1
|
Katiyar D, Singhal S, Bansal P, Nagarajan K, Grover P. Nutraceuticals and phytotherapeutics for holistic management of amyotrophic lateral sclerosis. 3 Biotech 2023; 13:62. [PMID: 36714551 PMCID: PMC9880136 DOI: 10.1007/s13205-023-03475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis" (ALS) is a progressive neuronal disorder that affects sensory neurons in the brain and spinal cord, causing loss of muscle control. Moreover, additional neuronal subgroups as well as glial cells such as microglia, astrocytes, and oligodendrocytes are also thought to play a role in the aetiology. The disease affects upper motor neurons and lowers motor neurons and leads to that either lead to muscle weakness and wasting in the arms, legs, trunk and periventricular area. Oxidative stress, excitotoxicity, programmed cell death, altered neurofilament activity, anomalies in neurotransmission, abnormal protein processing and deterioration, increased inflammation, and mitochondrial dysfunction may all play a role in the progression of ALS. There are presently hardly FDA-approved drugs used to treat ALS, and they are only beneficial in slowing the progression of the disease and enhancing functions in certain individuals with ALS, not really in curing or preventing the illness. These days, researchers focus on understanding the pathogenesis of the disease by targeting several mechanisms aiming to develop successful treatments for ALS. This review discusses the epidemiology, risk factors, diagnosis, clinical features, pathophysiology, and disease management. The compilation focuses on alternative methods for the management of symptoms of ALS with nutraceuticals and phytotherapeutics.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Shipra Singhal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| |
Collapse
|
2
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
3
|
Abstract
Neurodegenerative diseases are characterized by a massive loss of specific neurons, which can be fatal. Acrolein, an omnipresent environmental pollutant, is classified as a priority control contaminant by the EPA. Evidence suggests that acrolein is a highly active unsaturated aldehyde related to many nervous system diseases. Therefore, numerous studies have been conducted to identify the function of acrolein in neurodegenerative diseases, such as ischemic stroke, AD, PD, and MS, and its exact regulatory mechanism. Acrolein is involved in neurodegenerative diseases mainly by elevating oxidative stress, polyamine metabolism, neuronal damage, and plasma ACR-PC levels, and decreasing urinary 3-HPMA and plasma GSH levels. At present, the protective mechanism of acrolein mainly focused on the use of antioxidant compounds. This review aimed to clarify the role of acrolein in the pathogenesis of four neurodegenerative diseases (ischemic stroke, AD, PD and MS), as well as protection strategies, and to propose future trends in the inhibition of acrolein toxicity through optimization of food thermal processing and exploration of natural products.
Collapse
|
4
|
BELCARO G, CESARONE MR, HU S, HOSOI M, LEDDA A, FERAGALLI B, SAGGINO A, COTELLESE R. Pycnogenol® supplementation alleviates symptoms of Parkinson's disease with mild cognitive impairment. J Neurosurg Sci 2022; 66:371-377. [DOI: 10.23736/s0390-5616.22.05715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
6
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
7
|
Kim B, Lee TK, Park CW, Kim DW, Ahn JH, Sim H, Lee JC, Yang GE, Kim JD, Shin MC, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Pycnogenol ® Supplementation Attenuates Memory Deficits and Protects Hippocampal CA1 Pyramidal Neurons via Antioxidative Role in a Gerbil Model of Transient Forebrain Ischemia. Nutrients 2020; 12:E2477. [PMID: 32824513 PMCID: PMC7468866 DOI: 10.3390/nu12082477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.
Collapse
Affiliation(s)
- Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea
| |
Collapse
|
8
|
Goel R, Saxena P. Pycnogenol Protects against Pentylenetetrazole-Induced Oxidative Stress and Seizures in Mice. ACTA ACUST UNITED AC 2020; 14:68-75. [PMID: 30465512 DOI: 10.2174/1574884714666181122110317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epilepsy is one of the most common and severe brain disorders in the world, characterized by recurrent spontaneous seizures due to an imbalance between cerebral excitability and inhibition. Oxidative stress is a biochemical state in which reactive oxygen species are generated and associated with various diseases including epilepsy. Pycnogenol, a polyphenol obtained from the pine tree and has antioxidant & anti-inflammatory activity. So, the aim of the study was to evaluate the effect of Pycnogenol on pentylenetetrazole (PTZ)-induced seizures in mice. METHODS The mice of swiss strain each weighing 18-30g were used. Pycnogenol (50&100mg/kg) was suspended in carboxymethyl cellulose in saline and administered orally. Diazepam (1mg/kg, i.p) was used as a standard drug. The anticonvulsant effects of the drugs were measured using PTZ and cognitive behaviour was also assessed. The biochemical estimation was done by measuring Thiobarbituric acid, Superoxide dismutase, Catalase, and reduced glutathione followed by the histopathological study. RESULT Pycnogenol 50 & 100mg/kg showed a significant increase in latency to PTZ-induced seizures, decrease in duration and frequency of convulsions compared to control animals; however, the effects were dose-dependent and were more significant at a higher dose. No impairment in cognitive functions like memory and muscle relaxant was observed following pycnogenol 50 & 100 mg/kg. The effect of Pycnogenol on biochemical parameter was found to be significant. It significantly (p<0.01) decreases the level of TBARS and increases the levels of SOD, catalase, and GSH in the brain tissue. The histopathological evaluation showed less neuronal degeneration in the brain due to PTZ-induced seizures in comparison to control group. CONCLUSION Thus pycnogenol has a protective approach towards convulsion and can be included as an adjuvant therapy with antiepileptic drugs.
Collapse
Affiliation(s)
- Radha Goel
- I.T.S College of Pharmacy, Ghaziabad, Uttar Pradesh, India
| | - Prasoon Saxena
- I.T.S College of Pharmacy, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Malekahmadi M, Moradi Moghaddam O, Islam SMS, Tanha K, Nematy M, Pahlavani N, Firouzi S, Zali MR, Norouzy A. Evaluation of the effects of pycnogenol (French maritime pine bark extract) supplementation on inflammatory biomarkers and nutritional and clinical status in traumatic brain injury patients in an intensive care unit: A randomized clinical trial protocol. Trials 2020; 21:162. [PMID: 32046747 PMCID: PMC7014642 DOI: 10.1186/s13063-019-4008-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background Traumatic brain injury (TBI) is one of the major health and socioeconomic problems in the world. Immune-enhancing enteral formula has been proven to significantly reduce infection rate in TBI patients. One of the ingredients that can be used in immunonutrition formulas to reduce inflammation and oxidative stress is pycnogenol. Objective The objective of this work is to survey the effect of pycnogenol on the clinical, nutritional, and inflammatory status of TBI patients. Methods This is a double-blind, randomized controlled trial. Block randomization will be used. An intervention group will receive pycnogenol supplementation of 150 mg for 10 days and a control group will receive a placebo for the same duration. Inflammatory status (IL-6, IL- 1β, C-reactive protein) and oxidative stress status (malondialdehyde, total antioxidant capacity), at the baseline, at the 5th day, and at the end of the study (10th day) will be measured. Clinical and nutritional status will be assessed three times during the intervention. The Sequential Organ Failure Assessment (SOFA) questionnaire for assessment of organ failure will be filled out every other day. The mortality rate will be calculated within 28 days of the start of the intervention. Weight, body mass index, and body composition will be measured. All analyses will be conducted by an initially assigned study arm in an intention-to-treat analysis. Discussion We expect that supplementation of 150 mg pycnogenol for 10 days will improve clinical and nutritional status and reduce the inflammation and oxidative stress of the TBI patients. Trial registration This trial is registered at clinicaltrials.gov (ref: NCT03777683) at 12/13/2018.
