1
|
Abstract
Alzheimer's disease (AD) was described in 1906 as a dementing disease marked by the presence of two types of fibrillar aggregates in the brain: neurofibrillary tangles and senile plaques. The process of aggregation and formation of the aggregates has been a major focus of investigation ever since the discoveries that the tau protein is the predominant protein in tangles and amyloid β is the predominant protein in plaques. The idea that smaller, oligomeric species of amyloid may also be bioactive has now been clearly established. This review examines the possibility that soluble, nonfibrillar, bioactive forms of tau-the "tau we cannot see"-comprise a dominant driver of neurodegeneration in AD.
Collapse
Affiliation(s)
- Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA;
| |
Collapse
|
2
|
Van Gool B, Storck SE, Reekmans SM, Lechat B, Gordts PLSM, Pradier L, Pietrzik CU, Roebroek AJM. LRP1 Has a Predominant Role in Production over Clearance of Aβ in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2019; 56:7234-7245. [PMID: 31004319 PMCID: PMC6728278 DOI: 10.1007/s12035-019-1594-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP1) has a dual role in the metabolism of the amyloid precursor protein (APP). In cellular models, LRP1 enhances amyloid-β (Aβ) generation via APP internalization and thus its amyloidogenic processing. However, conditional knock-out studies in mice define LRP1 as an important mediator for the clearance of extracellular Aβ from brain via cellular degradation or transcytosis across the blood-brain barrier (BBB). In order to analyze the net effect of LRP1 on production and clearance of Aβ in vivo, we crossed mice with impaired LRP1 function with a mouse model of Alzheimer's disease (AD). Analysis of Aβ metabolism showed that, despite reduced Aβ clearance due to LRP1 inactivation in vivo, less Aβ was found in cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Further analysis of APP metabolism revealed that impairment of LRP1 in vivo shifted APP processing from the Aβ-generating amyloidogenic cleavage by beta-secretase to the non-amyloidogenic processing by alpha-secretase as shown by a decrease in extracellular Aβ and an increase of soluble APP-α (sAPP-α). This shift in APP processing resulted in overall lower Aβ levels and a reduction in plaque burden. Here, we present for the first time clear in vivo evidence that global impairment of LRP1's endocytosis function favors non-amyloidogenic processing of APP due to its reduced internalization and subsequently, reduced amyloidogenic processing. By inactivation of LRP1, the inhibitory effect on Aβ generation overrules the simultaneous impaired Aβ clearance, resulting in less extracellular Aβ and reduced plaque deposition in a mouse model of AD.
Collapse
Affiliation(s)
- Bart Van Gool
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sara M Reekmans
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Benoit Lechat
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
| | - Philip L S M Gordts
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, 92093, USA
| | - Laurent Pradier
- SANOFI, Neuroscience Therapeutic Area, 1 Avenue P. Brossolette, 91385, Chilly-Mazarin, France
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anton J M Roebroek
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Herestraat 49, Box 604, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Bamji-Mirza M, Li Y, Najem D, Liu QY, Walker D, Lue LF, Stupak J, Chan K, Li J, Ghani M, Yang Z, Rogaeva E, Zhang W. Genetic Variations in ABCA7 Can Increase Secreted Levels of Amyloid-β40 and Amyloid-β42 Peptides and ABCA7 Transcription in Cell Culture Models. J Alzheimers Dis 2018; 53:875-92. [PMID: 27314524 DOI: 10.3233/jad-150965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by extracellular deposits of amyloid-β (Aβ) in the brain. ABCA7 is highly expressed in the brain and a susceptibility gene for late-onset AD (LOAD). The minor alleles at two ABCA7 single-nucleotide polymorphisms (SNPs), rs3764650 (T>G; intron13) and rs3752246 at a predicted myristoylation site (C>G; exon33; p.Gly1527Ala), are significantly associated with LOAD risk; however, the mechanism of this association is unknown. Functional consequences of both SNPs were examined in HEK293 and CHO cells stably expressing AβPPSwe. Luciferase reporter assays in HEK293 cells suggested that intron13 carrying rs3764650 major T-allele (int13-T) possessed promoter-enhancing capabilities. Co-transfection experiments with hABCA7 and int13-T resulted in significantly increased ABCA7 protein level relative to that with int13-G. Expression of hABCA7 carrying rs3752246 risk allele led to increases in secreted Aβ40 and Aβ42 and β-secretase activity in CHO- and HEK-AβPPSwe cells. Hydroxymyristic acid treatment of cells expressing hABCA7 carrying the rs3752246 major G allele resulted in increased β-secretase activity and levels of Aβ, suggesting that lack of myristoylation contributes to the observed cell-phenotypes. Molecular weight determination, by gel-electrophoresis and mass spectrometry, of hABCA7 peptides spanning position 1527 showed loss of post-translational modification in the risk-allele peptide. These results suggest that decreased expression, or impaired function, of ABCA7 may contribute to AD pathology.
Collapse
Affiliation(s)
- Michelle Bamji-Mirza
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Yan Li
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Dema Najem
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Qing Yan Liu
- Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | | | - Lih-Fen Lue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Jacek Stupak
- Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Kenneth Chan
- Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Jianjun Li
- Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Chinese Ministry of Health, Beijing, China
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Wandong Zhang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Human Health Therapeutics Portfolio, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| |
Collapse
|
4
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
5
|
Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA. Iron Regulates Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. J Alzheimers Dis 2016; 51:471-87. [DOI: 10.3233/jad-150797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Victoria M. Perreau
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Krista A. Dent
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Hunter S, Martin S, Brayne C. The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer's Disease. Methods Mol Biol 2016; 1303:71-99. [PMID: 26235060 DOI: 10.1007/978-1-4939-2627-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diseases of aging are often complex and multifactorial, involving many genetic and life course modifiers. Systems biology is becoming an essential tool to investigate disease initiation and disease progression. Alzheimer's disease (AD) can be used as a case study to investigate the application of systems biology to complex disease. Here we describe approaches to capturing biological data, representing data in terms of networks and interpreting their meaning in relation to the human population. We highlight issues that remain to be addressed both in terms of modeling disease progression and in relating findings to the current understanding of human disease.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Box 113, Cambridge, CB2 0SP, UK,
| | | | | |
Collapse
|
7
|
Martiskainen H, Haapasalo A, Kurkinen KMA, Pihlajamäki J, Soininen H, Hiltunen M. Targeting ApoE4/ApoE receptor LRP1 in Alzheimer's disease. Expert Opin Ther Targets 2013; 17:781-94. [PMID: 23573918 DOI: 10.1517/14728222.2013.789862] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Progressive neuronal loss is a key feature in Alzheimer's disease (AD), which is the most common neurodegenerative disorder in the aging population. Currently, there are no therapeutic means to intervene neuronal damage in AD and therefore innovative approaches to discover novel strategies for the treatment of AD are needed. Based on the prevailing amyloid cascade hypothesis, it is conceivable that lowering the β-amyloid (Aβ) levels is sufficient to slow down the disease process, if started early enough. AREAS COVERED Here, we review genetic and biological functions related to apolipoprotein E (ApoE) and low-density lipoprotein receptor-related protein 1 receptor (LRP1)-mediated clearance of Aβ. Furthermore, we discuss the AD-related therapeutic potential of targeting to ApoE receptor LRP1 at the blood-brain barrier (BBB) and in the periphery. EXPERT OPINION Due to the recent setbacks in the clinical trials targeting AD, it is instrumental to seek alternative therapeutic approaches, which aim to reduce the accumulation of Aβ in the brain tissue. As the ApoE/LRP1-mediated clearance of Aβ across the BBB is the key event in the regulation of Aβ transcytosis from brain to periphery, direct targeting of this protein entity at the BBB holds a great potential in the treatment of AD.
