16/2022]
Abstract
Feedforward inhibition is ubiquitous as a motif in the organization of neuronal circuits. During sensory information processing, it is traditionally thought to sharpen the responses and temporal tuning of feedforward excitation onto principal neurons. As it often exhibits complex time-varying activation properties, feedforward inhibition could also convey information used by single neurons to implement dendritic computations on sensory stimulus variables. We investigated this possibility in a collision-detecting neuron of the locust optic lobe that receives both feedforward excitation and inhibition. We identified a small population of neurons mediating feedforward inhibition, with wide visual receptive fields and whose responses depend both on the size and speed of moving stimuli. By studying responses to simulated objects approaching on a collision course, we determined that they jointly encode the angular size of expansion of the stimulus. Feedforward excitation, on the other hand, encodes a function of the angular velocity of expansion and the targeted collision-detecting neuron combines these two variables non-linearly in its firing output. Thus, feedforward inhibition actively contributes to the detailed firing-rate time course of this collision-detecting neuron, a feature critical to the appropriate execution of escape behaviors. These results suggest that feedforward inhibition could similarly convey time-varying stimulus information in other neuronal circuits.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Quantitative and Computational Biosciences, Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Quantitative and Computational Biosciences, Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Electrical and Computer Engineering Department, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
28
|
Yoshimura R, Suetsugu T, Endo Y. Serotonergic transmission and gap junctional coupling in proventricular muscle cells in the American cockroach, Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:122-129. [PMID: 28433752 DOI: 10.1016/j.jinsphys.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 05/28/2023]
Abstract
The visceral muscle tissues of insects consist of striated muscle cells. The mechanisms responsible for delivering signals to the contractile muscles in the insect digestive tract remain unclear. We found that serotonergic nerves innervate the hemocoel surfaces of foregut and midgut muscles in the American cockroach. Electron microscopy of the neuromuscular junctions in the proventriculus (gizzard) revealed typical synaptic structures, the accumulation of large core/cored vesicles (neuropeptides) and small clear vesicle (neurotransmitter) at presynapses, and synaptic clefts. However, only a limited number of muscle cells, which were located in the outer part of the muscle layer, came into contact with synapses, which contained classical neurotransmitters, such as glutamate. A gap junction channel-permeable fluorescent dye, Lucifer yellow, was microinjected into single muscle cells, and it subsequently spread to several neighboring muscle cells. The dye movement occurred in the radial (hemocoel-lumen) direction rather than tangential directions. A gap junction blocker, octanol, reversibly inhibited the dye coupling. Messenger RNA for innexin 2, a gap junction-related protein, was detected in the proventriculus. These results suggest that motile signals in the insect digestive tract only reach the outermost part of the visceral muscles and are propagated to the inner muscle cells via gap junctions. Therefore, invertebrate gap junction-related proteins have potential as new targets for pest control.
Collapse
Affiliation(s)
- Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan.
| | - Taeko Suetsugu
- Department of Applied Biology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Yasuhisa Endo
- Department of Applied Biology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| |
Collapse
|
29
|
Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 2017; 77:522-547. [PMID: 27582044 PMCID: PMC5412853 DOI: 10.1002/dneu.22447] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017.
Collapse
Affiliation(s)
- I Martha Skerrett
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| | - Jamal B Williams
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| |
Collapse
|
30
|
Kim Y, Davidson JO, Green CR, Nicholson LFB, O'Carroll SJ, Zhang J. Connexins and Pannexins in cerebral ischemia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:224-236. [PMID: 28347700 DOI: 10.1016/j.bbamem.2017.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
A common cause of mortality and long-term adult disability, cerebral ischemia or brain ischemia imposes a significant health and financial burden on communities worldwide. Cerebral ischemia is a condition that arises from a sudden loss of blood flow and consequent failure to meet the high metabolic demands of the brain. The lack of blood flow initiates a sequelae of cell death mechanisms, including the activation of the inflammatory pathway, which can ultimately result in irreversible brain tissue damage. In particular, Connexins and Pannexins are non-selective channels with a large pore that have shown to play time-dependent roles in the perpetuation of ischaemic injury. This review highlights the roles of Connexin and Pannexin channels in cell death mechanisms as a promising therapeutic target in cerebral ischemia, and in particular connexin hemichannels which may contribute most of the ATP release as a result of ischemia as well as during reperfusion. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland
| | - Colin R Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Louise F B Nicholson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Simon J O'Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Jie Zhang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland.