Collapse
Affiliation(s)
- Mahsa Malekahmadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Bahonar St, Mashhad, Iran
| | - Omid Moradi Moghaddam
- Trauma and Injury Research Center, Critical Care Department, Rasoul-e-Akram Complex Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sheikh Mohammed Shariful Islam
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Kiarash Tanha
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nematy
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Bahonar St, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naseh Pahlavani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Bahonar St, Mashhad, Iran
| | - Safieh Firouzi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Bahonar St, Mashhad, Iran
| | - Mohammad Reza Zali
- Behbood Research Center for Gastroenterology and Liver Diseases, Tehran, Iran
| | - Abdolreza Norouzy
- Nutrition Department, Faculty of Medicine, Mashhad University of Medical Sciences, Bahonar St, Mashhad, Iran. .,Behbood Research Center for Gastroenterology and Liver Diseases, Tehran, Iran.
| |
Collapse
|
10
|
Zhao N, Sun C, Zheng M, Liu S, Shi R. Amentoflavone suppresses amyloid β1-42 neurotoxicity in Alzheimer's disease through the inhibition of pyroptosis. Life Sci 2019; 239:117043. [PMID: 31722188 DOI: 10.1016/j.lfs.2019.117043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The accumulation of Amyloid β (Aβ) plays key roles in Alzheimer's disease (AD) by inducing intracellular reactive oxygen species (ROS) and neuronal cell death. In this study, we aimed to identify the neuroprotective mechanisms of amentoflavone (AF) in Aβ-induce neuronal cell injury. MATERIALS AND METHODS The animal model was established by injecting Aβ1-42 into the bilateral hippocampus. The effect of AF on Aβ1-42-induced neurological dysfunction was examined using the Y-maze and radical maze tests. The hippocampal neuron viability was examined using Nissl staining and TUNEL assay. On the other hand, in vitro studies were conducted using SH-SY5Y cells. The expression level of marker proteins was measured using western blot. The activity of caspase-1 and the levels of pro-inflammatory cytokines were determined using ELISA assay. AMPKα knock down was carried out by transfecting SH-SY5Y cells with siRNA against AMPK transcript. RESULTS Neurological tests showed that AF significantly attenuated Aβ1-42-induced neurological dysfunction. AF suppressed Aβ1-42-induced pyroptosis in the hippocampal region of the rat model, which was associated with the modulation of AMPK/GSK3β signaling. Similar results were obtained in vitro in SH-SY5Y cells exposed to Aβ1-42, showing that the neuroprotective activity of AF is mediated by suppressing pyroptosis through AMPK/GSK3β signaling. CONCLUSION AF inhibits Aβ1-42-induced neurotoxicity in animal and cellular models through AMPK/GSK3β-mediated pyroptosis suppression. Our results highlight AF as a clinical compound for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chengxin Sun
- Department of Digestive System, Yucheng People's Hospital, Dezhou, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shen Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Simpson T, Kure C, Stough C. Assessing the Efficacy and Mechanisms of Pycnogenol ® on Cognitive Aging From In Vitro Animal and Human Studies. Front Pharmacol 2019; 10:694. [PMID: 31333448 PMCID: PMC6619435 DOI: 10.3389/fphar.2019.00694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Brain aging is a complex and multifactorial process broadly involving changes in the brain's structure, neuronal activity, and biochemical profile. These changes in brain function have also been linked to age-associated variations in cognitive function. Recent research has suggested a role of increased oxidative stress and reduced cognition in older people. Therefore, studies that examine the effects of antioxidants on cognitive performance are important, particularly in the context of an increase in elderly populations in most Western countries. One such antioxidant, Pycnogenol, is a standardized plant-based extract obtained from the bark of the French maritime pine and has a long historical use to treat inflammation and improve health. More recently, Pycnogenol has been subjected to more than 100 research trials. In vitro and animal studies using the standardized extract have indicated a multimodal action of Pycnogenol, and several human studies have shown improvements in cognitive function after chronic administration. In this paper, we review these studies in the context of understanding both biological and cognitive changes due to Pycnogenol and evaluate possibilities of Pycnogenol to improve neurocognitive function.
Collapse
Affiliation(s)
- Tamara Simpson
- Swinburne Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
12
|
Ozoner B, Yuceli S, Aydin S, Yazici GN, Sunar M, Arslan YK, Coban TA, Suleyman H. Effects of pycnogenol on ischemia/reperfusion-induced inflammatory and oxidative brain injury in rats. Neurosci Lett 2019; 704:169-175. [PMID: 30965107 DOI: 10.1016/j.neulet.2019.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury results from the onset of re-circulation following a perfusion deterioration period in the tissues, resulting in more damage than that caused by perfusion deterioration. This study aimed to determine the effects of pycnogenol on I/R injury in rat brain tissues. METHODS Eighteen albino Wistar rats were divided into three groups: I/R injury (IR, n = 6) group; I/R injury + pycnogenol (IR + P, n = 6) group; and sham group (SG, n = 6). After 30 min of transient ischemia, 24 h of reperfusion was achieved in the IR and IR + P groups. Surgical dissection, except for transient ischemia, was performed in SG. Next, histopathological and biochemical investigations were performed on brain tissues. Malondialdehyde (MDA), reduced glutathione (GSH), and glutathione peroxidase (GPO) were analyzed as oxidative stress markers; IL-1β and TNF-α were analyzed as inflammatory stress markers in biochemical tests. RESULTS Histopathological examination revealed normal morphology in SG and diffuse cortex damage with edema, vasopathology, and inflammatory cell infiltration in the IR group. The IR + P group showed less cortex damage, edema, and vasopathology than the IR group. The MDA, IL-1β, and TNF-α levels were significantly higher in the IR group than those in the SG group. The values of same markers for the IR + P group were significantly lower than the IR group. The GSH and GPO levels were significantly decreased with IR damage, but PYC treatment showed significant improvement in the levels. CONCLUSION This study showed that the administration of pycnogenol ameliorated brain damage after I/R injury by reducing oxidative and inflammatory damage in the rat brain.