Collapse
Affiliation(s)
- Henna Martiskainen
- Kuopio University Hospital, Institute of Clinical Medicine-Neurology, University of Eastern Finland and Department of Neurology, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
8
|
Spuch C, Ortolano S, Navarro C. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. Front Physiol 2012; 3:269. [PMID: 22934024 PMCID: PMC3429044 DOI: 10.3389/fphys.2012.00269] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) belongs to the low-density lipoprotein receptor family, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation in lysosomes. Neurons require cholesterol to function and keep the membrane rafts stable. Cholesterol uptake into the neuron is carried out by ApoE via LRPs receptors on the cell surface. In neurons the most important are LRP-1 and LRP-2, even it is thought that a causal factor in Alzheimer's disease (AD) is the malfunction of this process which cause impairment intracellular signaling as well as storage and/or release of nutrients and toxic compounds. Both receptors are multifunctional cell surface receptors that are widely expressed in several tissues including neurons and astrocytes. LRPs are constituted by an intracellular (ICD) and extracellular domain (ECD). Through its ECD, LRPs bind at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. These receptors has also been shown to interact with scaffolding and signaling proteins via its ICD in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. Thus, LRPs are implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth processes, degradation of proteases, and tissue invasion. Interestingly, LRPs were also localized in neurons in different stages, suggesting that both receptors could be implicated in signal transduction during embryonic development, neuronal outgrowth or in the pathogenesis of AD.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Pathology and Neuropathology, University Hospital of VigoVigo, Spain
| | | | | |
Collapse
|
9
|
Xu G, Green CC, Fromholt SE, Borchelt DR. Reduction of low-density lipoprotein receptor-related protein (LRP1) in hippocampal neurons does not proportionately reduce, or otherwise alter, amyloid deposition in APPswe/PS1dE9 transgenic mice. ALZHEIMERS RESEARCH & THERAPY 2012; 4:12. [PMID: 22537779 PMCID: PMC4054673 DOI: 10.1186/alzrt110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The low-density lipoprotein receptor-related protein (LRP1) and its family members have been implicated in the pathogenesis of Alzheimer's disease. Multiple susceptibility factors converge to metabolic pathways that involve LRP1, including modulation of the processing of amyloid precursor protein (APP) and the clearance of Aβ peptide. METHODS We used the Cre-lox system to lower LRP1 levels in hippocampal neurons of mice that develop Alzheimer-type amyloid by crosses between mice that express Cre recombinase under the transcriptional control of the GFAP promoter, mice that harbor loxp sites in the LRP1 gene, and the APPswe/PS1dE9 transgenic model. We compared amyloid plaque numbers in APPswe/PS1dE9 mice lacking LRP1 expression in hippocampus (n = 13) to mice with normal levels of LRP1 (n = 12). Student t-test was used to test whether there were significant differences in plaque numbers and amyloid levels between the groups. A regression model was used to fit two regression lines for these groups, and to compare the rates of Aβ accumulation. RESULTS Immunohistochemical analyses demonstrated efficient elimination of LRP1 expression in the CA fields and dentate gyrus of the hippocampus. Within hippocampus, we observed no effect on the severity of amyloid deposition, the rate of Aβ40/42 accumulation, or the architecture of amyloid plaques when LRP1 levels were reduced. CONCLUSIONS Expression of LRP1 by neurons in proximity to senile amyloid plaques does not appear to play a major role in modulating the formation of these proximal deposits or in the appearance of the associated neuritic pathology.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cameron C Green
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA ; Department of Educational Psychology and Learning Systems, College of Education, Florida State University, Tallahassee, FL 32306, USA
| | - Susan E Fromholt
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - David R Borchelt
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Center, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Provias J, Jeynes B. Immunohistochemical detection of receptor-associated protein in normal human brain and Alzheimer's disease. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2010:173496. [PMID: 21152174 PMCID: PMC2997284 DOI: 10.4061/2010/173496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/04/2009] [Indexed: 11/20/2022]
Abstract
This study is one of the few to characterize immunohistochemically the distribution and localization of Receptor-Associated Protein (RAP) in human autopsy brain. The results show prominent cortical neuronal localization. RAP is clearly identified in large neuronal dendritic/axonal processes. RAP is expressed in both large pyramidal and smaller interneurons. Occasional, much less frequent RAP is detectable in glial cells in white matter, which appear to be predominantly astrocytic. Although RAP is detectable immunohistochemically in Alzheimer's disease autopsy brain, the level of expression appears significantly reduced relative to age-matched control brains. These results suggest, at the immunohistochemical level, that there is a reduction of RAP protein in Alzheimer's disease brain (cortex). In terms of Alzheimer's disease pathophysiology, a reduction of neuronal RAP could then lead to reduced membrane expression of LRP, since RAP has also been shown to be an LRP antagonist.
Collapse
Affiliation(s)
- John Provias
- Department of Pathology and Molecular Medicine [Neuropathology], Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada L8L 2X2
| | | |
Collapse
|
11
|
von Einem B, Schwanzar D, Rehn F, Beyer AS, Weber P, Wagner M, Schneckenburger H, von Arnim CAF. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp Neurol 2010; 225:85-93. [PMID: 20685197 DOI: 10.1016/j.expneurol.2010.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/17/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Cleavage of APP by BACE1 is the first proteolytic step in the production of amyloid-beta (Abeta), which accumulates in senile plaques in Alzheimer's disease. Through its interaction with APP, the low-density receptor-related protein 1 (LRP1) enhances APP internalization. Recently, BACE1 has been shown to interact with and cleave the light chain (lc) of LRP1. Since LRP1 is known to compete with APP for cleavage by gamma-secretase, we tested the hypothesis that LRP1 also acts as a competitive substrate for beta-secretase. We found that the increase in secreted APP (sAPP) mediated by over-expression of BACE1 in APP-transfected cells could be decreased by simultaneous LRP1 over-expression. Analysis by multi-spot ELISA revealed that this is due to a decrease in sAPPbeta, but not sAPPalpha. Interaction between APP and BACE1, as measured by immunoprecipitation and fluorescence lifetime assays, was impaired by LRP1 over-expression. We also demonstrate that APP over-expression leads to decreased LRP1 association with and cleavage by BACE1. In conclusion, our data suggest that--in addition to its role in APP trafficking--LRP1 affects APP processing by competing for cleavage by BACE1.
Collapse
Affiliation(s)
- Bjoern von Einem
- Dept. of Neurology, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Marks N, Berg MJ. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 2009; 35:181-210. [PMID: 19760173 DOI: 10.1007/s11064-009-0054-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
13
|
Strongin AY. Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:133-41. [PMID: 19406172 DOI: 10.1016/j.bbamcr.2009.04.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/13/2022]
Abstract
This manuscript provides an overview of the dynamic interactions which play an important role in regulating cancer cell functions. We describe and discuss, primarily, those interactions which involve membrane type-1 matrix metalloproteinase (MT1-MMP), its physiological inhibitor tissue inhibitor of metalloproteinases-2 (TIMP-2), furin-like proprotein convertases and the low density lipoprotein-related protein 1 (LRP1) signaling scavenger receptor. The interaction among these cellular proteins controls the efficiency of the activation of MT1-MMP and the unorthodox intracellular signaling which is generated by the catalytically inert complex of MT1-MMP with TIMP-2 and which plays a potentially important role in the migration of cancer cells. Our in-depth understanding of these cellular mechanisms may provide the key to solving the puzzling TIMP-2 paradox. This unsolved paradox arises from the fact that TIMP-2 is a powerful inhibitor of MMPs including MT1-MMP, but at the same time high levels of TIMP-2 positively correlate with an unfavorable prognosis in cancer patients. Solving the TIMP-2 paradox may lead to solving a similar PAI-1 paradox and produce a clearer understanding of the biochemical mechanisms which control the functionality of the urokinase-type plasminogen activator*urokinase receptor*plasminogen activator inhibitor type-1 (uPAR*uPA*PAI-1) system in cancer.
Collapse
Affiliation(s)
- Alex Y Strongin
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Herz J, Chen Y, Masiulis I, Zhou L. Expanding functions of lipoprotein receptors. J Lipid Res 2008; 50 Suppl:S287-92. [PMID: 19017612 DOI: 10.1194/jlr.r800077-jlr200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipoprotein receptors are evolutionarily ancient proteins that are expressed on the surface of many cell types. Beginning with the appearance of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors evolved. Originally, these cell surface proteins were thought to merely mediate the traffic of lipids and nutrients between cells and, in some cases, by functioning as scavenger receptors, remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular space and the cell surface. Over the last decade, this picture has fundamentally changed. We now appreciate that many of these receptors are not mere cargo transporters; they are deeply embedded in the machinery by which cells communicate with each other. By physically interacting and coevolving with fundamental signaling pathways, lipoprotein receptors have occupied essential and surprisingly diverse functions that are indispensable for integrating the complex web of cellular signal input during development and in differentiated tissues.