| |
Collapse
|
31
|
Baker MW, Macagno ER. Gap junction proteins and the wiring (Rewiring) of neuronal circuits. Dev Neurobiol 2017; 77:575-586. [PMID: 27512961 DOI: 10.1002/dneu.22429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 11/11/2022]
Abstract
The unique morphology and pattern of synaptic connections made by a neuron during development arise in part by an extended period of growth in which cell-cell interactions help to sculpt the arbor into its final shape, size, and participation in different synaptic networks. Recent experiments highlight a guiding role played by gap junction proteins in controlling this process. Ectopic and overexpression studies in invertebrates have revealed that the selective expression of distinct gap junction genes in neurons and glial cells is sufficient to establish selective new connections in the central nervous systems of the leech (Firme et al. [2012]: J Neurosci 32:14265-14270), the nematode (Rabinowitch et al. [2014]: Nat Commun 5:4442), and the fruit fly (Pézier et al., 2016: PLoS One 11:e0152211). We present here an overview of this work and suggest that gap junction proteins, in addition to their synaptic/communicative functions, have an instructive role as recognition and adhesion factors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 575-586, 2017.
Collapse
Affiliation(s)
- Michael W Baker
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92093
| | - Eduardo R Macagno
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
32
|
Oshima A, Tani K, Fujiyoshi Y. Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 2016; 7:13681. [PMID: 27905396 PMCID: PMC5146279 DOI: 10.1038/ncomms13681] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023] Open
Abstract
Innexins, a large protein family comprising invertebrate gap junction channels, play an essential role in nervous system development and electrical synapse formation. Here we report the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction channels at atomic resolution. We find that the arrangements of the transmembrane helices and extracellular loops of the INX-6 monomeric structure are highly similar to those of connexin-26 (Cx26), despite the lack of significant sequence similarity. The INX-6 gap junction channel comprises hexadecameric subunits but reveals the N-terminal pore funnel, consistent with Cx26. The helix-rich cytoplasmic loop and C-terminus are intercalated one-by-one through an octameric hemichannel, forming a dome-like entrance that interacts with N-terminal loops in the pore. These observations suggest that the INX-6 cytoplasmic domains are cooperatively associated with the N-terminal funnel conformation, and an essential linkage of the N-terminal with channel activity is presumably preserved across gap junction families.
Collapse
Affiliation(s)
- Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
33
|
Markert SM, Britz S, Proppert S, Lang M, Witvliet D, Mulcahy B, Sauer M, Zhen M, Bessereau JL, Stigloher C. Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome. NEUROPHOTONICS 2016; 3:041802. [PMID: 27175373 PMCID: PMC4855082 DOI: 10.1117/1.nph.3.4.041802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/08/2016] [Indexed: 06/02/2023]
Abstract
Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.
Collapse
Affiliation(s)
| | - Sebastian Britz
- University of Würzburg, Biocenter, Division of Electron Microscopy, Am Hubland, Würzburg 97074, Germany
| | - Sven Proppert
- University of Würzburg, Department of Biotechnology and Biophysics, Am Hubland, Würzburg 97074, Germany
- University of Würzburg, Department of Neurophysiology, Institute of Physiology, Röntgenring 9, Würzburg 97070, Germany
| | - Marietta Lang
- University of Würzburg, Biocenter, Division of Electron Microscopy, Am Hubland, Würzburg 97074, Germany
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- University of Toronto, Department of Molecular Genetics, Physiology and Institute of Medical Science, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- University of Toronto, Department of Molecular Genetics, Physiology and Institute of Medical Science, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | - Markus Sauer
- University of Würzburg, Department of Biotechnology and Biophysics, Am Hubland, Würzburg 97074, Germany
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- University of Toronto, Department of Molecular Genetics, Physiology and Institute of Medical Science, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
| | - Jean-Louis Bessereau
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 16 rue R. Dubois, Villeurbanne Cedex F-69622, France
| | - Christian Stigloher
- University of Würzburg, Biocenter, Division of Electron Microscopy, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
34
|
