1
|
Varga P, Németh A, Zeiringer S, Roblegg E, Budai-Szűcs M, Balla-Bartos C, Ambrus R. Formulation and investigation of differently charged β-cyclodextrin-based meloxicam potassium containing nasal powders. Eur J Pharm Sci 2024; 202:106879. [PMID: 39154714 DOI: 10.1016/j.ejps.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Nasal systemic drug delivery may provide an easy way to substitute parenteral or oral dosing, however, the excipients have an important role in nasal formulations to increase the permeability of the mucosa and prolong the residence time of the drug. In this work, we aimed to produce meloxicam potassium monohydrate (MXP) containing nasal powders by a nano spray drier with the use of a neutral, an anionic and a cationic β-cyclodextrin as permeation enhancers, and (polyvinyl)alcohol (PVA) as a water soluble polymer. The following examinations were performed in order to study the effect of the applied excipients on the nasal applicability of the formulations: laser scattering, scanning electron microscope measurement, XRPD, DSC and FTIR measurements, adhesivity, in vitro drug release and permeability tests through an artificial membrane and RPMI 2650 cells. Based on our results, spherical particles were prepared with a size of 1.89-2.21 µm in which MXP was present in an amorphous state. Secondary interactions were formed between the excipients and the drug. The charged cyclodextrin-based formulations showed significantly higher adhesive force values regardless of the presence of PVA. The drug release was fast and complete. The passive diffusion of MXP was influenced not only by the charge of the cyclodextrin, but the presence of PVA, too. The permeation of the drug was enhanced in the presence of the anionic cyclodextrin testing it on RPMI 2650 cell model.
Collapse
Affiliation(s)
- Patrícia Varga
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Anett Németh
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Scarlett Zeiringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Csilla Balla-Bartos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, Szeged 6720, Hungary.
| |
Collapse
|
2
|
Cavanagh AS, Kuter N, Sollinger BI, Aziz K, Turnbill V, Martin LJ, Northington FJ. Intranasal therapies for neonatal hypoxic-ischemic encephalopathy: Systematic review, synthesis, and implications for global accessibility to care. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615156. [PMID: 39386687 PMCID: PMC11463427 DOI: 10.1101/2024.09.26.615156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of neurodevelopmental morbidity in term infants worldwide. Incidence of HIE is highest in low and middle-income communities with minimal access to neonatal intensive care and an underdeveloped infrastructure for advanced neurologic interventions. Moreover, therapeutic hypothermia, standard of care for HIE in high resourced settings, is shown to be ineffective in low and middle-income communities. With their low cost, ease of administration, and capacity to potently target the central nervous system, intranasal therapies pose a unique opportunity to be a more globally accessible treatment for neonatal HIE. Intranasal experimental therapeutics have been studied in both rodent and piglet models, but no intranasal therapeutics for neonatal HIE have undergone human clinical trials. Additional research must be done to expand the array of treatments available for use as intranasal therapies for neonatal HIE thus improving the neurologic outcomes of infants worldwide.
Collapse
|
3
|
Wu D, Zhang T, Kang Y, Zhong Y, Chen S, Zhang Y, Chai X. Oral viscous budesonide solution for enhanced localized treatment of eosinophilic esophagitis through improved mucoadhesion and permeation. J Pharm Sci 2024:S0022-3549(24)00423-4. [PMID: 39326843 DOI: 10.1016/j.xphs.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus that is immune/antigen-mediated and often requires targeted treatment. In clinical practice, an oral viscous budesonide suspension prepared by adding sucralose to a budesonide suspension for inhalation (Pulmicort®) is used to treat adult EoE and enhance retention in the esophageal mucosa. Inspired by this off-label drug use, oral viscous budesonide solutions (OVBSs) were developed in this study, and their capacities for adhesion, permeation, and stability were explored. Given the insolubility of budesonide as a BCS II drug, we first evaluated its equilibrium solubility and found that Transcutol® HP was an excellent choice for creating an OVBS at a concentration of 0.2 mg/g. The rheological properties of the OVBSs were evaluated with a rheometer, and shear-thinning, which aids in swallowing, was observed. The addition of hydroxyethyl cellulose (HEC) increased the adhesion strength of the preparation, which was associated with the hydration and thickening mechanism. This result was confirmed in a dynamic gelation study and in vitro elution experiment conducted with porcine esophagus tissue. Furthermore, the permeabilities of the OVBSs in the porcine esophagus were evaluated with a Franz diffusion cell device. >80 % of the budesonide was released after 24 h, and the release profile was similar to that of the solution. To explore the storage conditions of OVBSs, critical factors such as pH, content, and impurities were determined. It was found that OVBSs exhibited different behaviors at different pH values and temperatures. Notably, the OVBSs containing 1.7 % HEC could be stored for >6 months at a temperature of 5 °C ± 3 °C and a pH of 4.5 without significant degradation. Overall, this study demonstrated that OVBSs have the potential to adhere to the esophageal mucosa, permeate the tissue, and remain stable during storage. Moreover, OVBSs exhibit a distinct advantage over traditional converted inhalation-to-oral budesonide therapies by enabling flexible dose adjustment in clinical applications, thereby potentially minimizing systemic side effects commonly associated with oral glucocorticoid administration.
Collapse
Affiliation(s)
- Dongyu Wu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Tiantian Zhang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yuzhen Kang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhong
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Shiqi Chen
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yue Zhang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xuyu Chai
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
4
|
Han JP, Nam YR, Chung HY, Lee H, Yeom SC. Polyphenol-Enabled 2D Nanopatch for Enhanced Nasal Mucoadhesion and Immune Activation. NANO LETTERS 2024; 24:10380-10387. [PMID: 39120059 DOI: 10.1021/acs.nanolett.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The advancement of effective nasal mucoadhesive delivery faces challenges due to rapid mucociliary clearance (MCC). Conventional studies have employed mucoadhesive materials, mainly forming spherical nanoparticles, but these offer limited adhesion to the nasal mucosa. This study hypothesizes that a 2D nanoscale structure utilizing adhesive polyphenols can provide a superior strategy for countering MCC, aligning with the planar mucosal layers. We explore the use of tannic acid (TA), a polyphenolic molecule known for its adhesive properties and ability to form complexes with biomolecules. Our study introduces an unprecedented 2D nanopatch, assembled through the interaction of TA with green fluorescent protein (GFP), and cell-penetrating peptide (CPP). This 2D nanopatch demonstrates robust adhesion to nasal mucosa and significantly enhances immunoglobulin A secretions, suggesting its potential for enhancing nasal vaccine delivery. The promise of a polyphenol-enabled adhesive 2D nanopatch signifies a pivotal shift from conventional spherical nanoparticles, opening new pathways for delivery strategies through respiratory mucoadhesion.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Republic of Korea
| | - Yu Ri Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hye Yoon Chung
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Republic of Korea
| |
Collapse
|
5
|
Sipos B, Földes F, Budai-Szűcs M, Katona G, Csóka I. Comparative Study of TPGS and Soluplus Polymeric Micelles Embedded in Poloxamer 407 In Situ Gels for Intranasal Administration. Gels 2024; 10:521. [PMID: 39195050 DOI: 10.3390/gels10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
This study aims to highlight the importance of choosing the appropriate co-polymer or co-polymer mixed combinations in order to design value-added nasal dosage forms. Local therapy of upper respiratory tract-related infections, such as nasal rhinosinusitis is of paramount importance, thus advanced local therapeutic options are required. Dexamethasone was encapsulated into three different polymeric micelle formulations: Soluplus or TPGS-only and their mixed combinations. Dynamic light scattering measurements proved that the particles have a micelle size less than 100 nm in monodisperse distribution, with high encapsulation efficiency above 80% and an at least 7-fold water solubility increase. Tobramycin, as an antimicrobial agent, was co-formulated into the in situ gelling systems which were optimized based on gelation time and gelation temperature. The sol-gel transition takes place between 32-35 °C, which is optimally below the temperature of the nasal cavity in a quick manner below 5 min, a suitable strategic criterion against the mucociliary clearance. In vitro drug release and permeability studies confirmed a rapid kinetics in the case of the encapsulated dexamethasone accompanied with a sustained release of tobramycin, as the hydrophilic drug.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Frézia Földes
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| |
Collapse
|
6
|
Lee H, Kim JS. Endoscopic findings of dental implant found in the infundibulum showing the mucociliary clearance of the maxillary sinus. EAR, NOSE & THROAT JOURNAL 2024; 103:468-469. [PMID: 34978203 DOI: 10.1177/01455613211062454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Significance statement: A 53-year-old man with left facial pain was referred to our hospital. Nasal endoscopy revealed a purulent discharge at the left middle meatus and bulging of the uncinate process. Computed tomography demonstrated that the dental implant was blocking the left maxillary ostium. Functional endoscopic sinus surgery was performed under general anesthesia. After removal of the uncinate process, a yellowish purulent discharge in the left maxillary sinus discharged from the maxillary sinus. The presence of the dental implant in the infundibulum shows the direction of mucociliary clearance from the nasal sinus. This case indicates how our sinus clears a foreign body, and the direction in which the foreign body is removed.