Collapse
Affiliation(s)
- Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| | | | | | | |
Collapse
|
15
|
van Loo KMJ, Dejaegere T, van Zweeden M, van Schijndel JE, Wijmenga C, Trip MD, Martens GJM. Male-specific association between a gamma-secretase polymorphism and premature coronary atherosclerosis. PLoS One 2008; 3:e3662. [PMID: 18987747 PMCID: PMC2573958 DOI: 10.1371/journal.pone.0003662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/17/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Atherosclerosis is a common multifactorial disease resulting from an interaction between susceptibility genes and environmental factors. The causative genes that contribute to atherosclerosis are elusive. Based on recent findings with a Wistar rat model, we speculated that the gamma-secretase pathway may be associated with atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS We have tested for association of premature coronary atherosclerosis with a non-synonymous single-nucleotide polymorphism (SNP) in the gamma-secretase component APH1B (Phe217Leu; rs1047552), a SNP previously linked to Alzheimer's disease. Analysis of a Dutch Caucasian cohort (780 cases; 1414 controls) showed a higher prevalence of the risk allele in the patients (odds ratio (OR) = 1.35), albeit not statistically different from the control population. Intriguingly, after gender stratification, the difference was significant in males (OR = 1.63; p = 0.033), but not in females (OR = 0.50; p = 0.20). Since Phe217Leu-mutated APH1B showed reduced gamma-secretase activity in mouse embryonic fibroblasts, the genetic variation is likely functional. CONCLUSION/SIGNIFICANCE We conclude that, in a male-specific manner, disturbed gamma-secretase signalling may play a role in the susceptibility for premature coronary atherosclerosis.
Collapse
Affiliation(s)
- Karen M. J. van Loo
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
| | - Tim Dejaegere
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, KULeuven, Leuven, Belgium
| | - Martine van Zweeden
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
| | - Jessica E. van Schijndel
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
| | - Cisca Wijmenga
- The Complex Genetics Section, Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Mieke D. Trip
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour and Nijmegen Centre for Molecular Life Sciences (NCMLS), Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Receptor-associated protein (RAP) plays a central role in modulating Abeta deposition in APP/PS1 transgenic mice. PLoS One 2008; 3:e3159. [PMID: 18776935 PMCID: PMC2522286 DOI: 10.1371/journal.pone.0003159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/05/2008] [Indexed: 11/20/2022] Open
Abstract
Background Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of β-amyloid (Aβ) peptides. Methodology/Principal Findings Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/−)/RAP(+/−) mice correlated with 30–40% increases in amyloid deposition by 9 months of age. Conclusions/Significance Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Aβ catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis.
Collapse
|
17
|
Thomas AV, Berezovska O, Hyman BT, von Arnim CAF. Visualizing interaction of proteins relevant to Alzheimer's disease in intact cells. Methods 2008; 44:299-303. [PMID: 18374273 DOI: 10.1016/j.ymeth.2007.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/27/2022] Open
Abstract
To understand normal function of memory studying models of pathological memory decline is essential. The most common form of dementia leading to memory decline is Alzheimer's disease (AD), which is characterized by the presence of neurofibrillary tangles and amyloid plaques in the affected brain regions. Altered production of amyloid beta (Abeta) through sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases seems to be a central event in the molecular pathogenesis of the disease. Thus, the study of the complex interplay of proteins that are involved in or modify Abeta production is very important to gain insight into the pathogenesis of AD. Here, we describe the use of Fluorescence lifetime imaging microscopy (FLIM), a Fluorescence resonance energy transfer (FRET)-based method, to visualize protein-protein-interaction in intact cells, which has proven to be a valuable method in AD research.
Collapse
Affiliation(s)
- Anne V Thomas
- Department of Neurology, University of Cologne, Germany
| | | | | | | |
Collapse
|
18
|
Regulated proteolysis of APP and ApoE receptors. Mol Neurobiol 2008; 37:64-72. [PMID: 18415033 DOI: 10.1007/s12035-008-8017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
The beta-amyloid precursor protein (APP) shares intracellular and extracellular-binding partners with the family of receptors for apolipoprotein E (apoE). Binding of APP and apoE receptors to specific extracellular matrix proteins (F-spondin and Reelin) promotes their presence on the cell surface and influences whether they will interact with specific cytoplasmic adaptor proteins. Cleavage of APP and apoE receptors at the cell surface occurs by alpha-secretase activities; thus, the processing of these proteins can be regulated by their trafficking either to or from the cell surface. Their cleavages can also be regulated by tissue inhibitor of metalloproteinase-3 (TIMP-3), a metalloprotease inhibitor in the extracellular matrix. ApoE receptors have functions in neuronal migration during development and in proper synaptic function in the adult. Thus, the functions of apoE receptors and by analogy of APP will be modified by the various extracellular and intracellular interactions reviewed in this paper.
Collapse
|
19
|
Marks N, Berg MJ. Neurosecretases provide strategies to treat sporadic and familial Alzheimer disorders. Neurochem Int 2008; 52:184-215. [PMID: 17719698 DOI: 10.1016/j.neuint.2007.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/05/2007] [Indexed: 12/30/2022]
Abstract
Recent discoveries on neurosecretases and their trafficking to release fibril-forming neuropeptides or other products, are of interest to pathology, cell signaling and drug discovery. Nomenclature arose from the use of amyloid precursor protein (APP) as a prototypic type-1 substrate leading to the isolation of beta-secretase (BACE), multimeric complexes (gamma-secretase, gamma-SC) for intramembranal cleavage, and attributing a new function to well-characterized metalloproteases of the ADAM family (alpha-secretase) for normal APP turnover. While purified alpha/beta-secretases facilitate drug discovery, gamma-SC presents greater challenges for characterization and mechanisms of catalysis. The review comments on links between mutation or polymorphisms in relation to enzyme mechanisms and disease. The association between lipoprotein receptor LRP11 variants and sporadic Alzheimer's disease (SAD) offers scope to integrate components of pre- and post-Golgi membranes, or brain clathrin-coated vesicles within pathways for trafficking as targets for intervention. The presence of APP and metabolites in brain clathrin-coated vesicles as significant cargo with lipoproteins and adaptors focuses attention as targets for therapeutic intervention. This overview emphasizes the importance to develop new therapies targeting neurosecretases to treat a major neurological disorder that has vast economic and social implications.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
20
|
Minopoli G, Passaro F, Aloia L, Carlomagno F, Melillo RM, Santoro M, Forzati F, Zambrano N, Russo T. Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein. NEURODEGENER DIS 2007; 4:94-100. [PMID: 17596703 DOI: 10.1159/000101833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides. In this paper we addressed the effect of receptor and nonreceptor protein tyrosine kinases on the cleavage of APP and the mechanisms of their action. To this aim, we developed an in vitro system based on the APP-Gal4 fusion protein stably transfected in SHSY5Y neuroblastoma cell line. The cleavage of this molecule, induced by various stimuli, results in the activation of the transcription of the luciferase gene under the control of Gal4 cis-elements. By using this experimental system we demonstrated that, similarly to Src, three tyrosine kinases, TrkA, Ret and EGFR, induced the cleavage of APP-Gal4. We excluded that this effect was mediated by the activation of Ras-MAPK, PI3K-Akt and PLC-gamma pathways. Furthermore, the direct phosphorylation of the APP cytosolic domain does not affect Abeta peptide generation. On the contrary, experiments in cells lacking the LDL-receptor related protein LRP support the hypothesis that the interaction of APP with LRP is required for the induction of APP cleavage by tyrosine kinases.
