1
|
Zhang K, Jia R, Zhang Q, Xiang S, Wang N, Xu L. Metabolic dysregulation-triggered neutrophil extracellular traps exacerbate acute liver failure. FEBS Lett 2024; 598:2450-2462. [PMID: 39155145 DOI: 10.1002/1873-3468.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024]
Abstract
Acute liver failure (ALF) is an acute liver disease with a high mortality rate in clinical practice, characterized histologically by extensive hepatocellular necrosis and massive neutrophil infiltration. However, the role of these abnormally infiltrating neutrophils during ALF development is unclear. Here, in an ALF mouse model, metabolites were identified that promote the formation of neutrophil extracellular traps (NETs) in the liver, subsequently influencing macrophage differentiation and disease progression. ALF occurs with abnormalities in hepatic and intestinal metabolites. Abnormal metabolites (LTD4 and glutathione) can directly, or indirectly via reactive oxygen species, promote NET formation of infiltrating neutrophils, which subsequently regulate macrophages in a pro-inflammatory M1-like state, inducing an amplification of the destructive effects of inflammation. Together, this study provides new insights into the role of NETs in the pathogenesis of ALF.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shihao Xiang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
2
|
Patel B, Wi CI, Hasassri ME, Divekar R, Absah I, Almallouhi E, Ryu E, King K, Juhn YJ. Heterogeneity of asthma and the risk of celiac disease in children. Allergy Asthma Proc 2018; 39:51-58. [PMID: 29279060 DOI: 10.2500/aap.2018.39.4100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although human leukocyte antigen (HLA)-DR and HLA-DQ genes and gluten play crucial roles in developing celiac disease (CD), most patients with these risk factors still do not develop CD, which indicates additional unrecognized risk factors. OBJECTIVE To determine the association between asthma and the risk of CD in children. METHODS We conducted a population-based retrospective case-control study in children who resided in Olmsted County, Minnesota. We identified children with CD (cases) between January 1, 1997, and December 31, 2014, and compared these with children without CD (controls) (1:2 matching). Asthma status was ascertained by using the predetermined asthma criteria (PAC) and the asthma predictive index (API). Data analysis included conditional logistic regression models and an unsupervised network analysis by using an independent phenome-wide association scan (PheWAS) data set. RESULTS Although asthma status as determined by using PAC was not associated with the risk of CD (odds ratio [OR] 1.4 [95% confidence interval {CI}, 0.8-2.5]; p = 0.2), asthma status by using the API was significantly associated (OR 2.8 [95% CI, 1.3-6.0]; p = 0.008). A subgroup analysis indicated that children with both asthma as determined by using PAC and a family history of asthma had an increased risk of CD compared with those without asthma (OR 2.28 [95% CI, 1.11-4.67]; p = 0.024). PheWAS data showed a cluster of asthma single nucleotide polymorphisms and patients with CD. CONCLUSION A subgroup of children with asthma who also had a family history of asthma seemed to be at an increased risk of CD, and, thus, the third factor that underlies the risk of CD might be related to genetic factors for asthma. Heterogeneity of asthma plays a role in determining the risk of asthma-related comorbidity.
Collapse
|
3
|
Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway. Neuropharmacology 2013; 75:407-15. [PMID: 23973310 DOI: 10.1016/j.neuropharm.2013.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/31/2013] [Accepted: 08/10/2013] [Indexed: 11/21/2022]
Abstract
Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway.
Collapse
|
4
|
Role of ROS/RhoA/PI3K/PKB Signaling in NS1619-Mediated Blood–Tumor Barrier Permeability Increase. J Mol Neurosci 2012; 48:302-12. [DOI: 10.1007/s12031-012-9789-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/25/2012] [Indexed: 12/22/2022]
|
5
|
Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: From molecules to diseases. World J Gastrointest Pathophysiol 2011; 2:123-37. [PMID: 22184542 PMCID: PMC3241743 DOI: 10.4291/wjgp.v2.i6.123] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Tight junctions (TJs) are structures between cells where cells appear in the closest possible contact. They are responsible for sealing compartments when epithelial sheets are generated. They regulate the permeability of ions, (macro) molecules and cells via the paracellular pathway. Their structure at the electron microscopic level has been well known since the 1970s; however, only recently has their macromolecular composition been revealed. This review first examines the major macromolecular components of the TJs (occludin, claudins, junctional adhesion molecule and tricellulin) and then the associated macromolecules at the intracellular plaque [zonula occludens (ZO)-1, ZO-2, ZO-3, AF-6, cingulin, 7H6]. Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs. The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly. Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states. Specifically, intestinal TJs may exert a pathogenetic role in intestinal (inflammatory bowel disease, celiac disease) and extraintestinal diseases (diabetes type 1, food allergies, autoimmune diseases). Additionally, intestinal TJs may be secondarily disrupted during the course of diverse diseases, subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response, which is often associated with clinical deterioration. The major questions in the field are highlighted.
