1
|
Huszár J, Bozó É, Beke G, Szalai KK, Kardos P, Boros A, Greiner I, Éles J. hERG optimization of MCHR1 antagonist benzofuro-pyridine and pyrazino-indole derivatives. ChemMedChem 2022; 17:e202100707. [PMID: 35041296 DOI: 10.1002/cmdc.202100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the antagonists of melanin concentrating hormone receptor 1 (MCHR1). The design, synthesis, and biological studies of novel MCHR1 antagonists based on benzofuro-pyridine and pyrazino-indole scaffold was performed. We confirmed that fine-tuning lipophilicity and basic pKa by modifying the benzyl-group and introducing different substituents on the aliphatic nitrogen sidechain decreases both hERG inhibition and metabolic clearance. We have succeeded to develop excellent in vitro parameters in case of compounds 17 and 23g , that can be considered as valuable tools for further pharmacological investigation.
Collapse
Affiliation(s)
- József Huszár
- Gedeon Richter PLc., Department of chemistry, Gyömrői út 19-21, 1103, Budapest, HUNGARY
| | - Éva Bozó
- Gedeon Richter Nyrt, Department of Chemistry, HUNGARY
| | - Gyula Beke
- Gedeon Richter Nyrt, Department of Chemistry, HUNGARY
| | | | - Péter Kardos
- Gedeon Richter Nyrt, Pharmacological and Drug Safety Research, HUNGARY
| | - András Boros
- Gedeon Richter Nyrt, Pharmacological and Drug Safety Research, HUNGARY
| | | | - János Éles
- Gedeon Richter Nyrt, Department of Chemistry, HUNGARY
| |
Collapse
|
2
|
Boulton K, Nolan MJ, Wu Z, Riggio V, Matika O, Harman K, Hocking PM, Bumstead N, Hesketh P, Archer A, Bishop SC, Kaiser P, Tomley FM, Hume DA, Smith AL, Blake DP, Psifidi A. Dissecting the Genomic Architecture of Resistance to Eimeria maxima Parasitism in the Chicken. Front Genet 2018; 9:528. [PMID: 30534137 PMCID: PMC6275401 DOI: 10.3389/fgene.2018.00528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 01/16/2023] Open
Abstract
Coccidiosis in poultry, caused by protozoan parasites of the genus Eimeria, is an intestinal disease with substantial economic impact. With the use of anticoccidial drugs under public and political pressure, and the comparatively higher cost of live-attenuated vaccines, an attractive complementary strategy for control is to breed chickens with increased resistance to Eimeria parasitism. Prior infection with Eimeria maxima leads to complete immunity against challenge with homologous strains, but only partial resistance to challenge with antigenically diverse heterologous strains. We investigate the genetic architecture of avian resistance to E. maxima primary infection and heterologous strain secondary challenge using White Leghorn populations of derived inbred lines, C.B12 and 15I, known to differ in susceptibility to the parasite. An intercross population was infected with E. maxima Houghton (H) strain, followed 3 weeks later by E. maxima Weybridge (W) strain challenge, while a backcross population received a single E. maxima W infection. The phenotypes measured were parasite replication (counting fecal oocyst output or qPCR for parasite numbers in intestinal tissue), intestinal lesion score (gross pathology, scale 0-4), and for the backcross only, serum interleukin-10 (IL-10) levels. Birds were genotyped using a high density genome-wide DNA array (600K, Affymetrix). Genome-wide association study located associations on chromosomes 1, 2, 3, and 5 following primary infection in the backcross population, and a suggestive association on chromosome 1 following heterologous E. maxima W challenge in the intercross population. This mapped several megabases away from the quantitative trait locus (QTL) linked to the backcross primary W strain infection, suggesting different underlying mechanisms for the primary- and heterologous secondary- responses. Underlying pathways for those genes located in the respective QTL for resistance to primary infection and protection against heterologous challenge were related mainly to immune response, with IL-10 signaling in the backcross primary infection being the most significant. Additionally, the identified markers associated with IL-10 levels exhibited significant additive genetic variance. We suggest this is a phenotype of interest to the outcome of challenge, being scalable in live birds and negating the requirement for single-bird cages, fecal oocyst counts, or slaughter for sampling (qPCR).
Collapse
Affiliation(s)
- Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Zhiguang Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Nat Bumstead
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Pat Hesketh
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Andrew Archer
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute, The University of Queensland, Brisbane, St. Lucia, QLD, Australia
| | - Adrian L Smith
- Enteric Immunology Group and Genetics and Genomics Group, Pirbright Institute, Woking, United Kingdom.,Department of Zoology, Sir Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom.,Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield, United Kingdom
| |
Collapse
|
3
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
4
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors. Front Syst Neurosci 2017; 11:32. [PMID: 28611599 PMCID: PMC5447028 DOI: 10.3389/fnsys.2017.00032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration.
Collapse
Affiliation(s)
- Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São PauloSão Paulo, Brazil
| |
Collapse
|
5
|
Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. J Clin Sleep Med 2017; 13:235-243. [PMID: 27855741 DOI: 10.5664/jcsm.6454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023]
Abstract
STUDY OBJECTIVES Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid (CSF) MCH levels, in contrast to previously reported normal evening/afternoon levels. METHODS Lumbar CSF and plasma were collected from 07:00 to 10:00 from 57 patients with narcolepsy (subtypes: 47 NT1; 10 NT2) diagnosed according to International Classification of Sleep Disorders, Third Edition (ICSD-3) and 20 healthy controls. HCRT-1 and MCH levels were quantified by radioimmunoassay and correlated with clinical symptoms, polysomnography (PSG), and Multiple Sleep Latency Test (MSLT) parameters. RESULTS CSF and plasma MCH levels were not significantly different between narcolepsy patients regardless of ICSD-3 subtype, HCRT-1 levels, or compared to controls. CSF MCH and HCRT-1 levels were not significantly correlated. Multivariate regression models of CSF MCH levels, age, sex, and body mass index predicting clinical, PSG, and MSLT parameters did not reveal any significant associations to CSF MCH levels. CONCLUSIONS Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH measurement is not an informative diagnostic marker for narcolepsy.