Johnson RG, Le HC, Evenson K, Loberg SW, Myslajek TM, Prabhu A, Manley AM, O’Shea C, Grunenwald H, Haddican M, Fitzgerald PM, Robinson T, Cisterna BA, Sáez JC, Liu TF, Laird DW, Sheridan JD. Connexin Hemichannels: Methods for Dye Uptake and Leakage. J Membr Biol 2016; 249:713-741. [DOI: 10.1007/s00232-016-9925-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 01/18/2023]
|
35
|
De-La-Rosa Tovar A, Mishra PK, De-Miguel FF. On the Basis of Synaptic Integration Constancy during Growth of a Neuronal Circuit. Front Cell Neurosci 2016; 10:198. [PMID: 27587998 PMCID: PMC4989888 DOI: 10.3389/fncel.2016.00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/29/2016] [Indexed: 01/19/2023] Open
Abstract
We studied how a neuronal circuit composed of two neuron types connected by chemical and electrical synapses maintains constant its integrative capacities as neurons grow. For this we combined electrophysiological experiments with mathematical modeling in pairs of electrically-coupled Retzius neurons from postnatal to adult leeches. The electrically-coupled dendrites of both Retzius neurons receive a common chemical input, which produces excitatory postsynaptic potentials (EPSPs) with varying amplitudes. Each EPSP spreads to the soma, but also crosses the electrical synapse to arrive at the soma of the coupled neuron. The leak of synaptic current across the electrical synapse reduces the amplitude of the EPSPs in proportion to the coupling ratio. In addition, summation of EPSPs generated in both neurons generates the baseline action potentials of these serotonergic neurons. To study how integration is adjusted as neurons grow, we first studied the characteristics of the chemical and electrical connections onto the coupled dendrites of neuron pairs with soma diameters ranging from 21 to 75 μm. Then by feeding a mathematical model with the neuronal voltage responses to pseudorandom noise currents we obtained the values of the coupling ratio, the membrane resistance of the soma (rm) and dendrites (rdend), the space constant (λ) and the characteristic dendritic length (L = l/λ). We found that the EPSPs recorded from the somata were similar regardless on the neuron size. However, the amplitude of the EPSPs and the firing frequency of the neurons were inversely proportional to the coupling ratio of the neuron pair, which also was independent from the neuronal size. This data indicated that the integrative constancy relied on the passive membrane properties. We show that the growth of Retzius neurons was compensated by increasing the membrane resistance of the dendrites and therefore the λ value. By solely increasing the dendrite resistance this circuit maintains constant its integrative capacities as its neurons grow.
Collapse
Affiliation(s)
- Adriana De-La-Rosa Tovar
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México México, D.F., Mexico
| | - Prashant K Mishra
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México México, D.F., Mexico
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México México, D.F., Mexico
| |
Collapse
|
36
|
Marder E, Gutierrez GJ, Nusbaum MP. Complicating connectomes: Electrical coupling creates parallel pathways and degenerate circuit mechanisms. Dev Neurobiol 2016; 77:597-609. [PMID: 27314561 PMCID: PMC5412840 DOI: 10.1002/dneu.22410] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 01/12/2023]
Abstract
Electrical coupling in circuits can produce non‐intuitive circuit dynamics, as seen in both experimental work from the crustacean stomatogastric ganglion and in computational models inspired by the connectivity in this preparation. Ambiguities in interpreting the results of electrophysiological recordings can arise if sets of pre‐ or postsynaptic neurons are electrically coupled, or if the electrical coupling exhibits some specificity (e.g. rectifying, or voltage‐dependent). Even in small circuits, electrical coupling can produce parallel pathways that can allow information to travel by monosynaptic and/or polysynaptic pathways. Consequently, similar changes in circuit dynamics can arise from entirely different underlying mechanisms. When neurons are coupled both chemically and electrically, modifying the relative strengths of the two interactions provides a mechanism for flexibility in circuit outputs. This, together with neuromodulation of gap junctions and coupled neurons is important both in developing and adult circuits. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 597–609, 2017
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA
| | | | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
37
|
Krzyzanowski MC, Woldemariam S, Wood JF, Chaubey AH, Brueggemann C, Bowitch A, Bethke M, L’Etoile ND, Ferkey DM. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network. PLoS Genet 2016; 12:e1006153. [PMID: 27459302 PMCID: PMC4961389 DOI: 10.1371/journal.pgen.1006153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/08/2016] [Indexed: 01/03/2023] Open
Abstract
All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit.