Collapse
|
6
|
Morato-Marques M, Campos MR, Kane S, Rangel AP, Lewis C, Ballinger MN, Kim SH, Peters-Golden M, Jancar S, Serezani CH. Leukotrienes target F-actin/cofilin-1 to enhance alveolar macrophage anti-fungal activity. J Biol Chem 2011; 286:28902-28913. [PMID: 21715328 PMCID: PMC3190697 DOI: 10.1074/jbc.m111.235309] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/28/2011] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-δ (PKCδ) and PI3K but not PKCα and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.
Collapse
Affiliation(s)
- Mariana Morato-Marques
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Marina R Campos
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Steve Kane
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Ana P Rangel
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Casey Lewis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Megan N Ballinger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Sang-Hoon Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Eulji University School of Medicine, Seoul, 139-711, Republic of Korea
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo 05508-900, Brazil
| | - Carlos H Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, and.
| |
Collapse
|
7
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol Rev 2011; 63:539-84. [DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Ong SB, Shah D, Qusous A, Jarvis SM, Kerrigan MJ. Stimulation of regulatory volume increase (RVI) in avian articular chondrocytes by gadolinium chloride. Biochem Cell Biol 2010; 88:505-12. [DOI: 10.1139/o09-179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chondrocytes, the resident cell-type of articular cartilage, are responsible for the regulation of the extracellular matrix (ECM) in response to their physico-chemical environment. Due to the nature of cartilage loading, chondrocytes are exposed to constant changes in extracellular osmolality with a gradual increase throughout the day. As an increase in osmolality attenuates matrix synthesis, we have studied cell volume regulation (regulatory volume increase (RVI)) after hypertonic challenge and the regulation of RVI by the actin cytoskeleton. Using freshly isolated avian articular chondrocytes, changes in actin organisation were studied by confocal laser scanning microscopy following a 43% increase in extracellular osmolality. Using calcein-loading chondrocytes, the capacity for RVI was determined and the rate of volume recovery (t1/2) mathematically extrapolated. Following an increase in extracellular osmolality there was a significant increase (p < 0.05) in cortical actin, inhibited by the removal of extracellular calcium EGTA or by the addition of 100 µmol·L–1 gadolinium chloride. Most cells exhibited slow RVI (t1/2 = 55.5 ± 5.5 min), whereby inhibition of actin polymerisation by gadolinium chloride or the removal of extracellular calcium significantly increased the rate of volume recovery via a bumetanide-sensitive pathway (t1/2 of 29.6 ± 6.5 min and 13.8 ± 3.1 min, respectively). These data suggest the Na+–K+–2Cl– (NKCC) co-transporter regulated by the actin cytoskeleton is involved in avian chondrocyte RVI.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Dinesh Shah
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Ala Qusous
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Simon M. Jarvis
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Mark J.P. Kerrigan
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| |
Collapse
|
9
|
Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 2007; 21:3666-76. [PMID: 17586731 DOI: 10.1096/fj.07-8329com] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) prevents the entrance of circulating molecules and immune cells into the central nervous system. The barrier is formed by specialized brain endothelial cells that are interconnected by tight junctions (TJ). A defective function of the BBB has been described for a variety of neuroinflammatory diseases, indicating that proper regulation is essential for maintaining brain homeostasis. Under pathological conditions, reactive oxygen species (ROS) significantly contribute to BBB dysfunction and inflammation in the brain by enhancing cellular migration. However, a detailed study about the molecular mechanism by which ROS alter BBB integrity has been lacking. Here we demonstrate that ROS alter BBB integrity, which is paralleled by cytoskeleton rearrangements and redistribution and disappearance of TJ proteins claudin-5 and occludin. Specific signaling pathways, including RhoA and PI3 kinase, mediated observed processes and specific inhibitors of these pathways prevented ROS-induced monocyte migration across an in vitro model of the BBB. Interestingly, these processes were also mediated by protein kinase B (PKB/Akt), a previously unknown player in cytoskeleton and TJ dynamics that acted downstream of RhoA and PI3 kinase. Our study reveals new insights into molecular mechanisms underlying BBB regulation and provides novel opportunities for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gerty Schreibelt