Collapse
Affiliation(s)
- Baris Ozoner
- Department of Neurosurgery, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| | - Sahin Yuceli
- Department of Neurosurgery, Neon Hospital, Erzincan, Turkey.
| | - Seckin Aydin
- Department of Neurosurgery, University of Health Sciences, Okmeydani Training and Research Hospital, Istanbul, Turkey.
| | - Gulce Naz Yazici
- Department of Histology and Embryology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| | - Mukadder Sunar
- Department of Anatomy, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| | - Yusuf Kemal Arslan
- Department of Biostatistics, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| | - Taha Abdulkadir Coban
- Department of Biochemistry, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| | - Halis Suleyman
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| |
Collapse
|
13
|
Paarmann K, Prakash SR, Krohn M, Möhle L, Brackhan M, Brüning T, Eiriz I, Pahnke J. French maritime pine bark treatment decelerates plaque development and improves spatial memory in Alzheimer's disease mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:39-48. [PMID: 30668321 DOI: 10.1016/j.phymed.2018.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant extracts are increasingly investigated as potential drugs against Alzheimer's disease (AD) and dementia in general. Pycnogenol is an extract from the bark of the French maritime pine (Pinus pinaster Aiton subsp. atlantica) with known anti-oxidative and neuroprotective effects. HYPOTHESIS/PURPOSE Pycnogenol is thought to improve cognitive functions in elderly. We wanted to investigate and quantify these effects in a model system of cerebral ß-amyloidosis/AD. STUDY DESIGN/METHODS This study experimentally assessed the effects of Pycnogenol on AD-related pathology in a ß-amyloidosis mouse model. APP-transgenic mice and controls were treated orally in a pre-onset and post-onset treatment paradigm. The effects of Pycnogenol were characterized by analysing ß-amyloid (Aß) plaques, number of neurons, glia coverage, myelination pattern, and cortical coverage with axons using immunohistochemistry. Aß levels were quantified using ELISA and gene expression levels of APP-processing enzymes ADAM10, BACE1 and IDE protein levels were determined by Western blot. Behavioural changes in circadian rhythm were monitored and spatial memory / cognition was assessed using a water maze test. RESULTS Pycnogenol significantly decreased the number of plaques in both treatment paradigms but did not alter levels of soluble Aß or the gene expression of APP-processing enzymes. The morphological analyses revealed no changes in the number of neurons, astrocytes, microglia, the myelination pattern, or the morphology of axons. Behavioural testing revealed an improvement of the spatial memory in the pre-onset treatment paradigm only. CONCLUSION Our results suggest to evaluate clinically a potential use of Pycnogenol in the prevention or in early stages of mild cognitive impairment (MCI) and AD.
Collapse
Affiliation(s)
- K Paarmann
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; LIED, University of Lübeck, Lübeck, Germany
| | - S R Prakash
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - M Krohn
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - L Möhle
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; Department for Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - M Brackhan
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - T Brüning
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - I Eiriz
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - J Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; LIED, University of Lübeck, Lübeck, Germany; Department for Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany; Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia.
| |
Collapse
|
14
|
Yang H, Chowdhury VS, Han G, Zhang R, Furuse M. Flavangenol regulates gene expression of HSPs, anti-apoptotic and anti-oxidative factors to protect primary chick brain cells exposed to high temperature. J Therm Biol 2019; 81:1-11. [PMID: 30975405 DOI: 10.1016/j.jtherbio.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Heat-stress exposure increased the expression of heat-shock proteins (HSPs), B-cell lymphoma 2 (BCL-2) and anti-oxidative enzymes to maintain normal cellular function by attenuating the oxidative reaction and apoptosis. Reducing the stress response or enhancing anti-stress capability is an important goal in animal production. Our previous study indicated a protective role of flavangenol, a pine bark extract, in chicks after three hours of high-temperature exposure. However, the cellular mechanism of flavangenol was not clarified ex vivo. In the current study, we investigated the effect of flavangenol on cellular apoptosis and oxidation in heat-stressed treated chick brain cells (mixed neurons and glia cells). The primary brain cells were isolated from the diencephalon of 14-day-old chicks and cultured at 41.5 °C (to mimic the body temperature of young chicks), and were treated with flavangenol from day 3 of isolation to day 8. Cells were kept bathed in the cell culture dish under a high temperature (HT: 45 °C, 20 or 60 min) on day 8 and were then collected for analysis of cell viability as well as for HSP and other related gene expression. Flavangenol treatment significantly increased cell viability and BCL-2 mRNA expression, and attenuated HSP-70 and BCL-2-associated X protein mRNA expression. Moreover, flavangenol treatment elevated the mRNA expression of glutathione peroxidase in the HT group, which indicates that cellular anti-oxidative ability was strengthened by flavangenol. In conclusion, flavangenol may play a protective role in cells damaged or killed by heat stress by increasing cellular anti-oxidative pathways.
Collapse
Affiliation(s)
- Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Rong Zhang
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Yuan H, Jiang C, Zhao J, Zhao Y, Zhang Y, Xu Y, Gao X, Guo L, Liu Y, Liu K, Xu B, Sun G. Euxanthone Attenuates Aβ1–42-Induced Oxidative Stress and Apoptosis by Triggering Autophagy. J Mol Neurosci 2018; 66:512-523. [DOI: 10.1007/s12031-018-1175-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
|
16
|
Icel E, Uçak T, Agcayazi B, Karakurt Y, Yilmaz H, Keskin Çimen F, Süleyman H. Effects of Pycnogenol on cisplatin-induced optic nerve injury: an experimental study. Cutan Ocul Toxicol 2018; 37:396-400. [DOI: 10.1080/15569527.2018.1495224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Erel Icel
- Department of Ophthalmology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| | - Turgay Uçak
- Department of Ophthalmology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| | - Burcu Agcayazi
- Department of Ophthalmology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| | - Yücel Karakurt
- Department of Ophthalmology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| | - Hayati Yilmaz
- Department of Ophthalmology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| | - Ferda Keskin Çimen
- Department of Pathology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Erzincan University Hospital, College of Medicine, Erzincan, Turkey
| |
Collapse
|
17
|
Verma DK, Gupta S, Biswas J, Joshi N, Sivarama Raju K, Wahajuddin M, Singh S. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation. Neurotox Res 2018; 34:198-219. [PMID: 29532444 DOI: 10.1007/s12640-018-9878-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/28/2022]
Abstract
Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death mechanisms.
