1
|
Rigby K, Berdalet E, Berglund C, Roger F, Steinke M, Saha M, Grebner W, Brown E, John U, Gamfeldt L, Fink P, Berggren F, Selander E. Direct and indirect effects of copepod grazers on community structure. JOURNAL OF PLANKTON RESEARCH 2024; 46:515-524. [PMID: 39360245 PMCID: PMC11443962 DOI: 10.1093/plankt/fbae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
Ecological theory and empirical research show that both direct lethal effects and indirect non-lethal effects can structure the composition of communities. While the direct effects of grazers on marine phytoplankton communities are well studied, their indirect effects are still poorly understood. Direct and indirect effects are inherently difficult to disentangle in plankton food webs. In this study we evaluate the indirect effects of copepod grazers on community function and structure using isolated chemical alarm signals, copepodamides. We expose intact summer and spring communities to direct grazing from copepods, or to chemical alarm cues without the presence of grazers in controlled experiments. The effects of direct grazing on ecosystem function were moderate in both experiments as indicated by levels of chlorophyll and primary production. Indirect and direct effects resulted in changes in the composition of both the eukaryote and prokaryote communities as shown by metabarcoding of 18S and 16S rRNA. Size structure analysis suggests that direct grazing and copepodamide exposure both favoured smaller organisms (< 10-15 μm) corroborating the size-structuring effect of copepod grazers. We conclude that the well-established effect of copepods on phytoplankton communities results from a combination of direct and indirect effects. This is a first attempt to isolate indirect effects of copepods on community structure and the results suggest that a full mechanistic understanding of the structuring effect of copepods will require insights to both direct and indirect effects of consumers as demonstrated for other ecosystems components.
Collapse
Affiliation(s)
- Kristie Rigby
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Elisa Berdalet
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Carina Berglund
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Fabian Roger
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Michael Steinke
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Mahasweta Saha
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon PL1 3DH, UK
| | - Wiebke Grebner
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Emily Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Uwe John
- Department of Ecological Chemistry, Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, Oldenburg 26129, Germany
| | - Lars Gamfeldt
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Patrick Fink
- UFZ Department River Ecology and Department Aquatic Ecosystem Analysis, Helmholtz Centre for Environmental Research, Brückstr. 3a, Magdeburg 39114, Germany
| | - Fredrick Berggren
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| | - Erik Selander
- Department of Marine Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden
| |
Collapse
|
2
|
Moccetti C, Sperlich N, Saboret G, Ten Brink H, Brodersen J. Migratory-derived resources induce elongated food chains through middle-up food web effects. MOVEMENT ECOLOGY 2024; 12:56. [PMID: 39164695 PMCID: PMC11337878 DOI: 10.1186/s40462-024-00496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Seasonal movements of animals often result in the transfer of large amounts of energy and nutrients across ecosystem boundaries, which may have large consequences on local food webs through various pathways. While this is known for both terrestrial- and aquatic organisms, quantitative estimates on its effects on food web structure and identification of key pathways are scarce, due to the difficulty in obtaining replication on ecosystem level with negative control, i.e. comparable systems without migration. METHODS In this study, we estimate the impact of Arctic charr (Salvelinus alpinus) migration on riverine ecosystem structure, by comparing multiple streams with strictly resident populations above natural migration barriers with streams below those barriers harboring partially migratory populations. We compared density estimates and size structure between above and below populations. Diet differences were examined through the analysis of stomach contents, changes in trophic position were examined by using stable isotopes. To infer growth rate of resident individuals, back-growth calculation was performed using otoliths. RESULTS We find higher densities of small juveniles in partially migratory populations, where juvenile Arctic charr show initially lower growth, likely due to higher intraspecific competition. After reaching a size, where they can start feeding on eggs and smaller juveniles, which are both more frequent in partially migratory populations, growth surpasses that of resident populations. Cannibalism induced by high juvenile densities occurred almost exclusively in populations with migration and represents an altered energy pathway to the food web. The presence of large cannibalistic charr feeding on smaller ones that have a similar trophic level as charr from strictly resident populations (based on stomach content) coupled with steeper δ15N-size regression slopes illustrate the general increase of food chain length in systems with migration. CONCLUSIONS Our results thus suggest that the consumption of migration-derived resources may result in longer food chains through middle-up rather than bottom-up effects. Furthermore, by occupying the apex of the food chain and feeding on juvenile conspecifics, resident individuals experience reduced competition with their young counterparts, which potentially balances their fitness with migratory individuals.
Collapse
Affiliation(s)
- Coralie Moccetti
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland.
- Division Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland.
| | - Nicola Sperlich
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - Grégoire Saboret
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, Zürich, 8092, Switzerland
- Department of Surface Waters; Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - Hanna Ten Brink
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, Amsterdam, 1090 GE, The Netherlands
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg Texel, 1790 AB, The Netherlands
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
- Division Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
3
|
Jackson Z, Xue B. Dynamic Trait Distribution as a Source for Shifts in Interaction Strength and Population Density. Am Nat 2024; 204:1-14. [PMID: 38857344 DOI: 10.1086/730264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractIntraspecific trait variation has been increasingly recognized as an important factor in determining species interactions and diversity. Eco-evolutionary models have studied the distribution of trait values within a population that changes over the generations as a result of selection and heritability. Nonheritable traits that can change within the lifetime, such as behavior, can cause trait-mediated indirect effects, often studied by modeling the dynamics of a homogeneous trait. Complementary to these approaches, we study the distribution of traits within a population and its dynamics on short timescales due to ecological processes. We consider several mechanisms by which the trait distribution can shift dynamically: phenotypic plasticity within each individual, differential growth among individuals, and preferential consumption by the predator. Through a simple predator-prey model that explicitly tracks the trait distribution within the prey, we identify the density and trait effects from the predator. We show that the dynamic shift of the trait distribution can lead to the modification of interaction strength between species and result in otherwise unexpected consequences. A particular example is the emergent promotion of the prey by the predator, where the introduction of the predator causes the prey population to increase rather than decrease.
Collapse
|
4
|
Henderson CJ, Gilby BL, Turschwell MP, Goodridge Gaines LA, Mosman JD, Schlacher TA, Borland HP, Olds AD. Long term declines in the functional diversity of sharks in the coastal oceans of eastern Australia. Commun Biol 2024; 7:611. [PMID: 38773323 PMCID: PMC11109089 DOI: 10.1038/s42003-024-06308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Human impacts lead to widespread changes in the abundance, diversity and traits of shark assemblages, altering the functioning of coastal ecosystems. The functional consequences of shark declines are often poorly understood due to the absence of empirical data describing long-term change. We use data from the Queensland Shark Control Program in eastern Australia, which has deployed mesh nets and baited hooks across 80 beaches using standardised methodologies since 1962. We illustrate consistent declines in shark functional richness quantified using both ecological (e.g., feeding, habitat and movement) and morphological (e.g., size, morphology) traits, and this corresponds with declining ecological functioning. We demonstrate a community shift from targeted apex sharks to a greater functional richness of non-target species. Declines in apex shark functional richness and corresponding changes in non-target species may lead to an anthropogenically induced trophic cascade. We suggest that repairing diminished shark populations is crucial for the stability of coastal ecosystems.
Collapse
Affiliation(s)
- Christopher J Henderson
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.
| | - Ben L Gilby
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, 4558, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
| | - Lucy A Goodridge Gaines
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Jesse D Mosman
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Thomas A Schlacher
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Hayden P Borland
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Andrew D Olds
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
5
|
Wang L, Wang B, Cen W, Xu R, Huang Y, Zhang X, Han Y, Zhang Y. Ecological impacts of the expansion of offshore wind farms on trophic level species of marine food chain. J Environ Sci (China) 2024; 139:226-244. [PMID: 38105050 DOI: 10.1016/j.jes.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 12/19/2023]
Abstract
The global demand for renewable energy has resulted in a rapid expansion of offshore wind farms (OWFs) and increased attention to the ecological impacts of OWFs on the marine ecosystem. Previous reviews mainly focused on the OWFs' impacts on individual species like birds, bats, or mammals. This review collected numerous field-measured data and simulated results to summarize the ecological impacts on phytoplankton, zooplankton, zoobenthos, fishes, and mammals from each trophic level and also analyze their interactions in the marine food chain. Phytoplankton and zooplankton are positively or adversely affected by the 'wave effect', 'shading effect', oxygen depletion and predation pressure, leading to a ± 10% fluctuation of primary production. Although zoobenthos are threatened transiently by habitat destruction with a reduction of around 60% in biomass in the construction stage, their abundance exhibited an over 90% increase, dominated by sessile species, due to the 'reef effect' in the operation stage. Marine fishes and mammals are to endure the interferences of noise and electromagnetic, but they are also aggregated around OWFs by the 'reef effect' and 'reserve effect'. Furthermore, the complexity of marine ecosystem would increase with a promotion of the total system biomass by 40% through trophic cascade effects strengthen and resource partitioning alternation triggered by the proliferation of filter-feeders. The suitable site selection, long-term monitoring, and life-cycle-assessment of ecological impacts of OWFs that are lacking in current literature have been described in this review, as well as the carbon emission and deposition.