Collapse
Affiliation(s)
- Maren Schrölkamp
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.,FU-Berlin, Faculty Biology, Chemistry, Pharmacy, Takustr, Berlin, Germany
| | - Poul J Jennum
- Danish Center for Sleep Medicine, University of Copenhagen, Rigshospitalet, Glostrup, Denmark
| | - Steen Gammeltoft
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Anja Holm
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte R Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Stine Knudsen
- Danish Center for Sleep Medicine, University of Copenhagen, Rigshospitalet, Glostrup, Denmark.,Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Norway
| |
Collapse
|
6
|
Alvisi RD, Diniz GB, Da-Silva JM, Bittencourt JC, Felicio LF. Suckling-induced Fos activation and melanin-concentrating hormone immunoreactivity during late lactation. Life Sci 2016; 148:241-6. [PMID: 26874026 DOI: 10.1016/j.lfs.2016.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/15/2023]
Abstract
AIMS Melanin-concentrating hormone (MCH) is implicated in the control of food intake, body weight regulation and energy homeostasis. Lactation is an important physiological model to study the hypothalamic integration of peripheral sensory signals, such as suckling stimuli and those related to energy balance. MCH can be detected in the medial preoptic area (MPOA), especially around the 19th day of lactation, when this hormone is described as displaying a peak synthesis followed by a decrease after weaning. The physiological significance of this phenomenon is unclear. Therefore, we aimed to investigate hypothalamic changes associated to sensory stimulation by the litter, in special its influence over MCH synthesis. MAIN METHODS Female Wistar rats (n=56) were euthanized everyday from lactation days 15-21, with or without suckling stimulus (WS and NS groups, respectively). MCH and Fos immunoreactivity were evaluated in the MPOA and lateral and incerto-hypothalamic areas (LHA and IHy). KEY FINDINGS Suckling stimulus induced Fos synthesis in all regions studied. An increase on the number of suckling-induced Fos-ir neurons could be detected in the LHA after the 18th day. Conversely, the amount of MCH decreased in the MPOA from days 15-21, independent of suckling stimulation. No colocalization between MCH and Fos could be detected in any region analyzed. SIGNIFICANCE Suckling stimulus is capable of stimulating hypothalamic regions not linked to maternal behavior, possibly to mediate energy balance aspects of lactation. Although dams are hyperphagic before weaning, this behavioral change does not appear to be mediated by MCH.
Collapse
Affiliation(s)
- R D Alvisi
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - G B Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - J M Da-Silva
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - J C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo, Sao Paulo 05508-030, Brazil
| | - L F Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil.
| |
Collapse
|
7
|
Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 2014; 111:E3735-44. [PMID: 25136085 DOI: 10.1073/pnas.1412189111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narcolepsy is a chronic sleep disorder, likely with an autoimmune component. During 2009 and 2010, a link between A(H1N1)pdm09 Pandemrix vaccination and onset of narcolepsy was suggested in Scandinavia. In this study, we searched for autoantibodies related to narcolepsy using a neuroanatomical array: rat brain sections were processed for immunohistochemistry/double labeling using patient sera/cerebrospinal fluid as primary antibodies. Sera from 89 narcoleptic patients, 52 patients with other sleep-related disorders (OSRDs), and 137 healthy controls were examined. Three distinct patterns of immunoreactivity were of particular interest: pattern A, hypothalamic melanin-concentrating hormone and proopiomelanocortin but not hypocretin/orexin neurons; pattern B, GABAergic cortical interneurons; and pattern C, mainly globus pallidus neurons. Altogether, 24 of 89 (27%) narcoleptics exhibited pattern A or B or C. None of the patterns were exclusive for narcolepsy but were also detected in the OSRD group at significantly lower numbers. Also, some healthy controls exhibited these patterns. The antigen of pattern A autoantibodies was identified as the common C-terminal epitope of neuropeptide glutamic acid-isoleucine/α-melanocyte-stimulating hormone (NEI/αMSH) peptides. Passive transfer experiments on rat showed significant effects of pattern A human IgGs on rapid eye movement and slow-wave sleep time parameters in the inactive phase and EEG θ-power in the active phase. We suggest that NEI/αMSH autoantibodies may interfere with the fine regulation of sleep, contributing to the complex pathogenesis of narcolepsy and OSRDs. Also, patterns B and C are potentially interesting, because recent data suggest a relevance of those brain regions/neuron populations in the regulation of sleep/arousal.
Collapse
|
8
|
Chung S, Liao XH, Di Cosmo C, Van Sande J, Wang Z, Refetoff S, Civelli O. Disruption of the melanin-concentrating hormone receptor 1 (MCH1R) affects thyroid function. Endocrinology 2012; 153:6145-54. [PMID: 23024261 PMCID: PMC3512057 DOI: 10.1210/en.2011-1435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a peptide produced in the hypothalamus and the zona incerta that acts on one receptor, MCH receptor 1 (MCH1R), in rodents. The MCH system has been implicated in the regulation of several centrally directed physiological responses, including the hypothalamus-pituitary-thyroid axis. Yet a possible direct effect of the MCH system on thyroid function has not been explored in detail. We now show that MCH1R mRNA is expressed in thyroid follicular cells and that mice lacking MCH1R [MCH1R-knockout (KO)] exhibit reduced circulating iodothyronine (T(4), free T(4), T(3), and rT(3)) levels and high TRH and TSH when compared with wild-type (WT) mice. Because the TSH of MCH1R-KO mice displays a normal bioactivity, we hypothesize that their hypothyroidism may be caused by defective thyroid function. Yet expression levels of the genes important for thyroid hormones synthesis or secretion are not different between the MCH1R-KO and WT mice. However, the average thyroid follicle size of the MCH1R-KO mice is larger than that of WT mice and contained more free and total T(4) and T(3) than the WT glands, suggesting that they are sequestered in the glands. Indeed, when challenged with TSH, the thyroids of MCH1R-KO mice secrete lower amounts of T(4). Similarly, secretion of iodothyronines in the plasma upon (125)I administration is significantly reduced in MCH1R-KO mice. Therefore, the absence of MCH1R affects thyroid function by disrupting thyroid hormone secretion. To our knowledge, this study is the first to link the activity of the MCH system to the thyroid function.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Discovery of a novel melanin concentrating hormone receptor 1 (MCHR1) antagonist with reduced hERG inhibition. Bioorg Med Chem Lett 2012; 22:3781-5. [DOI: 10.1016/j.bmcl.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022]
|
10
|
Abstract
Despite remarkable progress in the elucidation of energy balance and regulation, the development of new antiobesity drugs is still at the stage of infancy. This review describes the MCH and MCH receptor system with regard to its involvement in energy homeostasis and summarizes the pharmacological profiles of selected small molecule MCH-R1 antagonists that are relevant for their development as antiobesity drugs. Although their clinical value still has to be demonstrated, and challenges with regard to unwanted side effects remain to be resolved, MCH-R1 antagonists may provide an effective pharmacotherapy for the treatment of obesity in the near future.
Collapse
|
11
|
Mihalic JT, Chen X, Fan P, Chen X, Fu Y, Liang L, Reed M, Tang L, Chen JL, Jaen J, Li L, Dai K. Discovery of a novel series of melanin-concentrating hormone receptor 1 antagonists for the treatment of obesity. Bioorg Med Chem Lett 2011; 21:7001-5. [DOI: 10.1016/j.bmcl.2011.09.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 11/16/2022]
|
12
|
Ayala C, Valdez SR, Morero MLN, Soaje M, Carreño NB, Sanchez MS, Bittencourt JC, Jahn GA, Celis ME. Hypo- and hyperthyroidism affect NEI concentration in discrete brain areas of adult male rats. Peptides 2011; 32:1249-54. [PMID: 21530599 DOI: 10.1016/j.peptides.2011.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and l-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of l-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bittencourt JC. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol 2011; 172:185-97. [PMID: 21463631 DOI: 10.1016/j.ygcen.2011.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 11/24/2022]
Abstract
More than 20 years ago, melanin-concentrating hormone (MCH) and its peptide family members - neuropeptide EI (NEI) and neuropeptide GE (NGE) - were described in various species, including mammals (rodents, humans, and non-human primates). Since then, most studies have focused on the role of MCH as an orexigenic peptide, as well as on its participation in learning, spatial memory, neuroendocrine control, and sleep. It has been shown that MCH mRNA or the neuropeptide MCH are present in neurons of the prosencephalon, hypothalamus and brainstem. However, most of the neurons containing MCH/NEI are within the incerto-hypothalamic and lateral hypothalamic areas. In addition, the terminals of those neurons are distributed widely throughout the central nervous system. In this review, we will discuss the relationship between those territories and the roles played by MCH/NEI, as well as the importance of MCH receptor 1 in the respective terminal fields. Certain neurochemical features of MCH- and NEI-immunoreactive (MCH-ir and NEI-ir) neurons will also be discussed. The overarching theme is the anatomical organization of an inhibitory neuropeptide colocalized with an inhibitory neurotransmitter in integrative territories of the central nervous system, such as the IHy and LHA. Although these territories have connections to few brain regions, the regions to which they are connected are relevant, being responsible for the organization of motivated behaviors. All available information on this peptidergic system (anatomical, neurochemical, hodological, physiological, pharmacological and behavioral data) suggests that MCH is intimately involved in arousal and the initiation of motivated behaviors.