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sloniewsky DE, Ridge KM, Adir Y, Fries FP, Briva A, Sznajder JI, Sporn PHS. Leukotriene D4Activates Alveolar Epithelial Na,K-ATPase and Increases Alveolar Fluid Clearance. Am J Respir Crit Care Med 2004; 169:407-12. [PMID: 14578215 DOI: 10.1164/rccm.200304-472oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cysteinyl leukotrienes are increased during acute lung injury in animals and humans. In this study, we determined the effect of leukotriene D4 (LTD4) on the function of Na,K-ATPase in alveolar epithelial cells and on alveolar fluid clearance in rat lungs. LTD4 (1 x 10(-7) M) increased Na,K-ATPase activity at 1 and 5 minutes by 14% (p < 0.05) and 31% (p < 0.001), respectively, in A549 alveolar epithelial cells. This was accompanied by recruitment of Na,K-ATPase alpha1 subunits from intracellular compartment(s) to the basolateral plasma membrane. LTD4-induced alpha1 Na,K-ATPase membrane translocation was blocked by the dual cysteinyl LT1 (cysLT1)/ cysteinyl LT3 (cysLT3) receptor antagonist BAY-u9773, but not by the cysLT1 antagonist MK571, implicating the cysLT3 receptor. Expression of mRNA for cysLT2, but not cysLT1, was confirmed in A549 cells and rat alveolar type 2 cells by reverse transcriptase-polymerase chain reaction. Finally, compared with control, LTD4 (1 x 10(-11) M) increased alveolar fluid clearance by 41% (p < 0.001) in isolated, perfused rat lungs; this was also blocked by BAY-u9773 but not MK571. By activating alveolar epithelial Na,K-ATPase and increasing alveolar fluid reabsorption, cysteinyl leukotrienes may, in part, have a beneficial role in the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Daniel E Sloniewsky
- Division of Pulmonary and Critical Care Medicine, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Paruchuri S, Sjölander A. Leukotriene D4 mediates survival and proliferation via separate but parallel pathways in the human intestinal epithelial cell line Int 407. J Biol Chem 2003; 278:45577-85. [PMID: 12912998 DOI: 10.1074/jbc.m302881200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sailaja Paruchuri
- Division of Experimental Pathology, Department of Laboratory Medicine, Lund University, University Hospital Malmö, Malmö SE-205 02, Sweden
| | | |
Collapse
|
12
|
Massoumi R, Nielsen CK, Azemovic D, Sjölander A. Leukotriene D4-induced adhesion of Caco-2 cells is mediated by prostaglandin E2 and upregulation of α2β1-integrin. Exp Cell Res 2003; 289:342-51. [PMID: 14499635 DOI: 10.1016/s0014-4827(03)00285-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell-cell and extracellular matrix adhesions play important roles in the progression of cancer. We investigated the involvement of the inflammatory mediator leukotriene D4 (LTD4) in the regulation of cell-matrix adhesion of colon cancer (Caco-2) cells. We observed that LTD4 acted via its CysLT1 receptor in these cells to induce increased adhesion to collagen I. LTD4 also enhanced the activation and expression of alpha2beta1-integrins on the cell surface, which we found to be responsible for mediating the increased adhesion to collagen I. LTD4 simultaneously augmented expression of the prostaglandin-generating enzyme cyclooxygenase-2 (COX-2) and increased prostaglandin E2 (PGE2) production in Caco-2 cells. The adhesive capacity of the Caco-2 cells was reduced by specific inhibition of COX-2 and was subsequently restored by PGE2, but not by LTD4. A selective PGE2 receptor antagonist abolished the increased adhesion and the augmented alpha2beta1-integrin expression induced by both PGE2 and LTD4. Summarizing, the inflammatory mediator LTD4 regulates the adhesive properties and migration of the Caco-2 cell line by upregulating COX-2 and stimulating PGE2-induced expression of alpha2beta1-integrins. This suggests that inflammatory mediators such as LTD4 can be involved in the dissemination and survival of colon cancer cells.