Collapse
Affiliation(s)
- Lijing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bangguo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenxi Cen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing 100012, China
| | - Yuwei Huang
- College of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xin Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yinghui Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
McNeil DJ, Rodewald AD, Ruiz‐Gutierrez V, Fiss CJ, Larkin JL. Heterogeneity in breeding productivity is driven largely by factors affecting nestlings and young fledglings in an imperiled migratory passerine. Ecol Evol 2024; 14:e11327. [PMID: 38774142 PMCID: PMC11106047 DOI: 10.1002/ece3.11327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Identifying factors that drive variation in vital rates among populations is a prerequisite to understanding a species' population biology and, ultimately, to developing effective conservation strategies. This is especially true for imperiled species like the golden-winged warbler (Vermivora chrysoptera) that exhibit strong spatial heterogeneity in demography and responds variably to conservation interventions. Habitat management actions recommended for breeding grounds conservation include timber harvest, shrub shearing, and prescribed fire that maintain or create early successional woody communities. Herein, we assessed variation in the survival of nests [n = 145] and fledglings [n = 134] at 17 regenerating timber harvest sites within two isolated populations in Pennsylvania that differed in productivity and response to habitat management. Although the overall survival of nests and fledglings was higher in the eastern population than the central population, this was only true when the nest phases and fledgling phases were considered wholly. Indeed, survival rates of nestlings and recently fledged young (1-5 days post-fledging) were lower in the central population, whereas eggs and older fledglings (6-30 days post-fledging) survived at comparable rates in both populations. Fledglings in the central population were smaller (10% lower weight) and begged twice as much as those in the eastern population, suggesting food limitation may contribute to lower survival rates. Fledgling survival in the central population, but not the eastern, also was a function of habitat features (understory vegetation density [positive] and distance to mature forest [negative]) and individual factors (begging effort [negative]). Our findings illustrate how identifying how survival varies across specific life stages can elucidate potential underlying demographic drivers, such as food resources in this case. In this way, our work underscores the importance of studying and decomposing stage-specific demography in species of conservation concern.
Collapse
Affiliation(s)
- Darin J. McNeil
- Department of Forestry and Natural ResourcesUniversity of KentuckyLexingtonKentuckyUSA
| | - Amanda D. Rodewald
- Cornell Laboratory of OrnithologyIthacaNew YorkUSA
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | | | - Cameron J. Fiss
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jeffery L. Larkin
- Department of BiologyIndiana University of PennsylvaniaIndianaPennsylvaniaUSA
- American Bird ConservancyThe PlainsVirginiaUSA
| |
Collapse
|
7
|
Hildebrand L, Derville S, Hildebrand I, Torres LG. Exploring indirect effects of a classic trophic cascade between urchins and kelp on zooplankton and whales. Sci Rep 2024; 14:9815. [PMID: 38684814 PMCID: PMC11059377 DOI: 10.1038/s41598-024-59964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.
Collapse
Affiliation(s)
- Lisa Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA.
| | - Solène Derville
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), Nouméa, New Caledonia
| | - Ines Hildebrand
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Leigh G Torres
- Geospatial Ecology of Marine Megafauna Laboratory, Department of Fisheries, Wildlife & Conservation Sciences, Marine Mammal Institute, Oregon State University, Newport, OR, USA
| |
Collapse
|
8
|
Oliveira ACB, Freitas CEC, Pouilly M, Yamamoto KC, Hurd LE, Dehart P, Santos JA, Rezende CE, Almeida MGDE, Siqueira-Souza FK. Can species guilds act as hubs for energy transfer in macrophyte meadows of Amazonian floodplain lakes? AN ACAD BRAS CIENC 2024; 96:e20230327. [PMID: 38597490 DOI: 10.1590/0001-3765202420230327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 04/11/2024] Open
Abstract
Aquatic macrophytes are the main autochthonous component of primary production in the Amazon Basin. Floating meadows of these plants support habitats with highly diverse animal communities. Fishes inhabiting these habitats have been assumed to use a broad range of food items and compose a particular food web. We employed carbon (δ13C) and nitrogen (δ15N) stable isotope analysis to draw the trophic structure of these habitats and to trace the energy flow by its trophic levels. Fishes and other animals from 18 independent macrophyte meadows of a floodplain lake of the Solimões River (Amazonia, Brazil) were analyzed. The food web of macrophyte meadows consists of four trophic levels above autotrophic sources. In general, primary consumers exhibited a broader range of food sources than the upper trophic levels. Some fish species depended on a large number of food sources and at the same time are consumed by several predators. The energy transfer from one trophic level to the next was then mainly accomplished by these species concentrating a high-energy flux and acting as hubs in the food web. The broad range of δ13C values observed indicates that the organisms living in the macrophyte meadows utilize a great diversity of autotrophic sources.
Collapse
Affiliation(s)
- Ana Cristina B Oliveira
- Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, Departamento de Ciências Pesqueiras, Av. General Rodrigo Otávio, 7200, 69077-000 Manaus, AM, Brazil
| | - Carlos E C Freitas
- Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, Departamento de Ciências Pesqueiras, Av. General Rodrigo Otávio, 7200, 69077-000 Manaus, AM, Brazil
| | - Marc Pouilly
- French National Research Institute Four Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle (MNHN), Paris Sorbonne University, Paris, 75005, France
| | - Kedma Cristine Yamamoto
- Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, Departamento de Ciências Pesqueiras, Av. General Rodrigo Otávio, 7200, 69077-000 Manaus, AM, Brazil
| | - Lawrence Edward Hurd
- Department of Biology, Washington and Lee University, Lexington, Virginia, 24450, USA
| | - Pieter Dehart
- Office of Graduate Studies, University of Wisconsin-Green Bay, Green Bay, Wisconsin, 54311, USA
| | - Jamerson A Santos
- Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, Departamento de Ciências Pesqueiras, Av. General Rodrigo Otávio, 7200, 69077-000 Manaus, AM, Brazil
| | - Carlos Eduardo Rezende
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Ciências Ambientais, Av. Alberto Lamego, 2000, 28103-602 Campos dos Goytacazes, RJ, Brazil
| | - Marcelo G DE Almeida
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Ciências Ambientais, Av. Alberto Lamego, 2000, 28103-602 Campos dos Goytacazes, RJ, Brazil
| | - Flavia Kelly Siqueira-Souza
- Universidade Federal do Amazonas, Faculdade de Ciências Agrárias, Departamento de Ciências Pesqueiras, Av. General Rodrigo Otávio, 7200, 69077-000 Manaus, AM, Brazil
| |
Collapse
|
9
|
Villar N. Trophic cascades help restore vegetation. Science 2023; 382:516-517. [PMID: 37917711 DOI: 10.1126/science.adl0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Herbivores and their predators have a major impact on restoration outcomes.
Collapse
Affiliation(s)
- Nacho Villar
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
10
|
Guo G, Barabás G, Takimoto G, Bearup D, Fagan WF, Chen D, Liao J. Towards a mechanistic understanding of variation in aquatic food chain length. Ecol Lett 2023; 26:1926-1939. [PMID: 37696523 DOI: 10.1111/ele.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Ecologists have long sought to understand variation in food chain length (FCL) among natural ecosystems. Various drivers of FCL, including ecosystem size, resource productivity and disturbance, have been hypothesised. However, when results are aggregated across existing empirical studies from aquatic ecosystems, we observe mixed FCL responses to these drivers. To understand this variability, we develop a unified competition-colonisation framework for complex food webs incorporating all of these drivers. With competition-colonisation tradeoffs among basal species, our model predicts that increasing ecosystem size generally results in a monotonic increase in FCL, while FCL displays non-linear, oscillatory responses to resource productivity or disturbance in large ecosystems featuring little disturbance or high productivity. Interestingly, such complex responses mirror patterns in empirical data. Therefore, this study offers a novel mechanistic explanation for observed variations in aquatic FCL driven by multiple environmental factors.