Collapse
Affiliation(s)
- HyunJun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Jeonbuk National University, Jeon-ju, Korea
| | - Jong Seung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Jeonbuk National University, Jeon-ju, Korea
| |
Collapse
|
7
|
Barlang LA, Weinbender K, Merkel OM, Popp A. Characterization of critical parameters using an air-liquid interface model with RPMI 2650 cells for permeability studies of small molecules. Drug Deliv Transl Res 2024; 14:1601-1615. [PMID: 37978162 DOI: 10.1007/s13346-023-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The field of nasal drug delivery gained enormously on interest over the past decade. Performing nasal in vivo studies is expensive and time-consuming, but also unfeasible for an initial high-throughput compound and formulation screening. Therefore, the development of fast and high-throughput in vitro models to screen compounds for their permeability through the nasal epithelium and mucosa is constantly expanding. Yet, the protocols used for nasal in vitro permeability studies are varying, which limits the comparability and reproducibility of generated data. This project aimed to elucidate the influence of different culture and assay parameters of RPMI 2650 cells grown under air-liquid interface (ALI) conditions on the transepithelial electrical resistance (TEER) and apparent permeability (Papp) values of five selected reference compounds, covering the range of low to moderate to high permeability. The influence of the passage number, seeding density, and timepoint of airlift was minimal in our approach, while the substrate pore density had a significant influence on the Papp values of carbamazepine, propranolol, and metoprolol, classified as highly permeable compounds, but not on atenolol and aciclovir. Elevation of the experimental concentration of carbamazepine, propranolol, and metoprolol in the donor compartment had an increasing effect on the Papp values, while prolonging the assay time did not have a significant influence. Based on the results reported here, RPMI 2650 cells cultured under ALI conditions offer the possibility of a standardized high-throughput screening model for small molecules and their formulations for in vitro drug permeation studies to predict and select optimal conditions for their nasal delivery.
Collapse
Affiliation(s)
- Lea-Adriana Barlang
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061, Ludwigshafen, Germany.
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337, Munich, Germany.
| | - Kristina Weinbender
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061, Ludwigshafen, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337, Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061, Ludwigshafen, Germany
| |
Collapse
|
8
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
9
|
Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366:519-534. [PMID: 38182059 DOI: 10.1016/j.jconrel.2023.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yongke Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan 610500, China
| | - Xue Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
11
|
Boraste SV, Patil SB. Formulation development and evaluation of nasal in situ gel of promethazine hydrochloride. Drug Dev Ind Pharm 2024; 50:11-22. [PMID: 38054848 DOI: 10.1080/03639045.2023.2291463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE The present work aims to develop mucoadhesive thermosensitive nasal in situ gel for Promethazine hydrochloride using quality by design (QbD) approach. It can reduce nasal mucociliary clearance (MCC) and increase residence of the drug on nasal mucosa. This might increase drug absorption to improve bioavailability of the drug as compared to oral dosage form. SIGNIFICANCE Promethazine hydrochloride is an antiemetic drug administered by oral, parenteral and rectal routes. These routes have poor patient compliance or low bioavailability. Nasal route is a better alternative as it has large surface area, high drug absorption rate and no first pass effect. Its only limitation is short drug retention time due to MCC. By formulating a mucoadhesive in situ gel, the MCC can be reduced, and drug absorption will be prolonged. Thus, improving bioavailability. METHOD In-situ gel was prepared by cold method having material attributes as concentration of Poloxamer 407 (X1) as gelling agent and hydroxypropyl methyl cellulose K4M (X2) as mucoadhesive agent. Critical Quality Attributes (CQA) were gelation temperature, mucoadhesive force and ex-vivo diffusion. Central composite design (CCD) was adopted for optimization. RESULT Optimized formulation satisfied all the CQA significant for nasal administration. Moreover, the formulation was found to be stable in accelerated stability studies for 3 months. CONCLUSION It can be concluded that since the drug can easily permeate through nasal mucosa and can gain access directly in the brain without undergoing first pass metabolism along with increased residence due to mucoadhesion, mucoadhesive in situ gel has potential to increase drug bioavailability.
Collapse
Affiliation(s)
- Surabhi V Boraste
- SNJB'S Shriman Suresh Dada Jain College of Pharmacy, Chandwad, Maharashtra, India
| | - Sanjay B Patil
- SNJB'S Shriman Suresh Dada Jain College of Pharmacy, Chandwad, Maharashtra, India
| |
Collapse
|
12
|
Wang M, Ma X, Zong S, Su Y, Su R, Zhang H, Liu Y, Wang C, Li Y. The prescription design and key properties of nasal gel for CNS drug delivery: A review. Eur J Pharm Sci 2024; 192:106623. [PMID: 37890640 DOI: 10.1016/j.ejps.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Central nervous system (CNS) diseases are among the major health problems. However, blood-brain barrier (BBB) makes traditional oral and intravenous delivery of CNS drugs inefficient. The unique direct connection between the nose and the brain makes nasal administration a great potential advantage in CNS drugs delivery. However, nasal mucociliary clearance (NMCC) limits the development of drug delivery systems. Appropriate nasal gel viscosity alleviates NMCC to a certain extent, gels based on gellan gum, chitosan, carbomer, cellulose and poloxamer have been widely reported. However, nasal gel formulation design and key properties for alleviating NMCC have not been clearly discussed. This article summarizes gel formulations of different polymers in existing nasal gel systems, and attempts to provide a basis for researchers to conduct in-depth research on the key characteristics of gel matrix against NMCC.
Collapse
Affiliation(s)
- Miao Wang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinyu Ma
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shiyu Zong
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China
| | - Yaqiong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an 710069, China
| | - Rui Su
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Zhang
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China
| | - Yang Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China
| | - Chunliu Wang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China.
| | - Ye Li
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710001, China.