Collapse
Affiliation(s)
- Dinesh Kumar Verma
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Sonam Gupta
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Joyshree Biswas
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Neeraj Joshi
- Department of Biochemistry and Biophysics, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - K Sivarama Raju
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Mu Wahajuddin
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Sarika Singh
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
18
|
Chen C, Li B, Cheng G, Yang X, Zhao N, Shi R. Amentoflavone Ameliorates Aβ 1-42-Induced Memory Deficits and Oxidative Stress in Cellular and Rat Model. Neurochem Res 2018; 43:857-868. [PMID: 29411261 DOI: 10.1007/s11064-018-2489-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease of the central nervous system, is the most common cause of senile dementia. This study aimed to investigate whether amentoflavone (AF), a biflavonoid compound, could exert neuroprotective activities against AD. The AD model was established by the intracranial injection of amyloid-beta (Aβ) in rat models. The effect of AF on cognitive function was examined using the Morris water maze test. Cell survival and apoptosis in the hippocampal region in an animal model were detected using Nissl staining and a terminal deoxynucleotidyl transferased UTP nick-end labeling assay, respectively. The levels of oxidant enzymes were determined by enzyme-linked immunosorbent assay. Signaling molecule expressions were examined by western blotting. Our results showed that AF significantly attenuated Aβ-induced deficits in neurological functions as well as neuronal cell death and apoptosis in the hippocampal region. Moreover, our findings revealed that AF increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression and translocation and activated AMP-activated protein kinase (AMPK) signaling. In a cellular model of AD established by exposing PC12 cells to Aβ, our results provided further evidence that the neuroprotective activities of AF were mediated by modulating Nrf2 through AMPK/glycogen synthase kinase 3 beta signaling. AF exerts a protective effect against Aβ1-42-induced neurotoxcicity by inducing Nrf2 antioxidant pathways via AMPK signaling activation, which provided experimental evidence that AF might provide a clinical benefit to patients with AD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Bin Li
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
| | - Guangqing Cheng
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Xiaoni Yang
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Ningning Zhao
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Ran Shi
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
19
|
Tümen İ, Akkol EK, Taştan H, Süntar I, Kurtca M. Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait). JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:235-246. [PMID: 28917972 DOI: 10.1016/j.jep.2017.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnobotanical investigations have shown that the Pinus species have been used against rheumatic pain and for wound healing in Turkish folk medicine. MATERIAL AND METHODS In this study, phytochemical composition, antioxidant, anti-inflammatory, and wound healing activities of Maritime Pine (Pinus pinaster Ait.) that is collected in Turkey are investigated. Essential oil composition and the amount of extracts (lipophilic and hydrophilic) of maritime pine wood and fresh cone samples had been tested. RESULTS The essential oil from cones of P. pinaster revealed the highest activities, whereas other parts of the plant did not display any appreciable wound healing, anti-inflammatory, or antioxidant effects. α-Pinene was the main constituent of the essential oil obtained from the cones of P. pinaster. CONCLUSION Experimental studies shown that P. pinaster's remarkable anti-inflammatory and wound healing activities support the traditional use of the plant, and suggest it could have a place in modern medicine.
Collapse
Affiliation(s)
- İbrahim Tümen
- Department of Forest Products Chemistry, Faculty of Forestry, Bartin University, 74100 Bartin, Turkey; Vocational School of Health Services, Bartin University, 74100 Bartin, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey.
| | - Hakkı Taştan
- Department of Biology, Faculty of Science, Gazi University, Etiler 06330, Ankara, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
| | - Mehmet Kurtca
- Vocational School of Health Services, Bartin University, 74100 Bartin, Turkey
| |
Collapse
|
20
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
21
|
Scheff SW, Roberts KN. Cognitive assessment of pycnogenol therapy following traumatic brain injury. Neurosci Lett 2016; 634:126-131. [PMID: 27737807 DOI: 10.1016/j.neulet.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/22/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
We have previously shown that pycnogenol (PYC) increases antioxidants, decreases oxidative stress, suppresses neuroinflammation and enhances synaptic plasticity following traumatic brain injury (TBI). Here, we investigate the effects of PYC on cognitive function following a controlled cortical impact (CCI). Adult Sprague-Dawley rats received a CCI injury followed by an intraperitoneal injection of PYC (50 or 100mg/kg). Seven days post trauma, subjects were evaluated in a Morris water maze (MWM) and evaluated for changes in lesion volume. Some animals were evaluated at 48h for hippocampal Fluoro-jade B (FJB) staining. The highest dose of PYC therapy significantly reduced lesion volume, with no improvement in MWM compared to vehicle controls. PYC failed to reduce the total number of FJB positive neurons in the hippocampus. These results suggest that the reduction of oxidative stress and neuroinflammation are not the key components of the secondary injury that contribute to cognitive deficits following TBI.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States.
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
22
|
Yang BY, Guo JT, Li ZY, Wang CF, Wang ZB, Wang QH, Kuang HX. New Thymoquinol Glycosides and Neuroprotective Dibenzocyclooctane Lignans from the Rattan Stems ofSchisandra chinensis. Chem Biodivers 2016; 13:1118-1125. [DOI: 10.1002/cbdv.201500311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| | - Jiang-Tao Guo
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| | - Zu-Yi Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| | - Chang-Fu Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| | - Zhi-Bin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education); Heilongjiang University of Chinese Medicine; 24 HePing Road Harbin 150040 P. R. China
| |
Collapse
|
23
|
Wang H, Wang H, Cheng H, Che Z. Ameliorating effect of luteolin on memory impairment in an Alzheimer's disease model. Mol Med Rep 2016; 13:4215-20. [PMID: 27035793 PMCID: PMC4838167 DOI: 10.3892/mmr.2016.5052] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/28/2016] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorder. It is characterized by the formation of amyloid plaques and neurofibrillary tangles in the brain, the degeneration of cholinergic neurons and neuronal cell death. The present study aimed to investigate the effect of luteolin, a flavonoid compound, on memory impairment in a streptozotocin (STZ)-induced Alzheimer's rat model. Morris water maze and probe tests were performed to examine the effect of luteolin treatment on cognition and memory. The effect of luteolin on CA1 pyramidal layer thickness was also examined. The results demonstrated that luteolin significantly ameliorated the spatial learning and memory impairment induced by STZ treatment. STZ significantly reduced the thickness of CA1 pyramidal layer and treatment of luteolin completely abolished the inhibitory effect of STZ. Our results suggest that luteolin has a potentially protective effect on learning defects and hippocampal structures in AD.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Huiling Wang
- Department of Pediatrics, Xinxiang Hospital of Municipal Offices, Xinxiang, Henan 453000, P.R. China
| | - Huixin Cheng
- Department of Pathology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Zhenyong Che
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
24
|
Norris CM, Sompol P, Roberts KN, Ansari M, Scheff SW. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury. Exp Neurol 2015; 276:5-12. [PMID: 26607913 DOI: 10.1016/j.expneurol.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10 mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma.