Collapse
Affiliation(s)
- Guanming Guo
- Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - György Barabás
- Division of Theoretical Biology, Department IFM, Linköping University, Linköping, Sweden
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Gaku Takimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daniel Bearup
- School of Mathematics, Statistics and Actuarial Sciences, University of Kent, Parkwood Road, Canterbury, UK
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Dongdong Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinbao Liao
- Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
11
|
Wójcicki A, Borowski Z. The presence of wolves leads to spatial differentiation in deer browsing pressure on forest regeneration. Sci Rep 2023; 13:17245. [PMID: 37821647 PMCID: PMC10567790 DOI: 10.1038/s41598-023-44502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
With the recent return of large carnivores to forest ecosystems, an important issue for forest owners and managers is how large predators influence the behaviour of their natural prey and, consequently, cervid browsing pressure on forest regeneration. To investigate this issue, we analysed deer pressure on Scots pine and European beech plantations in northern Poland's ecosystems with and without permanent wolf populations. Two characteristics were used to describe deer browsing patterns in plantations: distance from the forest edge (spatial pattern of browsing) and number of saplings browsed (browsing intensity). Beech saplings were more intensively browsed by deer compared to pine saplings. In a forest ecosystem not inhabited by wolves, spatial variation in browsing patterns on small-sized beech plantations was the same between the edge and the center. In contrast, browsing pressure by deer was greater at the edges on large-sized pine plantations. The presence of wolves reduced deer browsing on beech and increased browsing on pine saplings. In addition, deer foraging behaviour changed in large-sized pine plantations, and browsing pressure increased only in the central areas of the plantations. We assume that the presence of wolves in a forest landscape is an important factor that alters browsing pressure on the youngest stands and their spatial pattern, and that this may be a major factor in stand regeneration, especially in small forest patches.
Collapse
Affiliation(s)
- Adam Wójcicki
- Department of Mountain Forests, Forest Research Institute, Ul. Fredry 39, 30-605, Kraków, Poland.
| | - Zbigniew Borowski
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Poland
| |
Collapse
|
12
|
Brewton RA, Lapointe BE. Eutrophication leads to food web enrichment and a lack of connectivity in a highly impacted urban lagoon. MARINE POLLUTION BULLETIN 2023; 195:115441. [PMID: 37683393 DOI: 10.1016/j.marpolbul.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Nitrogen (N) loading can affect estuarine food webs through alteration of primary producers. In the Indian River Lagoon (IRL), Florida there has been long-term N enrichment, worsening phytoplankton blooms, large-scale macroalgal blooms, and catastrophic seagrass losses. To investigate how N enrichment affects higher trophic levels and food webs in the IRL, nutrient availability was compared to primary producer and faunal stable N (δ15N) isotope values. Seawater samples were collected in the IRL for dissolved nutrient, chlorophyll-a, and particulate organic matter δ15N analyses. Macrophytes and fauna were also collected for δ15N analyses. Throughout the IRL, N was elevated but was highest in the northern IRL and Banana River Lagoon. δ15N was enriched in these segments for most samples to levels characteristic of human-waste impacted estuaries. Variability in δ15N among lagoon segments suggests a low level of trophic connectivity. Decreasing N loading to the IRL and other eutrophic estuaries may help improve resiliency.
Collapse
Affiliation(s)
- Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA.
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA
| |
Collapse
|
13
|
Vollset KW, Dohoo I, Lennox RJ. The paradox of predation studies. Biol Lett 2023; 19:20230354. [PMID: 37848051 PMCID: PMC10734775 DOI: 10.1098/rsbl.2023.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Understanding the causal relationships that contribute to mortality in populations is a priority for epidemiology, animal husbandry and ecology. Of all the sources of mortality in nature, predation is perhaps the most important, while simultaneously being one of the most difficult to study and understand. In this opinion piece, we use the epidemiological concept of the sufficient-component cause model to outline why we believe that predation studies often misrepresent predators as sufficient cause of death (or natural mortality) in ecological studies. This is pivotal in conservation biology because such studies have often led to demands for predator removal throughout the world. We use the sufficient-component cause model to illustrate the paradox that multiple studies, each studying singular putative causes of mortality (including predation), will sum to more than 100% mortality when added together. We suggest that the sufficient-component framework should be integrated into both fundamental and applied ecology to better understand the role of predators in natural ecosystems.
Collapse
Affiliation(s)
- Knut Wiik Vollset
- Laboratory for Freshwater
Ecology and Inland Fisheries, NORCE Norwegian Research
Centre, Nygardsgaten 112, 5008 Bergen,
Norway
| | - Ian Dohoo
- University of
Prince Edward Island, Charlottetown,
Canada C1A 4P3
| | - Robert J. Lennox
- Laboratory for Freshwater
Ecology and Inland Fisheries, NORCE Norwegian Research
Centre, Nygardsgaten 112, 5008 Bergen,
Norway
- Ocean Tracking Network,
Dalhousie University, 1355 Oxford Street,
Halifax, Canada
| |
Collapse
|
14
|
Layton-Matthews K, Vriend SJG, Grøtan V, Loonen MJJE, Sæther BE, Fuglei E, Hansen BB. Extreme events, trophic chain reactions, and shifts in phenotypic selection. Sci Rep 2023; 13:15181. [PMID: 37704641 PMCID: PMC10499831 DOI: 10.1038/s41598-023-41940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Demographic consequences of rapid environmental change and extreme climatic events (ECEs) can cascade across trophic levels with evolutionary implications that have rarely been explored. Here, we show how an ECE in high Arctic Svalbard triggered a trophic chain reaction, directly or indirectly affecting the demography of both overwintering and migratory vertebrates, ultimately inducing a shift in density-dependent phenotypic selection in migratory geese. A record-breaking rain-on-snow event and ice-locked pastures led to reindeer mass starvation and a population crash, followed by a period of low mortality and population recovery. This caused lagged, long-lasting reductions in reindeer carrion numbers and resultant low abundances of Arctic foxes, a scavenger on reindeer and predator of migratory birds. The associated decrease in Arctic fox predation of goose offspring allowed for a rapid increase in barnacle goose densities. As expected according to r- and K-selection theory, the goose body condition (affecting reproduction and post-fledging survival) maximising Malthusian fitness increased with this shift in population density. Thus, the winter ECE acting on reindeer and their scavenger, the Arctic fox, indirectly selected for higher body condition in migratory geese. This high Arctic study provides rare empirical evidence of links between ECEs, community dynamics and evolution, with implications for our understanding of indirect eco-evolutionary impacts of global change.
Collapse
Affiliation(s)
- Kate Layton-Matthews
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway.
- Norwegian Institute for Nature Research, NINA, Tromsø, Norway.
| | - Stefan J G Vriend
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Vidar Grøtan
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| | | | - Bernt-Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| | - Eva Fuglei
- Norwegian Polar Institute, Tromsø, Norway
| | - Brage Bremset Hansen
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, NINA, Trondheim, Norway
| |
Collapse
|
15
|
Carroll EW, Freestone AL. Habitat isolation interacts with top-down and bottom-up processes in a seagrass ecosystem. PLoS One 2023; 18:e0289174. [PMID: 37494351 PMCID: PMC10370773 DOI: 10.1371/journal.pone.0289174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Habitat loss is accelerating at unprecedented rates, leading to the emergence of smaller, more isolated habitat remnants. Habitat isolation adversely affects many ecological processes independently, but little is known about how habitat isolation may interact with ecosystem processes such as top-down (consumer-driven) and bottom-up (resource-driven) effects. To investigate the interactive influence of habitat isolation, resource availability and consumer distribution and impact on community structure, we tested two hypotheses using invertebrate and algal epibionts on temperate seagrasses, an ecosystem of ecological and conservation importance. First, we hypothesized that habitat isolation will change the structure of the seagrass epibiont community, and isolated patches of seagrass will have lower epibiont biomass and different epibiont community composition than contiguous meadows. Second, we hypothesized that habitat isolation would mediate top-down (i.e., herbivory) and bottom-up (i.e., nutrient enrichment) control for algal epibionts. We used observational studies in natural seagrass patches and experimental artificial seagrass to examine three levels of habitat isolation. We further manipulated top-down and bottom-up processes in artificial seagrass through consumer reductions and nutrient additions, respectively. We indeed found that habitat isolation of seagrass patches decreased epibiont biomass and modified epibiont community composition. This pattern was largely due to dispersal limitation of invertebrate epibionts that resulted in a decline in their abundance and richness in isolated patches. Further, habitat isolation reduced consumer abundances, weakening top-down control of algal epibionts in isolated seagrass patches. Nutrient additions, however, reversed this pattern, and allowed a top-down effect on algal richness to emerge in isolated habitats, demonstrating a complex interaction between patch isolation and top-down and bottom-up processes. Habitat isolation may therefore shape the relative importance of central processes in ecosystems, leading to changes in community composition and food web structure in marine habitats.