| |
Collapse
|
13
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
14
|
Kirtane AR, Tang C, Freitas D, Bernstock JD, Traverso G. Challenges and opportunities in the development of mucosal mRNA vaccines. Curr Opin Immunol 2023; 85:102388. [PMID: 37776698 DOI: 10.1016/j.coi.2023.102388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023]
Abstract
mRNA vaccines have played a critical role in controlling the SARS-CoV-2 pandemic, and are being actively studied for use in other diseases. There is a growing interest in applying mRNA vaccines at mucosal surfaces as it enables access to a unique immune reservoir in a less-invasive manner. However, mucosal surfaces present several barriers to mRNA uptake, including degrading enzymes, mucus, and clearance mechanisms. In this mini-review, we discuss our understanding of the immune response to mucosal mRNA vaccines as it compares to systemic mRNA vaccines. We also highlight physical and chemical methods for enhancing mRNA uptake across mucosal tissues. Mucosal mRNA vaccination is a nascent field of research, which will greatly benefit from fundamental investigations into the mechanisms of immune activation and the development of technologies for improved delivery.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chaoyang Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dylan Freitas
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Shrewsbury SB. The Pharmacokinetics of Drugs Delivered to the Upper Nasal Space. Pharmaceut Med 2023; 37:451-461. [PMID: 37537422 PMCID: PMC10587213 DOI: 10.1007/s40290-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Pharmacokinetics (PK) includes how a drug is absorbed, distributed, metabolized and eliminated. The compartment providing this information is usually the plasma. This is as close to the tissue of interest that we can get, although biopsies may be obtained to give "tissue levels" of drugs. Ultimately, the goal of PK is to understand how long the drug is actually engaged with the target in the tissue of interest after a dose has been administered. Most drugs at some point in their development will have been administered intravenously (IV), which acts as the standard for 100% bioavailability. By comparing various routes of administration to IV, the percentage of drug delivered to the plasma, on a dose-normalized basis, can be calculated and is referred to as the "absolute bioavailability". As pharmacology has advanced and more drugs have become available, many older products have been reformulated to be given by routes other than those originally intended (often oral). As the drawbacks of oral (or IV) administration have become better appreciated, non-oral, non-IV formulations and methods of administration have become more popular. Nasal administration is one route that has historically been overlooked as an alternative to oral administration-particularly for products needing rapid and non-invasive access to the target tissue-mostly via the blood stream. But attention is now focused on nasal administration for direct access to the brain, as that has the potential to bypass the blood-brain-barrier (BBB), which not even IV administration can always achieve. Assessing PK for these drugs targeting the brain may require serial sampling of the cerebrospinal fluid (CSF), making PK assessments of CNS drugs more invasive and complex, but still possible in future product development. However, we are now seeing more drugs reformulated for nasal delivery to gain faster systemic levels than oral administration (especially in patients with known or suspected gastrointestinal dysmotility), while avoiding the use of needles. For example, in recent years several different formulations and delivery methods for an old drug, dihydroergotamine (DHE), have been developed and these show very different characteristics, suggesting that delivery to different parts of the nose may have very different PK profiles. This review summarizes the systemic PK of different nasal DHE options that have been, or are being, developed and suggests that delivery of drugs to the upper nasal space (UNS) may represent an optimal target. Further research is required to ascertain if this route could also be utilized for direct administration to the CNS (as an attractive alternative to intrathecal delivery) via the olfactory or trigeminal nerves-but already preclinical data (and some human data) suggest this is entirely possible.
Collapse
Affiliation(s)
- Stephen B Shrewsbury
- Shrewd Consulting LLC, Impel Pharmaceuticals, Seattle, WA, USA.
- , 3770 Poppy lane, Fallbrook, CA, 92028, USA.
| |
Collapse
|
16
|
Singh S, Shukla R. Nanovesicular-Mediated Intranasal Drug Therapy for Neurodegenerative Disease. AAPS PharmSciTech 2023; 24:179. [PMID: 37658972 DOI: 10.1208/s12249-023-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous neurodegenerative conditions, such as Alzheimer's, Huntington's, Parkinson's, amyotrophic lateral sclerosis, and glioblastoma multiform are now becoming significant concerns of global health. Formulation-related issues, physiological and anatomical barriers, post-administration obstacles, physical challenges, regulatory limitations, environmental hurdles, and health and safety issues have all hindered successful delivery and effective outcomes despite a variety of treatment options. In the current review, we covered the intranasal route, an alternative strategic route targeting brain for improved delivery across the BBB. The trans-nasal pathway is non-invasive, directing therapeutics directly towards brain, circumventing the barrier and reducing peripheral exposure. The delivery of nanosized vesicles loaded with drugs was also covered in the review. Nanovesicle systems are organised in concentric bilayered lipid membranes separated with aqueous layers. These carriers surmount the disadvantages posed by intranasal delivery of rapid mucociliary clearance and enzymatic degradation, and enhance retention of drug to reach the site of target. In conclusion, the review covers in-depth conclusions on numerous aspects of formulation of drug-loaded vesicular system delivery across BBB, current marketed nasal devices, significant jeopardies, potential therapeutic aids, and current advancements followed by future perspectives.
Collapse
Affiliation(s)
- Shalu Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
17
|
Babu SR, Shekara HH, Sahoo AK, Harsha Vardhan PV, Thiruppathi N, Venkatesh MP. Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Ther Deliv 2023; 14:571-594. [PMID: 37691577 DOI: 10.4155/tde-2023-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative diseases are a significant cause of mortality worldwide, and the blood-brain barrier (BBB) poses a significant challenge for drug delivery. An intranasal route is a prominent approach among the various methods to bypass the BBB. There are different pathways involved in intranasal drug delivery. The drawbacks of this method include mucociliary clearance, enzymatic degradation and poor drug permeation. Novel nanoformulations and intranasal drug-delivery devices offer promising solutions to overcome these challenges. Nanoformulations include polymeric nanoparticles, lipid-based nanoparticles, microspheres, liposomes and noisomes. Additionally, intranasal devices could be utilized to enhance drug-delivery efficacy. Therefore, intranasal drug-delivery systems show potential for treating neurodegenerative diseases through trigeminal or olfactory pathways, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Someshbabu Ramesh Babu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Harshith Hosahalli Shekara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ashish Kumar Sahoo
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Pyda Venkata Harsha Vardhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Nitheesh Thiruppathi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Faculty of Pharmaceutical Sciences, UCSI University, Kaula Lampur, Malaysia
| |
Collapse
|
18
|
Sonvico F, Colombo G, Quarta E, Guareschi F, Banella S, Buttini F, Scherließ R. Nasal delivery as a strategy for the prevention and treatment of COVID-19. Expert Opin Drug Deliv 2023; 20:1115-1130. [PMID: 37755135 DOI: 10.1080/17425247.2023.2263363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION The upper respiratory tract is a major route of infection for COVID-19 and other respiratory diseases. Thus, it appears logical to exploit the nose as administration site to prevent, fight, or minimize infectious spread and treat the disease. Numerous nasal products addressing these aspects have been considered and developed for COVID-19. AREAS COVERED This review gives a comprehensive overview of the different approaches involving nasal delivery, i.e., nasal vaccination, barrier products, and antiviral pharmacological treatments that have led to products on the market or under clinical evaluation, highlighting the peculiarities of the nose as application and absorption site and pointing at key aspects of nasal drug delivery. EXPERT OPINION From the analysis of nasal delivery strategies to prevent or fight COVID-19, it emerges that, especially for nasal immunization, formulations appear the same as originally designed for parenteral administration, leading to suboptimal results. On the other hand, mechanical barrier and antiviral products, designed to halt or treat the infection at early stage, have been proven effective but were rarely brought to the clinics. If supported by robust and targeted product development strategies, intranasal immunization and drug delivery can represent valid and sometimes superior alternatives to more conventional parenteral and oral medications.
Collapse
Affiliation(s)
- Fabio Sonvico
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Eride Quarta
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel, Germany
| |
Collapse
|
19
|
De Martini LB, Sulmona C, Brambilla L, Rossi D. Cell-Penetrating Peptides as Valuable Tools for Nose-to-Brain Delivery of Biological Drugs. Cells 2023; 12:1643. [PMID: 37371113 DOI: 10.3390/cells12121643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their high specificity toward the target and their low toxicity, biological drugs have been successfully employed in a wide range of therapeutic areas. It is yet to be mentioned that biologics exhibit unfavorable pharmacokinetic properties, are susceptible to degradation by endogenous enzymes, and cannot penetrate biological barriers such as the blood-brain barrier (i.e., the major impediment to reaching the central nervous system (CNS)). Attempts to overcome these issues have been made by exploiting the intracerebroventricular and intrathecal routes of administration. The invasiveness and impracticality of these procedures has, however, prompted the development of novel drug delivery strategies including the intranasal route of administration. This represents a non-invasive way to achieve the CNS, reducing systemic exposure. Nonetheless, biotherapeutics strive to penetrate the nasal epithelium, raising the possibility that direct delivery to the nervous system may not be straightforward. To maximize the advantages of the intranasal route, new approaches have been proposed including the use of cell-penetrating peptides (CPPs) and CPP-functionalized nanosystems. This review aims at describing the most impactful attempts in using CPPs as carriers for the nose-to-brain delivery of biologics by analyzing their positive and negative aspects.