Collapse
Affiliation(s)
- Christopher M Norris
- Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Mubeen Ansari
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| | - Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
25
|
Zargooshnia S, Shahidi S, Ghahremanitamadon F, Nikkhah A, Mehdizadeh M, Soleimani Asl S. The protective effect of Borago Officinalis extract on amyloid β (25-35)-induced long term potentiation disruption in the dentate gyrus of male rats. Metab Brain Dis 2015; 30:151-6. [PMID: 25060965 DOI: 10.1007/s11011-014-9594-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) begins with impairment in synaptic functions before developing into later neurodegeneration and neural loss. In the present study we have examined the protective effects of Borago Officinalis (borage) extract on amyloid β (Aβ)--Induced long term potentiation (LTP) disruption in hippocampal dentate gyrus (DG). Wistar male rats received intrahippocampal (IHP) injection of the Aβ (25-35) and borage extract throughout gestation (100 mg/kg). LTP in perforant path- DG synapses was assessed using electrophysiology method and field excitatory post- synaptic potential (fEPSP) slope and population spike (PS) amplitude were measured by 400 Hz tetanization. Finally, the total thiol content of hippocampus was measured using colorimetric reaction based on the Ellman's method. The results showed that Aβ (25-35) significantly decreased fEPSP slope and SP amplitude comparing with the control and sham group, whereas borage extract administration increased these parameters compared to the Aβ group. Aβ induced a remarkable decrease in total thiol content of hippocampus and borage prevented the decrease of the hippocampal total sulfhydryl (SH) groups. This data suggest that Aβ (25-35) can effectively inhibit LTP in the granular cells of the DG in hippocampus, and borage supplementation reverse the synaptic plasticity in DG following Aβ treatment and that borage consumption may lead to an improvement of AD-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Somayeh Zargooshnia
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Wang C, Xiao Y, Yang B, Wang Z, Wu L, Su X, Brantner A, Kuang H, Wang Q. Isolation and screened neuroprotective active constituents from the roots and rhizomes of Valeriana amurensis. Fitoterapia 2014; 96:48-55. [DOI: 10.1016/j.fitote.2014.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
|
28
|
Protective effects of Borago officinalis extract on amyloid β-peptide(25-35)-induced memory impairment in male rats: a behavioral study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:798535. [PMID: 25013802 PMCID: PMC4071970 DOI: 10.1155/2014/798535] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and most common form of dementia that leads to memory impairment. In the present study we have examined the protective effects of Borago officinalis (borage) extract on Amyloid β (A β)-Induced memory impairment. Wistar male rats received intrahippocampal (IHP) injection of the A β (25-35) and borage extract throughout gestation (100 mg/kg). Learning and memory functions in the rats were examined by the passive avoidance and the Morris water maze (MWM) tasks. Finally, the antioxidant capacity of hippocampus was measured using ferric ion reducing antioxidant power (FRAP) assay. The results showed that A β (25-35) impaired step-through latency and time in dark compartment in passive avoidance task. In the MWM, A β (25-35) significantly increased escape latency and traveled distance. Borage administration attenuated the A β-induced memory impairment in both the passive avoidance and the MWM tasks. A β induced a remarkable decrease in antioxidant power (FRAP value) of hippocampus and borage prevented the decrease of the hippocampal antioxidant status. This data suggests that borage could improve the learning impairment and oxidative damage in the hippocampal tissue following A β treatment and that borage consumption may lead to an improvement of AD-induced cognitive dysfunction.
Collapse
|
29
|
Irie K, Tomofuji T, Ekuni D, Endo Y, Kasuyama K, Azuma T, Tamaki N, Yoneda T, Morita M. Anti-ageing effects of dentifrices containing anti-oxidative, anti-inflammatory, and anti-bacterial agents (Tomarina®) on gingival collagen degradation in rats. Arch Oral Biol 2014; 59:60-65. [DOI: 10.1016/j.archoralbio.2013.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Assessment of the cytotoxic, genotoxic, and antigenotoxic potential of Pycnogenol® in in vitro mammalian cells. Food Chem Toxicol 2013; 61:203-8. [DOI: 10.1016/j.fct.2013.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/13/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022]
|
31
|
Kim SH, Lee IC, Baek HS, Moon C, Bae CS, Kim SH, Park SC, Kim HC, Kim JC. Ameliorative Effects of Pine Bark Extract on Spermatotoxicity by α-Chlorohydrin in Rats. Phytother Res 2013; 28:451-7. [DOI: 10.1002/ptr.5016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Sung-Hwan Kim
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| | - In-Chul Lee
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| | - Hyung-Seon Baek
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| | - Changjong Moon
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| | - Seung-Chun Park
- College of Veterinary Medicine; Kyungpook National University; Daegu 702-701 Korea
| | - Hyoung-Chin Kim
- Biomedical Mouse Resource Center; Korea Research Institute of Bioscience and Biotechnology; Chungbuk 363-883 Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine; Chonnam National University; Gwangju 500-757 Korea
| |
Collapse
|
32
|
Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 2012; 17:15013-21. [PMID: 23250029 PMCID: PMC6268518 DOI: 10.3390/molecules171215013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 11/17/2022] Open
Abstract
Three new germacrane-type sesquiterpenoids, heishuixiecaoline A–C (compounds 1–3), were isolated along with ten known compounds 4–13 from fraction of Valeriana amurensis roots and rhizomes effective against Alzheimer’s disease (AD). The structures of 1–3 were elucidated on the basis of their spectroscopic data. We also investigated the protective effect of compounds 1–13 on the neurotoxicity of PC12 cells induced by amyloid-beta (Aβ25–25), respectively. As a result, germacrane-type sesquiterpenoids 1–4 and lignans 5–7 were seen to afford protection against Aβ-induced toxicity in PC 12 cells. This study will contribute to revealing the chemical basis for the therapeutic effect of V. amurensis against AD.
Collapse
|
33
|
Neuroprotective effect of Pycnogenol® following traumatic brain injury. Exp Neurol 2012; 239:183-91. [PMID: 23059456 DOI: 10.1016/j.expneurol.2012.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requires a multifaceted approach. Naturally occurring flavonoids are unique in possessing not only tremendous free radical scavenging properties but also the ability to modulate cellular homeostasis leading to a reduction in inflammation and cell toxicity. This study evaluated the therapeutic role of Pycnogenol (PYC), a patented combinational bioflavonoid. Young adult Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion and treated post injury with PYC or vehicle. At either 48 or 96 h post trauma, the animals were killed and the cortex and hippocampus analyzed for changes in enzymatic and non-enzymatic oxidative stress markers. In addition, possible changes in both pre- and post-synaptic proteins (synapsin-1, PSD-95, drebrin, synapse associated protein-97) were analyzed. Finally, a separate cohort of animals was used to evaluate two proinflammatory cytokines (IL-6, TNF-α). Following the trauma there was a significant increase in oxidative stress in both the injured cortex and the ipsilateral hippocampus. Animals treated with PYC significantly ameliorated levels of protein carbonyls, lipid peroxidation, and protein nitration. The PYC treatment also significantly reduced the loss of key pre- and post-synaptic proteins with some levels in the hippocampus of PYC treated animals not significantly different from sham operated controls. Although levels of the proinflammatory cytokines were significantly elevated in both injury groups, the cohort treated with PYC showed a significant reduction compared to vehicle treated controls. These results are the first to show a neuroprotective effect of PYC following TBI. They also suggest that the diverse effects of bioflavonoids may provide a unique avenue for possible therapeutic intervention following head trauma.