Collapse
Affiliation(s)
- Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Fox BM, Natero R, Richard K, Connors R, Roveto PM, Beckmann H, Haller K, Golde J, Xiao SH, Kayser F. Novel pyrrolidine melanin-concentrating hormone receptor 1 antagonists with reduced hERG inhibition. Bioorg Med Chem Lett 2011; 21:2460-7. [DOI: 10.1016/j.bmcl.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/05/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
15
|
Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav 2010; 101:428-37. [PMID: 20670637 PMCID: PMC2949500 DOI: 10.1016/j.physbeh.2010.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/27/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
Abstract
The peptide melanin-concentrating hormone (MCH), produced mainly by cells in the lateral hypothalamus (LH), perifornical area (PF) and zona incerta (ZI), is suggested to have a role in the consumption of rewarding substances, such as ethanol, sucrose and palatable food. However, there is limited information on the specific brain sites where MCH acts to stimulate intake of these rewarding substances and on the feedback effects that their consumption has on the expression of endogenous MCH. The current study investigated MCH in relation to ethanol consumption, in Sprague-Dawley rats. In Experiment 1, chronic consumption of ethanol (from 0.70 to 2.7 g/kg/day) dose-dependently reduced MCH gene expression in the LH. In Experiments 2-4, the opposite effect was observed with acute oral ethanol, which stimulated MCH expression specifically in the LH but not the ZI. In Experiment 5, the effect of MCH injection in brain-cannulated rats on ethanol consumption was examined. Compared to saline, MCH injected in the paraventricular nucleus (PVN) and nucleus accumbens (NAc) selectively stimulated ethanol consumption without affecting food or water intake. In contrast, it reduced ethanol intake when administered into the LH, while having no effect in the ZI. These results demonstrate that voluntary, chronic consumption of ethanol leads to local negative feedback control of MCH expression in the LH. However, with a brief exposure, ethanol stimulates MCH-expressing neurons in this region, which through projections to the feeding-related PVN and reward-related NAc can promote further drinking behavior.
Collapse
Affiliation(s)
- I Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Lakaye B, Coumans B, Harray S, Grisar T. Melanin-concentrating hormone and immune function. Peptides 2009; 30:2076-80. [PMID: 19450627 DOI: 10.1016/j.peptides.2009.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
To date, melanin-concentrating hormone (MCH) has been generally considered as peptide acting almost exclusively in the central nervous system. In the present paper, we revise the experimental evidence, demonstrating that MCH and its receptors are expressed by cells of the immune system and directly influence the response of these cells in some circumstances. This therefore supports the idea that, as with other peptides, MCH could be considered as a modulator of the immune system. Moreover, we suggest that this could have important implications in several immune-mediated disorders and affirm that there is a clear need for further investigation.
Collapse
|
17
|
Oh KS, Ryu SY, Lee S, Seo HW, Oh BK, Kim YS, Lee BH. Melanin-concentrating hormone-1 receptor antagonism and anti-obesity effects of ethanolic extract from Morus alba leaves in diet-induced obese mice. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:216-220. [PMID: 19330910 DOI: 10.1016/j.jep.2009.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Korea, Morus alba leaves have been traditionally administered as natural therapeutic agent for the alleviating dropsy and diabetes. AIM OF THE STUDY The present study was performed to evaluate melanin-concentrating hormone receptor subtype 1 (MCH1) antagonism of the ethanol extract of Morus alba leaves (EMA) and its anti-obesity effect in diet-induced obese (DIO) mice. MATERIALS AND METHODS The binding affinity of EMA for the MCH1 receptor with europium-labeled MCH (Eu-MCH), the function of recombinant MCH1 receptors expressed in CHO cells, and the anti-obesity effects in DIO mice were evaluated. RESULTS MCH1 receptor binding studies showed, EMA exhibited a potent inhibitory activity with IC50 value of 2.3+/-1.0 microg/ml. EMA (10-100 microg/ml) also inhibited the intracellular calcium mobilization with the recombinant MCH1 receptors expressed in CHO cells. In an anti-obesity study with DIO mice, longterm oral administrations of EMA for 32 consecutive days produced a dose-dependent decrease in body weight and hepatic lipid accumulation. CONCLUSIONS These results suggest that chronic treatment with EMA exerts an anti-obesity effect in DIO mice, and its direct MCH1 receptor antagonism may contribute to decrease body weight.
Collapse
Affiliation(s)
- Kwang-Seok Oh
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 100 Jangdong, Yuseong, Daejeon 305-343, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Melanin-concentrating hormone as a mediator of intestinal inflammation. Proc Natl Acad Sci U S A 2008; 105:10613-8. [PMID: 18650383 DOI: 10.1073/pnas.0804536105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is expressed primarily in the hypothalamus and has a positive impact on feeding behavior and energy balance. Although MCH is expressed in the gastrointestinal tract, its role in this system remains elusive. We demonstrate that, compared to wild type, mice genetically deficient in MCH had substantially reduced local inflammatory responses in a mouse model of experimental colitis induced by intracolonic administration of 2,4,6 trinitrobenzene sulfonic acid (TNBS). Likewise, mice receiving treatments with an anti-MCH antibody, either prophylactically or after the establishment of colitis, developed attenuated TNBS-associated colonic inflammation and survived longer. Consistent with a potential role of MCH in intestinal pathology, we detected increased colonic expression of MCH and its receptor in patients with inflammatory bowel disease. Moreover, we found that human colonic epithelial cells express functional MCH receptors, the activation of which induces IL-8 expression. Taken together, these results clearly implicate MCH in inflammatory processes in the intestine and perhaps elsewhere.