Collapse
Affiliation(s)
- Elizabeth W Carroll
- Department of Biology, Holy Family University, Philadelphia, Pennsylvania, United States of America
| | - Amy L Freestone
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Carroll T, Stafford R, Gillingham PK, Bullock JM, Brown D, Brown M, Walls RM, Diaz A. Correlated biodiversity change between plant and insect assemblages resurveyed after 80 years across a dynamic habitat mosaic. Ecol Evol 2023; 13:e10168. [PMID: 37304373 PMCID: PMC10251423 DOI: 10.1002/ece3.10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Historical data on co-occurring taxa are extremely rare. As such, the extent to which distinct co-occurring taxa experience similar long-term patterns in species richness and compositional change (e.g., when exposed to a changing environment) is not clear. Using data from a diverse ecological community surveyed in the 1930s and resurveyed in the 2010s, we investigated whether local plant and insect assemblages displayed cross-taxon congruence-that is, spatiotemporal correlation in species richness and compositional change-across six co-occurring taxa: vascular plants, non-vascular plants, grasshoppers and crickets (Orthoptera), ants (Hymenoptera: Formicinae), hoverflies (Diptera: Syrphidae), and dragonflies and damselflies (Odonata). All taxa exhibited high levels of turnover across the ca. 80-year time period. Despite minimal observed changes at the level of the whole study system, species richness displayed widespread cross-taxon congruence (i.e., correlated temporal change) across local assemblages within the study system. Hierarchical logistic regression models suggest a role for shared responses to environmental change underlying cross-taxon correlations and highlight stronger correlations between vascular plants and their direct consumers, suggesting a possible role for biotic interactions between these groups. These results provide an illustration of cross-taxon congruence in biodiversity change using data unique in its combination of temporal and taxonomic scope, and highlight the potential for cascading and comparable effects of environmental change (abiotic and biotic) on co-occurring plant and insect communities. However, analyses of historical resurveys based on currently available data come with inherent uncertainties. As such, this study highlights a need for well-designed experiments, and monitoring programs incorporating co-occurring taxa, to determine the underlying mechanisms and prevalence of congruent biodiversity change as anthropogenic environmental change accelerates apace.
Collapse
Affiliation(s)
- Tadhg Carroll
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
- Leverhulme Centre for Anthropocene BiodiversityYorkUK
- Department of BiologyUniversity of YorkYorkUK
| | - Richard Stafford
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | | | | | | | | | - Anita Diaz
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| |
Collapse
|
17
|
Jordaan RK, Oosthuizen WC, Reisinger RR, de Bruyn PJN. The effect of prey abundance and fisheries on the survival, reproduction, and social structure of killer whales ( Orcinus orca) at subantarctic Marion Island. Ecol Evol 2023; 13:e10144. [PMID: 37284666 PMCID: PMC10239896 DOI: 10.1002/ece3.10144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Most marine apex predators are keystone species that fundamentally influence their ecosystems through cascading top-down processes. Reductions in worldwide predator abundances, attributed to environmental- and anthropogenic-induced changes to prey availability and negative interactions with fisheries, can have far-reaching ecosystem impacts. We tested whether the survival of killer whales (Orcinus orca) observed at Marion Island in the Southern Indian Ocean correlated with social structure and prey variables (direct measures of prey abundance, Patagonian toothfish fishery effort, and environmental proxies) using multistate models of capture-recapture data spanning 12 years (2006-2018). We also tested the effect of these same variables on killer whale social structure and reproduction measured over the same period. Indices of social structure had the strongest correlation with survival, with higher sociality associated with increased survival probability. Survival was also positively correlated with Patagonian toothfish fishing effort during the previous year, suggesting that fishery-linked resource availability is an important determinant of survival. No correlation between survival and environmental proxies of prey abundance was found. At-island prey availability influenced the social structure of Marion Island killer whales, but none of the variables explained variability in reproduction. Future increases in legal fishing activity may benefit this population of killer whales through the artificial provisioning of resources they provide.
Collapse
Affiliation(s)
- Rowan K. Jordaan
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - W. Chris Oosthuizen
- Centre for Statistics in Ecology, the Environment (SEEC)University of Cape TownCape TownSouth Africa
| | - Ryan R. Reisinger
- Ocean and Earth ScienceUniversity of Southampton, National Oceanography Centre SouthamptonSouthamptonUK
| | - P. J. Nico de Bruyn
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
18
|
Lal DM, Sreekanth GB, Soman C, Sharma A, Abidi ZJ. Delineating the food web structure in an Indian estuary during tropical winter employing stable isotope signatures and mixing model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49412-49434. [PMID: 36773262 DOI: 10.1007/s11356-023-25549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/21/2023] [Indexed: 02/12/2023]
Abstract
The food and feeding links and sources in an impacted tropical estuary situated along India's western coast, the Ulhas River Estuary (URE) was analyzed employing the stable carbon and nitrogen isotopic signatures (δ13C and δ15N). Three basal carbon sources, such as mangrove leaves, particulate organic matter (phytoplankton), and detritus, were analyzed together with eight consumer groups from various trophic guilds. The δ13C varied from - 19.67 to - 24.61‰, whereas δ15N ranged from 6.31 to 15.39‰ from the primary consumer to the top predator species. The stable isotope mixing model developed for URE revealed a phytoplankton based pelagic food chain and detritus based benthic food chain in URE. The fairly larger value of SEA (Standard Ellipse Area) in the URE suggest a much broader food web structure and high trophic diversity in the ecosystem. Higher influence of detritus on the assimilated diet of majority of consumers and evidences of nitrogen enrichment in the basal sources such as detritus and particulate organic matter by anthropogenic activities in URE point towards nitrogen pollution and subsequent trophic disturbance in this tropical estuarine ecosystem.
Collapse
Affiliation(s)
- Dhanya Mohan Lal
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | | | - Chitra Soman
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Anupam Sharma
- Birbal Sahni Institute of Paleosciences, 53 University Road, Lucknow, 226007, India
| | - Zeba Jaffer Abidi
- ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| |
Collapse
|
19
|
Zhou Y, Zhang H, Liu D, Khashaveh A, Li Q, Wyckhuys KA, Wu K. Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia. SCIENCE ADVANCES 2023; 9:eade9341. [PMID: 36735783 PMCID: PMC9897670 DOI: 10.1126/sciadv.ade9341] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/05/2023] [Indexed: 05/13/2023]
Abstract
Insects provide critical ecosystem services such as biological pest control, in which natural enemies (NE) regulate the populations of crop-feeding herbivores (H). While H-NE dynamics are routinely studied at small spatiotemporal scales, multiyear assessments over entire agrolandscapes are rare. Here, we draw on 18-year radar and searchlight trapping datasets (2003-2020) from eastern Asia to (i) assess temporal population trends of 98 airborne insect species and (ii) characterize the associated H-NE interplay. Although NE consistently constrain interseasonal H population growth, their summer abundance declined by 19.3% over time and prominent agricultural pests abandoned their equilibrium state. Within food webs composed of 124 bitrophic couplets, NE abundance annually fell by 0.7% and network connectance dropped markedly. Our research unveils how a progressive decline in insect numbers debilitates H trophic regulation and ecosystem stability at a macroscale, carrying implications for food security and (agro)ecological resilience during times of global environmental change.
Collapse
Affiliation(s)
| | | | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
20
|
Beilke EA, O'Keefe JM. Bats reduce insect density and defoliation in temperate forests: An exclusion experiment. Ecology 2023; 104:e3903. [PMID: 36310413 PMCID: PMC10078224 DOI: 10.1002/ecy.3903] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
Bats suppress insect populations in agricultural ecosystems, yet the question of whether bats initiate trophic cascades in forests is mainly unexplored. We used a field experiment to test the hypothesis that insectivorous bats reduce defoliation through the top-down suppression of forest-defoliating insects. We excluded bats from 20 large, subcanopy forest plots (opened daily to allow birds access), each paired with an experimental control plot, during three summers between 2018 and 2020 in the central hardwood region of the United States. We monitored leaf area changes and insect density for nine to 10 oak or hickory seedlings per plot. Insect density was three times greater on seedlings in bat-excluded versus control plots. Additionally, seedling defoliation was five times greater with bats excluded, and bats' impact on defoliation was three times greater for oaks than for hickories. We show that insectivorous bats drive top-down trophic cascades, play an integral role in forest ecosystems, and may ultimately influence forest health, structure, and composition. This work demonstrates insectivorous bats' ecological and economic value and the importance of conserving this highly imperiled group of predators.
Collapse
Affiliation(s)
- Elizabeth A. Beilke
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Bat Research, Outreach, and ConservationIndiana State UniversityTerre HauteIndianaUSA
| | - Joy M. O'Keefe
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Bat Research, Outreach, and ConservationIndiana State UniversityTerre HauteIndianaUSA
| |
Collapse
|
21
|
Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM. Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NEOBIOTA 2023. [DOI: 10.3897/neobiota.80.90439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control.