Collapse
Affiliation(s)
- Ramin Massoumi
- Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
13
|
Massoumi R, Larsson C, Sjölander A. Leukotriene D4 induces stress-fibre formation in intestinal epithelial cells via activation of RhoA and PKCδ. J Cell Sci 2002; 115:3509-15. [PMID: 12154081 DOI: 10.1242/jcs.115.17.3509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The intestinal epithelial barrier, which is regulated by the actin cytoskeleton, exhibits permeability changes during inflammation. Here we show that activation of the CysLT1 receptor by the inflammatory mediator leukotriene D4 (LTD4) causes a rapid increase in stress-fibre formation in intestinal epithelial cells. This effect was mimicked by cytotoxic necrotising factor-1 (CNF-1)-induced activation of RhoA,overexpression of constitutively active RhoA (L63-RhoA) and phorbol-ester-induced activation of protein kinase C (PKC). In accordance,inhibition of RhoA, by C3 exoenzyme or by dominant-negative RhoA (N19-RhoA),as well as GF109203X-induced inhibition of PKC, suppressed the LTD4-induced stress-fibre formation. Introduction of the dominant-negative regulatory domain of PKCδ, but not the corresponding structures from PKCα, βII or ϵ, blocked the LTD4-induced stress-fibre formation. Evaluating the relationship between PKCδ and RhoA in LTD4-induced stress-fibre formation,we found that C3 exoenzyme inhibited the rapid LTD4-elicited translocation of PKCδ to the plasma membrane. Furthermore, CNF-1-induced stress-fibre formation was blocked by GF109203X and by overexpression of the regulatory domain of PKC-δ, whereas PKC-induced stress-fibre production was not affected by N19-RhoA. We conclude that PKC-δ is located downstream of RhoA and that active RhoA and PKCδ are both necessary for LTD4-induced stress-fibre formation.
Collapse
Affiliation(s)
- Ramin Massoumi
- Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | | | | |
Collapse
|
14
|
Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O'Byrne PM. Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med 2002; 166:738-42. [PMID: 12204874 DOI: 10.1164/rccm.200204-291oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cysteinyl leukotrienes promote airway smooth muscle (ASM) contraction and proliferation. Little is known about their role in ASM migration. We investigated this using cultured human ASMs (between the second and fifth passages) obtained from the large airways of resected nonasthmatic lung. Platelet-derived growth factor-BB (1 ng/ml) promoted significant (3.5-fold) ASM migration of myocytes across collagen-coated 8- micro m polycarbonate membranes in Transwell culture plates. Leukotriene E(4) (10(-7), 10(-8), 10(-9) M) did not demonstrate a chemotactic effect; it did promote chemokinesis. Priming by leukotriene E(4) (10(-7) M) significantly augmented the directional migratory response to platelet-derived growth factor (1.5-fold, p < 0.05). This was blocked by montelukast (10(-6) M), demonstrating the effect to be mediated by the cysteinyl leukotriene receptor. The "priming effect" was also partially attenuated by prostaglandin E(2) (10(-7) M). Whereas both the chemokinetic and the chemotactic "primed" responses were equally attenuated by a p38 mitogen-activated protein kinase inhibitor (SB203580, 25 micro M) and by a Rho-kinase inhibitor (Y27632, 10 micro M), the chemotactic response showed greater inhibition than chemokinesis by a phosphatidylinositol-3 kinase inhibitor (LY294002, 50 micro M). These experiments suggest that cysteinyl leukotrienes play an augmentary role in human ASM migration. The phosphatidylinositol-3 kinase pathway is a key signaling mechanism in the chemotactic migration of ASM cells in response to cysteinyl leukotrienes.
Collapse
Affiliation(s)
- Krishnan Parameswaran
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Healthcare, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Doucet J, Provost P, Samuelsson B, Rådmark O. Molecular cloning and functional characterization of mouse coactosin-like protein. Biochem Biophys Res Commun 2002; 290:783-9. [PMID: 11785969 DOI: 10.1006/bbrc.2001.6236] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coactosin was first isolated from Dictyostelium discoideum and, as reported, human coactosin-like protein (CLP) was identified in a yeast two-hybrid screen using 5-lipoxygenase (5LO) as a bait. A mouse CLP (mCLP) cDNA clone was identified among EMBL/GenBank EST sequences. The derived amino acid sequence (142 residues) was 95.1% identical with human CLP. Here, we also show that mCLP interacts with actin and 5LO in the two-hybrid system. High-speed cosedimentation assays and GST-binding assays confirmed these protein interactions. In chemical cross-linking experiments, one molecule of mCLP was covalently linked to either one subunit of actin or one molecule of 5LO. The mCLP-F-actin and mCLP-5LO associations were pH-insensitive and Ca(2+)-independent. However, association with actin was best observed at low salt concentrations, while association with 5LO was favored by salt, indicating different binding characteristics.