Collapse
|
34
|
Hong SY, Jeong WS, Jun M. Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules 2012; 17:10831-45. [PMID: 22964500 PMCID: PMC6268534 DOI: 10.3390/molecules170910831] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023] Open
Abstract
β-Amyloid (Aβ) peptide is the major component of senile plaques and is considered to have a causal role in the development and progression of Alzheimer’s disease (AD). There is compelling evidence supporting the notion that Aβ-induced cytotoxicity is mediated though the generation of ROS. In the present study, we investigated the neuroprotective effects of ursolic acid (UA), p-coumaric acid (p-CA), and gallic acid (GA) isolated from Corni fructus (CF) against Aβ(25-35)-induced toxicity in PC12 cell. Exposure of PC12 cells to 50 μM Aβ(25-35) increased cellular oxidative stress, the number of apoptotic cells and caspase-3 activity and finally caused significant cell death. However, UA, p-CA, and GA not only suppressed the generation of ROS but also attenuated DNA fragmentation and eventually attenuated Aβ-induced apoptosis in a dose-dependent manner. In protecting cells against Aβ neurotoxicity, UA and GA possessed stronger ability against ROS generation than p-CA, while p-CA showed the strongest anti-apoptotic activity. Particularly, p-CA protected cells at the concentration range from 0.5 up to 125 μM without any adverse effect. Taken together, these effects of UA, p-CA, and GA may be partly associated with the neuroprotective effect of CF. Furthermore, our findings might raise a possibility of therapeutic applications of CF for preventing and/or treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Seung-Young Hong
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Korea;
| | - Woo-Sik Jeong
- Department of Food & Life Sciences, Inje University, Gimhae, Gyeongnam 621-749, Korea;
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Korea;
| |
Collapse
|
35
|
Stough CK, Pase MP, Cropley V, Myers S, Nolidin K, King R, Camfield D, Wesnes K, Pipingas A, Croft K, Chang D, Scholey AB. A randomized controlled trial investigating the effect of Pycnogenol and Bacopa CDRI08 herbal medicines on cognitive, cardiovascular, and biochemical functioning in cognitively healthy elderly people: the Australian Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910). Nutr J 2012; 11:11. [PMID: 22390677 PMCID: PMC3310777 DOI: 10.1186/1475-2891-11-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/06/2012] [Indexed: 12/02/2022] Open
Abstract
Background One of the major challenges associated with our ageing population is the increasing incidence of age-associated cognitive decline, which has significant implications for an individual's ability to lead a productive and fulfilling life. In pure economic terms the costs of ageing reflects decreased productivity and engagement with the workforce. The maintenance of brain health underpinning intact cognition is a key factor to maintaining a positive, engaged, and productive lifestyle. In light of this, the role of diet, including supplementation with nutritional and even pharmacological interventions capable of ameliorating the neurocognitive changes that occur with age constitute vital areas of research. Methods In order to reduce cognitive ageing, the ARC longevity intervention (ARCLI) was developed to examine the effects of two promising natural pharmacologically active supplements on cognitive performance. ARCLI is a randomized, placebo-controlled, double-blind, 3-arm clinical trial in which 465 participants will be randomized to receive an extract of Bacopa monnieri (CDRI08 300 mg/day), Pycnogenol (150 mg/day), or placebo daily for 12 months. Participants will be tested at baseline and then at 3, 6 and 12 months post-randomization on a wide battery of cognitive, neuropsychological and mood measures, cardiovascular (brachial and aortic systolic and diastolic blood pressures as well as arterial stiffness), biochemical (assays to measure inflammation, oxidative stress and safety) as well as genetic assessments (telomere length and several Single Nucleotide Polymorphisms). The primary aim is to investigate the effects of these supplements on cognitive performance. The secondary aims are to explore the time-course of cognitive enhancement as well as potential cardiovascular and biochemical mechanisms underpinning cognitive enhancement over the 12 months of administration. ARCLI will represent one of the largest and most comprehensive experimental clinical trials in which supplements are administered to elderly participants. Results from ARCLI may help develop novel preventative health practices and nutritional/pharmacological targets in the elderly for cognitive and brain health. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12611000487910
Collapse
Affiliation(s)
- Con K Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Petraglia AL, Winkler EA, Bailes JE. Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surg Neurol Int 2011; 2:146. [PMID: 22059141 PMCID: PMC3205506 DOI: 10.4103/2152-7806.85987] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/22/2011] [Indexed: 12/31/2022] Open
Abstract
Background: While numerous laboratory studies have searched for neuroprotective treatment approaches to traumatic brain injury, no therapies have successfully translated from the bench to the bedside. Concussion is a unique form of brain injury, in that the current mainstay of treatment focuses on both physical and cognitive rest. Treatments for concussion are lacking. The concept of neuro-prophylactic compounds or supplements is also an intriguing one, especially as we are learning more about the relationship of numerous sub-concussive blows and/or repetitive concussive impacts and the development of chronic neurodegenerative disease. The use of dietary supplements and herbal remedies has become more common place. Methods: A literature search was conducted with the objective of identifying and reviewing the pre-clinical and clinical studies investigating the neuroprotective properties of a few of the more widely known compounds and supplements. Results: There are an abundance of pre-clinical studies demonstrating the neuroprotective properties of a variety of these compounds and we review some of those here. While there are an increasing number of well-designed studies investigating the therapeutic potential of these nutraceutical preparations, the clinical evidence is still fairly thin. Conclusion: There are encouraging results from laboratory studies demonstrating the multi-mechanistic neuroprotective properties of many naturally occurring compounds. Similarly, there are some intriguing clinical observational studies that potentially suggest both acute and chronic neuroprotective effects. Thus, there is a need for future trials exploring the potential therapeutic benefits of these compounds in the treatment of traumatic brain injury, particularly concussion.
Collapse
Affiliation(s)
- Anthony L Petraglia
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
37
|
Schmidt AJ, Krieg JC, Hemmeter UM, Kircher T, Schulz E, Clement HW, Heiser P. Impact of plant extracts tested in attention-deficit/hyperactivity disorder treatment on cell survival and energy metabolism in human neuroblastoma SH-SY5Y cells. Phytother Res 2011; 24:1549-53. [PMID: 20878709 DOI: 10.1002/ptr.3198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract. The impacts of the standardized herbal extracts Hypericum perforatum, Pycnogenol and Enzogenol up to a concentration of 5000 ng/mL on cell survival and energy metabolism in human SH-SY5Y neuroblastoma cells has been investigated in the present examination. Hypericum perforatum significantly decreased the survival of cells after treatment with a concentration of 5000 ng/mL, whereas lower concentrations exerted no significant effects. Pycnogenol( induced a significant increase of cell survival after incubation with a concentration of 32.25 ng/mL and a concentration of 250 ng/mL. Other applied concentrations of Pycnogenol failed to exert significant effects. Treatment with Enzogenol did not lead to significant changes in cell survival.Concerning energy metabolism, the treatment of cells with a concentration of 5000 ng/mL Hypericum perforatum led to a significant increase of ATP levels, whereas treatment with a concentration of 500 ng/mL had no significant effect. Incubation of cells with Pycnogenol and Enzogenol exerted no significant effects.None of the tested substances caused any cytotoxic effect when used in therapeutically relevant concentrations.