Collapse
|
19
|
Helgeson SC, Schmutz SM. Genetic variation in the pro-melanin-concentrating hormone gene affects carcass traits in Bos taurus cattle. Anim Genet 2008; 39:310-5. [DOI: 10.1111/j.1365-2052.2008.01717.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Coumans B, Grisar T, Nahon JL, Lakaye B. Effect of ppMCH derived peptides on PBMC proliferation and cytokine expression. ACTA ACUST UNITED AC 2007; 143:104-8. [PMID: 17537530 DOI: 10.1016/j.regpep.2007.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 03/05/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
The mRNA encoding prepro-Melanin concentrating hormone (ppMCH) is mainly expressed in the central nervous system but has also been detected at lower amount in many peripheral tissues including spleen and thymus. At the peptide level however, several forms of the precursor can be detected in these tissues and are sometimes expressed at similar levels compared to brain. In the present work, we have studied the in vitro action of a wide range of concentration (1 nM to 1 microM) of the different peptides encoded by ppMCH i.e. neuropeptide glycine-glutamic acid (NGE), neuropeptide glutamic acid-isoleucine (NEI), Melanin concentrating hormone (MCH) and the dipeptide NEI-MCH on peripheral blood mononuclear cells (PBMC) proliferation and cytokine production following anti-CD3 stimulation. Among them only MCH decreased PBMC proliferation with a maximal effect of 35% at 100 nM. Moreover as demonstrated by using ELISA, MCH significantly decreases IL-2 production by 25% but not IL-4, INF-gamma or TNF-alpha expression. Interestingly, exogenous IL-2 decreases significantly MCH-mediated inhibition, suggesting that it is an important downstream mediator of MCH action. Finally, we showed that after 7 to 9 days of incubation, MCH also inhibits proliferation of non-stimulated PBMC. Altogether, these data demonstrate that fully mature MCH modulates proliferation of anti-CD3 stimulated PBMC partially through regulation of IL-2 production.
Collapse
Affiliation(s)
- Bernard Coumans
- Center for Cellular and Molecular Neurobiology, University of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
21
|
Abstract
There is compelling genetic and pharmacologic evidence to indicate that melanin-concentrating hormone receptor-1 (MCHR1) signaling is involved in the regulation of food intake and energy expenditure. The medical need for novel therapies to treat obesity and related metabolic disorders has led to a great deal of interest by pharmaceutical companies in the discovery of MCHR1 antagonists. Recent publications describing preclinical studies have demonstrated that small-molecule MCHR1 antagonists decrease food intake, bodyweight, and adiposity in rodent models of obesity. Results from ongoing early-stage clinical trials with MCHR1 antagonists are eagerly awaited, as is the movement of other MCHR1 antagonists into the clinic.
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of CV/Metabolic Diseases, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | |
Collapse
|
22
|
Kowalski TJ, Spar BD, Weig B, Farley C, Cook J, Ghibaudi L, Fried S, O'Neill K, Del Vecchio RA, McBriar M, Guzik H, Clader J, Hawes BE, Hwa J. Effects of a selective melanin-concentrating hormone 1 receptor antagonist on food intake and energy homeostasis in diet-induced obese mice. Eur J Pharmacol 2006; 535:182-91. [PMID: 16540104 DOI: 10.1016/j.ejphar.2006.01.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 01/19/2006] [Accepted: 01/25/2006] [Indexed: 11/16/2022]
Abstract
Melanin concentrating hormone (MCH) is a cyclic neuropeptide expressed in the lateral hypothalamus that plays an important role in energy homeostasis. To investigate the pharmacological consequences of inhibiting MCH signaling in murine obesity models, we examined the effect of acute and chronic administration of a selective MCH1 receptor antagonist (SCH-A) in diet-induced obese (DIO) and Lep(ob/ob) mice. Oral administration of SCH-A for 5 consecutive days (30 mg/kg q.d.) produced hypophagia, a loss of body weight and adiposity, and decreased plasma leptin levels in DIO mice, and hypophagia and reduced weight gain in Lep(ob/ob) mice. Chronic administration of SCH-A to DIO mice decreased food intake, body weight and adiposity, and plasma leptin and free fatty acids. These effects were accompanied by increases in several hypothalamic neuropeptides. Acute administration of SCH-A (30 mg/kg) prevented the decrease in energy expenditure associated with food restriction. These results indicate that MCH1 receptor antagonists may be effective in the treatment of obesity.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Administration, Oral
- Animals
- Binding, Competitive
- Body Weight/drug effects
- Brain/metabolism
- CHO Cells
- Cricetinae
- Cricetulus
- Dietary Fats/administration & dosage
- Dose-Response Relationship, Drug
- Eating/drug effects
- Energy Metabolism/drug effects
- Fatty Acids, Nonesterified/blood
- Female
- Galanin/genetics
- Gene Expression/drug effects
- Homeostasis/drug effects
- Hypothalamic Hormones/genetics
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Insulin/blood
- Intracellular Signaling Peptides and Proteins/genetics
- Iodine Radioisotopes
- Leptin/blood
- Male
- Melanins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Neuropeptide Y/genetics
- Neuropeptides/genetics
- Nitriles/administration & dosage
- Nitriles/pharmacology
- Obesity/etiology
- Obesity/physiopathology
- Oligopeptides/metabolism
- Orexin Receptors
- Orexins
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Pituitary Hormones/genetics
- Protein Binding
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide
- Receptors, Somatostatin/antagonists & inhibitors
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Triglycerides/blood
- Urea/administration & dosage
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of CV/Metabolic Diseases, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kowalski TJ, McBriar MD. Therapeutic potential of melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. Expert Opin Investig Drugs 2005; 13:1113-22. [PMID: 15330743 DOI: 10.1517/13543784.13.9.1113] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The compelling genetic and pharmacological evidence implicating melanin-concentrating hormone-1 receptor (MCH-1R) signalling in the regulation of food intake and energy expenditure has generated a great deal of interest by pharmaceutical companies for the discovery of MCH-1R antagonists, evidenced by the increased number of patents describing MCH-1R antagonists for the treatment of obesity and metabolic syndrome. The structural diversity of small molecular weight drug-like MCH-1R antagonists produced and preclinical studies showing hypophagia and weight loss with small molecular weight and peptidal antagonists in rodents is encouraging and suggests that the identification of clinical candidates will be forthcoming.
Collapse
Affiliation(s)
- Timothy J Kowalski
- Department of Cardiovascular/Metabolic Disease Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | |
Collapse
|
24
|
Melanin-Concentrating Hormone as a Therapeutic Target. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Hervieu G. Melanin-concentrating hormone functions in the nervous system: food intake and stress. Expert Opin Ther Targets 2003; 7:495-511. [PMID: 12885269 DOI: 10.1517/14728222.7.4.495] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, which centrally regulates food intake and stress. MCH induces food intake in rodents and, more generally, acts as an anabolic signal in energy regulation. In addition, MCH seems to be activatory on the stress axis. Two receptors for MCH in humans have very recently been characterised, namely, MCH-R1 and MCH-R2. MCH-R1 has received considerable attention, as potent and selective antagonists acting at that receptor display anxiolytic, antidepressant and/or anorectic properties. Feeding and affective disorders are both debilitating conditions that have become serious worldwide health threats. There are as yet no efficient and/or safe cures that could contain the near-pandemia phenomen of both diseases. Thus, the discovery of MCH-R1 antagonists may lead to the development of valuable drugs to treat obesity, anxiety and depressive syndromes. In addition, it opens wide avenues to probe additional functions of the peptide, both in the brain and in the peripheral nervous system.