Collapse
Affiliation(s)
- Michelle C. Krzyzanowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Sarah Woldemariam
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jordan F. Wood
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Aditi H. Chaubey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Mary Bethke
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Noelle D. L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
38
|
Pézier AP, Jezzini SH, Bacon JP, Blagburn JM. Shaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila melanogaster. PLoS One 2016; 11:e0152211. [PMID: 27043822 PMCID: PMC4833477 DOI: 10.1371/journal.pone.0152211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
The Johnston’s Organ neurons (JONs) form chemical and electrical synapses onto the giant fiber neuron (GF), as part of the neuronal circuit that mediates the GF escape response in Drosophila melanogaster. The purpose of this study was to identify which of the 8 Drosophila innexins (invertebrate gap junction proteins) mediates the electrical connection at this synapse. The GF is known to express Shaking B (ShakB), specifically the ShakB(N+16) isoform only, at its output synapses in the thorax. The shakB2 mutation disrupts these GF outputs and also abolishes JON-GF synaptic transmission. However, the identity of the innexin that forms the presynaptic hemichannels in the JONs remains unknown. We used electrophysiology, immunocytochemistry and dye injection, along with presynaptically-driven RNA interference, to investigate this question. The amplitude of the compound action potential recorded in response to sound from the base of the antenna (sound-evoked potential, or SEP) was reduced by RNAi of the innexins Ogre, Inx3, Inx6 and, to a lesser extent Inx2, suggesting that they could be required in JONs for proper development, excitability, or synchronization of action potentials. The strength of the JON-GF connection itself was reduced to background levels only by RNAi of shakB, not of the other seven innexins. ShakB knockdown prevented Neurobiotin coupling between GF and JONs and removed the plaques of ShakB protein immunoreactivity that are present at the region of contact. Specific shakB RNAi lines that are predicted to target the ShakB(L) or ShakB(N) isoforms alone did not reduce the synaptic strength, implying that it is ShakB(N+16) that is required in the presynaptic neurons. Overexpression of ShakB(N+16) in JONs caused the formation of ectopic dye coupling, whereas ShakB(N) prevented it altogether, supporting this conclusion and also suggesting that gap junction proteins may have an instructive role in synaptic target choice.
Collapse
Affiliation(s)
- Adeline P. Pézier
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Sami H. Jezzini
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Jonathan P. Bacon
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
39
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
40
|
Oshima A, Matsuzawa T, Murata K, Tani K, Fujiyoshi Y. Hexadecameric structure of an invertebrate gap junction channel. J Mol Biol 2016; 428:1227-1236. [DOI: 10.1016/j.jmb.2016.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
|
41
|
Parasitism and survival rate of Diadegma fenestrale (Hymenoptera: Ichneumonidae) and DfIV gene expression patterns in two lepidopteran hosts. Biochem Biophys Res Commun 2015; 459:579-84. [PMID: 25769948 DOI: 10.1016/j.bbrc.2015.02.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022]
Abstract
The genus Diadegma is a well-known parasitoid group and some are known to have symbiotic virus, polydnavirus (PDV). A novel IV was discovered from the calyx of Diadegma fenestrale female and sequenced its genome. D. fenestrale has more than two hosts, including potato tuber moth (PTM) and diamondback moth (DBM). D. fenestrale preferred PTM to DBM as hosts based on the oviposition and survival rate. Nevertheless, the developmental period and morphology of D. fenestrale were not significantly different between PTM and DBM. We compared DfIV gene expression patterns between PTM and DBM under various conditions to understand the phenomena. DfIV genes were more widely expressed in PTM with large numbers than in DBM after parasitized by D. fenestrale, particularly at the initial point. They showed differential expression patterns between two lepidopteran hosts. This DfIV gene expression plasticity showed a dependency on the lepidopteran host species and parasitization time, suggesting that it may contribute to increase the parasitoid survival rate. This might be one of the key elements that determine the symbiotic relationship between PDV and parasitoid.