Collapse
Affiliation(s)
- Johanne Doucet
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, S-171 77, Sweden
| | | | | | | |
Collapse
|
16
|
Oscarsson A, Massoumi R, Sjölander A, Eintrei C. Reorganization of actin in neurons after propofol exposure. Acta Anaesthesiol Scand 2001; 45:1215-20. [PMID: 11736672 DOI: 10.1034/j.1399-6576.2001.451007.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND It has previously been shown that propofol in clinically relevant concentrations induces a calcium-dependent conformational change in the cytoskeleton. The aim of this study was to further clarify the effect of propofol on the actin cytoskeleton and to determine if this conformational change is mediated by the interaction between the GABA(A)-receptor and propofol. METHODS Primary cultured cortical neurons from newborn rats were treated with propofol 3 microg x ml(-1) in a time-response titration, with and without preincubation with the GABA(A)-receptor antagonist, bicuculline. Actin-protein content was detected by Western blot analysis and the cellular content of F-actin measured by a spectrophotometric technique. RESULTS Propofol triggers a relatively slow statistically significant increase in the intracellular F-actin content, maximum after 20-min incubation (160%+/-16.3) (mean+/-SEM) P<0.05. The propofol-induced increase in F-actin was effectively blocked by bicuculline. The increase in intracellular actin content after exposure to propofol as well as the effect of bicuculline were verified by Western blot analysis. CONCLUSION The present study shows that propofol triggers a time-dependent change of actin. Since this reorganization can be blocked effectively by a GABA(A)-receptor antagonist, this suggests that the GABA(A)-receptor is involved in the pathway leading to cytoskeletal reorganization after propofol treatment. The actin polymerization reached its maximum after 20 min. Therefore, we believe that the propofol-induced changes might be connected with slower cellular responses such as cell-to-cell interaction and/or channel regulation.
Collapse
Affiliation(s)
- A Oscarsson
- Department of Anaesthesia/Intensive Care and Pharmacology, Linköping University Hospital, Linköping, Sweden
| | | | | | | |
Collapse
|
17
|
Massoumi R, Sjölander A. Leukotriene D(4) affects localisation of vinculin in intestinal epithelial cells via distinct tyrosine kinase and protein kinase C controlled events. J Cell Sci 2001; 114:1925-34. [PMID: 11329379 DOI: 10.1242/jcs.114.10.1925] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Local inflammatory reactions affect the integrity of intestinal epithelial cells, such as E-cadherin-mediated cell-cell interactions. To elucidate this event, we investigated the effects of an inflammatory mediator, leukotriene D(4)(LTD(4)), on the phosphorylation status and properties of vinculin, a multi-binding protein known to interact with both the E-cadherin-catenin complex and the cytoskeleton. Treatment of an intestinal epithelial cell line with LTD(4)induced rapid tyrosine phosphorylation of vinculin, which was blocked by the Src family tyrosine kinase inhibitor PP1. Simultaneously, LTD(4) caused an increased association between vinculin and actin, and that association was decreased by PP1. LTD(4) also induced dissociation of vinculin from (α)-catenin without affecting the catenin complex itself. This dissociation was not blocked by PP1 but was mimicked by the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA). Also, the PKC inhibitor GF109203X abolished both the LTD(4)- and the TPA-induced dissociation of vinculin from (α)-catenin. Furthermore, LTD(4) caused a colocalisation of vinculin with PKC-(α) in focal adhesions. This accumulation of vinculin was blocked by transfection with a dominant negative inhibitor of PKC (PKC regulatory domain) and also by preincubation with either GF109203X or PP1. Thus, various LTD(4)-induced phosphorylations of vinculin affect the release of this protein from catenin complexes and its association with actin, two events that are necessary for accumulation of vinculin in focal adhesions. Functionally this LTD(4)-induced redistribution of vinculin was accompanied by a PKC-dependent upregulation of active (β)1 integrins on the cell surface and an enhanced (β)1 integrin-dependent adhesion of the cells to collagen IV.