Collapse
Affiliation(s)
- Lisa Benedetta De Martini
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri-IRCCS, 27100 Pavia, Italy
| |
Collapse
|
20
|
Lasanen T, Frejborg F, Lund LM, Nyman MC, Orpana J, Habib H, Alaollitervo S, Levanova AA, Poranen MM, Hukkanen V, Kalke K. Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV-1. SMART MEDICINE 2023; 2:e20230009. [PMID: 39188276 PMCID: PMC11235724 DOI: 10.1002/smmd.20230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 08/28/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen that causes recurrent infections. Acyclovir-resistant strains exist and can cause severe complications, which are potentially untreatable with current therapies. We have developed siRNA swarms that target a 653 base pair long region of the essential HSV gene UL29. As per our previous results, the anti-UL29 siRNA swarm effectively inhibits the replication of circulating HSV strains and acyclovir-resistant HSV strains in vitro, while displaying a good safety profile. We investigated a single intranasal therapeutic dose of a siRNA swarm in mice, which were first inoculated intranasally with HSV-1 and given treatment 4 h later. We utilized a luciferase-expressing HSV-1 strain, which enabled daily follow-up of infection with in vivo imaging. Our results show that a single dose of a UL29-targeted siRNA swarm can inhibit the replication of HSV-1 in orofacial tissue, which was reflected in ex vivo HSV titers and HSV DNA copy numbers as well as by a decrease in a luciferase-derived signal. Furthermore, the treatment had a tendency to protect mice from severe clinical symptoms and delay the onset of the symptoms. These results support the development of antiviral siRNA swarms as a novel treatment for HSV-1 infections.
Collapse
Affiliation(s)
- Tuomas Lasanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Fanny Frejborg
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and EngineeringPharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Liisa M. Lund
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Marie C. Nyman
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Julius Orpana
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Huda Habib
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Salla Alaollitervo
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Alesia A. Levanova
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Veijo Hukkanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
21
|
Domsta V, Hänsch C, Lenz S, Gao Z, Matin-Mann F, Scheper V, Lenarz T, Seidlitz A. The Influence of Shape Parameters on Unidirectional Drug Release from 3D Printed Implants and Prediction of Release from Implants with Individualized Shapes. Pharmaceutics 2023; 15:1276. [PMID: 37111760 PMCID: PMC10143641 DOI: 10.3390/pharmaceutics15041276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The local treatment of diseases by drug-eluting implants is a promising tool to enable successful therapy under potentially reduced systemic side effects. Especially, the highly flexible manufacturing technique of 3D printing provides the opportunity for the individualization of implant shapes adapted to the patient-specific anatomy. It can be assumed that variations in shape can strongly affect the released amounts of drug per time. This influence was investigated by performing drug release studies with model implants of different dimensions. For this purpose, bilayered model implants in a simplified geometrical shape in form of bilayered hollow cylinders were developed. The drug-loaded abluminal part consisted of a suitable polymer ratio of Eudragit® RS and RL, while the drug-free luminal part composed of polylactic acid served as a diffusion barrier. Implants with different heights and wall thicknesses were produced using an optimized 3D printing process, and drug release was determined in vitro. The area-to-volume ratio was identified as an important parameter influencing the fractional drug release from the implants. Based on the obtained results drug release from 3D printed implants with individual shapes exemplarily adapted to the frontal neo-ostial anatomy of three different patients was predicted and also tested in an independent set of experiments. The similarity of predicted and tested release profiles indicates the predictability of drug release from individualized implants for this particular drug-eluting system and could possibly facilitate the estimation of the performance of customized implants independent of individual in vitro testing of each implant geometry.
Collapse
Affiliation(s)
- Vanessa Domsta
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Christin Hänsch
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Stine Lenz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Farnaz Matin-Mann
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Anne Seidlitz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Taha MS, Kutlehria S, D’Souza A, Bleier BS, Amiji MM. Topical Administration of Verapamil in Poly(ethylene glycol)-Modified Liposomes for Enhanced Sinonasal Tissue Residence in Chronic Rhinosinusitis: Ex Vivo and In Vivo Evaluations. Mol Pharm 2023; 20:1729-1736. [PMID: 36744718 PMCID: PMC10629233 DOI: 10.1021/acs.molpharmaceut.2c00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Verapamil is a calcium channel blocker that holds promise for the therapy of chronic rhinosinusitis (CRS) with and without nasal polyps. The verapamil-induced side effects limit its tolerated dose via the oral route, underscoring the usefulness of localized intranasal administration. However, the challenge to intranasal administration is mucociliary clearance, which diminishes localized dose availability. To overcome this challenge, verapamil was loaded into a mucoadhesive cationic poly(ethylene glycol)-modified (PEGylated) liposomal carrier. Organotypic nasal explants were exposed to verapamil liposomes under flow conditions to mimic mucociliary clearance. The liposomes resulted in significantly higher tissue residence compared with the free verapamil control. These findings were further confirmed in vivo in C57BL/6 mice following intranasal administration. Liposomes significantly increased the accumulation of verapamil in nasal tissues compared with the control group. The developed tissue-retentive verapamil liposomal formulation is considered a promising intranasal delivery system for CRS therapy.
Collapse
Affiliation(s)
- Maie S. Taha
- Department
of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, United States
- The
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- The
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Shallu Kutlehria
- The
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anisha D’Souza
- Department
of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, United States
- The
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Benjamin S. Bleier
- Department
of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mansoor M. Amiji
- The
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- The
Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Li HY, Tian ML, Wang CL, Zhou JF, Wang ZG, Zhang W, Qi XJ, Duan L. A novel Thermo-responsive hydrogel system (THS) loaded with the active ingredient of Gardenia jasminoides J. Ellis exhibits anti-depressant effects in vivo via intranasal administration. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Trenkel M, Scherließ R. Optimising nasal powder drug delivery - Characterisation of the effect of excipients on drug absorption. Int J Pharm 2023; 633:122630. [PMID: 36690127 DOI: 10.1016/j.ijpharm.2023.122630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The nasal physiology offers great potential for drug delivery but also poses specific challenges, among which the short residence time of applied drugs is one of the most striking. Formulating the drug as powder and using functional excipients are strategies to improve drug absorption. As nasal powders are still the minority on the market, there is a lack of data regarding their characterisation. This work aims at the characterisation of selected fillers (mannitol, microcrystalline cellulose) and mucoadhesives (pectin, chitosan glutamate, hydroxypropyl cellulose) with a set of methods that allows distinguishing their influences on dissolution and permeation of drugs, and on the viscoelasticity of the nasal fluid and thus the nasal residence time. Rheological studies revealed a potential of undissolved particles to prolong the residence time by increasing the elasticity of the nasal fluid. The assessment of drug dissolution showed a decreased dissolution rate in presence of insoluble or gelling excipients, which can be beneficial for drugs with low permeability, since embedded drugs are cleared slower than plain solutions. Drug permeation as important factor for the selection of excipients was evaluated with an RPMI 2650 cell model. Distinguishing the effects of excipients enables an effective selection of the most promising substances.
Collapse
Affiliation(s)
- Marie Trenkel
- Kiel University, Department of Pharmaceutics and Biopharmaceutics, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Regina Scherließ
- Kiel University, Department of Pharmaceutics and Biopharmaceutics, Gutenbergstraße 76, 24118 Kiel, Germany; Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel, Germany.
| |
Collapse
|
25
|
Santos Júnior SRD, Barbalho FV, Nosanchuk JD, Amaral AC, Taborda CP. Biodistribution and Adjuvant Effect of an Intranasal Vaccine Based on Chitosan Nanoparticles against Paracoccidioidomycosis. J Fungi (Basel) 2023; 9:jof9020245. [PMID: 36836359 PMCID: PMC9964167 DOI: 10.3390/jof9020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 02/15/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a fungal infection caused by the thermodimorphic Paracoccidioides sp. PCM mainly affects the lungs, but, if it is not contained by the immune response, the disease can spread systemically. An immune response derived predominantly from Th1 and Th17 T cell subsets facilitates the elimination of Paracoccidioides cells. In the present work, we evaluated the biodistribution of a prototype vaccine based on the immunodominant and protective P. brasiliensis P10 peptide within chitosan nanoparticles in BALB/c mice infected with P. brasiliensis strain 18 (Pb18). The generated fluorescent (FITC or Cy5.5) or non-fluorescent chitosan nanoparticles ranged in diameter from 230 to 350 nm, and both displayed a Z potential of +20 mV. Most chitosan nanoparticles were found in the upper airway, with smaller amounts localized in the trachea and lungs. The nanoparticles complexed or associated with the P10 peptide were able to reduce the fungal load, and the use of the chitosan nanoparticles reduced the necessary number of doses to achieve fungal reduction. Both vaccines were able to induce a Th1 and Th17 immune response. These data demonstrates that the chitosan P10 nanoparticles are an excellent candidate vaccine for the treatment of PCM.