Collapse
Affiliation(s)
- Giuseppina Minopoli
- CEINGE Biotecnologie Avanzate, Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Andersen OM, Willnow TE. Lipoprotein receptors in Alzheimer's disease. Trends Neurosci 2006; 29:687-94. [PMID: 17000013 DOI: 10.1016/j.tins.2006.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 07/25/2006] [Accepted: 09/15/2006] [Indexed: 11/20/2022]
Abstract
Lipoprotein receptors have important roles in pathological processes that lead to Alzheimer's disease (AD). Previously, they were believed to act mainly by modulating the neuronal metabolism of cholesterol and apolipoprotein E, major risk factors for spontaneous AD. However, recent findings point towards an unexpected new function for lipoprotein receptors in regulation of intracellular transport and processing of the amyloid precursor protein (APP) to give amyloid-beta peptide, the principal component of senile plaques. Here, we will discuss how lipoprotein receptors might modulate distinct steps in neuronal trafficking of APP, and how an intricate balance between opposing receptor activities might be a crucial determinant of APP processing, and of onset and progression of neurodegeneration.
Collapse
Affiliation(s)
- Olav M Andersen
- Max-Delbrueck-Center for Molecular Medicine, D-13125 Berlin, Germany
| | | |
Collapse
|
22
|
Lichtenthaler SF. Ectodomain Shedding of the Amyloid Precursor Protein: Cellular Control Mechanisms and Novel Modifiers. NEURODEGENER DIS 2006; 3:262-9. [PMID: 17047366 DOI: 10.1159/000095265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Proteolytic cleavage in the ectodomain of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer's disease amyloid-beta (Abeta) peptide and occurs through two different protease activities termed alpha- and beta-secretase. Both proteases compete for APP cleavage, but have opposite effects on Abeta generation. At present, little is known about the cellular pathways that control APP alpha- or beta-secretase cleavage and thus Abeta generation. To explore the contributory pathways in more detail we have recently employed an expression cloning screen and identified several activators of APP cleavage by alpha- or beta-secretase. Among them were known activators of APP cleavage, for example protein kinase A, and novel activators, such as endophilin and the APP homolog amyloid precursor-like protein 1 (APLP1). Mechanistic analysis revealed that both endophilin and APLP1 reduce the rate of APP endocytosis and strongly increase APP cleavage by alpha-secretase. This review summarizes the results of the expression cloning screen in the context of recent developments in our understanding of the cellular regulation of APP alpha-secretase cleavage. Moreover, it highlights the particular importance of endocytic APP trafficking as a prime modulator of APP shedding.
Collapse
|
23
|
Menéndez-González M, Pérez-Pinera P, Martínez-Rivera M, Calatayud MT, Blázquez Menes B. APP processing and the APP-KPI domain involvement in the amyloid cascade. NEURODEGENER DIS 2006; 2:277-83. [PMID: 16909010 DOI: 10.1159/000092315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/08/2005] [Indexed: 12/21/2022] Open
Abstract
Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.
Collapse
Affiliation(s)
- M Menéndez-González
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
24
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
25
|
Cam JA, Bu G. Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol Neurodegener 2006; 1:8. [PMID: 16930455 PMCID: PMC1563464 DOI: 10.1186/1750-1326-1-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/18/2006] [Indexed: 01/28/2023] Open
Abstract
Amyloid-β peptide (Aβ) accumulation in the brain is an early, toxic event in the pathogenesis of Alzheimer's disease (AD). Aβ is produced by proteolytic processing of a transmembrane protein, β-amyloid precursor protein (APP), by β- and γ-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Aβ. Recent studies have shown that members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apolipoprotein E (apoE) receptor 2, interact with APP and regulate its endocytic trafficking. Another common feature of these receptors is their ability to bind apoE, which exists in three isoforms in humans and the presence of the ε4 allele represents a genetic risk factor for AD. In this review, we summarize the current understanding of the function of these apoE receptors with a focus on their role in APP trafficking and processing. Knowledge of the interactions between these distinct low-density lipoprotein receptor family members and APP may ultimately influence future therapies for AD.
Collapse
Affiliation(s)
- Judy A Cam
- Departments of Pediatrics, and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology, New York University, 550 1Avenue, New York, New York 10016, USA
| | - Guojun Bu
- Departments of Pediatrics, and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
26
|
Fassa A, Mehta P, Efthimiopoulos S. Notch 1 interacts with the amyloid precursor protein in a Numb-independent manner. J Neurosci Res 2006; 82:214-24. [PMID: 16175584 DOI: 10.1002/jnr.20642] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We hypothesized that the physical interaction between the amyloid precursor protein (APP) and Notch 1 (N1) may be mediating the reported cross-talk between the respective signaling pathways. Immunoprecipitation of mouse N1 (mN1) or extracellular domain truncated mN1 (mN1-TM, mimics TACE-produced membrane-bound C-terminal fragment) specifically coprecipitated APP(751). Conversely, immunoprecipitation of APP(751) specifically coprecipitated mN1, furin-generated membrane-bound mN1 C-terminal fragment (f.mN1-TM), or mN1-TM. The London mutation of APP did not affect the APP(751)/mN1 interaction. Coexpression of APP(751) and mN1 did not affect APP processing or production of mN1 intracellular domain (mNICD). The APP(751)/mN1 interaction was Numb-independent, insofar as it was observed in HEK293 cells that lack detectable levels of Numb and was unaffected by the expression of exogenous Numb or deletion of the APP cytoplasmic domain, including the Numb-binding YENPTY sequence. This interaction was unaffected even when the N-terminal 647 amino acids of APP were replaced by a sequence of secreted alkaline phosphatase. These data combined with data showing interaction between mN1-TM and APP(751) suggest that their transmebrane domains and short sequences around them are sufficient for the interaction and that APP(751) and mN1 interact in cis. Our results imply novel functions of APP and/or N1 that derive from their interaction.
Collapse
Affiliation(s)
- Angeliki Fassa
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Athens, Greece
| | | | | |
Collapse
|
27
|
Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Ann Neurol 2006; 58:909-19. [PMID: 16315276 DOI: 10.1002/ana.20667] [Citation(s) in RCA: 329] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although, in principle, gene expression profiling is well suited to isolate pathogenic molecules associated with Alzheimer's disease (AD), techniques such as microarray present unique analytic challenges when applied to disorders of the brain. Here, we addressed these challenges by first constructing a spatiotemporal model, predicting a priori how a molecule underlying AD should behave anatomically and over time. Then, guided by the model, we generated gene expression profiles of the entorhinal cortex and the dentate gyrus, harvested from the brains of AD cases and controls covering a broad age span. Among many expression differences, the retromer trafficking molecule VPS35 best conformed to the spatiotemporal model of AD. Western blotting confirmed the abnormality, establishing that VPS35 levels are reduced in brain regions selectively vulnerable to AD. VPS35 is the core molecule of the retromer trafficking complex and further analysis revealed that VPS26, another member of the complex, is also downregulated in AD. Cell culture studies, using small interfering RNAs or expression vectors, showed that VPS35 regulates Abeta peptide levels, establishing the relevance of the retromer complex to AD. Reviewing our findings in the context of recent studies suggests how downregulation of the retromer complex in AD can regulate local levels of Abeta peptide.