Collapse
|
38
|
Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010; 8:31. [PMID: 21176168 PMCID: PMC3022541 DOI: 10.1186/1478-811x-8-31] [Citation(s) in RCA: 660] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/22/2010] [Indexed: 11/16/2022] Open
Abstract
The normal function of poly (ADP-ribose) polymerase-1 (PARP-1) is the routine repair of DNA damage by adding poly (ADP ribose) polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs)) on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Louisiana-USA
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Louisiana-USA
| | - Phanithi Prakash Babu
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
39
|
Song JX, Lin X, Wong RNS, Sze SCW, Tong Y, Shaw PC, Zhang YB. Protective effects of dibenzocyclooctadiene lignans from Schisandra chinensis against beta-amyloid and homocysteine neurotoxicity in PC12 cells. Phytother Res 2010; 25:435-43. [PMID: 20740476 DOI: 10.1002/ptr.3269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/29/2010] [Accepted: 06/22/2010] [Indexed: 02/04/2023]
Abstract
Aggregated beta-amyloid (Aβ) and elevated plasma levels of homocysteine have been implicated as critical factors in the pathogenesis of Alzheimer's disease. The neuroprotective effects and possible mechanism of four structurally similar dibenzocyclooctadiene lignans (namely schisandrin, schisantherin A, schisandrin B and schisandrin C) isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) against Aβ₂₅₋₃₅ and homocysteine toxicity in PC12 cells was studied. Exposure of PC12 cells to 0.5 µm Aβ₂₅₋₃₅ caused significant cell death, increased the number of apoptotic cells, elevated reactive oxygen species, increased the levels of the pro-apoptotic protein Bax and caspase-3 activation. All these effects induced by Aβ₂₅₋₃₅ were markedly reversed by schisandrin B and schisandrin C pretreatment, while schisandrin and schisantherin A had no obvious effects. Meanwhile, schisandrin B and schisandrin C reversed homocysteine-induced cytotoxicity. The results indicated that schisandrin B and schisandrin C protected PC12 cells against Aβ toxicity by attenuating ROS production and modulating the apoptotic signal pathway through Bax and caspase-3. Further structure-activity analysis of Schisandra lignans and evaluations of their neuroprotective effects using AD animal models are warranted.
Collapse
Affiliation(s)
- Ju-Xian Song
- The School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Targeting NADPH oxidase and phospholipases A2 in Alzheimer's disease. Mol Neurobiol 2010; 41:73-86. [PMID: 20195796 DOI: 10.1007/s12035-010-8107-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/04/2010] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Abeta) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Abeta. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Abeta in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A(2) (PLA(2)) and secretory PLA(2). In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Abeta NADPH oxidase and PLA(2) can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease.
Collapse
|
41
|
Tarawneh R, Galvin JE. Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin Geriatr Med 2010; 26:125-47. [PMID: 20176298 PMCID: PMC2828394 DOI: 10.1016/j.cger.2009.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cellular mechanisms underlying neuronal loss and neurodegeneration have been an area of interest in the last decade. Although neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease each have distinct clinical symptoms and pathologies, they all share common mechanisms such as protein aggregation, oxidative injury, inflammation, apoptosis, and mitochondrial injury that contribute to neuronal loss. Although cerebrovascular disease has different causes from the neurodegenerative disorders, many of the same common disease mechanisms come into play following a stroke. Novel therapies that target each of these mechanisms may be effective in decreasing the risk of disease, abating symptoms, or slowing down their progression. Although most of these therapies are experimental, and require further investigation, a few seem to offer promise.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63108
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63108
| | - James E. Galvin
- Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63108
- Department of Neurobiology, Washington University School of Medicine, St Louis, MO, 63108
| |
Collapse
|
42
|
Effects of Pycnogenol and vitamin E on cognitive deficits and oxidative damage induced by intracerebroventricular streptozotocin in rats. Behav Pharmacol 2009; 20:567-75. [DOI: 10.1097/fbp.0b013e32832c7125] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Yazdanparast R, Shaykhalishahi H. Protective effect of a triazine-derivative (AA3E2) on beta-amyloid-induced damages in SK-N-MC cells. Toxicol In Vitro 2009; 23:1277-83. [PMID: 19631265 DOI: 10.1016/j.tiv.2009.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 06/24/2009] [Accepted: 07/17/2009] [Indexed: 01/29/2023]
Abstract
The role of beta-amyloid (A beta) in the pathogenesis of Alzheimer's disease (AD) is frequently reported in the literature. Though the exact mode of action is not known, it is suggested that A beta induces cell death through induction of oxidative stress possibly through hydrogen peroxide generation. In that case, antioxidants should be capable of attenuating the A beta-induced cytotoxicities. In that regard, we evaluated the effect(s) of a triazine-derivative, AA3E2, with established antioxidant activity. Pretreatment of SK-N-MC neuroblastoma cells with AA3E2, followed by exposure to A beta(1-42) showed 28.3% higher viability relative to the control cells which has not been treated with AA3E2. In addition, AA3E2 inhibited caspase-3 activation caused by A beta(1-42) and it attenuated A beta(1-42)-induced intracellular ROS (reactive oxygen species) accumulation. The lower level of intracellular free radicals was further confirmed by higher and lower activities of intracellular catalase and superoxide dismutase, respectively. These observations, parallel to the literature data, reconfirm the oxidative stress disrupting role of A beta(1-42) peptide. Thus, sequestration of this role by potential antioxidants such as AA3E2 might happen to be a suitable strategy for future treatments of AD.
Collapse
Affiliation(s)
- Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran.
| | | |
Collapse
|
44
|
Hasegawa N, Mochizuki M. Improved effect of Pycnogenol on impaired spatial memory function in partial androgen deficiency rat model. Phytother Res 2009; 23:840-3. [PMID: 19142987 DOI: 10.1002/ptr.2702] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The improved effect of Pycnogenol on impaired spatial memory function was studied in orchidectomized rats. Endogenous testosterone levels were decreased by approximately one-half for 3 months after castration. In the radial arm maze, castration significantly impaired working and reference memory function without lowering motor function. Pycnogenol increased the NGF content in the hippocampus and cortex, and improved the spatial memory impairment. These observations confirmed that diagnostic accuracy can be improved by Pycnogenol in androgen-deficient rats.