Collapse
|
22
|
Queiroz APN, Araújo MLG, Hussey NE, Lessa RPT. Trophic ecology of three stingrays (Myliobatoidei: Dasyatidae) off the Brazilian north-eastern coast: Habitat use and resource partitioning. JOURNAL OF FISH BIOLOGY 2023; 102:27-43. [PMID: 36153814 DOI: 10.1111/jfb.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Understanding the ecological role of species with overlapping distributions is central to inform ecosystem management. Here we describe the diet, trophic level and habitat use of three sympatric stingrays, Hypanus guttatus, H. marianae and H. berthalutzae, through combined stomach content and stable isotope (δ13 C and δ15 N) analyses. Our integrated approach revealed that H. guttatus is a mesopredator that feeds on a diverse diet of benthic and epibenthic marine and estuarine organisms, principally bivalve molluscs, Alpheus shrimp and teleost fishes. Isotopic data supported movement of this species between marine and estuarine environments. H. berthalutzae is also a marine generalist feeder, but feeds primarily on teleost fishes and cephalopods, and consequently occupies a higher trophic level. In contrast, H. marianae is a mesopredator specialized on shrimps and polychaetas occurring only in the marine environment and occupying a low niche breadth. While niche overlap occurred, the three stingrays utilized the same prey resources at different rates and occupied distinct trophic niches, potentially limiting competition for resources and promoting coexistence. These combined data demonstrate that these three mesopredators perform different ecological roles in the ecosystems they occupy, limiting functional redundancy.
Collapse
Affiliation(s)
- Aristóteles Philippe Nunes Queiroz
- Programa de Pós-graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Dinâmica de Populações Marinhas - DIMAR, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria Lúcia Góes Araújo
- Laboratório de Dinâmica de Populações Marinhas - DIMAR, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Rosângela P T Lessa
- Laboratório de Dinâmica de Populações Marinhas - DIMAR, Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
23
|
Effects of diversity on thermal niche variation in bird communities under climate change. Sci Rep 2022; 12:21810. [PMID: 36528749 PMCID: PMC9759529 DOI: 10.1038/s41598-022-26248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Climate change alters ecological communities by affecting individual species and interactions between species. However, the impacts of climate change may be buffered by community diversity: diverse communities may be more resistant to climate-driven perturbations than simple communities. Here, we assess how diversity influences long-term thermal niche variation in communities under climate change. We use 50-year continental-scale data on bird communities during breeding and non-breeding seasons to quantify the communities' thermal variability. Thermal variability is measured as the temporal change in the community's average thermal niche and it indicates community's response to climate change. Then, we study how the thermal variability varies as a function of taxonomic, functional, and evolutionary diversity using linear models. We find that communities with low thermal niche variation have higher functional diversity, with this pattern being measurable in the non-breeding but not in the breeding season. Given the expected increase in seasonal variation in the future climate, the differences in bird communities' thermal variability between breeding and non-breeding seasons may grow wider. Importantly, our results suggest that functionally diverse wildlife communities can mitigate effects of climate change by hindering changes in thermal niche variability, which underscores the importance of addressing the climate and biodiversity crises together.
Collapse
|
24
|
Toxicity and Starvation Induce Major Trophic Isotope Variation in Daphnia Individuals: A Diet Switch Experiment Using Eight Phytoplankton Species of Differing Nutritional Quality. BIOLOGY 2022; 11:biology11121816. [PMID: 36552325 PMCID: PMC9775432 DOI: 10.3390/biology11121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Stable isotope values can express resource usage by organisms, but their precise interpretation is predicated using a controlled experiment-based validation process. Here, we develop a stable isotope tracking approach towards exploring resource shifts in a key primary consumer species Daphnia magna. We used a diet switch experiment and model fitting to quantify the stable carbon (δ13C) and nitrogen (δ15N) isotope turnover rates and discrimination factors for eight dietary sources of the plankton species that differ in their cellular organization (unicellular or filamentous), pigment and nutrient compositions (sterols and polyunsaturated fatty acids), and secondary metabolite production rates. We also conduct a starvation experiment. We evaluate nine tissue turnover models using Akaike's information criterion and estimate the repetitive trophic discrimination factors. Using the parameter estimates, we calculate the hourly stable isotope turnover rates. We report an exceedingly faster turnover value following dietary switching (72 to 96 h) and a measurable variation in trophic discrimination factors. The results show that toxic stress and the dietary quantity and quality induce trophic isotope variation in Daphnia individuals. This study provides insight into the physiological processes that underpin stable isotope patterns. We explicitly test multiple alternative dietary sources and fasting and discuss the parameters that are fundamental for field- and laboratory-based stable isotope studies.
Collapse
|
25
|
Scaling from optimal behavior to population dynamics and ecosystem function. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
He H, Qian T, Shen R, Yu J, Li K, Liu Z, Jeppesen E. Piscivore stocking significantly suppresses small fish but does not facilitate a clear-water state in subtropical shallow mesocosms: A biomanipulation experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156967. [PMID: 35764152 DOI: 10.1016/j.scitotenv.2022.156967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Biomanipulation by piscivore stocking has been widely used to combat eutrophication in north temperate lakes, but its applicability in warm lakes has not yet been well elucidated. Here, we used experimental mesocosms to test the effects of a native benthi-piscivore (snakehead, Channa argus Cantor) on water clarity under subtropical conditions where small omni-benthivorous fish like crucian carp (Carassius carassius L.) prevail. Our results showed that, despite of a great reduction of crucian carp biomass, snakehead stocking did not create a strong trophic cascade as neither (herbivorous) zooplankton biomass nor their grazing pressure, indicated by biomass ratio of (herbivorous) zooplankton to phytoplankton, changed significantly. Moreover, snakehead stocking significantly increased water non-algal turbidity as well as nutrient and chlorophyll-a concentrations, suggesting that these benthi-piscivores also disturbed sediments like crucian carp did. Our study showed that biomanipulation by stocking of snakehead does not facilitate clear-water state in warm shallow lakes, even on the short-term.
Collapse
Affiliation(s)
- Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Tian Qian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| |
Collapse
|
27
|
Júnior ECB, Rios VP, Dodonov P, Vilela B, Japyassú HF. Effect of behavioural plasticity and environmental properties on the resilience of communities under habitat loss and fragmentation. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Šunje E, Courant J, Vesnić A, Koren T, Lukić Bilela L, Van Damme R. Patterns of variation in dietary composition among four populations of Alpine salamanders (Salamandra atra prenjensis). AMPHIBIA-REPTILIA 2022. [DOI: 10.1163/15685381-bja10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In this paper we studied the diet in four allopatric populations of alpine salamanders in the Dinarides (Salamandra atra prenjensis). Food consumption was assessed by stomach flushing while food availability by pitfall traps and netting. We aimed to: (i) assess the realized dietary niche, (ii) investigate prey preferences, (ii) explore individual specialization, clustering and nestedness. All populations have an equally wide dietary span that is among the largest reported for terrestrial salamanders. On the other hand, the amount of ingested prey is rather low compared to other salamander species; the quantity of consumed prey did not differ among populations but younger individuals fed more than adults. Food composition somewhat differed among populations but not among sex/age classes. In all four populations, the bulk of diet consisted of beetles, spiders, snails and millipedes; except for beetles, such prey was also preffered together with centipedes and isopods. For most of the prey categories, the direction of the electivity indices was the same across populations. In none of the populations a nested pattern in the interindividual subdivision of dietary resources was registered. However, indications for individual specialization and modularity were observed disclosing that the broad niche of populations is composed of smaller individual niches that cluster along the dietary axis. Overall, the four populations have very similar structural characteristics of the dietary niche and there is little evidence for local dietary differentiation probably due to the absence of drivers for change.