Collapse
Affiliation(s)
- Scott A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, and the Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hoe HS, Wessner D, Beffert U, Becker AG, Matsuoka Y, Rebeck GW. F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol 2005; 25:9259-68. [PMID: 16227578 PMCID: PMC1265841 DOI: 10.1128/mcb.25.21.9259-9268.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A recent study showed that F-spondin, a protein associated with the extracellular matrix, interacted with amyloid precursor protein (APP) and inhibited beta-secretase cleavage. F-spondin contains a thrombospondin domain that we hypothesized could interact with the family of receptors for apolipoprotein E (apoE). Through coimmunoprecipitation experiments, we demonstrated that F-spondin interacts with an apoE receptor (apoE receptor 2 [ApoEr2]) through the thrombospondin domain of F-spondin and the ligand binding domain of ApoEr2. Full-length F-spondin increased coimmunoprecipitation of ApoEr2 and APP in transfected cells and primary neurons and increased surface expression of APP and ApoEr2. Full-length F-spondin, but none of the individual F-spondin domains, increased cleavage of APP and ApoEr2, resulting in more secreted forms of APP and ApoEr2 and more C-terminal fragments (CTF) of these proteins. In addition, full-length F-spondin, but not the individual domains, decreased production of the beta-CTF of APP and Abeta in transfected cells and primary neurons. The reduction in APP beta-CTF was blocked by receptor-associated protein (RAP), an inhibitor of lipoprotein receptors, implicating ApoEr2 in the altered proteolysis of APP. ApoEr2 coprecipitated with APP alpha- and beta-CTF, and F-spondin reduced the levels of APP intracellular domain signaling, suggesting that there are also intracellular interactions between APP and ApoEr2, perhaps involving adaptor proteins. These studies suggest that the extracellular matrix molecule F-spondin can cluster APP and ApoEr2 together on the cell surface and affect the processing of each, resulting in decreased production of Abeta.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | | | | | | | | | |
Collapse
|
29
|
Neumann S, Schöbel S, Jäger S, Trautwein A, Haass C, Pietrzik CU, Lichtenthaler SF. Amyloid precursor-like protein 1 influences endocytosis and proteolytic processing of the amyloid precursor protein. J Biol Chem 2005; 281:7583-94. [PMID: 16344553 DOI: 10.1074/jbc.m508340200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectodomain shedding of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer disease amyloid beta peptide (Abeta). The molecular mechanisms underlying the control of APP shedding remain little understood but are in part dependent on the low density lipoprotein receptor-related protein (LRP), which is involved in APP endocytosis. Here, we show that the APP homolog APLP1 (amyloid precursor-like protein 1) influences APP shedding. In human embryonic kidney 293 cells expression of APLP1 strongly activated APP shedding by alpha-secretase and slightly reduced beta-secretase cleavage. As revealed by domain deletion analysis, the increase in APP shedding required the NPTY amino acid motif within the cytoplasmic domain of APLP1. This motif is conserved in APP and is essential for the endocytosis of APP and APLP1. Unrelated membrane proteins containing similar endocytic motifs did not affect APP shedding, showing that the increase in APP shedding was specific to APLP1. In LRP-deficient cells APLP1 no longer induced APP shedding, suggesting that in wild-type cells APLP1 interferes with the LRP-dependent endocytosis of APP and there by increases APP alpha-cleavage. In fact, an antibody uptake assay revealed that expression of APLP1 reduced the rate of APP endocytosis. In summary, our study provides a novel mechanism for APP shedding, in which APLP1 affects the endocytosis of APP and makes more APP available for alpha-secretase cleavage.
Collapse
Affiliation(s)
- Stephanie Neumann
- Adolf-Butenandt-Institut, Ludwig-Maximilians-University, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Conboy L, Murphy KJ, Regan CM. Amyloid precursor protein expression in the rat hippocampal dentate gyrus modulates during memory consolidation. J Neurochem 2005; 95:1677-88. [PMID: 16236032 DOI: 10.1111/j.1471-4159.2005.03484.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite advances in our understanding of the basic biology of amyloid precursor protein (APP), the normal physiological function(s) of APP in learning and memory remains unclear. Here we show increased APP degradation in the hippocampus to be associated with the consolidation of a passive avoidance response. Neurone-specific APP695 expression became transiently reduced 2-4 h post-training through association with endosomal adaptin proteins and enhanced internalization. By contrast, internalization of glial-associated APP containing a Kunitz protease inhibitor-like domain (APP-KPI) was dependent on the low-density lipoprotein receptor-related protein (LRP). In addition, LRP expression and association with apolipoprotein E increased in the 2-4 h post-training period. The LRP antagonist receptor-associated protein prevented the APP-KPI internalization and LRP-apolipoprotein E association and this resulted in amnesia. Degradation of APP695 and APP-KPI did not appear to be related to alpha-secretase activity, as no learning-associated increase of secreted APP was observed in the CSF. Moreover, as internalization of APP isoforms was observed only in dentate gyrus, it probably relates to the learning-associated restructuring of the perforant path terminals. Memory-associated APP processing in both neuronal and glial compartments points to a role for glial unsheathing of synaptic connections, an event required for the synaptic restructuring that accompanies memory consolidation. These observations may have a direct relevance to understanding the pathophysiology of Alzheimer's disease as beta/gamma-secretase-derived beta-amyloid is formed following internalization of cell surface APP into the endosomal compartment.
Collapse
Affiliation(s)
- Lisa Conboy
- Applied Neurotherapeutics Research Group, Department of Pharmacology, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
31
|
Wang YP, Wang ZF, Zhang YC, Tian Q, Wang JZ. Effect of amyloid peptides on serum withdrawal-induced cell differentiation and cell viability. Cell Res 2005; 14:467-72. [PMID: 15625013 DOI: 10.1038/sj.cr.7290249] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abnormal deposition of amyloid-beta(A beta) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of A beta on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/A beta and neurofilament was extended to neurites, whereas those of APP-transfected cells were still restricted within the cell body. Levels of both APP and A beta were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of A beta on the inhibition of cell differentiation, we added exogenously the similar level or about 10-times of the A beta level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawal-induced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of A beta into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of A beta 1-40 or A beta 1- 42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of A beta could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.
Collapse
Affiliation(s)
- Yi Peng Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
32
|
Yoon IS, Pietrzik CU, Kang DE, Koo EH. Sequences from the low density lipoprotein receptor-related protein (LRP) cytoplasmic domain enhance amyloid beta protein production via the beta-secretase pathway without altering amyloid precursor protein/LRP nuclear signaling. J Biol Chem 2005; 280:20140-7. [PMID: 15772078 DOI: 10.1074/jbc.m413729200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that the low density lipoprotein receptor-related protein (LRP) affects the processing of amyloid precursor protein (APP) and amyloid beta (Abeta) protein production as well as mediates the clearance of Abeta from the brain. Recent studies indicate that the cytoplasmic domain of LRP is critical for this modulation of APP processing requiring perhaps a complex between APP, the adaptor protein FE65, and LRP. In this study, we expressed a small LRP domain consisting of the C-terminal 97 amino acids of the cytoplasmic domain, or LRP-soluble tail (LRP-ST), in CHO cells to test the hypothesis that the APP.LRP complex can be disrupted. We anticipated that LRP-ST would inhibit the normal interaction between LRP and APP and therefore perturb APP processing to resemble a LRP-deficient state. Surprisingly, CHO cells expressing LRP-ST demonstrated an increase in both sAPP secretion and Abeta production compared with control CHO cells in a manner reminiscent of the cellular effects of the APP "Swedish mutation." The increase in sAPP secretion consisted mainly of sAPPbeta, consistent with the increase in Abeta release. Further, this effect is LRP-independent, as the same alterations remained when LRP-ST was expressed in LRP-deficient cells but not when the construct was membrane-anchored. Finally, deletion experiments suggested that the last 50 amino acid residues of LRP-ST contain the important domain for altering APP processing and Abeta production. These observations indicate that there are cellular pathways that may suppress Abeta generation but that can be altered to facilitate Abeta production.
Collapse
Affiliation(s)
- Il-Sang Yoon
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
33
|
von Arnim CAF, Kinoshita A, Peltan ID, Tangredi MM, Herl L, Lee BM, Spoelgen R, Hshieh TT, Ranganathan S, Battey FD, Liu CX, Bacskai BJ, Sever S, Irizarry MC, Strickland DK, Hyman BT. The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 2005; 280:17777-85. [PMID: 15749709 DOI: 10.1074/jbc.m414248200] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACE is a transmembrane protease with beta-secretase activity that cleaves the amyloid precursor protein (APP). After BACE cleavage, APP becomes a substrate for gamma-secretase, leading to release of amyloid-beta peptide (Abeta), which accumulates in senile plaques in Alzheimer disease. APP and BACE are co-internalized from the cell surface to early endosomes. APP is also known to interact at the cell surface and be internalized by the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytic and signaling receptor. Using a new fluorescence resonance energy transfer (FRET)-based assay of protein proximity, fluorescence lifetime imaging (FLIM), and co-immunoprecipitation we demonstrate that the light chain of LRP interacts with BACE on the cell surface in association with lipid rafts. Surprisingly, the BACE-LRP interaction leads to an increase in LRP C-terminal fragment, release of secreted LRP in the media and subsequent release of the LRP intracellular domain from the membrane. Taken together, these data suggest that there is a close interaction between BACE and LRP on the cell surface, and that LRP is a novel BACE substrate.
Collapse
Affiliation(s)
- Christine A F von Arnim
- Alzheimer Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cam JA, Zerbinatti CV, Li Y, Bu G. Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the beta-amyloid precursor protein. J Biol Chem 2005; 280:15464-70. [PMID: 15705569 DOI: 10.1074/jbc.m500613200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.