Collapse
Affiliation(s)
- Guillaume Hervieu
- GlaxoSmithKline R&D, Drug Discovery, Neurology Centre of Excellence for Drug Discovery, New Frontiers Science Park - North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
26
|
Birth of ‘human-specific’ genes during primate evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Schlumberger SE, Jäggin V, Tanner H, Eberle AN. Endogenous receptor for melanin-concentrating hormone in human neuroblastoma Kelly cells. Biochem Biophys Res Commun 2002; 298:54-9. [PMID: 12379219 DOI: 10.1016/s0006-291x(02)02400-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Melanin-concentrating hormone (MCH), a cyclic nonadecapeptide, is predominantly expressed in mammalian neurons located in the zona incerta and lateral hypothalamus. Current interest in MCH relates to its role in the control of feeding behaviour. Two receptors for MCH were recently found: MCH-R(1) and MCH-R(2). We show here by RT-PCR analysis and immunofluorescence studies that the human neuroblastoma cell line Kelly expresses MCH and MCH-R(1) but not MCH-R(2). In competition assays using 125I-labelled MCH an inhibitory concentration 50% (IC(50)) of 76nM was determined for MCH, indicating a high affinity of Kelly cells for MCH. MCH induces mitogen-activated protein kinase (MAPK) phosphorylation in Kelly cells but no increase in the intracellular free Ca(2+) concentration. This suggests that MCH signals via Galpha(i)/Galpha(0) in these cells. The presence and functionality of MCH-R(1) renders this neuronal cell a very useful model for future structure-activity studies in a physiological environment mimicking the human brain for the evaluation of potential appetite-regulating drugs.
Collapse
Affiliation(s)
- Sophie E Schlumberger
- Laboratory of Endocrinology, Department of Research (ZLF), University Hospital and University Children's Hospital, Hebelstrasse 20, CH-4031, Basel, Switzerland.
| | | | | | | |
Collapse
|
28
|
Verlaet M, Adamantidis A, Coumans B, Chanas G, Zorzi W, Heinen E, Grisar T, Lakaye B. Human immune cells express ppMCH mRNA and functional MCHR1 receptor. FEBS Lett 2002; 527:205-10. [PMID: 12220661 DOI: 10.1016/s0014-5793(02)03232-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanin-concentrating hormone (MCH) is highly expressed in the brain and modulates feeding behavior. It is also expressed in some peripheral tissues where its role remains unknown. We have investigated MCH function in human and mouse immune cells. RT-PCR analysis revealed a low expression of prepro-MCH and MCH receptor 1 (MCHR1) but not of MCHR2 transcript in tissular and peripheral blood immune cells. FACS and in vitro assay studies demonstrated that MCHR1 receptor expression on most cell types can trigger, in the presence of MCH, cAMP synthesis and calcium mobilization in peripheral blood mononuclear cells (PBMCs). Moreover, MCH treatment decreases the CD3-stimulated PBMC proliferation in vitro. Accordingly, our data indicate for the first time that MCH and MCHR1 may exert immunomodulatory functions.
Collapse
Affiliation(s)
- Myriam Verlaet
- Center for Cellular and Molecular Neurobiology, University of Liège, 17 place Delcour, B-4020, Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Maulon-Feraille L, Della Zuana O, Suply T, Rovere-Jovene C, Audinot V, Levens N, Boutin JA, Duhault J, Nahon JL. Appetite-boosting property of pro-melanin-concentrating hormone(131-165) (neuropeptide-glutamic acid-isoleucine) is associated with proteolytic resistance. J Pharmacol Exp Ther 2002; 302:766-73. [PMID: 12130742 DOI: 10.1124/jpet.302.2.766] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, with a major role in stimulation of feeding behavior in mammals. MCH signals in the brain occur via two seven-transmembrane G protein-coupled receptors, namely MCH1 (SLC-1, MCH(1), MCH-R1, or MCH-1R) and MCH2 (SLT, MCH(2), MCH-R2, or MCH-2R). In this study, we demonstrate that the pro-MCH(131-165) peptide neuropeptide-glutamic acid-isoleucine (NEI)-MCH is more potent than MCH in stimulating feeding in the rat. Using rat MCH1-expressed human embryonic kidney 293 cells, we show that NEI-MCH exhibits 5-fold less affinity in a binding assay and 2-fold less potency in a cAMP assay than MCH. A similar 7- to 8-fold shift in potency was observed in a Ca(2+)(i) assay using rat MCH1 or human MCH2-transfected Chinese hamster ovary cell models. This demonstrates that NEI-MCH is not a better agonist than MCH at either of the MCH receptors. Then, we compared the proteolysis resistance of MCH and NEI-MCH to rat brain membrane homogenates and purified proteases. Kinetics of peptide degradation using brain extracts indicated a t(1/2) of 34.8 min for MCH and 78.5 min for NEI-MCH with a specific pattern of cleavage of MCH but not NEI-MCH by exo- and endo-proteases. Furthermore, MCH was found highly susceptible to degradation by aminopeptidase M and endopeptidase 24.11, whereas NEI-MCH was fully resistant to proteolysis by these enzymes. Therefore, our results strongly suggest that reduced susceptibility to proteases of NEI-MCH compared with MCH account for its enhanced activity in feeding behavior. NEI-MCH represents therefore the first MCH natural functional "superagonist" so far described.
Collapse
Affiliation(s)
- Laurence Maulon-Feraille
- Institut de Pharmacologie Moléculaire et Cellulaire-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6097, 660 route des Lucioles-Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Griffond B, Baker BI. Cell and molecular cell biology of melanin-concentrating hormone. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:233-77. [PMID: 11837894 DOI: 10.1016/s0074-7696(02)13016-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent advances in the study of melanin-concentrating hormone (MCH) have depended largely on molecular biological techniques. In mammals, which have attracted the most attention, novel findings concern (i) the MCH gene, which can yield several peptides by either posttranslational cleavage or alternative splicing, as well as bidirectional transcription; (ii) the identification of two G protein-coupled MCH receptors in the brain and peripheral tissues; and (iii) the evidence for subpopulations of MCH neurons in the central nervous system, characterized by their chemical phenotypes, connections, and individual physiological responses to different physiological paradigms. The involvement of central MCH in various functions, including feeding, reproduction, stress, and behavior patterns, is reviewed. The stage during evolution at which MCH may have acquired hypophysiotrophic and hormonal functions in lower vertebrates is considered in light of morphological data. Evidence that MCH also has peripheral paracrine/autocrine effects in mammals is provided.
Collapse
Affiliation(s)
- Bernadette Griffond
- Laboratoire d'Histologie, Faculté de Médecine, Place St-Jacques, Besançon, France
| | | |
Collapse
|
31
|
Boutin JA, Suply T, Audinot V, Rodriguez M, Beauverger P, Nicolas JP, Galizzi JP, Fauchère JL. Melanin-concentrating hormone and its receptors: state of the art. Can J Physiol Pharmacol 2002; 80:388-95. [PMID: 12056544 DOI: 10.1139/y02-056] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide of nineteen amino acids in mammals. Its involvement in the feeding behaviour has been well established during the last few years. A first receptor subtype, now termed MCHIR, was discovered in 1999, following the desorphanisation of the SLCI orphan receptor, using either reverse pharmacology or systematic screening of agonist candidates. A second MCH receptor, MCH2R, has been discovered recently, by several groups working on data mining of genomic banks. The molecular pharmacology of these two receptors is only described on the basis of the action of peptides derived from MCH. The present review tentatively summarizes the knowledge on these two receptors and presents the first attempts to discover new classes of antagonists that might have major roles in the control of obesity and feeding behaviour.