Collapse
Affiliation(s)
- Emina Šunje
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
- Herpetological Association in Bosnia and Herzegovina, ATRA (BH-HU: ATRA), Urijan dedina 137, 71000 Sarajevo, Bosnia and Herzegovina
- Laboratory of Functional Morphology, University of Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Julien Courant
- UMR 7179, Département Adaptation du vivant, Centre National de la Recherche Scientifique (CNRS/MNHN), rue Buffon, 75005 Paris, France
| | - Adi Vesnić
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Toni Koren
- Hyla Association, Lipovac I, 10000 Zagreb, Croatia
| | - Lada Lukić Bilela
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Raoul Van Damme
- Laboratory of Functional Morphology, University of Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
29
|
Species abundance correlations carry limited information about microbial network interactions. PLoS Comput Biol 2022; 18:e1010491. [PMID: 36084152 PMCID: PMC9518925 DOI: 10.1371/journal.pcbi.1010491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/28/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Unraveling the network of interactions in ecological communities is a daunting task. Common methods to infer interspecific interactions from cross-sectional data are based on co-occurrence measures. For instance, interactions in the human microbiome are often inferred from correlations between the abundances of bacterial phylogenetic groups across subjects. We tested whether such correlation-based methods are indeed reliable for inferring interaction networks. For this purpose, we simulated bacterial communities by means of the generalized Lotka-Volterra model, with variation in model parameters representing variability among hosts. Our results show that correlations can be indicative for presence of bacterial interactions, but only when measurement noise is low relative to the variation in interaction strengths between hosts. Indication of interaction was affected by type of interaction network, process noise and sampling under non-equilibrium conditions. The sign of a correlation mostly coincided with the nature of the strongest pairwise interaction, but this is not necessarily the case. For instance, under rare conditions of identical interaction strength, we found that competitive and exploitative interactions can result in positive as well as negative correlations. Thus, cross-sectional abundance data carry limited information on specific interaction types. Correlations in abundance may hint at interactions but require independent validation. The bacteria in and on our body (the human microbiome) largely determine how our body functions, and whether we stay healthy or get sick. These bacteria do not live on their own, but interact among each other and with their human host. Finding out which bacteria interact with each other is cumbersome, but patterns of joint occurrence between species might provide a clue to their ecological dependencies. We investigated whether correlations in species abundance can be used for the purpose of ecological network reconstruction. We simulated different bacterial communities with known interactions according to a theoretical population model. After having collected virtual samples from our simulated data, we performed a correlation analysis and then compared the correlation network with our known interaction network. We found that correlations can be informative for underlying interactions, but ecological conclusions should be drawn carefully. An obvious limitation of correlation analysis is that direction of interaction cannot be recovered from co-occurrence data, making correlations insensitive for detection of asymmetric interactions. In addition, we found that competitive and exploitative interactions can induce positive as well as negative correlations. We recommend careful interpretation and validation when inferring networks from cross-sectional abundance data.
Collapse
|
30
|
Reintroducing bison results in long-running and resilient increases in grassland diversity. Proc Natl Acad Sci U S A 2022; 119:e2210433119. [PMID: 36037376 PMCID: PMC9457053 DOI: 10.1073/pnas.2210433119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison (Bison bison) in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle (Bos taurus). Compared to ungrazed areas, reintroducing bison increased native plant species richness by 103% at local scales (10 m2) and 86% at the catchment scale. Gains in richness continued for 29 y and were resilient to the most extreme drought in four decades. These gains are now among the largest recorded increases in species richness due to grazing in grasslands globally. Grazing by domestic cattle also increased native plant species richness, but by less than half as much as bison. This study indicates that some ecosystems maintain a latent potential for increased native plant species richness following the reintroduction of native herbivores, which was unmatched by domesticated grazers. Native-grazer gains in richness were resilient to an extreme drought, a pressure likely to become more common under future global environmental change.
Collapse
|
31
|
Vineetha G, Kripa V, Karati KK, Madhu NV, Anil P, Vishnu Nair MS. Surge in the jellyfish population of a tropical monsoonal estuary: A boon or bane to its plankton community dynamics? MARINE POLLUTION BULLETIN 2022; 182:113951. [PMID: 35907360 DOI: 10.1016/j.marpolbul.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Recurrent jellyfish blooms and their impacts on ecosystem deliverables of coastal habitats have become a major ecological concern. In view of this, repercussions of a surge in the jellyfish population on the plankton community were studied in Cochin estuary (CE), the largest tropical estuary along the southwest coast of India. Evaluation of hydrographic attributes and plankton community of the CE during early and late pre-monsoon revealed a marked disparity in its hydrography which favoured an increase in jellyfish abundances during late pre-monsoon, eliciting distinct impacts on the plankton community. The escalation in the jellyfish abundance and their subsequent predation on the crustacean plankton released the phytoplankton community from the grazing pressure resulting in a trophic cascade in the planktonic food web. The indiscriminate feeding of jellyfishes on the ichthyoplankton, decapod larvae, and Copepoda, the primary diet component of forage fishes evoked a potent threat to the fishery potential of CE.
Collapse
Affiliation(s)
- G Vineetha
- Central Marine Fisheries Research Institute, Kochi, Kerala 682018, India.
| | - V Kripa
- Central Marine Fisheries Research Institute, Kochi, Kerala 682018, India; Coastal Aquaculture Authority, Chennai, Tamil Nadu 600 035, India
| | | | - N V Madhu
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - P Anil
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - M S Vishnu Nair
- Central Marine Fisheries Research Institute, Kochi, Kerala 682018, India
| |
Collapse
|
32
|
Bagchi D, Arumugam R, Chandrasekar V, Senthilkumar D. Metacommunity stability and persistence for predation turnoff in selective patches. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Smith JG, Tinker MT. Alternations in the foraging behaviour of a primary consumer drive patch transition dynamics in a temperate rocky reef ecosystem. Ecol Lett 2022; 25:1827-1838. [PMID: 35767228 PMCID: PMC9546210 DOI: 10.1111/ele.14064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
Understanding the role of animal behaviour in linking individuals to ecosystems is central to advancing knowledge surrounding community structure, stability and transition dynamics. Using 22 years of long-term subtidal monitoring, we show that an abrupt outbreak of purple sea urchins (Strongylocentrotus purpuratus), which occurred in 2014 in southern Monterey Bay, California, USA, was primarily driven by a behavioural shift, not by a demographic response (i.e. survival or recruitment). We then tracked the foraging behaviour of sea urchins for 3 years following the 2014 outbreak and found that behaviour is strongly associated with patch state (forest or barren) transition dynamics. Finally, in 2019, we observed a remarkable recovery of kelp forests at a deep rocky reef. We show that this recovery was associated with sea urchin movement from the deep reef to shallow water. These results demonstrate how changes in grazer behaviour can facilitate patch dynamics and dramatically restructure communities and ecosystems.
Collapse
Affiliation(s)
- Joshua G. Smith
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- National Center for Ecological Analysis and SynthesisUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - M. Tim Tinker
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
34
|
Baker HK, Li SS, Samu SC, Jones NT, Symons CC, Shurin JB. Prey naiveté alters the balance of consumptive and non‐consumptive predator effects and shapes trophic cascades in freshwater plankton. OIKOS 2022. [DOI: 10.1111/oik.09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henry K. Baker
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Stephanie S. Li
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Environment and Natural Resources, The Ohio State Univ. Columbus OH USA
| | - Stefan C. Samu
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| | - Natalie T. Jones
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
- School of Biological Sciences, Univ. of Queensland St. Lucia QLD Australia
| | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Jonathan B. Shurin
- Section of Ecology, Behavior and Evolution, Univ. of California San Diego CA USA
| |
Collapse
|
35
|
Garrison JA, Nordström MC, Albertsson J, Nascimento FJA. Temporal and spatial changes in benthic invertebrate trophic networks along a taxonomic richness gradient. Ecol Evol 2022; 12:e8975. [PMID: 35784047 PMCID: PMC9168554 DOI: 10.1002/ece3.8975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980-1989 and 2010-2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | | | - Jan Albertsson
- Umeå Marine Sciences CentreUmeå UniversityHörneforsSweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|
36
|
Geraldi NR, Vozzo ML, Fegley SR, Anton A, Peterson CH. Oyster abundance on subtidal reefs depends on predation, location, and experimental duration. Ecosphere 2022. [DOI: 10.1002/ecs2.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Nathan R. Geraldi
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
- Department of Bioscience Aarhus University Silkeborg Denmark
| | - Maria L. Vozzo
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Stephen R. Fegley
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
| | - Andrea Anton
- Global Change Research Group, IMEDEA (CSIC‐UIB) Mediterranean Institute for Advanced Studies Esporles Illes Balears Spain
| | - Charles H. Peterson
- Department of Marine Sciences, University of North Carolina at Chapel Hill Institute of Marine Sciences Morehead City North Carolina USA
| |
Collapse
|
37
|
Mehlhoop AC, Van Moorter B, Rolandsen CM, Hagen D, Granhus A, Eriksen R, Ringsby TH, Solberg E. Moose in our neighborhood: Does perceived hunting risk have cascading effects on tree performance in vicinity of roads and houses? Ecol Evol 2022; 12:e8795. [PMID: 35386875 PMCID: PMC8977646 DOI: 10.1002/ece3.8795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5-10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).