Collapse
Affiliation(s)
- Noboru Hasegawa
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women's University, Gifu, Japan.
| | | |
Collapse
|
45
|
Jung Choi S, Kim MJ, Jin Heo H, Kim JK, Jin Jun W, Kim HK, Kim EK, Ok Kim M, Yon Cho H, Hwang HJ, Jun Kim Y, Shin DH. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity. Amyloid 2009; 16:15-24. [PMID: 19291510 DOI: 10.1080/13506120802676997] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amyloid beta peptide (Abeta)-induced oxidative stress may be linked to neurodegenerative disease. Ethanol extracts of Rosa laevigata protected PC12 cells from hydrogen peroxide-induced oxidative stress. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction assays revealed a significant increase in cell viability when oxidatively stressed PC12 cells were treated with R. laevigata extract. The effect of R. laevigata on oxidative stress-induced cell death was further investigated by lactate dehydrogenase release assays and trypan blue exclusion assays. Administration of 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract to mice infused with Abeta significantly reversed learning and memory impairment in behavioural tests. After behavioural testing, the mice were sacrificed and brains were collected for the examination of lipid peroxidation, catalase activity and acetylcholinesterase (AchE) activity. These results suggest that 1,2-benzenedicarboxylic acid dinonyl ester from R. laevigata extract may be able to reduce Abeta-induced neurotoxicity, possibly by reducing oxidative stress. Therefore, R. laevigata extract may be useful for the prevention of oxidative stress-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Soo Jung Choi
- Department of Food Technology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ansari MA, Keller JN, Scheff SW. Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity. Free Radic Biol Med 2008; 45:1510-9. [PMID: 18822368 PMCID: PMC2849727 DOI: 10.1016/j.freeradbiomed.2008.08.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/25/2008] [Accepted: 08/20/2008] [Indexed: 11/26/2022]
Abstract
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, U.S.A.
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808
| | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, U.S.A.
- Spinal Cord Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, U.S.A.
- Corresponding author. Send correspondence to Dr. Stephen W. Scheff, 101 Sanders-Brown, Center on Aging, University of Kentucky, Lexington, KY 40536-0230, U.S.A. Tel: (859)257-1412 Ext. 270 Fax: (859)323-2866.
| |
Collapse
|
47
|
Ryan J, Croft K, Mori T, Wesnes K, Spong J, Downey L, Kure C, Lloyd J, Stough C. An examination of the effects of the antioxidant Pycnogenol on cognitive performance, serum lipid profile, endocrinological and oxidative stress biomarkers in an elderly population. J Psychopharmacol 2008; 22:553-62. [PMID: 18701642 DOI: 10.1177/0269881108091584] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study examines the effects of the antioxidant flavonoid Pycnogenol on a range of cognitive and biochemical measures in healthy elderly individuals. The study used a double-blind, placebo-controlled, matched-pair design, with 101 elderly participants (60-85 years) consuming a daily dose of 150 mg of Pycnogenol for a three-month treatment period. Participants were assessed at baseline, then at 1, 2, and 3 months of the treatment. The control (placebo) and Pycnogenol groups were matched by age, sex, body mass index, micronutrient intake, and intelligence. The cognitive tasks comprised measures of attention, working memory, episodic memory, and psychomotor performance. The biological measures comprised levels of clinical hepatic enzymes, serum lipid profile, human growth hormone, and lipid peroxidation products. Statistically significant interactions were found for memory-based cognitive variables and lipid peroxidation products, with the Pycnogenol group displaying improved working memory and decreased concentrations of F2-isoprostanes relative to the control group.
Collapse
Affiliation(s)
- J Ryan
- National Institute of Complementary Medicine (NICM)-Collaborative Centre for the Study of Natural Medicines and Neurocognition in Health and Disease, Brain Sciences Institute, Swinburne University of Technology, Hawthorn, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Uberti D, Ferrari-Toninelli G, Bonini SA, Sarnico I, Benarese M, Pizzi M, Benussi L, Ghidoni R, Binetti G, Spano P, Facchetti F, Memo M. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity. Neuropsychopharmacology 2007; 32:872-80. [PMID: 16936710 DOI: 10.1038/sj.npp.1301185] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia Medical School, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M, Hyman BT, Bacskai BJ. Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol 2006; 65:1082-9. [PMID: 17086105 DOI: 10.1097/01.jnen.0000240468.12543.af] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alzheimer disease (AD) is characterized both by senile plaques and neurodegeneration, although the details of the relationship between the 2 are not well understood. We postulated that oxidative stress resulting from senile plaques may mediate plaques' effects on local neuronal processes. Using multiphoton microscopy, we directly demonstrate the generation of reactive oxygen species by senile plaques. After screening of several natural antioxidants ex vivo, we assessed in vivo the effect of 2 orally administered antioxidants in APPswe/PS1d9 transgenic mice. Both Ginkgo biloba extract and vitamin E reduced the oxidative stress resulting from senile plaques in vivo as monitored with intracranial imaging. Both treatments also lead to a progressive reversal of the structural changes in dystrophic neurites associated with senile plaques. These results suggest a causal relationship between plaque-associated oxidative stress and neuritic alterations and demonstrate for the first time that the focal neurotoxicity associated with the senile plaques of AD is partially reversible with antioxidant therapies. The quantitative ex vivo screen combined with in vivo monitoring of efficacy should lead to more effective clinical therapies for the prevention of oxidative stress and neurotoxicity in AD.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- Department of Neurology/Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
50
|
Nishioka H, Fujii H, Sun B, Aruoma OI. Comparative efficacy of oligonol, catechin and (−)-epigallocatechin 3-O-gallate in modulating the potassium bromate-induced renal toxicity in rats. Toxicology 2006; 226:181-7. [PMID: 16916569 DOI: 10.1016/j.tox.2006.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 01/30/2023]
Abstract
Potassium bromate (KBrO(3)) is a by-product from ozonation of high-bromide surface water for production of drinking water and is a rodent carcinogen. Oligonol is a product emanating from the oligomerization of polyphenols, typically proanthocyanidin from a variety of fruits (grapes, apples, persimmons, etc.) and contains catechin-type monomers and proanthocyanidin oligomers. In this study, the ability of oligonol derived from grape seeds, grape seeds extracts (Product A, containing biologically active flavonoids and the oligomeric proanthocyanidin) and pine bark extracts (Product B, composed of flavan-3-ol derivatives) to modulate the KBrO(3)-induced renal toxicity was compared with (+) catechin and (-)-epigallocatechin 3-O-gallate (EGCG). In the Trolox equivalent antioxidant capacity (TEAC) assay, the order of the antioxidant activity was EGCG>catechin>oligonol>Product A>Product B. However, oligonol elicits the strongest antioxidant capacity following in vivo supplementation to rats, with the order of efficacy of oligonol>Product A> or =Product B>EGCG>catechin. Blood levels of lipid peroxidation products (LPO), urea nitrogen (BUN) and creatinine were elevated by KBrO(3) treatment. Oligonol significantly restored LPO to the level in the untreated rats and had the strongest potency when compared with the effects of Products A and B. The five materials lowered KBrO(3)-induced BUN level, but this was not statistically significant. Oligonol significantly reduced the increased level of the creatinine, seconded by Product A, Product B and EGCG. Catechin had the lowest effect in both the BUN and creatinine levels. That oligonol was able to modulate KBrO(3)-induced lipid peroxidation and the levels of blood urea nitrogen and creatinine suggests potential chemopreventive function and application in mitigating toxicity due to long-term exposure to KBrO(3) in public drinking water.
Collapse
Affiliation(s)
- Hiroshi Nishioka
- Amino Up Chemical Co. Ltd., High Tech Hill Shin-ei, 363-32 Shin-ei, Kiyota, Sapporo 004-0839, Japan.
| | | | | | | |
Collapse
|