Collapse
Affiliation(s)
- Judy A Cam
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
35
|
Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 2004; 24:4259-65. [PMID: 15115822 PMCID: PMC6729272 DOI: 10.1523/jneurosci.5451-03.2004] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence has implicated the low density lipoprotein receptor-related protein (LRP) and the adaptor protein FE65 in Alzheimer's disease pathogenesis. We have shown previously that LRP mediates beta-amyloid precursor protein (APP) processing and affects amyloid beta-protein and APP secretion and APP-c-terminal fragment generation. Furthermore, LRP mediates APP processing through its intracellular domain. Here, we set out to examine whether this interaction is of direct or indirect nature. Specifically, we asked whether adaptor proteins such as FE65 influence the LRP-mediated effect on APP processing by forming a protein complex. In coimmunoprecipitation experiments, we confirmed the postulated APP-FE65 and the LRP-FE65 interaction. However, we also showed an LRP-FE65-APP trimeric complex using pull-down techniques. Because FE65 alters APP processing, we investigated whether this effect is LRP dependent. Indeed, FE65 was only able to increase APP secretion in the presence of LRP. In the absence of LRP, APP secretion was unchanged compared with the LRP knock-out phenotype. Using RNA short interference techniques against FE65, we demonstrated that a reduction in FE65 protein mimics the LRP knock-out phenotype on APP processing. These results clearly demonstrate that FE65 acts as a functional linker between APP and LRP.
Collapse
Affiliation(s)
- Claus U Pietrzik
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Petersen HH, Hilpert J, Jacobsen C, Lauwers A, Roebroek AJM, Willnow TE. Low-density lipoprotein receptor-related protein interacts with MafB, a regulator of hindbrain development. FEBS Lett 2004; 565:23-7. [PMID: 15135046 DOI: 10.1016/j.febslet.2004.03.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/20/2022]
Abstract
The intracellular domain (ICD) of the low-density lipoprotein receptor-related protein (LRP) functionally interacts with adaptor proteins both as an integral part of the receptor polypeptide and after proteolytic release. Identification of such adaptors has been difficult because the ICD is self-activating in conventional transcription factor-based yeast two-hybrid screens. We adopted an alternative screen for the ICD that depends on the activation of the Ras-signaling pathway and uncovered the transcription factor MafB as novel ICD interacting protein. MafB is a regulator of hindbrain segmentation and interacts with the ICD through a leucine zipper domain. The ICD co-localizes with MafB to the nucleus and negatively regulates its transcriptional activity, suggesting a possible role for LRP in brain development.
Collapse
|
37
|
Cam JA, Zerbinatti CV, Knisely JM, Hecimovic S, Li Y, Bu G. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production. J Biol Chem 2004; 279:29639-46. [PMID: 15126508 DOI: 10.1074/jbc.m313893200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family that shares high homology with the LDL receptor-related protein (LRP). LRP1B was originally described as a putative tumor suppressor in lung cancer cells; however, its expression profile in several regions of adult human brain suggests it may have additional functions in the central nervous system. Since LRP1B has overlapping ligand binding properties with LRP, we investigated whether LRP1B, like LRP, could interact with the beta-amyloid precursor protein (APP) and modulate its processing to amyloid-beta peptides (Abetas). Using an LRP1B minireceptor (mLRP1B4) generated to study the trafficking of LRP1B, we found that mLRP1B4 and APP form an immunoprecipitable complex. Furthermore mLRP1B4 bound and facilitated the degradation of a soluble isoform of APP containing a Kunitz proteinase inhibitor domain but not soluble APP lacking a Kunitz proteinase inhibitor domain. A functional consequence of mLRP1B4 expression was a significant accumulation of APP at the cell surface, which is likely related to the slow endocytosis rate of LRP1B. More importantly, mLRP1B4-expressing cells that accumulated cell surface APP produced less Abeta and secreted more soluble APP. These findings reveal that LRP1B is a novel binding partner of APP that functions to decrease APP processing to Abeta. Consequently LRP1B expression could function to protect against the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Judy A Cam
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
38
|
Orlando RA. The low-density lipoprotein receptor-related protein associates with calnexin, calreticulin, and protein disulfide isomerase in receptor-associated-protein-deficient fibroblasts. Exp Cell Res 2004; 294:244-53. [PMID: 14980518 DOI: 10.1016/j.yexcr.2003.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/23/2003] [Indexed: 11/20/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP) is a large (>600 kDa) multi-ligand-binding cell surface receptor that is now known to participate in a diverse range of cellular events. To accomplish this diverse role, LRP is composed of repetitive amino acid motifs consisting of complement-type and EGF precursor-type repeats. Within these repeats are six conserved cysteine residues that form the core disulfide bond structure of each repeat. To accommodate the intricate folding that such a complex structure dictates, a specialized chaperone is present in the endoplasmic reticulum (ER) called the receptor-associated protein (RAP) that binds to LRP immediately following its biosynthesis and assists in its exocytic transport. Interestingly, RAP -/- mice show reduced LRP expression in certain cell types, but not a more global affect on LRP expression that was expected. Such a tissue-restricted effect by RAP prompted an investigation if other ER chaperones associate with LRP to assist in its complex folding requirements and compensate for the absence of RAP in RAP -/- cells. Fibroblasts obtained from RAP -/- mice demonstrate similar LRP expression levels and subcellular distribution as RAP +/+ fibroblasts. Moreover, RAP -/- cells show an identical exocytic trafficking rate for LRP as RAP +/+ cells and comparable cell surface internalization kinetics. In RAP -/- cells, three well-known ER chaperones, calnexin, calreticulin, and protein disulfide isomerase (PDI), associate with LRP and likely compensate for the absence of RAP.
Collapse
Affiliation(s)
- Robert A Orlando
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Health Sciences Center, Albuquerque, NM 87131-5221, USA.
| |
Collapse
|
39
|
Zerbinatti CV, Wozniak DF, Cirrito J, Cam JA, Osaka H, Bales KR, Zhuo M, Paul SM, Holtzman DM, Bu G. Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A 2004; 101:1075-80. [PMID: 14732699 PMCID: PMC327153 DOI: 10.1073/pnas.0305803101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Indexed: 11/18/2022] Open
Abstract
Amyloid-beta peptide (Abeta) is central to the pathogenesis of Alzheimer's disease, and the low-density lipoprotein receptor-related protein (LRP) has been shown to alter Abeta metabolism in vitro. Here, we show that overexpression of a functional LRP minireceptor in the brain of PDAPP mice results in age-dependent increase of soluble brain Abeta, with no changes in Abeta plaque burden. Importantly, soluble brain Abeta was found to be primarily in the form of monomers/dimers and to be highly correlated with deficits in spatial learning and memory. These results provide in vivo evidence that LRP may contribute to memory deficits typical of Alzheimer's disease by modulating the pool of small soluble forms of Abeta.
Collapse
Affiliation(s)
- Celina V Zerbinatti
- Departments of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Birkenmeier G, Müller R, Huse K, Forberg J, Gläser C, Hedrich H, Nicklisch S, Reichenbach A. Human alpha2-macroglobulin: genotype-phenotype relation. Exp Neurol 2004; 184:153-61. [PMID: 14637088 DOI: 10.1016/s0014-4886(03)00110-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pentanucleotide deletion polymorphism in the gene of alpha2-macrolgobulin (alpha2-M) is suggested to be associated with late-onset Alzheimer's disease (AD), though controversial results have been reported. The underlying assumption is that the intronic pentanucleotide deletion may affect the biological function and quantity of the inhibitor and thus contribute to the AD pathology. In the present study we have analyzed the distribution of the deletion polymorphism within a group of 227 healthy Caucasians. In parallel studies, we determined the plasma concentrations of total and transformed alpha2-M. A strong correlation of the total concentration of alpha2-M with age was ascertained (r(s) = -0.54, P < 0.001). However, no significant correlation between age and the genotypes (P = 0.68) was detected, and no statistically significant effect of the genotype on the concentrations of total and transformed alpha2-M was found (P = 0.49 and 0.96, respectively). A significant correlation was observed between total and transformed alpha2-M in the genotype groups Ins/Ins (r(s) = 0.56, P < 0.001) and Ins/Del (r(s) = 0.35, P < 0.004). Furthermore, in the entire data set, a significantly elevated concentration of total alpha2-M was found in females as compared to males (P = 0.003). There was a slight but nonsignificant difference in the genotype distributions between males and females (P = 0.14). To test the proposed existence of genotype-specific alterations of functional properties of alpha2-M, we isolated alpha2-M from the plasma of carriers with different genetic background and analyzed the alpha2-M subunit structure as well as the binding of the inhibitor to growth factors/cytokines, to amyloid-beta and to the receptor. The experiments failed to reveal any genotype-specific functional alterations of the alpha2-M. The absence of abnormalities in alpha2-M mRNA and protein suggests that the alpha2-M deletion polymorphism is probably not associated with functional deficiencies important in AD pathology. However, it can be speculated that the observed general age-related alpha2-M deficiency may lead to accelerated accumulation of amyloid-beta, which might be relevant to AD pathology.