Collapse
Affiliation(s)
- Samuel Rodrigues Dos Santos Júnior
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
- Correspondence: (S.R.D.S.J.); (C.P.T.)
| | - Filipe Vieira Barbalho
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
| | - Joshua D. Nosanchuk
- Department of Medicine and Department of Microbiology and Immunology—The Bronx, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Andre Correa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605050, Brazil
| | - Carlos Pelleschi Taborda
- Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil
- Laboratory of Medical Mycology, School of Medicine/IMT/SP-LIM53, University of São Paulo, São Paulo 05403000, Brazil
- Correspondence: (S.R.D.S.J.); (C.P.T.)
| |
Collapse
|
26
|
Javed H, Shah SNH, Iqbal FM, Javed N, Saeed B. A Hematological and Histopathological Study on Diphenhydramine Nasal Nano-gel and Nano-emulgel for the Management of Allergic Rhinitis in Animal Model. AAPS PharmSciTech 2023; 24:55. [PMID: 36759413 DOI: 10.1208/s12249-023-02515-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
The study aims to determine histamine efficacy on hematologic values in experimental animal model, under physiological and pathological conditions after inducing diphenhydramine-formulated nasal nano-gel/nano-emulgel in comparison with conventional nasal spray regime. In this study, we conducted experiment on New Zealand white male rabbits to prove our hypothesis that nasal diphenhydramine nano-gel and nano-emulgel can penetrate the nasal mucosa faster to show drug response and subside histaminic symptoms than market nasal spray (as reference). Blood samples from 48 New Zealand white male rabbits, under both experimental conditions (physiological and pathological) divided into four groups for each (n = 6) were investigated after inducing each dosage form intranasally. Hematologic parameters (WBCs, RBCs, HGB, PLTs, lymphocytes, monocytes, eosinophils, granulocyte counts) were analyzed in whole blood samples, collected at different time intervals. ANOVA and completely randomized design (CRD) were applied for statistical analysis. Histopathologically, nasal tissues of all groups were analyzed to see intramucosal surface changes. Data of descriptive statistics of hematological parameters analyzed at confidence level 95% showed that under physiological condition, hematological parameters of all groups were lying in normal range, whereas under pathological condition, low values of all hematological parameters were observed in all groups due to allergenic condition. The groups B (allergenic rabbits treated with formulated diphenhydramine nasal nano-gel) and C (allergenic rabbits treated with formulated diphenhydramine nasal nano-emulgel) have shown good changes in the treatment of allergenic rabbits as compared to group D (allergenic rabbits treated with formulated diphenhydramine nasal spray). The completely randomized ANOVA and Tukey HSD all-pairwise comparison tests of hematological parameters were applied that showed all groups in both studies were significantly different from each other. It was observed after histopathological study of nasal membrane tissues that change in mucosa has occurred due to the passage of drug. In summary, hematological profile and histopathological study have demonstrated the comparable results with conventional diphenhydramine nasal spray and formulated diphenhydramine nasal nano-gel/nano-emulgel which can exhibit considerable drug delivery dosage forms in the management of allergic rhinitis in animal model.
Collapse
Affiliation(s)
- Hina Javed
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan.
| | - Syed Nisar Hussain Shah
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Furqan Muhammad Iqbal
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Nida Javed
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Benish Saeed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
27
|
Duong VA, Nguyen TTL, Maeng HJ. Recent Advances in Intranasal Liposomes for Drug, Gene, and Vaccine Delivery. Pharmaceutics 2023; 15:207. [PMID: 36678838 PMCID: PMC9865923 DOI: 10.3390/pharmaceutics15010207] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Liposomes are safe, biocompatible, and biodegradable spherical nanosized vesicles produced from cholesterol and phospholipids. Recently, liposomes have been widely administered intranasally for systemic and brain delivery. From the nasal cavity, liposome-encapsulated drugs and genes enter the systemic circulation primarily via absorption in the respiratory region, whereas they can be directly transported to the brain via the olfactory pathway. Liposomes can protect drugs and genes from enzymatic degradation, increase drug absorption across the nasal epithelium, and prolong the residence time in the nasal cavity. Intranasal liposomes are also a potential approach for vaccine delivery. Liposomes can be used as a platform to load antigens and as vaccine adjuvants to induce a robust immune response. With the recent interest in intranasal liposome formulations, this review discusses various aspects of liposomes that make them suitable for intranasal administration. We have summarized the latest advancements and applications of liposomes and evaluated their performance in the systemic and brain delivery of drugs and genes administered intranasally. We have also reviewed recent advances in intranasal liposome vaccine development and proposed perspectives on the future of intranasal liposomes.
Collapse
Affiliation(s)
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
28
|
Sailer MM, Köllmer M, Masson B, Fais F, Hohenfeld IP, Herbig ME, Koitschev AK, Becker S. Nasal residence time and rheological properties of a new bentonite-based thixotropic gel emulsion nasal spray - AM-301. Drug Dev Ind Pharm 2023; 49:103-114. [PMID: 36852769 DOI: 10.1080/03639045.2023.2183724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
OBJECTIVE The present work provides characterization of rheological properties of a new bentonite-based thixotropic gel emulsion nasal spray (AM-301), its nasal residence time, distribution, safety and tolerability. SIGNIFICANCE The nasal epithelium is a portal of entry for allergens and primary infection by airborne pathogens. Non-pharmacological interventions, which enhance physical and biological barriers, protect against allergens and pathogens without drug-related side effects. AM-301 has shown promising efficacy and safety in the nasal epithelium against viruses (in vitro) and pollen (clinical). METHODS Technical part (i) spray characterization was performed with a validated droplet size distribution method; evaluation of the rheological properties of the formulation was performed by a validated amplitude sweep method and a validated oscillation, rotation, oscillation; Clinical part (ii) nasal and oropharyngeal endoscopy were used to provide a semi-quantitative evaluation of distribution and residence time of fluorescein-labelled AM-301 in the nose and oropharynx of healthy volunteers; (iii) tolerability and safety. RESULTS (i) The non-Newtonian rheological properties of the formulation allow AM-301 to be sprayed and then to revert to a gel to prevent run-off from the nasal cavity; (ii) the formulation remains on the inferior turbinate, septum and oropharynx of volunteers for up to 210 min and on the middle turbinate for up to 60 min; two nasal sprays provide no substantial benefit over a single application with regards to coverage or retention; (iii) the spray is well tolerated. CONCLUSIONS Single dose spray delivery of AM-301 provides extended coverage of the nasal mucosa up to the inferior turbinates.
Collapse
Affiliation(s)
- Martin M Sailer
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Trudpert SILOAH Medical Center Pforzheim, Pforzheim, Germany
| | | | | | | | | | | | - Assen K Koitschev
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Eberhard-Karls University Tübingen, Germany, Tübingen, Germany
| | - Sven Becker
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of Eberhard-Karls University Tübingen, Germany, Tübingen, Germany
| |
Collapse
|
29
|
Ojo AS, Odipe OG, Owoseni O. Improving the Emergency Department Management of Sickle Cell Vaso-Occlusive Pain Crisis: The Role and Options of Sublingual and Intranasally Administered Analgesia. J Clin Med Res 2023; 15:10-22. [PMID: 36755761 PMCID: PMC9881494 DOI: 10.14740/jocmr4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 01/26/2023] Open
Abstract
Vaso-occlusive crisis (VOC), characterized by periods of excruciating pain is the most common clinical manifestation of sickle cell disease (SCD), often resulting in emergency room presentation. These patients often experience long wait times in the emergency department before receiving their first dose of analgesia. This delay results from the complexities of the emergency care system. Using the intranasal or sublingual approach to administering analgesia to SCD patients with VOC offers a fast, safe, noninvasive, atraumatic, and easily accessible route of administration which could reduce the time to first dose of analgesia. With the evolving advances in the development and delivery of analgesic medications, providers should be conversant with the nuances of intranasal and sublingual analgesia in the management of acute vaso-occlusive pain crisis. This review explores the pharmacokinetic profiles, dosages, and administration of intranasal and sublingual analgesics with relevance to the SCD population.