Collapse
Affiliation(s)
- Jean A Boutin
- Division de Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlumberger SE, Talke-Messerer C, Zumsteg U, Eberle AN. Expression of receptors for melanin-concentrating hormone (MCH) in different tissues and cell lines. J Recept Signal Transduct Res 2002; 22:509-31. [PMID: 12503638 DOI: 10.1081/rrs-120014618] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin-concentrating hormone (MCH) is a potent orexigenic neuropeptide and a physiological antagonist of alpha-melanocyte-stimulating hormone (alpha-MSH) in the brain as well as at peripheral sites, including the pigmentary systems of specific vertebrates. Two receptor subtypes for MCH, MCH-R1 and MCH-R2, have been cloned, but other receptor subtypes are likely to exist. Based on our own data and the current literature, we have compared the expression of different receptors for MCH in various mammalian cell lines and tissues. Summarizing all data currently available, we conclude that the two cloned MCH receptors, MCH-R1 and MCH-R2, exhibit differences in their expression pattern, although MCH-R1 is generally colocalized in all tissues where MCH-R2 expression is found. It appears that MCH-R1 is more abundant and has a wider distribution pattern than MCH-R2. Other hypothetical MCH-R subtypes may be expressed in specific tissues, e.g., in the pigment cell system.
Collapse
Affiliation(s)
- Sophie E Schlumberger
- Laboratory of Endocrinology, Department of Research (ZLF) University Hospital and University Children's Hospital, CH-4031 Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Chapter II The melanin-concentrating hormone. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Wang S, Behan J, O'Neill K, Weig B, Fried S, Laz T, Bayne M, Gustafson E, Hawes BE. Identification and pharmacological characterization of a novel human melanin-concentrating hormone receptor, mch-r2. J Biol Chem 2001; 276:34664-70. [PMID: 11459838 DOI: 10.1074/jbc.m102601200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G protein-coupled receptor family. Recently an orphan receptor, SLC-1, has been identified as an MCH receptor (MCH-R1). Herein we identify and characterize a novel receptor for human MCH (MCH-R2). The receptor is composed of 340 amino acids encoded by a 1023-base pair cDNA and is 35% homologous to SLC-1. (125)I-MCH specifically bound to Chinese hamster ovary cells stably expressing MCH-R2. MCH stimulated dose-dependent increases in intracellular free Ca(2+) and inositol phosphate production in these cells but did not affect cAMP production. The pharmacological profile for mammalian MCH, [Phe(13),Tyr(19)]MCH, and salmon MCH at MCH-R2 differed compared with MCH-R1 as assessed by intracellular signaling and radioligand binding assays. The EC(50) in signaling assays and the IC(50) in radioligand binding assays of salmon MCH was an order of magnitude higher than mammalian MCH at MCH-R2. By comparison, the EC(50) and IC(50) values of salmon MCH and mammalian MCH at MCH-R1 were relatively similar. Blot hybridization revealed exclusive expression of MCH-R2 mRNA in several distinct brain regions, particularly in the cortical area, suggesting the involvement of MCH-R2 in the central regulation of MCH-mediated functions.
Collapse
Affiliation(s)
- S Wang
- Departments of Human Genomics and Central Nervous System Biology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Verlaeten O, Griffond B, Khuth ST, Giraudon P, Akaoka H, Belin MF, Fellmann D, Bernard A. Down regulation of melanin concentrating hormone in virally induced obesity. Mol Cell Endocrinol 2001; 181:207-19. [PMID: 11476954 DOI: 10.1016/s0303-7207(01)00488-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Obesity is a complex disease involving genetic components and environmental factors and probably associated with the dysregulation of central homeostasis normally maintained by the hypothalamic neuroendocrine/neurotransmitter network. We previously reported that canine distemper virus (CDV), which is closely related to human measles virus, can target hypothalamic nuclei, and lead to obesity syndrome in the late stages of infection. Here, using differential display PCR, we demonstrate specific down-regulation of melanin-concentrating hormone precursor mRNA (ppMCH) in infected-obese mice. Although ppMCH was down-regulated in all infected mice during the acute stage of infection, this was only seen during the late stage of infection in infected-obese mice. In addition, ppMCH mRNA and protein expression in the lateral hypothalamus was decreased in the absence of neuronal death. These results show the importance of ppMCH in the establishment and maintenance of obesity and the involvement of a virus as an environmental factor.
Collapse
Affiliation(s)
- O Verlaeten
- INSERM U433, Neurobiologie Expérimentale et Physiopathologie, Faculté de Médecine RTH Laennec, rue Guillaume Paradin, 69372 Cedex 08, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Audinot V, Beauverger P, Lahaye C, Suply T, Rodriguez M, Ouvry C, Lamamy V, Imbert J, Rique H, Nahon JL, Galizzi JP, Canet E, Levens N, Fauchere JL, Boutin JA. Structure-activity relationship studies of melanin-concentrating hormone (MCH)-related peptide ligands at SLC-1, the human MCH receptor. J Biol Chem 2001; 276:13554-62. [PMID: 11278733 DOI: 10.1074/jbc.m010727200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic nonadecapeptide involved in the regulation of feeding behavior, which acts through a G protein-coupled receptor (SLC-1) inhibiting adenylcyclase activity. In this study, 57 analogues of MCH were investigated on the recently cloned human MCH receptor stably expressed in HEK293 cells, on both the inhibition of forskolin-stimulated cAMP production and guanosine-5'-O-(3-[(35)S]thiotriphosphate ([(35)S]- GTPgammaS) binding. The dodecapeptide MCH-(6-17) (MCH ring between Cys(7) and Cys(16), with a single extra amino acid at the N terminus (Arg(6)) and at the C terminus (Trp(17))) was found to be the minimal sequence required for a full and potent agonistic response on cAMP formation and [(35)S]- GTPgammaS binding. We Ala-scanned this dodecapeptide and found that only 3 of 8 amino acids of the ring, namely Met(8), Arg(11), and Tyr(13), were essential to elicit full and potent responses in both tests. Deletions inside the ring led either to inactivity or to poor antagonists with potencies in the micromolar range. Cys(7) and Cys(16) were substituted by Asp and Lys or one of their analogues, in an attempt to replace the disulfide bridge by an amide bond. However, those modifications were deleterious for agonistic activity. In [(35)S]- GTPgammaS binding, these compounds behaved as weak antagonists (K(B) 1-4 microm). Finally, substitution in MCH-(6-17) of 6 out of 12 amino acids by non-natural residues and concomitant replacement of the disulfide bond by an amide bond led to three compounds with potent antagonistic properties (K(B) = 0.1-0.2 microm). Exploitation of these structure-activity relationships should open the way to the design of short and stable MCH peptide antagonists.