Collapse
Affiliation(s)
- G Birkenmeier
- Institute for Biochemistry, University of Leipzig, Liebigstrasse 16, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem 2003; 279:4260-8. [PMID: 14645246 DOI: 10.1074/jbc.m311569200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that the presentation of LRP and the subsequent uptake of its ligands by malignant cells are both strongly regulated by MT1-MMP. Because LRP is essential for the clearance of multiple ligands, these findings have important implications for many pathophysiological processes including the pericellular proteolysis in neoplastic cells as well as the fate of the soluble matrix-degrading proteases such as MMP-2. MT1-MMP is a key protease in cell invasion and a physiological activator of MMP-2. Cellular LRP consists of a non-covalently associated 515-kDa extracellular alpha-chain (LRP-515) and an 85-kDa membrane-spanning beta-chain, and plays a dual role as a multifunctional endocytic receptor and a signaling molecule. Through the capture and uptake of several soluble proteases, LRP is involved in the regulation of matrix proteolysis. LRP-515 associates with the MT1-MMP catalytic domain and is highly susceptible to MT1-MMP proteolysis in vitro. Similar to MT1-MMP, the metalloproteinases MT2-MMP, MT3-MMP and MT4-MMP also degrade LRP. The N-terminal and C-terminal parts of the LRP-515 subunit are resistant and susceptible, respectively, to MT1-MMP proteolysis. In cells co-expressing LRP and MT1-MMP, the proteolytically competent protease decreases the levels of cellular LRP and releases its N-terminal portion in the extracellular milieu while the catalytically inert protease co-precipitates with LRP. These events implicate MT1-MMP, not only in the activation of MMP-2, but also in the mechanisms that control the subsequent fate of MMP-2 in cells and tissues.
Collapse
Affiliation(s)
- Dmitri V Rozanov
- Cancer Research Center, the Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
42
|
Causevic M, Ramoz N, Haroutunian V, Davis KL, Buxbaum JD. Lack of association between the levels of the low-density lipoprotein receptor-related protein (LRP) and either Alzheimer dementia or LRP exon 3 genotype. J Neuropathol Exp Neurol 2003; 62:999-1005. [PMID: 14575236 DOI: 10.1093/jnen/62.10.999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP), which interacts with the Alzheimer disease (AD) beta-amyloid precursor protein (APP), represents an important pathway in AD pathology. LRP-mediated receptor pathways appear to regulate both the production and the clearance of amyloid beta-protein (Abeta), a principal neuropathological product in AD. Several conflicting studies have examined levels of LRP in AD brains, as well as the relationship between the LRP exon 3 (C766T) polymorphism and LRP levels and/or disease susceptibility. In order to further investigate the role of LRP in AD, we examined well-characterized brain samples collected from subjects with varying degrees of cognitive impairment for LRP protein expression levels as well as for the presence of the LRP exon 3 polymorphism. We found no correlation between LRP levels and either presence of the disease or cognitive decline. In addition, we found no correlation between the LRP exon 3 polymorphism and either AD or LRP levels.
Collapse
Affiliation(s)
- Mirsada Causevic
- Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
43
|
Kinoshita A, Shah T, Tangredi MM, Strickland DK, Hyman BT. The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J Biol Chem 2003; 278:41182-8. [PMID: 12888553 DOI: 10.1074/jbc.m306403200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein-related protein (LRP) is a transmembrane receptor, localized mainly in hepatocytes, fibroblasts, and neurons. It is implicated in diverse biological processes both as an endocytic receptor and as a signaling molecule. Recent reports show that LRP undergoes sequential proteolytic cleavage in the ectodomain and transmembrane domain. The latter cleavage, mediated by the Alzheimer-related gamma-secretase activity that also cleaves amyloid precursor protein (APP) and Notch, results in the release of the LRP cytoplasmic domain (LRPICD) fragment. This relatively small cytoplasmic fragment has several motifs by which LRP interacts with various intracellular adaptor and scaffold proteins. However, the function of this fragment is largely unknown. Here we show that the LRPICD is translocated to the nucleus, where it colocalizes in the nucleus with a transcription modulator, Tip60, which is known to interact with Fe65 and with the APP-derived intracellular domain. LRPICD dramatically inhibits APP-derived intracellular domain/Fe65 transactivation mediated by Tip60. LRPICD has a close interaction with Tip60 in the nucleus, as shown by a fluorescence resonance energy transfer assay. These observations suggest that LRPICD has a novel signaling function, negatively impacting transcriptional activity of the APP, Fe65, and Tip60 complex in the nucleus, and shed new light on the function of LRP in transcriptional modulation.
Collapse
Affiliation(s)
- Ayae Kinoshita
- Alzheimer Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
44
|
Wilsie LC, Orlando RA. The low density lipoprotein receptor-related protein complexes with cell surface heparan sulfate proteoglycans to regulate proteoglycan-mediated lipoprotein catabolism. J Biol Chem 2003; 278:15758-64. [PMID: 12598530 DOI: 10.1074/jbc.m208786200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It has been proposed that clearance of cholesterol-enriched very low density lipoprotein (VLDL) particles occurs through a multistep process beginning with their initial binding to cell-surface heparan sulfate proteoglycans (HSPG), followed by their uptake into cells by a receptor-mediated process that utilizes members of the low density lipoprotein receptor (LDLR) family, including the low density lipoprotein receptor-related protein (LRP). We have further explored the relationship between HSPG binding of VLDL and its subsequent internalization by focusing on the LRP pathway using a cell line deficient in LDLR. In this study, we show that LRP and HSPG are part of a co-immunoprecipitable complex at the cell surface demonstrating a novel association for these two cell surface receptors. Cell surface binding assays show that this complex can be disrupted by an LRP-specific ligand binding antagonist, which in turn leads to increased VLDL binding and degradation. The increase in VLDL binding results from an increase in the availability of HSPG sites as treatment with heparinase or competitors of glycosaminoglycan chain addition eliminated the augmented binding. From these results we propose a model whereby LRP regulates the availability of VLDL binding sites at the cell surface by complexing with HSPG. Once HSPG dissociates from LRP, it is then able to bind and internalize VLDL independent of LRP endocytic activity. We conclude that HSPG and LRP together participate in VLDL clearance by means of a synergistic relationship.
Collapse
Affiliation(s)
- Larissa C Wilsie
- Department of Biochemistry and Molecular Biology, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
45
|
Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J Neurosci 2002. [PMID: 12417655 DOI: 10.1523/jneurosci.22-21-09298.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) is an abundant neuronal cell surface receptor that regulates amyloid beta-protein (Abeta) trafficking into the cell. Specifically, LRP binds secreted Abeta complexes and mediates its degradation. Previously, we have shown in vitro that the uptake of Abeta mediated by LRP is protective and that blocking this receptor significantly enhances neurotoxicity. To further characterize the effects of LRP and other lipoprotein receptors on Abeta deposition, an in vivo model of decreased LRP expression, receptor-associated protein (RAP)-deficient (RAP-/-) mice was crossed with human amyloid protein precursor transgenic (hAPP tg) mice, and plaque formation and neurodegeneration were analyzed. We found that, although the age of onset for plaque formation was the same in hAPP tg and hAPP tg/RAP-/- mice, the amount of amyloid deposited doubled in the hAPP tg/RAP-/- background. Moreover, these mice displayed increased neuronal damage and astrogliosis. Together, these results further support the contention that LRP and other lipoprotein receptors might be neuroprotective against Abeta toxicity and that this receptor might play an integral role in Abeta clearance.