Collapse
Affiliation(s)
- Ademola S. Ojo
- Department of Medicine, Howard University Hospital, Washington DC, USA,Corresponding Author: Ademola S. Ojo, Department of Internal Medicine, Howard University Hospital, Washington DC, USA.
| | - Olumayowa G. Odipe
- Department of Pediatrics and Child Health, Queen’s Medical Center, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University College of Pharmacy, Washington DC, USA
| |
Collapse
|
30
|
Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Curr Neuropharmacol 2023; 21:493-516. [PMID: 35524671 PMCID: PMC10207920 DOI: 10.2174/1570159x20666220507022701] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.
Collapse
Affiliation(s)
- Dharmendra K. Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Kumari Preeti
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Shivraj Tonape
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Sheoshree Bhattacharjee
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Monica Patel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Pankaj K. Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast-BT9 7BL, UK
| | - Shashi B. Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| |
Collapse
|
31
|
Cooper W, Ray S, Aurora SK, Shrewsbury SB, Fuller C, Davies G, Hoekman J. Delivery of Dihydroergotamine Mesylate to the Upper Nasal Space for the Acute Treatment of Migraine: Technology in Action. J Aerosol Med Pulm Drug Deliv 2022; 35:321-332. [PMID: 36108289 PMCID: PMC9807280 DOI: 10.1089/jamp.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oral tablets account for the majority of medications used to acutely treat migraine, but relief can be limited by their rates of dissolution and absorption. The nose is an attractive alternative route of drug delivery since it provides patient convenience of at-home use, gastrointestinal (GI) avoidance, and rapid absorption of drugs into systemic circulation because of its large surface area. However, the site of drug deposition within the nasal cavity should be considered since it can influence drug absorption. Traditional nasal devices have been shown to target drug delivery to the lower nasal space where epithelium is not best-suited for drug absorption and where there is an increased likelihood of drug clearance due to nasal drip, swallowing, or mucociliary clearance, potentially resulting in variable absorption and suboptimal efficacy. Alternatively, the upper nasal space (UNS) offers a permeable, richly vascularized epithelium with a decreased likelihood of drug loss or clearance due to the anatomy of this area. Traditional nasal pumps deposit <5% of active drug into the UNS because of the nasal cavity's complex architecture. A new technology, Precision Olfactory Delivery (POD®), is a handheld, manually actuated, propellant-powered, administration device that delivers drug specifically to the UNS. A dihydroergotamine (DHE) mesylate product, INP104, utilizes POD technology to deliver drug to the UNS for the acute treatment of migraine. Results from clinical studies of INP104 demonstrate a favorable pharmacokinetic profile, consistent and predictable dosing, rapid systemic levels known to be effective (similar to other DHE mesylate clinical programs), safety and tolerability on the upper nasal mucosa, and high patient acceptance. POD technology may have the potential to overcome the limitations of traditional nasal delivery systems, while utilizing the nasal delivery benefits of GI tract avoidance, rapid onset, patient convenience, and ease of use.
Collapse
Affiliation(s)
- Wade Cooper
- Headache and Neuropathic Pain Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Sutapa Ray
- Impel Pharmaceuticals, Seattle, Washington, USA
| | | | - Stephen B. Shrewsbury
- Impel Pharmaceuticals, Seattle, Washington, USA.,Address correspondence to: Stephen B. Shrewsbury, MB, ChB, Impel Pharmaceuticals, Seattle, WA 98119, USA
| | | | - Greg Davies
- Impel Pharmaceuticals, Seattle, Washington, USA
| | | |
Collapse
|
32
|
Meng Y, Jie Y, Wang C, Zhang L. The Objective Assessment of dry Nose. Am J Rhinol Allergy 2022; 37:83-88. [DOI: 10.1177/19458924221134835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Dry nose (DN) is a common symptom in both patients with rhinitis and healthy individuals; however, it is often overlooked. Objective This study aimed to investigate the characteristics of and propose objective diagnostic criteria for DN. Methods This study was conducted from December, 2018 to October, 2021. Patients with complaints of a dry nasal cavity and normal controls were recruited consecutively from the allergy-rhinology outpatient clinic of Beijing TongRen Hospital. Questionnaires were completed by each participant during recruitment to record demographic data. DN test strips were used to evaluate the severity of DN. The length of the strip was recorded at 30 s, 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. Nasal secretions were collected on sponges and allergic status was assessed based on serum sage levels. Results Twenty (13 men and 7 women) patients with DN and 100 (47 men and 53 women) controls were recruited for the study. The participants’ ages ranged from 23 to 73 years (mean = 47.7 years). Nine of the 20 DN patients were diagnosed with vasomotor rhinitis. The weight of the sponges of DN patients was significantly lower than that of controls. At the last time point (5 min), the strips in the control group were significantly longer than those in the DN group. The reference range of 30 s, 1 min, 2 min, 3 min, 4 min, and 5 min of controls was 3.0 mm, 6.0 mm, 10.9 mm, 13.2 mm, 16.8 mm, and 17.0 mm, respectively. Conclusions Our study indicated that the strip length less than 17.0 mm at 5 min is a valuable reference for the diagnostic of DN in Beijing.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Research Ward, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Research Ward, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
- Research Ward, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
33
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Inoue D, Yamashita A, To H. Development of In Vitro Evaluation System for Assessing Drug Dissolution Considering Physiological Environment in Nasal Cavity. Pharmaceutics 2022; 14:pharmaceutics14112350. [PMID: 36365167 PMCID: PMC9697526 DOI: 10.3390/pharmaceutics14112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Estimating the dissolution behavior of a solid in the nasal mucus is challenging for solid dosage forms designed for the nasal application as the solid dissolves into nasal mucus and permeates through the mucosa. In the current study, the dissolution behavior of powders in the artificial nasal fluid was investigated using a 3D-printed chamber system to establish in vitro evaluation system for the dissolution of solid formulations that can simulate the intranasal environment in vivo. The dissolution rates of the five model drugs correlated with their solubility (r2 = 0.956, p < 0.01). The permeation rate of drugs across the Calu-3 cell layers after powder application depends on the membrane permeability of the drug. An analysis of membrane permeability considering the dissolution of powders showed the possibility of characterizing whether the drug in the powder was dissolution-limited or permeation-limited. This suggests that critical information can be obtained to understand which mechanism is more effective for the improvement of drug absorption from powders. This study indicates that the elucidation of drug dissolution behavior into nasal mucus is an important factor for the formulation of nasal powders and that the in vitro system developed could be a useful tool.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
- Correspondence:
| | - Ayari Yamashita
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hideto To
- Department of Medical Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
35
|
Murphy BM, Chen JZ, Rolo M, Eldam M, Jordan L, Sivananthan SJ, Kinsey R, Guderian JA, Pedersen K, Abhyankar M, Petri WA, Fox CB, Finlay WH, Vehring R, Martin AR. Intranasal delivery of a synthetic Entamoeba histolytica vaccine containing adjuvant (LecA + GLA-3M-052 liposomes): in vitro characterization. Int J Pharm 2022; 626:122141. [PMID: 36058408 DOI: 10.1016/j.ijpharm.2022.122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Amebiasis, a disease caused by the parasite Entamoeba histolytica, is estimated to cause millions of infections and at least 55,000 deaths globally each year. With no vaccine currently available, there is an urgent need for an accessible means of stimulating protective mucosal immunity. The objective of this study was to characterize the nasal spray of a novel amebiasis vaccine candidate from a syringe-based liquid atomization device, the Teleflex MAD Nasal™, in both adult and infant nasal airways. Human ergonomic testing was completed to determine realistic actuation parameters. Spray pattern, plume geometry, and droplet size distribution were measured to evaluate reproducibility of free plume characteristics. The Alberta Idealized Nasal Inlet (AINI) and three realistic infant nasal airways were used to determine the in vitro deposition profile in adult and infant airways, respectively. Collectively, in vitro results demonstrated the feasibility of delivering the vaccine candidate to target sites within the nasal airways. Penetration through the nasal airways that could lead to deposition in the lungs was below the limit of quantification for both adult and infant geometries, indicating a low likelihood of adverse events due to lung exposure. These results support continued investigation of intranasal delivery of the synthetic Entamoeba histolytica vaccine.