Collapse
Affiliation(s)
- Anne C. Mehlhoop
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
- Department of BiologyCentre of Biodiversity DynamicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | | | - Dagmar Hagen
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Aksel Granhus
- Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Rune Eriksen
- Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Thor Harald Ringsby
- Department of BiologyCentre of Biodiversity DynamicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | |
Collapse
|
38
|
Szefer P, Molem K, Sau A, Novotny V. Weak effects of birds, bats, and ants on their arthropod prey on pioneering tropical forest gap vegetation. Ecology 2022; 103:e3690. [PMID: 35322403 DOI: 10.1002/ecy.3690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The relative roles of plants competing for resources versus top-down control of vegetation by herbivores, in turn impacted by predators, during early stages of tropical forest succession remain poorly understood. Here we examine the impact of insectivorous birds, bats and ants exclusion on arthropods communities on replicated 5x5 m of pioneering early successional vegetation plots in lowland tropical forest gaps in Papua New Guinea. In plots from which focal taxa of predators were excluded we observed increased biomass of herbivorous and predatory arthropods, and increased density, and decreased diversity of herbivorous insects. However, changes in the biomass of plants, herbivores and arthropod predators were positively correlated or uncorrelated between these three trophic levels and also between individual arthropod orders. Arthropod abundance and biomass correlated strongly with the plant biomass irrespective of the arthropods' trophic position - a signal of bottom-up control. Patterns in herbivore specialization confirm lack of a strong top-down control and were largely unaffected by the exclusion of insectivorous birds, bats and ants. No changes of plant-herbivore interaction networks were detected except for decrease in modularity of the exclosure plots. Our results suggest weak top-down control of herbivores, limited compensation between arthropod and vertebrate predators, and limited intra-guild predation by birds, bats and ants. Possible explanations are strong bottom-up control, a low activity of the higher order predators, especially birds, possibly also bats, in gaps, and continuous influx of herbivores from surrounding mature forest matrix.
Collapse
Affiliation(s)
- Piotr Szefer
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice, Czech Republic.,Biology Centre, Institute of Entomology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| | - Kenneth Molem
- New Guinea Binatang Research Centre, PO Box 604, Madang 511, Papua New Guinea
| | - Austin Sau
- New Guinea Binatang Research Centre, PO Box 604, Madang 511, Papua New Guinea
| | - Vojtech Novotny
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, České Budějovice, Czech Republic.,Biology Centre, Institute of Entomology, Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| |
Collapse
|
39
|
Abstract
AbstractWatershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.
Collapse
|
40
|
Hamisi RA, Warui CM, Njoroge P. Nesting success of Sharpe’s Longclaw (Macronyx sharpei Jackson, 1904) around the grasslands of lake Ol’bolossat Nyandarua, Kenya. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.6762.14.1.20461-20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Sharpe’s Longclaw Macronyx sharpei is an endangered Kenyan endemic bird restricted to high-altitude grasslands with long tussocks. The species occurs on the grasslands surrounding Lake Ol’Bolossat in Nyandarua, Kenya, an area that is globally recognized as an Important Bird and Biodiversity Area. The grasslands receive little conservation measures, which have led to the decline in the population density of Sharpe’s Longclaw. Nesting success in birds is crucial for their population growth. The daily survival rate for natural nests of Sharpe’s Longclaw in the grasslands of Lake Ol’Bolossat had not been systematically assessed prior to this study. Natural nests were actively searched during the breeding seasons of March–May 2016, while artificial nests were constructed using dry grass containing artificial eggs made of cream modeling clay. Natural nests had a higher daily nest survival percentage than artificial nests. The highest daily nest survival rate was 40% and the lowest 0.01%. Predators, livestock grazing and fires greatly reduced the survival of nestlings. We recommend intensive ecological management of the high-altitude grasslands of Lake Ol’Bolossat.
Collapse
|
41
|
Zanón Martínez JI, Seoane J, Kelly MJ, Sarasola JH, Travaini A. Assessing carnivore spatial co-occurrence and temporal overlap in the face of human interference in a semiarid forest. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02482. [PMID: 34674337 DOI: 10.1002/eap.2482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Apex predators drive top-down effects in ecosystems and the loss of such species can trigger mesopredator release. This ecological process has been well documented in human-modified small areas, but for management and conservation of ecological communities, it is important to know which human factors affect apex predator occurrence and which mediate mesopredators release at large scales. We hypothesized that mesopredators would avoid spatial and temporal overlap with the apex predator, the puma; but that human perturbations (i.e., cattle raising and trophy hunting) would dampen top-down effects and mediate habitat use. We installed 16 camera traps in each of 45, 10 × 10 km grid cells in the Caldén forest region of central Argentina resulting in 706 total stations covering 61,611 km2 . We used single-season occupancy and two-species co-occurrence models and calculated the species interaction factor (SIF) to explore the contributions of habitat, biotic, and anthropic variables in explaining co-occurrence between carnivore pairs. We also used kernel density estimation techniques to analyze temporal overlap in activity patterns of the carnivore guild. We found that puma habitat use increased with abundance of large prey and with proximity to protected areas. Geoffroy's cats and skunks spatially avoided pumas and this effect was strong and mediated by distance to protected areas and game reserves, but pumas did not influence pampas fox and pampas cat space use. At medium and low levels of puma occupancy, we found evidence of spatial avoidance between three pairs of mesocarnivores. All predators were mostly nocturnal and crepuscular across seasons and mesopredators showed little consistent evidence of changing activity patterns with varying levels of puma occupancy or human interference. We found potential for mesopredator release at large scale, especially on the spatial niche axis. Our results suggest that a combination of interacting factors, in conjunction with habitat features and intervening human activities, may make mesopredator release unlikely or difficult to discern at broad scales. Overall, we believe that promoting the creation of new protected areas linked by small forest patches would likely lead to increased predator and prey abundances, as well as the interactions among carnivores inside and outside of protected areas.
Collapse
Affiliation(s)
- Juan I Zanón Martínez
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
- Centro para el Estudio y Conservación de las Aves Rapaces en Argentina, Universidad Nacional de La Pampa, Avenida Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Javier Seoane
- Terrestrial Ecology Group-TEG, Department of Ecology, Universidad Autónoma de Madrid, C/Darwin, 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Marcella J Kelly
- Department of Fish and Wildlife Conservation, Virginia Tech, 146 Cheatham Hall, Blacksburg, Virginia, 24061-0321, USA
| | - José Hernán Sarasola
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa, Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
- Centro para el Estudio y Conservación de las Aves Rapaces en Argentina, Universidad Nacional de La Pampa, Avenida Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Alejandro Travaini
- Centro de Investigación de Puerto Deseado, Universidad Nacional de la Patagonia Austral, CONICET, Avenida Prefectura Naval s/n, 9050, Puerto Deseado, Santa Cruz, Argentina
| |
Collapse
|
42
|
Characterization of Trophic Structure of Fish Assemblages in the East and South Seas of Korea Based on C and N Stable Isotope Ratios. WATER 2021. [DOI: 10.3390/w14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess seasonal variation in the food-web structure of fish assemblages in the East (two sites) and the South (one site) Seas of Korea, and to compare the isotopic niche areas between the regions. To do this, we analyzed the community structures and the δ13C and δ15N values for fish assemblages, and their potential food sources collected during May and October 2020. There were spatial differences in the diversity and dominant species of fish assemblages between the two seas. The fish assemblages in the South Sea had relatively wide ranges of δ13C and δ15N (−22.4‰ to −15.3‰ and 7.4‰ to 13.8‰, respectively) compared to those (−22.1‰ to −18.0‰ and 9.8‰ to 13.6‰, respectively) in the East Sea. The δ13C and δ15N values of suspended particulate organic matter, zooplankton, and fish assemblages differed significantly among sites and between seasons (PERMANOVA, p < 0.05, in all cases). Moreover, isotopic niche indices were relatively higher in the South Sea compared to those in the East Sea. Such differences in food-web characteristics among sites are likely due to the specific environmental effects (especially, major currents) on the differences in the species compositions and, therefore, their trophic relationships. Overall, these results allow for a deeper understanding of the changing trophic diversity and community structure of fish assemblages resulting from climate variability.
Collapse
|
43
|
Ode PJ. FE Spotlight: Friend or foe? The complex relationships within trophic cascades (FE Spotlight on Cuny et al. ‘The enemy of my enemy is not always my friend: Negative effects of carnivorous arthropods on plants’). Funct Ecol 2021. [DOI: 10.1111/1365-2435.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul J. Ode
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
| |
Collapse
|
44
|
Shukla I, Kilpatrick AM, Beltran RS. Variation in resting strategies across trophic levels and habitats in mammals. Ecol Evol 2021; 11:14405-14415. [PMID: 34765115 PMCID: PMC8571619 DOI: 10.1002/ece3.8073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Mammals must carefully balance rest with other behaviors that influence fitness (e.g., foraging, finding a mate) while minimizing predation risk. However, factors influencing resting strategies and the degree to which resting strategies are driven by the activities of predators and/or prey remain largely unknown. Our goal was to examine how mammalian resting strategies varied with trophic level, body mass, and habitat. We reviewed findings from 127 publications and classified the resting strategies of terrestrial and aquatic mammalian species into three categories: social (e.g., resting in groups), temporal (e.g., resting during the day), or spatial (e.g., resting in burrows). Temporal strategies were most common (54% of cases), but the prevalence of strategies varied with body mass and among trophic levels. Specifically, lower trophic levels and smaller species such as rodents and lagomorphs used more spatial and social resting strategies, whereas top predators and larger species used mostly temporal resting strategies. Resting strategies also varied among habitat types (e.g., rainforest vs. grassland), but this was primarily because closely related species shared both habitats and resting strategies. Human presence also affected resting strategies at all trophic levels but most strongly influenced top predators through shifts in rest timing. Human-induced behavioral changes in rest patterns cascade to modify behaviors across multiple trophic levels. These findings advance our fundamental understanding of natural history and ecology in wild animals and provide a roadmap for future comparative studies.