Collapse
Affiliation(s)
- V Audinot
- Division de Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER, 78290-Croissy sur Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Takahashi K, Totsune K, Murakami O, Sone M, Satoh F, Kitamuro T, Noshiro T, Hayashi Y, Sasano H, Shibahara S. Expression of melanin-concentrating hormone receptor messenger ribonucleic acid in tumor tissues of pheochromocytoma, ganglioneuroblastoma, and neuroblastoma. J Clin Endocrinol Metab 2001; 86:369-74. [PMID: 11232026 DOI: 10.1210/jcem.86.1.7158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Expression of melanin-concentrating hormone (MCH) receptor messenger ribonucleic acid (mRNA) was studied by RT-PCR and Northern blot analysis in human brain; pituitary; adrenal glands; tumor tissues of adrenal tumors, ganglioneuroblastomas, and neuroblastomas; and various cultured tumor cell lines. RT-PCR analysis showed that MCH receptor mRNA was widely expressed in brain tissues, pituitary, normal portions of adrenal glands (cortex and medulla), tumor tissues of adrenocortical tumors (12 of 13 cases), pheochromocytoma (all 7 cases), ganglioneuroblastoma (1 case), neuroblastoma (all 5 cases), and various cultured tumor cell lines (6 of 7 cell lines), including 2 neuroblastoma cell lines. Northern blot analysis showed the expression of MCH receptor mRNA ( approximately 2.4 kb) only in the tumor tissues of 5 pheochromocytomas, 1 ganglioneuroblastoma, and 4 neuroblastomas, indicating that the expression levels of MCH receptor mRNA are much higher in these tumors than in the other tissues. These findings raised the possibility that MCH or MCH-like peptides may be related to the pathophysiology of these neural crest-derived tumors.
Collapse
Affiliation(s)
- K Takahashi
- Department of Molecular Biology, Health Administration Center, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Viale A, Courseaux A, Presse F, Ortola C, Breton C, Jordan D, Nahon JL. Structure and expression of the variant melanin-concentrating hormone genes: only PMCHL1 is transcribed in the developing human brain and encodes a putative protein. Mol Biol Evol 2000; 17:1626-40. [PMID: 11070051 DOI: 10.1093/oxfordjournals.molbev.a026262] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PMCHL1 and PMCHL2 are two copies of the so-called variant melanin-concentrating hormone (MCH) gene that are located, respectively, on human chromosome 5p14 and 5q13 and that emerged recently during primate evolution. They correspond to a 5'-end truncated version of the MCH gene mapped on chromosome 12q23 and encoding a neuropeptide precursor. The gene organization and regulation of the expression of the variant MCH genes in the human brain are the central issues we investigated. First, the structure and fine chromosomal mapping of the 5p and 5q variant MCH genes were established. These revealed several point mutations and length variations of one CA/TA repeat which allow discrimination between each copy. Using a combination of RACE-PCR, RT-PCR, and sequencing analysis, we provided strong evidence for the expression of the PMCHL1 gene but not the PMCHL2 gene in the human fetal, newborn, and adult brains. Sense, potentially coding, RNAs, as well as noncoding antisense RNAs, were identified and displayed a region-specific expression in the human brain. Strikingly, sense unspliced RNAs of the PMCHL1 gene carried a novel open reading frame and may produce an NLS-containing protein of 8 kDa named VMCH-p8. These transcripts were translated in vitro and in transfected COS cells. Therefore, the PMCHL1 gene provides a unique example of the generation of a gene in the Hominoidae lineage which is specifically transcribed in the developing human brain and has the capacity to be translated into a putative novel protein.
Collapse
Affiliation(s)
- A Viale
- Institut de Pharmacologie Moléculaire et Cellullaire, UPR 411 Centre National de la Recherche Scientifique, Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Tadayyon M, Welters HJ, Haynes AC, Cluderay JE, Hervieu G. Expression of melanin-concentrating hormone receptors in insulin-producing cells: MCH stimulates insulin release in RINm5F and CRI-G1 cell-lines. Biochem Biophys Res Commun 2000; 275:709-12. [PMID: 10964727 DOI: 10.1006/bbrc.2000.3357] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic orexigenic peptide. Recently, an orphan G-protein-coupled receptor (SLC-1) was identified that binds MCH with high affinity. Here, we demonstrate the mRNA expression of this receptor in insulin-producing cells including CRI-G1 and RINm5F cells, and in rat islets of Langerhans. Immunofluorescence studies in CRI-G1 and RINm5F cell-lines demonstrated cell-surface expression of the receptor. Rat MCH significantly stimulated insulin secretion in both cell-lines. The potency and the efficacy of MCH were significantly increased in the simultaneous presence of forskolin, suggesting that MCH may amplify the insulinotropic effect of cyclic AMP elevating stimuli. Salmon MCH, which differs from rat/human MCH by six amino acids, was less efficacious than rat/human MCH in stimulating insulin release. The data provide evidence for the expression of MCH receptors in insulin producing cells. The insulinotropic effect of MCH may contribute to the regulation of metabolism and energy balance by this peptide.
Collapse
Affiliation(s)
- M Tadayyon
- Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, Harlow, CM19 5AD, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Viale A, Ortola C, Hervieu G, Furuta M, Barbero P, Steiner DF, Seidah NG, Nahon JL. Cellular localization and role of prohormone convertases in the processing of pro-melanin concentrating hormone in mammals. J Biol Chem 1999; 274:6536-45. [PMID: 10037747 DOI: 10.1074/jbc.274.10.6536] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin concentrating hormone (MCH) and neuropeptide EI (NEI) are two peptides produced from the same precursor in mammals, by cleavage at the Arg145-Arg146 site and the Lys129-Arg130 site, respectively. We performed co-localization studies to reveal simultaneously the expression of MCH mRNA and proconvertases (PCs) such as PC1/3 or PC2. In the rat hypothalamus, PC2 was present in all MCH neurons, and PC1/3 was present in about 15-20% of these cells. PC1/3 or PC2 was not found in MCH-positive cells in the spleen. In GH4C1 cells co-infected with vaccinia virus (VV):pro-MCH along with VV:furin, PACE4, PC1/3, PC2, PC5/6A, PC5/6B, or PC7, we observed only efficient cleavage at the Arg145-Arg146 site to generate mature MCH. Co-expression of pro-MCH together with PC2 and 7B2 resulted in very weak processing to NEI. Comparison of pro-MCH processing patterns in PC1/3- or PC2-transfected PC12 cells showed that PC2 but not PC1/3 generated NEI. Finally, we analyzed the pattern of pro-MCH processing in PC2 null mice. In the brain of homozygotic mutants, the production of mature NEI was dramatically reduced. In contrast, MCH content was increased in the hypothalamus of PC2 null mice. In the spleen, a single large MCH-containing peptide was identified in both wild type and PC2 null mice. Together, our data suggest that pro-MCH is processed differently in the brain and in peripheral organs of mammals. PC2 is the key enzyme that produces NEI, whereas several PCs may cleave at the Arg145-Arg146 site to generate MCH in neuronal cell types.