Collapse
Affiliation(s)
- Brynn M Murphy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - John Z Chen
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | - Lynn Jordan
- Proveris Scientific, Hudson, MA, United States
| | | | - Robert Kinsey
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | | | | | - Mayuresh Abhyankar
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Christopher B Fox
- Access to Advanced Health Institute (AAHI), Seattle, WA, United States
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
36
|
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Kanjanawasee D, Tantilipikorn P. LNIT-Local nasal immunotherapy in allergic rhinitis: revisited evidence and perspectives. Curr Opin Allergy Clin Immunol 2022; 22:259-267. [PMID: 35779069 DOI: 10.1097/aci.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Allergen immunotherapy (AIT) is a personalized treatment approach for the allergic airway disease. The most common routes of administration are subcutaneous and sublingual. Local nasal immunotherapy (LNIT) presents another alternative route for allergen desensitization. Nasal mucosa is the first entry site of pathogens and numerous lymphoid organs are located in this area, making LNIT a favorable method for triggering immune tolerance. LNIT has shown promising results in reducing symptoms and medication use in allergic rhinitis patients. Over time, difficulties in dosing adjustments have made this method less popular. Recent advances in intranasal drug delivery systems warrant re-examination of LNIT as a viable option for the treatment of the allergic airway disease. RECENT FINDINGS The scope of the review includes evidences of LNIT in human trials including comparison with placebo and conventional method of immunotherapy. Recent articles regarding the mechanism of LNIT and the challenges of intranasal drug delivery are reviewed. Advances in the LNIT delivery system which have overcome previous limitations demonstrate promising effects. SUMMARY LNIT presents a judicious alternative for noninjection AIT. The evidences from previous clinical trials and the novel improvement of drug delivery system will lead into the future allergen vaccine production.
Collapse
Affiliation(s)
- Dichapong Kanjanawasee
- Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Biodesign Innovation Center, Department of Parasitology
| | - Pongsakorn Tantilipikorn
- Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Rhinology and Allergy, Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
39
|
Formulation and In Vitro Characterization of a Vacuum-Dried Drug–Polymer Thin Film for Intranasal Application. Polymers (Basel) 2022; 14:polym14142954. [PMID: 35890730 PMCID: PMC9320708 DOI: 10.3390/polym14142954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Intranasal drug applications show significant therapeutic potential for diverse pharmaceutical modalities. Because the formulation applied to the nasal cavity is discharged to the pharyngeal side by mucociliary clearance, the formulation should be dissolved effectively in a limited amount of mucus within its retention time in the nasal cavity. In this study, to develop novel formulations with improved dissolution behavior and compatibility with the intranasal environment, a thin-film formulation including drug and polymer was prepared using a vacuum-drying method. The poorly water-soluble drugs ketoprofen, flurbiprofen, ibuprofen, and loxoprofen were dissolved in a solvent comprising water and methanol, and evaporated to obtain a thin film. Physical analyses using differential scanning calorimetry (DSC), powder X-ray diffraction analysis (PXRD), and scanning electron microscopy SEM revealed that the formulations were amorphized in the film. The dissolution behavior of the drugs was investigated using an in vitro evaluation system that mimicked the intranasal physiological environment. The amorphization of drugs formulated with polymers into thin films using the vacuum-drying method improved the dissolution rate in artificial nasal fluid. Therefore, the thin film developed in this study can be safely and effectively used for intranasal drug application.
Collapse
|
40
|
Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. J Inorg Biochem 2022; 232:111815. [DOI: 10.1016/j.jinorgbio.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
|
41
|
Frumkin LR, Lucas M, Scribner CL, Ortega-Heinly N, Rogers J, Yin G, Hallam TJ, Yam A, Bedard K, Begley R, Cohen CA, Badger CV, Abbasi SA, Dye JM, McMillan B, Wallach M, Bricker TL, Joshi A, Boon ACM, Pokhrel S, Kraemer BR, Lee L, Kargotich S, Agochiya M, John TS, Mochly-Rosen D. Egg-Derived Anti-SARS-CoV-2 Immunoglobulin Y (IgY) With Broad Variant Activity as Intranasal Prophylaxis Against COVID-19. Front Immunol 2022; 13:899617. [PMID: 35720389 PMCID: PMC9199392 DOI: 10.3389/fimmu.2022.899617] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.
Collapse
Affiliation(s)
- Lyn R. Frumkin
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Michaela Lucas
- Faculty of Health and Medical Sciences Internal Medicine, The University of Western Australia, Perth, WA, Australia
| | | | | | - Jayden Rogers
- Linear Clinical Research Ltd, Nedlands, WA, Australia
| | - Gang Yin
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | | | - Alice Yam
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Kristin Bedard
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Rebecca Begley
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Courtney A. Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Catherine V. Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shawn A. Abbasi
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | | | - Michael Wallach
- University of Technology Sydney, Sydney, NSW, Australia
- SPARK Sydney, Sydney, NSW, Australia
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Benjamin R. Kraemer
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Stephen Kargotich
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| | - Mahima Agochiya
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Tom St. John
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Daria Mochly-Rosen
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| |
Collapse
|
42
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
43
|
Kolanjiyil AV, Alfaifi A, Aladwani G, Golshahi L, Longest W. Importance of Spray–Wall Interaction and Post-Deposition Liquid Motion in the Transport and Delivery of Pharmaceutical Nasal Sprays. Pharmaceutics 2022; 14:pharmaceutics14050956. [PMID: 35631539 PMCID: PMC9145669 DOI: 10.3390/pharmaceutics14050956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Nasal sprays, which produce relatively large pharmaceutical droplets and have high momentum, are primarily used to deliver locally acting drugs to the nasal mucosa. Depending on spray pump administration conditions and insertion angles, nasal sprays may interact with the nasal surface in ways that creates complex droplet–wall interactions followed by significant liquid motion after initial wall contact. Additionally, liquid motion can occur after deposition as the spray liquid moves in bulk along the nasal surface. It is difficult or impossible to capture these conditions with commonly used computational fluid dynamics (CFD) models of spray droplet transport that typically employ a deposit-on-touch boundary condition. Hence, an updated CFD framework with a new spray–wall interaction (SWI) model in tandem with a post-deposition liquid motion (PDLM) model was developed and applied to evaluate nasal spray delivery for Flonase and Flonase Sensimist products. For both nasal spray products, CFD revealed significant effects of the spray momentum on surface liquid motion, as well as motion of the surface film due to airflow generated shear stress and gravity. With Flonase, these factors substantially influenced the final resting place of the liquid. For Flonase Sensimist, anterior and posterior liquid movements were approximately balanced over time. As a result, comparisons with concurrent in vitro experimental results were substantially improved for Flonase compared with the traditional deposit-on-touch boundary condition. The new SWI-PDLM model highlights the dynamicenvironment that occurs when a nasal spray interacts with a nasal wall surface and can be used to better understand the delivery of current nasal spray products as well as to develop new nasal drug delivery strategies with improved regional targeting.
Collapse
Affiliation(s)
- Arun V. Kolanjiyil
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (A.V.K.); (A.A.); (G.A.); (L.G.)
| | - Ali Alfaifi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (A.V.K.); (A.A.); (G.A.); (L.G.)
| | - Ghali Aladwani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (A.V.K.); (A.A.); (G.A.); (L.G.)
| | - Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (A.V.K.); (A.A.); (G.A.); (L.G.)
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (A.V.K.); (A.A.); (G.A.); (L.G.)
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| |
Collapse
|
44
|
Nguyen TTL, Maeng HJ. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:572. [PMID: 35335948 PMCID: PMC8948700 DOI: 10.3390/pharmaceutics14030572] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Nose-to-brain drug delivery has been of great interest for the treatment of many central nervous system (CNS) diseases and psychiatric disorders over past decades. Several nasally administered formulations have been developed to circumvent the blood-brain barrier and directly deliver drugs to the CNS through the olfactory and trigeminal pathways. However, the nasal mucosa's drug absorption is insufficient and the volume of the nasal cavity is small, which, in combination, make nose-to-brain drug delivery challenging. These problems could be minimized using formulations based on solid lipid nanoparticles (SLNs) or nanostructured lipid carriers (NLCs), which are effective nose-to-brain drug delivery systems that improve drug bioavailability by increasing drug solubility and permeation, extending drug action, and reducing enzymatic degradation. Various research groups have reported in vivo pharmacokinetics and pharmacodynamics of SLNs and NLCs nose-to-brain delivery systems. This review was undertaken to provide an overview of these studies and highlight research performed on SLN and NLC-based formulations aimed at improving the treatment of CNS diseases such neurodegenerative diseases, epilepsy, and schizophrenia. We discuss the efficacies and brain targeting efficiencies of these formulations based on considerations of their pharmacokinetic parameters and toxicities, point out some gaps in current knowledge, and propose future developmental targets.