Collapse
|
42
|
Calkins TL, Woods-Acevedo MA, Hildebrandt O, Piermarini PM. The molecular and immunochemical expression of innexins in the yellow fever mosquito, Aedes aegypti: insights into putative life stage- and tissue-specific functions of gap junctions. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:11-21. [PMID: 25585357 DOI: 10.1016/j.cbpb.2014.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
Gap junctions (GJ) mediate direct intercellular communication by forming channels through which certain small molecules and/or ions can pass. Connexins, the proteins that form vertebrate GJ, are well studied and known to contribute to neuronal, muscular and epithelial physiology. Innexins, the GJ proteins of insects, have only recently received much investigative attention and many of their physiological roles remain to be determined. Here we characterize the molecular expression of six innexin (Inx) genes in the yellow fever mosquito Aedes aegypti (AeInx1, AeInx2, AeInx3, AeInx4, AeInx7, and AeInx8) and the immunochemical expression of one innexin protein, AeInx3, in the alimentary canal. We detected the expression of no less than four innexin genes in each mosquito life stage (larva, pupa, adult) and tissue/body region from adult males and females (midgut, Malpighian tubules, hindgut, head, carcass, gonads), suggesting a remarkable potential molecular diversity of GJ in mosquitoes. Moreover, the expression patterns of some innexins were life stage and/or tissue specific, suggestive of potential functional specializations. Cloning of the four full-length cDNAs expressed in the Malpighian tubules of adult females (AeInx1, AeInx2, AeInx3, and AeInx7) revealed evidence for 1) alternative splicing of AeInx1 and AeInx3 transcripts, and 2) putative N-glycosylation of AeInx3 and AeInx7. Finally, immunohistochemistry of AeInx3 in the alimentary canal of larval and adult female mosquitoes confirmed localization of this innexin to the intercellular regions of Malpighian tubule and hindgut epithelial cells, suggesting that it is an important component of GJ in these tissues.
Collapse
Affiliation(s)
- Travis L Calkins
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Mikal A Woods-Acevedo
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Oliver Hildebrandt
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States.
| |
Collapse
|
43
|
Sangaletti R, Dahl G, Bianchi L. Mechanosensitive unpaired innexin channels in C. elegans touch neurons. Am J Physiol Cell Physiol 2014; 307:C966-77. [PMID: 25252948 DOI: 10.1152/ajpcell.00246.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Invertebrate innexin proteins share sequence homology with vertebrate pannexins and general membrane topology with both pannexins and connexins. While connexins form gap junctions that mediate intercellular communication, pannexins are thought to function exclusively as plasma membrane channels permeable to both ions and small molecules. Undoubtedly, certain innexins function as gap junction proteins. However, due to sequence similarity to pannexins, it was postulated that innexins also function as plasma membrane channels. Indeed, some of the leech innexins were found to mediate ATP release as unpaired membrane channels with shared pharmacology to pannexin channels. We show here that Caenorhabditis elegans touch-sensing neurons express a mechanically gated innexin channel with a conductance of ∼1 nS and voltage-dependent and K(+)-selective subconductance state. We also show that C. elegans touch neurons take up ethidium bromide through a mechanism that is activated and blocked by innexin activating stimuli and inhibitors, respectively. Finally, we present evidence that touch neurons' innexins are required for cell death induced by chemical ischemia. Our work demonstrates that innexins function as plasma membrane channels in native C. elegans neurons, where they may play a role in pathological cell death.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
44
|
Shruti S, Schulz DJ, Lett KM, Marder E. Electrical coupling and innexin expression in the stomatogastric ganglion of the crab Cancer borealis. J Neurophysiol 2014; 112:2946-58. [PMID: 25210156 DOI: 10.1152/jn.00536.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gap junctions are intercellular channels that allow for the movement of small molecules and ions between the cytoplasm of adjacent cells and form electrical synapses between neurons. In invertebrates, the gap junction proteins are coded for by the innexin family of genes. The stomatogastric ganglion (STG) in the crab Cancer borealis contains a small number of identified and electrically coupled neurons. We identified Innexin 1 (Inx1), Innexin 2 (Inx2), Innexin 3 (Inx3), Innexin 4 (Inx4), Innexin 5 (Inx5), and Innexin 6 (Inx6) members of the C. borealis innexin family. We also identified six members of the innexin family from the lobster Homarus americanus transcriptome. These innexins show significant sequence similarity to other arthropod innexins. Using in situ hybridization and reverse transcriptase-quantitative PCR (RT-qPCR), we determined that all the cells in the crab STG express multiple innexin genes. Electrophysiological recordings of coupling coefficients between identified pairs of pyloric dilator (PD) cells and PD-lateral posterior gastric (LPG) neurons show that the PD-PD electrical synapse is nonrectifying while the PD-LPG synapse is apparently strongly rectifying.