Collapse
Affiliation(s)
- Ishana Shukla
- Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCAUSA
| | | | | |
Collapse
|
45
|
Barychka T, Mace GM, Purves DW. The Madingley general ecosystem model predicts bushmeat yields, species extinction rates and ecosystem‐level impacts of bushmeat harvesting. OIKOS 2021. [DOI: 10.1111/oik.07748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatsiana Barychka
- Centre for Biodiversity and Environment Research, Dept of Genetics, Evolution and Environment, Univ. College London London UK
| | - Georgina M. Mace
- Centre for Biodiversity and Environment Research, Dept of Genetics, Evolution and Environment, Univ. College London London UK
| | | |
Collapse
|
46
|
Bartel SL, Orrock JL. Past agricultural land use affects multiple facets of ungulate antipredator behavior. Behav Ecol 2021. [DOI: 10.1093/beheco/arab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Antipredator behavior affects prey fitness, prey demography, and the strength of ecological interactions. Although predator-prey interactions increasingly occur in habitats that experience multiple forms of human-generated disturbance, it is unclear how different forms of disturbance might affect antipredator behavior. Fire is a contemporary disturbance that has dramatic effects on terrestrial habitats. Such habitats may have also experienced past disturbances, like agricultural land use, that leave lasting legacies on habitat structure (e.g., overstory and understory composition). It is unclear how these past and present disturbances affect the use of different antipredator behaviors, like temporal avoidance and vigilance. We examined whether variation in disturbance regimes generates differences in ungulate antipredator behavior by using cameras to measure white-tailed deer vigilance and activity time across 24 longleaf pine woodlands that vary in past land use and contemporary fire regime. Regardless of land-use history, woodlands with high fire frequencies had 4 times less vegetation cover than low-fire woodlands, generating riskier habitats for deer; however, deer responded to fire with different antipredator strategies depending on land-use history. In nonagricultural woodlands, fire affected deer activity time such that activity was nocturnal in low-fire woodlands and crepuscular in high-fire woodlands. In post-agricultural woodlands, fire affected vigilance and not activity time such that deer were more vigilant in high-fire woodlands than in low-fire woodlands. These results suggest that ungulate antipredator behavior may vary spatially depending on past land use and contemporary fire regime, and such disturbances may generate “landscapes of fear” that persist for decades after agricultural use.
Collapse
Affiliation(s)
- Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison , 363 Birge Hall, 430 Lincoln Dr., Madison, WI , USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison , 363 Birge Hall, 430 Lincoln Dr., Madison, WI , USA
| |
Collapse
|
47
|
Ning Z, Chen C, Xie T, Zhu Z, Wang Q, Cui B, Bai J. Can the native faunal communities be restored from removal of invasive plants in coastal ecosystems? A global meta-analysis. GLOBAL CHANGE BIOLOGY 2021; 27:4644-4656. [PMID: 34170600 DOI: 10.1111/gcb.15765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Coastal ecosystems worldwide are being threatened by invasive plants in the context of global changes. However, how invasive plants influence native faunal communities and whether native faunal communities can recover following the invader removals/controls across global coastal ecosystems are still poorly understood. Here, we present the first global meta-analysis to quantify the impacts of Spartina species invasions on coastal faunal communities and further to evaluate the outcomes of Spartina species removals on faunal community recovery based on 74 independent studies. We found that invasive Spartina species generally decreased the biodiversity (e.g., species richness), but increased coastal faunal abundance (e.g., individual number) and fitness (e.g., biomass), though the effect on abundance was insignificant. The pattern of influence was strongly dependent on habitat types, faunal taxa, trophic levels, and feeding types. Specifically, Spartina species invasion of mudflats caused greater impacts than invasion of vegetated habitats. Insects and birds at higher trophic levels were strongly affected by invasive Spartina, indicating that invasive plant effects can cascade upward along the food chain. Additionally, impacts of Spartina invasions were more obvious on food specialists such as herbivores and carnivores. Furthermore, our analyses revealed that invader removals were overall beneficial for native faunal communities to recover from the displacement caused by Spartina invasions, but this recovery process depended on specific removal measure and time. For example, the long-term waterlogging had strong negative impacts on faunal recovery, so it should not be encouraged. Our findings suggest that invasive plants could have contrasting effects on functional responses of native faunal communities. Although invasive plant removals could restore native faunal communities, future functional restorations of invaded ecosystems should take the legacy effects of invasive species on native communities into account. These findings provide insightful implications for future scientific controls of invasive species and ecosystem restoration under intensifying global changes.
Collapse
Affiliation(s)
- Zhonghua Ning
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| | - Cong Chen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Science, Beijing Normal University at Zhuhai, Guangdong, China
| | - Tian Xie
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| | - Zhenchang Zhu
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangdong, China
| | - Qing Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Science, Beijing Normal University at Zhuhai, Guangdong, China
| | - Baoshan Cui
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| | - Junhong Bai
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
- Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, China
| |
Collapse
|
48
|
Hočevar S, Kuparinen A. Marine food web perspective to fisheries-induced evolution. Evol Appl 2021; 14:2378-2391. [PMID: 34745332 PMCID: PMC8549614 DOI: 10.1111/eva.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Fisheries exploitation can cause genetic changes in heritable traits of targeted stocks. The direction of selective pressure forced by harvest acts typically in reverse to natural selection and selects for explicit life histories, usually for younger and smaller spawners with deprived spawning potential. While the consequences that such selection might have on the population dynamics of a single species are well emphasized, we are just beginning to perceive the variety and severity of its propagating effects within the entire marine food webs and ecosystems. Here, we highlight the potential pathways in which fisheries-induced evolution, driven by size-selective fishing, might resonate through globally connected systems. We look at: (i) how a size truncation may induce shifts in ecological niches of harvested species, (ii) how a changed maturation schedule might affect the spawning potential and biomass flow, (iii) how changes in life histories can initiate trophic cascades, (iv) how the role of apex predators may be shifting and (v) whether fisheries-induced evolution could codrive species to depletion and biodiversity loss. Globally increasing effective fishing effort and the uncertain reversibility of eco-evolutionary change induced by fisheries necessitate further research, discussion and precautionary action considering the impacts of fisheries-induced evolution within marine food webs.
Collapse
Affiliation(s)
- Sara Hočevar
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
49
|
Thorne LH, Nye JA. Trait-mediated shifts and climate velocity decouple an endothermic marine predator and its ectothermic prey. Sci Rep 2021; 11:18507. [PMID: 34531442 PMCID: PMC8445949 DOI: 10.1038/s41598-021-97318-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/19/2021] [Indexed: 12/02/2022] Open
Abstract
Climate change is redistributing biodiversity globally and distributional shifts have been found to follow local climate velocities. It is largely assumed that marine endotherms such as cetaceans might shift more slowly than ectotherms in response to warming and would primarily follow changes in prey, but distributional shifts in cetaceans are difficult to quantify. Here we use data from fisheries bycatch and strandings to examine changes in the distribution of long-finned pilot whales (Globicephala melas), and assess shifts in pilot whales and their prey relative to climate velocity in a rapidly warming region of the Northwest Atlantic. We found a poleward shift in pilot whale distribution that exceeded climate velocity and occurred at more than three times the rate of fish and invertebrate prey species. Fish and invertebrates shifted at rates equal to or slower than expected based on climate velocity, with more slowly shifting species moving to deeper waters. We suggest that traits such as mobility, diet specialization, and thermoregulatory strategy are central to understanding and anticipating range shifts. Our findings highlight the potential for trait-mediated climate shifts to decouple relationships between endothermic cetaceans and their ectothermic prey, which has important implications for marine food web dynamics and ecosystem stability.
Collapse
Affiliation(s)
- L H Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - J A Nye
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.,Institute of Marine Sciences, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Cherriman SC, Fleming PA, Shephard JM, Olsen PD. Climate influences productivity but not breeding density of wedge‐tailed eagles
Aquila audax
in arid and mesic Western Australia. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon C. Cherriman
- Centre for Climate‐Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch, Perth Western Australia 6150Australia
- iNSiGHT Ornithology Parkerville Western AustraliaAustralia
| | - Patricia A. Fleming
- Centre for Climate‐Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch, Perth Western Australia 6150Australia
| | - Jill M. Shephard
- Centre for Climate‐Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch, Perth Western Australia 6150Australia
| | - Penny D. Olsen
- Division of Ecology and Evolution The Australian National University Acton Australian Capital Territory Australia
| |
Collapse
|