Collapse
|
46
|
Pietrzik CU, Busse T, Merriam DE, Weggen S, Koo EH. The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J 2002; 21:5691-700. [PMID: 12411487 PMCID: PMC131065 DOI: 10.1093/emboj/cdf568] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) has recently been implicated in numerous intracellular signaling functions, as well as in Alzheimer's disease pathogenesis. Studies have shown that the beta-amyloid precursor protein (APP) interacts with LRP and that this association may impact the production of amyloid beta-protein (Abeta). In this report, we provide evidence that LRP regulates trafficking of intracellular proteins independently of its lipoprotein receptor functions. We show that in the absence of LRP, Abeta production, APP secretion, APP internalization, turnover of full-length APP and stability of APP C-terminal fragments are affected. Importantly, these changes are not APP isoform dependent. Using deletion constructs, the critical region in LRP that modulates APP processing was mapped to a seven peptide domain around the second NPXY domain (residues 4504-4510). Therefore, we propose a model by which LRP functionally modulates APP processing, including those steps critical for Abeta production, through interactions of the cytosolic domains.
Collapse
Affiliation(s)
| | | | | | | | - Edward H. Koo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
Corresponding author e-mail:
| |
Collapse
|
47
|
Guénette SY, Chang Y, Hyman BT, Tanzi RE, Rebeck GW. Low-density lipoprotein receptor-related protein levels and endocytic function are reduced by overexpression of the FE65 adaptor protein, FE65L1. J Neurochem 2002; 82:755-62. [PMID: 12358780 DOI: 10.1046/j.1471-4159.2002.01009.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The FE65 adaptor protein family was identified in two-hybrid screens as proteins that bind the cytoplasmic domain of the amyloid precursor protein (APP). Studies have shown that FE65 binding to APP modulates APP processing. Increased levels of alpha-secretase derived secreted APP (APPsalpha) and beta-amyloid (Abeta) were recovered from conditioned media upon FE65L1 or FE65 overexpression. These effects were associated with an increase in the ratio of mature/immature APP and increased cell-surface APP. FE65 has also been reported to bind low-density lipoprotein receptor-related protein (LRP). Here we show that FE65L1 overexpression results in decreased LRP steady state levels, LRPs, and LRP endocytic receptor function. These changes in LRP protein levels are not due to decreased transcription of LRP. Furthermore, pulse/chase experiments demonstrate that changes in LRP protein only occurred 12-18 h after translation. We conclude that the decreases in LRP levels likely reflect routing of LRP away from the cell surface into a degradative pathway. Previous studies suggested that LRP plays an important role for Abeta production of Kunitz protease inhibitor forms of APP in the endocytic pathway. These data show that FE65L1 can differentially affect the metabolic fate of APP and LRP. In addition, these data suggest that the LRP decrease observed in FE65L1 overexpressing cells may in part contribute to altered APP processing.
Collapse
Affiliation(s)
- Suzanne Y Guénette
- Genetics and Aging Research Unit, Center for Aging Genetics and Neurodegeneration, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Alzheimer's disease (AD) is a genetically complex disorder associated with multiple genetic defects either mutational or of susceptibility. Current AD genetics does not explain in full the etiopathogenesis of AD, suggesting that environmental factors and/or epigenetic phenomena may also contribute to AD pathology and phenotypic expression of dementia. The genomics of AD is still in its infancy, but is helping us to understand novel aspects of the disease including genetic epidemiology, multifactorial risk factors, pathogenic mechanisms associated with genetic networks and genetically-regulated metabolic cascades. AD genomics is also fostering new strategies in pharmacogenomic research and prevention. Functional genomics, proteomics, pharmacogenomics, high-throughput methods, combinatorial chemistry and modern bioinformatics will greatly contribute to accelerating drug development for AD and other complex disorders. The multifactorial genetic dysfunction in AD includes mutational loci (APP, PS1, PS2) and diverse susceptibility loci (APOE, A2M, AACT, LRP1, IL1A, TNF, ACE, BACE, BCHE, CST3, MTHFR, GSK3B, NOS3) distributed across the human genome, probably converging in common pathogenic mechanisms that lead to premature neuronal death. Genomic associations integrate polygenic matrix models to elucidate the genomic organization of AD in comparison to the control population. Using APOE-related monogenic models it has been demonstrated that the therapeutic response to drugs (e.g., cholinesterase inhibitors, non-cholinergic compounds) in AD is genotype-specific. A multifactorial therapy combining three different drugs yielded positive results during 6-12 months in approximately 60% of the patients. With this therapeutic strategy, APOE-4/4 carriers were the worst responders and patients with the APOE-3/4 genotype were the best responders. Other polymorphic variants (PS1, PS2) also influence the therapeutic response to different drugs in AD patients, suggesting that the final pharmacological outcome is the result of multiple genomic interactions, including AD-related genes and genes associated with drug metabolism, disposition, and elimination. The pharmacogenomics of AD may contribute in the future to optimise drug development and therapeutics, increasing efficacy and safety, and reducing side-effects and unnecessary costs.
Collapse
Affiliation(s)
- Ramón Cacabelos
- From the EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, La Coruña, Spain.
| |
Collapse
|
49
|
Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J Neurosci 2001. [PMID: 11606623 DOI: 10.1523/jneurosci.21-21-08354.2001] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid-beta, the major constituent of senile plaques in Alzheimer's disease, is derived from the amyloid precursor protein (APP) by proteolysis. Kunitz protease inhibitor (KPI) containing forms of APP (APP751/770) interact with a multifunctional endocytic receptor, the low-density lipoprotein receptor-related protein (LRP), which modulates its proteolytic processing affecting production of amyloid-beta. We used fluorescence resonance energy transfer (FRET) using labeled LRP and APP in H4 cell line to examine the subcellular localization and the molecular domains involved in the APP-LRP interaction. KPI-containing forms of APP (APP770) demonstrated FRET with LRP that was sensitive to the LRP inhibitor receptor-associated protein (RAP), suggesting an interaction between the extracellular domains of APP770 and LRP. APP695 also interacts with LRP to lesser degree (as measured by extracellular domain probes), and this ectodomain interaction is not altered by RAP. By using C-terminally tagged LRP and APP, we demonstrate a second site of interaction between the C termini of both APP695 and APP770 and the C terminus of LRP, and that the interactions at these regions are not sensitive to RAP. We next examined the possibility that the C-termini APP-LRP interaction was mediated by Fe65, an adaptor protein that interacts with the cytoplasmic tails of LRP and APP. FRET studies confirmed a close proximity between the amino Fe65 phosphotyrosine binding (PTB) domain and LRP cytoplasmic domain and between the carboxyl Fe65 PTB domain and the APP cytoplasmic domain. These findings demonstrate that LRP interaction with APP occurs via both extracellular and intracellular protein interaction domains.
Collapse
|
50
|
Sánchez-Guerra M, Combarros O, Infante J, Llorca J, Berciano J, Fontalba A, Fernández-Luna JL, Peña N, Fernández-Viadero C. Case-control study and meta-analysis of low density lipoprotein receptor-related protein gene exon 3 polymorphism in Alzheimer's disease. Neurosci Lett 2001; 316:17-20. [PMID: 11720768 DOI: 10.1016/s0304-3940(01)02342-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The low density lipoprotein receptor-related protein (LRP) may influence both the clearance and the production of beta-amyloid peptide and thus plays a role in Alzheimer's disease (AD) pathogenesis. Previous studies, although inconsistent, have suggested that the LRP exon 3 CC genotype contributes to the risk of AD. A case-control study utilizing a clinically well-defined group of 305 sporadic AD patients and 304 control subjects was performed to test this association in an ethnically homogeneous population from Spain. In the current study, the LRP CC genotype was not over-represented in AD patients compared to non-demented controls. A meta-analysis of previous studies revealed a weak correlation of LRP CC genotype with AD (odds ratio of 1.35, P=0.01).
Collapse
Affiliation(s)
- M Sánchez-Guerra
- Service of Neurology, University Hospital Marqués de Valdecilla, 39008 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|