Collapse
Affiliation(s)
- Sonal Shruti
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts; and
| | - David J Schulz
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, Missouri
| | - Kawasi M Lett
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, Missouri
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts; and
| |
Collapse
|
45
|
Gaynullina D, Tarasova OS, Kiryukhina OO, Shestopalov VI, Panchin Y. Endothelial function is impaired in conduit arteries of pannexin1 knockout mice. Biol Direct 2014; 9:8. [PMID: 24885326 PMCID: PMC4046076 DOI: 10.1186/1745-6150-9-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/14/2014] [Indexed: 11/21/2022] Open
Abstract
Pannexin1 is ubiquitously expressed in vertebrate tissues, but the role it plays in vascular tone regulation remains unclear. We found that Pannexin1 expression level is much higher in the endothelium relative to smooth muscle of saphenous artery. The ability of endothelium-intact arteries for dilation was significantly impaired whereas contractile responses were considerably increased in mice with genetic ablation of Pannexin1. No such increased contractile responses were detected in the endothelium-denuded arteries. Combined, our findings suggest a new function of Pannexin1 as an important player in normal endothelium-dependent regulation of arterial tone, where it facilitates vessel dilation and attenuates constriction. Reviewed by Dr. Armen Mulkidjanian and Dr. Alexander Lobkovsky.
Collapse
Affiliation(s)
- Dina Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M,V, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia.
| | | | | | | | | |
Collapse
|
46
|
Innexin and pannexin channels and their signaling. FEBS Lett 2014; 588:1396-402. [PMID: 24632288 DOI: 10.1016/j.febslet.2014.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 01/24/2023]
Abstract
Innexins are bifunctional membrane proteins in invertebrates, forming gap junctions as well as non-junctional membrane channels (innexons). Their vertebrate analogues, the pannexins, have not only lost the ability to form gap junctions but are also prevented from it by glycosylation. Pannexins appear to form only non-junctional membrane channels (pannexons). The membrane channels formed by pannexins and innexins are similar in their biophysical and pharmacological properties. Innexons and pannexons are permeable to ATP, are present in glial cells, and are involved in activation of microglia by calcium waves in glia. Directional movement and accumulation of microglia following nerve injury, which has been studied in the leech which has unusually large glial cells, involves at least 3 signals: ATP is the "go" signal, NO is the "where" signal and arachidonic acid is a "stop" signal.
Collapse
|
47
|
Baker MW, Macagno ER. Control of neuronal morphology and connectivity: Emerging developmental roles for gap junctional proteins. FEBS Lett 2014; 588:1470-9. [DOI: 10.1016/j.febslet.2014.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
|
48
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
49
|
A novel homozygous mutation in the EC1/EC2 interaction domain of the gap junction complex connexon 26 leads to profound hearing impairment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:307976. [PMID: 24551843 PMCID: PMC3914288 DOI: 10.1155/2014/307976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022]
Abstract
To date, about 165 genetic loci or genes have been identified which are associated with nonsyndromal hearing impairment. In about half the cases, genetic defects in the GJB2 gene (connexin 26) are the most common cause of inner-ear deafness. The genes GJB2 and GJB6 are localized on chromosome 13q11-12 in tandem orientation. Connexins belong to the group of "gap junction" proteins, which form connexons, each consisting of six connexin molecules. These are responsible for the exchange of ions and smaller molecules between neighboring cells. Mutational analysis in genes GJB2 and GJB6 was brought by direct sequencing of the coding exons including the intron transitions. Here we show in the participating extended family a homozygous mutation c.506G>A, (TGC>TAC) p.Cys169Tyr, in the GJB2 gene, which could be proven for the first time and led to nonsyndromal severe hearing impairment in the afflicted patients. The mutation is located in the EC1/EC2 interaction complex of the gap junction connexon 26 complex and interrupts the K(+) circulation and therefore the ion homeostasis in the inner ear. The homozygous mutation p.Cys169Tyr identified here provides a novel insight into the structure-function relationship of the gap junction complex connexin/connexon 26.
Collapse
|
50
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|