Collapse
Affiliation(s)
- R Massoumi
- Division of Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | | |
Collapse
|
18
|
Provost P, Doucet J, Hammarberg T, Gerisch G, Samuelsson B, Radmark O. 5-Lipoxygenase interacts with coactosin-like protein. J Biol Chem 2001; 276:16520-7. [PMID: 11297527 DOI: 10.1074/jbc.m011205200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified coactosin-like protein (CLP) in a yeast two-hybrid screen using 5-lipoxygenase (5LO) as a bait. In this report, we demonstrate a direct interaction between 5LO and CLP. 5LO associated with CLP, which was expressed as a glutathione S-transferase fusion protein, in a dose-dependent manner. Coimmunoprecipitation experiments using epitope-tagged 5LO and CLP proteins transiently expressed in human embryonic kidney 293 cells revealed the presence of CLP in 5LO immunoprecipitates. In reciprocal experiments, 5LO was detected in CLP immunoprecipitates. Non-denaturing polyacrylamide gel electrophoresis and cross-linking experiments showed that 5LO binds CLP in a 1:1 molar stoichiometry in a Ca(2+)-independent manner. Site-directed mutagenesis suggested an important role for lysine 131 of CLP in mediating 5LO binding. In view of the ability of CLP to bind 5LO and filamentous actin (F-actin), we determined whether CLP could physically link 5LO to actin filaments. However, no F-actin-CLP.5LO ternary complex was observed. In contrast, 5LO appeared to compete with F-actin for the binding of CLP. Moreover, 5LO was found to interfere with actin polymerization. Our results indicate that the 5LO-CLP and CLP-F-actin interactions are mutually exclusive and suggest a modulatory role for 5LO in actin dynamics.
Collapse
Affiliation(s)
- P Provost
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Saegusa S, Tsubone H, Kuwahara M. Leukotriene D(4)-induced Rho-mediated actin reorganization in human bronchial smooth muscle cells. Eur J Pharmacol 2001; 413:163-71. [PMID: 11226389 DOI: 10.1016/s0014-2999(01)00773-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the role of cysteinyl leukotriene (CysLT) receptors on leukotriene D(4)-induced actin reorganization and the signaling pathways of the response in human bronchial smooth muscle cells. The effects of leukotriene D(4) on actin reorganization in human bronchial smooth muscle cells were evaluated by dual-fluorescence labeling of filamentous (F) and monomeric (G) actin with fluorescein isothiocyanate (FITC)-labeled phalloidin and Texas Red-labeled DNase I, respectively. Leukotriene D(4) (100 nM) induced actin reorganization in the presence and absence of extracellular Ca(2+). The CysLT type 1 (CysLT(1)) receptor antagonist ONO 1078 (4-oxo-8(-)[p-(4-phenylbutyloxy) benzoylamino]-2-(tetrazol-5-yl)-4H-1-benzopyran hemihydrate) inhibited leukotriene D(4)-induced actin reorganization. Pretreatment with pertussis toxin, C3 exoenzyme, or tyrosine kinase inhibitors significantly reduced leukotriene D(4)-induced actin reorganization. However, phosphatidylinositol-3-kinase and protein kinase C inhibitors had little effect on these responses. These results suggest that leukotriene D(4)-induced actin reorganization in human bronchial smooth muscle cells is extremely dependent on the CysLT(1) receptor coupled with pertussis toxin-sensitive G protein, Rho GTPases and tyrosine phosphorylation pathways.
Collapse
Affiliation(s)
- S Saegusa
- Department of Comparative Pathophysiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
20
|
Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quan C, Mrsny RJ. The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 2000; 275:29816-22. [PMID: 10887180 DOI: 10.1074/jbc.m002450200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Occludin is an integral membrane protein that has been suggested to play a role in the organization and dynamic function of the epithelial tight junction (TJ). A number of other proteins have also been described to localize to the TJ. We have used a novel bait peptide method to investigate potential protein-protein interactions of the putative coiled-coil domain of occludin with some of these other TJ proteins. A 27-amino acid peptide of the human occludin sequence was synthesized, biotinylated at the N terminus, and modified to contain a photoactive moiety at either its hydrophobic or hydrophilic surface. These bait peptides were alpha-helical in solution, characteristic of coiled-coil structures. Photoactivation studies in the presence and absence of control peptides were used to assess the potential interactions in polarized sheets of a human intestinal cell line T84. Although a large number of proteins associated with the TJ or that are known to be involved in regulatory events of epithelial cells failed to be specifically labeled, occludin itself, ZO-1, protein kinase C-zeta, c-Yes, the regulatory subunit of phosphatidylinositol 3-kinase, and the gap junction component connexin 26 were specifically labeled. Our data demonstrate the potential of one specific domain of occludin, contained within 27 amino acids, to coordinate the binding of proteins that have been previously suggested to modulate TJ structure and function.
Collapse
Affiliation(s)
- A Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|