Collapse
Affiliation(s)
- A Viale
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR411, 660 route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Viale A, Kerdelhué B, Nahon JL. 17beta-estradiol regulation of melanin-concentrating hormone and neuropeptide-E-I contents in cynomolgus monkeys: a preliminary study. Peptides 1999; 20:553-9. [PMID: 10465506 DOI: 10.1016/s0196-9781(99)00007-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanin-concentrating hormone (MCH) and neuropeptide-E-I (NEI) regulate several behaviors and neuroendocrine functions in rats. Possible influence of these peptides on sexual behavior and reproduction in mammals other than rodents prompted us to investigate: 1) The sites of synthesis of MCH and NEI in the brain of a non-human primate (M. fascicularis); 2) The effect of 17 beta-estradiol (E2) benzoate (E2B) on pro-MCH-derived peptide concentrations in the hypothalamus of the ovariectomized (OVX) cynomolgus monkeys (M. fascicularis). Expression of MCH mRNA and peptides was examined by Northern blotting, RT-PCR and RP-HPLC/RIA. Our results demonstrate that the MCH gene is predominantly expressed in hypothalamus of macaque. E2B exposure of OVX monkeys provoked parallel phasic variations in the MCH-immunoreactivity (IR) and NEI-IR. NEI-IR and to a lesser extent MCH-IR, showed a transient increase (associated with the estradiol peak) at 30 h with a final rise of both MCH-IR and NEI-IR observed at the time (72 h post E2B) of the luteinizing hormone (LH) surge. RP-HPLC analysis of peptide extracts revealed the presence, in addition to mature MCH and NEI, of different MCH-IR and NEI-IR forms in the hypothalami of control and E2B-treated monkeys. Taken together, our results indicated that hypothalamic MCH and NEI contents are regulated after E2B treatment and they suggest the possible involvement of these peptides in the regulation of the pre-ovulatory midcycle LH surge in primates.
Collapse
Affiliation(s)
- A Viale
- Institut de Pharmacologie Moléculaire et Cellulaire- CNRS UPR 411, Valbonne, France
| | | | | |
Collapse
|
42
|
Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981228)402:4<442::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 630] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Bittencourt JC, Frigo L, Rissman RA, Casatti CA, Nahon JL, Bauer JA. The distribution of melanin-concentrating hormone in the monkey brain (Cebus apella). Brain Res 1998; 804:140-3. [PMID: 9729342 DOI: 10.1016/s0006-8993(98)00662-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melanin-concentrating hormone was identified in the brain of Cebus monkey using immunohistochemical and in situ hybridization. MCH-immunoreactive neurons were found in the lateral hypothalamus and dorsolateral zona incerta. MCH-ir fibers were seen in the medial mammillary nucleus, and in the median eminence, and very few fibers in the globus pallidus. This is the first report describing the MCH-ir cell and fiber distribution in the monkey brain.
Collapse
Affiliation(s)
- J C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900 SP, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Miller CL, Burmeister M, Thompson RC. Antisense expression of the human pro-melanin-concentrating hormone genes. Brain Res 1998; 803:86-94. [PMID: 9729295 DOI: 10.1016/s0006-8993(98)00626-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Expression of transcripts for human pro-melanin concentrating hormone (pMCH) were studied in the hypothalamus, the primary location for pMCH producing cells in the mammalian CNS. Human hypothalamic tissue was extracted for total RNA and the cDNA generated with reverse transcriptase (RT). PCR amplification with primers spanning exons 2 and 3 of the pMCH human-variant genes (pMCHL), yielded an unspliced product, confirming prior work [T.B. Campbell, C.K. McDonald, M. Hagen, The effect of structure in a long target RNA on ribozyme cleavage efficiency, Nucleic Acids Res. 25 (1997) 4985-4993]. In addition, this product was shown to be exclusively antisense, and to be derived from the 5p (pMCHL1), not the 5q (pMCHL2) locus. Thus, there is no evidence that the MCH peptide-precursor molecule is produced in the brain by the human-variant pMCHL loci. In contrast, corresponding RT-PCR for pMCH RNA generated by the locus on 12q, demonstrated the presence of both sense and antisense spliced RNA. Partial sequencing of the spliced product confirmed that production of at least the two C-terminal peptides would occur from the 12q pMCH locus. The significance of the findings for pMCH and pMCHL1 are discussed relative to what is known about the function of endogenous antisense RNA.
Collapse
Affiliation(s)
- C L Miller
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
45
|
Viale A, Ortola C, Vernier P, Breton C, Presse F, Nahon JL. Structure, expression, and evolution of the variant MCH gene in primates. Ann N Y Acad Sci 1998; 839:214-8. [PMID: 9629154 DOI: 10.1111/j.1749-6632.1998.tb10762.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A Viale
- Institut de Pharmacologie Moléculaire et Cellullaire, UPR 411 CNRS, Valbonne, France
| | | | | | | | | | | |
Collapse
|
46
|
Burgaud JL, Poosti R, Fehrentz JA, Martinez J, Nahon JL. Melanin-concentrating hormone binding sites in human SVK14 keratinocytes. Biochem Biophys Res Commun 1997; 241:622-9. [PMID: 9434758 DOI: 10.1006/bbrc.1997.7849] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanin concentrating hormone (MCH) is a cyclic peptide which regulates a broad array of functions in the mammalian brain and it may act as a paracrine factor in peripheral organs. In these studies a radiolabeled MCH derivative, the [125I]-[Phe13, Tyr19]-MCH, was synthesized and used as a tracer to perform binding experiments. A number of human or rodent cell lines displayed specific binding with [125I]-[Phe13, Tyr19]-MCH, the highest binding capacity being observed with human SVK14 keratinocytes. Saturation binding analysis with SVK14 cells indicated about 10,000 MCH binding sites per cell and a Kd of 0.7 nM for [125I]-[Phe13, Tyr19]-MCH. Surprisingly, the iodinated [Phe13, Tyr19]-MCH displayed about 10-fold higher affinity (Ki approximately 3.0 nM) for the putative MCH receptor than the noniodinated form (Ki approximately 25-30 nM). Competition binding analyses comparing various MCH-related peptides revealed a similar low binding potency for all these peptides (Ki approximately 65-160 nM). Strikingly, rat ANP and rat/human CNP but not rat BNP displaced [125I]-[Phe13, Tyr15]-MCH with Ki approximately 210-365 nM and may be due to topological similarities instead of partial sequence identities between MCH and some of the natriuretic peptides. However, other peptides such as CRF, alpha MSH, Arg-vasopressin, and MGOP-peptide I did not compete with the radioligand. Finally, the molecular mass of the MCH binding sites on SVK14 cells was estimated to be 47 kDa by crosslinking and SDS-PAGE experiments. Taken together, our data revealed the widespread expression of MCH binding sites on mammalian cells, particularly on skin carcinoma cells. However, the low affinity of these sites for the native MCH and MCH-related peptides as well as competitivity with ANP and CNP indicates that further biochemical and functional characterizations are needed to validate them as genuine physiological MCH receptors.
Collapse
Affiliation(s)
- J L Burgaud
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UPR 411, Valbonne, France
| | | | | | | | | |
Collapse
|