Collapse
Affiliation(s)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|
45
|
Chen CJ, Hudson AF, Jia AS, Kunchur CR, Song AJ, Tran E, Fisher CJ, Zanchi D, Lee L, Kargotich S, Romeo M, Koperniku A, Pamnani RD, Mochly-Rosen D. Affordable IgY-based antiviral prophylaxis for resource-limited settings to address epidemic and pandemic risks. J Glob Health 2022; 12:05009. [PMID: 35265332 PMCID: PMC8877785 DOI: 10.7189/jogh.12.05009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The COVID-19 pandemic caused by SARS-CoV-2 exposed a global problem, as highly effective vaccines are challenging to produce and distribute, particularly in regions with limited resources and funding. As an alternative, immunoglobulins produced in eggs of immunized hens (IgY) can be a simple and inexpensive source for a topical and temporary prophylaxis. Here, we developed a method to extract and purify IgY antibodies from egg yolks of hens immunized against viral pathogen-derived proteins using low-cost, readily available materials, for use in resource-limited settings. Methods Existing protocols for IgY purification and equipment were modified, including extraction from yolks and separation of water-soluble IgY using common household reagents and tools. A replacement for a commercial centrifuge was developed, using a home food processor equipped with a 3D printed adapter to enable IgY precipitation. IgY purification was verified using standard gel electrophoresis and Western blot analyses. Results We developed a step-by-step protocol for IgY purification for two settings in low- and middle-income countries (LMIC): a local laboratory, where commercial centrifuges are available, or a more rural setting, where an alternative for expensive centrifuges can be used. Gel electrophoresis and Western blot analyses confirmed that the method produced highly enriched IgY preparation; each commercial egg produced ~ 90 mg of IgY. We also designed a kit for IgY production in these two settings and provided a cost estimate of the kit. Conclusion IgY purified from eggs of immunized local hens can offer a fast and affordable prophylaxis, provided that purification can be performed in a resource-limited setting. Here, we created a low-cost method that can be used anywhere where electricity is available using inexpensive, readily available materials in place of costly, specialized laboratory equipment and chemicals. This procedure can readily be used now to make an anti-SARS-CoV-2 prophylaxis in areas where vaccines are unavailable, and can be modified to combat future threats from viral epidemics and pandemics.
Collapse
Affiliation(s)
- Carrie J Chen
- Office of the Vice Provost for Undergraduate Education, Stanford University, Stanford, California, USA
| | - Anna F Hudson
- Office of the Vice Provost for Undergraduate Education, Stanford University, Stanford, California, USA
| | - Allison S Jia
- Office of the Vice Provost for Undergraduate Education, Stanford University, Stanford, California, USA
| | - Caitlin R Kunchur
- Office of the Vice Provost for Undergraduate Education, Stanford University, Stanford, California, USA
| | - Andrew J Song
- Office of the Vice Provost for Undergraduate Education, Stanford University, Stanford, California, USA
| | - Edward Tran
- Office of the Vice Provost for Undergraduate Education, Stanford University, Stanford, California, USA
| | - Chris J Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Davide Zanchi
- Graduate School of Business, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen Kargotich
- SPARK at Stanford, Stanford University School of Medicine, Stanford, California, USA
| | - Mary Romeo
- SPARK at Stanford, Stanford University School of Medicine, Stanford, California, USA
| | - Ana Koperniku
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ravinder D Pamnani
- Stanford Byers Center for Biodesign, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
- SPARK at Stanford, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
46
|
Austero RM, Gelera JE. Evaluation of Nasal Mucociliary Clearance Using Saccharin Test Versus Charcoal Test Among Filipinos in a Tertiary Government Hospital. Cureus 2022; 14:e22065. [PMID: 35295368 PMCID: PMC8916846 DOI: 10.7759/cureus.22065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Nasal mucociliary clearance is mainly measured using the saccharin test because it is inexpensive, readily available, and non-toxic. However, in the local setting, the authors had difficulty procuring saccharin, and this prompted the authors to look for an alternative. Upon an expansive review of the literature, the authors came to know about the use of charcoal that has the same properties as saccharin plus it is inert and easily traceable. The objectives of this study were to (1) establish the normal nasal mucociliary clearance time (MCT) using the saccharin test (ST) and charcoal test (CT) among Filipinos, (2) determine if CT can be used to determine nasal mucociliary clearance and (3) determine if the age, sex, land of dwelling, and comorbidities can prolong MCT. Methods: This is a cross-sectional study involving 50 subjects. ST and CT were performed by placing a particle of sodium saccharine and 10μg of charcoal on the medial surface and at least 1 cm behind the head of the inferior turbinate. All STs were done on the right nostril while CTs were done on the left. A 0- to 20-minute MCT was considered normal while MCT of more than 30 minutes was considered prolonged clearance. Lastly, a transit time of more than 60 minutes was considered a failed mucociliary clearance test. Results: The mean mucociliary transit time for the saccharin group was 14.48 minutes while for the charcoal group was 14.78 minutes (p=0.531). When grouped into subcategories, CT results showed a higher mucociliary clearance mean time among males, provincial residents, and those without comorbidities while ST had a higher mean mucociliary clearance time among females, Metro Manila residents, and those with comorbidities. All were noted to be not statistically significant. Conclusion: This study showed that CT is comparable with ST. Also, it can be used as an alternative to ST because the tester directly observes the charcoal transit in the oropharynx while ST relies on the patient's perception of taste that could result in false results.
Collapse
|
47
|
Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:133-148. [PMID: 34982185 DOI: 10.1007/s00210-021-02196-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Neuroinflammation (NIF) plays an essential role in the pathology of neurological disorders like Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy. Despite progress in the drug discovery and development of new drugs, drug delivery to the central nervous system (CNS) still represents the challenge due to the presence of the blood-brain barrier (BBB). Targeting NIF may require an adequate amount of drug to cross the BBB. Recently, the intranasal (IN) drug administration has attracted increasing attention as a reliable method to cross the BBB and treat neurological disorders. On the other hand, using optimized nanoparticles may improve the IN delivery limitations, increase the mucoadhesive properties, and prevent drug degradation. NPs can carry and deliver drugs to the CNS by bypassing the BBB. In this review, we described briefly the NIF as a pathologic feature of CNS diseases. The potential treatment possibilities with IN transfer of NP-loaded drugs will enhance the establishment of more efficient nanoformulations and delivery systems.
Collapse
|
48
|
Joyce P, Wignall A, Peressin K, Wright L, Williams DB, Prestidge CA. Chitosan nanoparticles facilitate improved intestinal permeation and oral pharmacokinetics of the mast cell stabiliser cromoglycate. Int J Pharm 2022; 612:121382. [PMID: 34919999 DOI: 10.1016/j.ijpharm.2021.121382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023]
Abstract
Cromoglycate is a mast cell stabiliser typically administered via inhalation or intranasally for the treatment of allergy-based respiratory issues. Oral dosing of cromoglycate remains challenging due to its high solubility but low permeability across epithelial membranes in the gastrointestinal tract: effective formulation strategies are clearly needed. Here, we investigate and preclinically develop chitosan-cromoglycate complexes and associated nano/microparticle formulations with muco-adhesive and permeation enhancing capabilities to overcome the biopharmaceutical challenges for oral dosing.The synthesized complexes were optimized with respect to chitosan grade, particle size, and drug loading and demonstrated up to a 9.3-fold enhancement in permeability across a Caco-2 monolayer for chitosan-cromoglycate particles, compared to the pure drug. This increased intestinal permeability led to improved pharmacokinetic performance of cromoglycate, e.g. up to 1.82-fold increase in relative oral bioavailability when dosed to Sprague-Dawley rats in a fasted state. These findings confirm the potential for chitosan particles to serve as an effective oral delivery vehicle for cromoglycate, with additional formulation optimization presenting the opportunity to reduce dosing frequency for treatment of allergy-based respiratory ailments.
Collapse
Affiliation(s)
- Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anthony Wignall
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Karl Peressin
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Leah Wright
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Desmond B Williams
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
49
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
50
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|