1
|
Al Yacoub ON, Awwad HO, Zhang Y, Standifer KM. Therapeutic potential of nociceptin/orphanin FQ peptide (NOP) receptor modulators for treatment of traumatic brain injury, traumatic stress, and their co-morbidities. Pharmacol Ther 2022; 231:107982. [PMID: 34480968 DOI: 10.1016/j.pharmthera.2021.107982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a member of the opioid receptor superfamily with N/OFQ as its endogenous agonist. Wide expression of the NOP receptor and N/OFQ, both centrally and peripherally, and their ability to modulate several biological functions has led to development of NOP receptor modulators by pharmaceutical companies as therapeutics, based upon their efficacy in preclinical models of pain, anxiety, depression, Parkinson's disease, and substance abuse. Both posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are debilitating conditions that significantly affect the quality of life of millions of people around the world. PTSD is often a consequence of TBI, and, especially for those deployed to, working and/or living in a war zone or are first responders, they are comorbid. PTSD and TBI share common symptoms, and negatively influence outcomes as comorbidities of the other. Unfortunately, a lack of effective therapies or therapeutic agents limits the long term quality of life for either TBI or PTSD patients. Ours, and other groups, demonstrated that PTSD and TBI preclinical models elicit changes in the N/OFQ-NOP receptor system, and that administration of NOP receptor ligands alleviated some of the neurobiological and behavioral changes induced by brain injury and/or traumatic stress exposure. Here we review the past and most recent progress on understanding the role of the N/OFQ-NOP receptor system in PTSD and TBI neurological and behavioral sequelae. There is still more to understand about this neuropeptide system in both PTSD and TBI, but current findings warrant further examination of the potential utility of NOP modulators as therapeutics for these disorders and their co-morbidities. We advocate the development of standards for common data elements (CDE) reporting for preclinical PTSD studies, similar to current preclinical TBI CDEs. That would provide for more standardized data collection and reporting to improve reproducibility, interpretation and data sharing across studies.
Collapse
Affiliation(s)
- Omar N Al Yacoub
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Hibah O Awwad
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Yong Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America.
| |
Collapse
|
2
|
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an endogenous neuropeptide of 17 amino acids, related to opioid peptides but with its own receptor, distinct from conventional opioid receptors, the ORL1 or NOP receptor. The NOP receptor is a G protein-coupled receptor which activates Gi/o proteins and thus induces an inhibition of neuronal activity. The peptide and its receptor are widely expressed in the central nervous system with a high density of receptors in regions involved in learning and memory. This review describes the consequences of the pharmacological manipulation of the N/OFQ system by NOP receptor ligands on learning processes and on the consolidation of various types of long-term memory. We also discuss the role of endogenous N/OFQ release in the modulation of learning and memory. Finally we propose several putative neuronal mechanisms taking place at the level of the hippocampus and amygdala and possibly underlying the behavioral amnestic or promnesic effects of NOP ligands.
Collapse
Affiliation(s)
- Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
3
|
Caputi FF, Romualdi P, Candeletti S. Regulation of the Genes Encoding the ppN/OFQ and NOP Receptor. Handb Exp Pharmacol 2019; 254:141-162. [PMID: 30689088 DOI: 10.1007/164_2018_196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the years, the ability of N/OFQ-NOP receptor system in modulating several physiological functions, including the release of neurotransmitters, anxiety-like behavior responses, modulation of the reward circuitry, inflammatory signaling, nociception, and motor function, has been examined in several brain regions and at spinal level. This chapter collects information related to the genes encoding the ppN/OFQ and NOP receptor, their regulation, and relative transcriptional control mechanisms. Furthermore, genetic manipulations, polymorphisms, and epigenetic alterations associated with different pathological conditions are discussed. The evidence here collected indicates that the study of ppN/OFQ and NOP receptor gene expression may offer novel opportunities in the field of personalized therapies and highlights this system as a good "druggable target" for different pathological conditions.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Hayashi S, Ohashi K, Mihara S, Nakata E, Emoto C, Ohta A. Discovery of small-molecule nonpeptide antagonists of nociceptin/orphanin FQ receptor: The studies of design, synthesis, and structure–activity relationships for (4-arylpiperidine substituted-methyl)-[bicyclic (hetero)cycloalkanobenzene] derivatives. Eur J Med Chem 2016; 114:345-64. [DOI: 10.1016/j.ejmech.2016.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
|
5
|
The nociceptin/orphanin FQ receptor agonist SR-8993 as a candidate therapeutic for alcohol use disorders: validation in rat models. Psychopharmacology (Berl) 2016; 233:3553-63. [PMID: 27515665 PMCID: PMC5021736 DOI: 10.1007/s00213-016-4385-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/16/2016] [Indexed: 12/30/2022]
Abstract
RATIONALE Alcoholism is a complex disorder in which diverse pathophysiological processes contribute to initiation and progression, resulting in a high degree of heterogeneity among patients. Few pharmacotherapies are presently available, and patient responses to these are variable. The nociceptin/orphanin FQ (NOP) receptor has been suggested to play a role both in alcohol reward and in negatively reinforced alcohol seeking. Previous studies have shown that NOP-receptor activation reduces alcohol intake in genetically selected alcohol-preferring as well as alcohol-dependent rats. NOP activation also blocks stress- and cue-induced reinstatement of alcohol-seeking behavior. OBJECTIVES Here, we aimed to examine a novel, potent, and brain-penetrant small-molecule NOP-receptor agonist, SR-8993, in animal models of alcohol- as well as anxiety-related behavior using male Wistar rats. RESULTS SR-8993 was mildly anxiolytic when given to naïve animals and potently reversed acute alcohol withdrawal-induced ("hangover") anxiety. SR-8993 reduced both home-cage limited access drinking, operant responding for alcohol, and escalation induced through prolonged intermittent access to alcohol. SR-8993 further attenuated stress- as well as cue-induced relapse to alcohol seeking. For the effective dose (1.0 mg/kg), non-specific effects such as sedation may be limited, since a range of control behaviors were unaffected, and this dose did not interact with alcohol elimination. CONCLUSION These findings provide further support for NOP-receptor agonism as a promising candidate treatment for alcoholism and establish SR-8993 or related molecules as suitable for further development as therapeutics.
Collapse
|
6
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
7
|
Abstract
In the past decades, a large number of neuropeptides with unknown functions have been identified in the brain. Among the newly discovered peptides, nociceptin or orphanin-FQ (N/OFQ) peptide has attracted considerable attention because of its sequence homology with the opioid peptide family. N/OFQ and its cognate receptor (NOP receptor) are distributed widely in the mammalian central nervous system, though particularly intense expression is found in corticolimbic structures. Such distinctive pattern of expression suggests a key role of N/OFQ system in higher brain functions, such as cognition and emotion. In this chapter, we will outline the findings supporting the role played by N/OFQ and NOP receptors in learning and memory and discuss the underlying mechanisms.
Collapse
|
8
|
Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Sałaga M, Storr M, Kordek R, Małecka-Panas E, Krajewska WM, Fichna J. Anti-inflammatory and antinociceptive action of an orally available nociceptin receptor agonist SCH 221510 in a mouse model of inflammatory bowel diseases. J Pharmacol Exp Ther 2013; 348:401-9. [PMID: 24345466 DOI: 10.1124/jpet.113.209825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nociceptin receptors (NOPs) are expressed in the gastrointestinal (GI) tract on muscle cell membranes and neurons, as well as the immune cells that infiltrate the mucosa. The involvement of NOPs in the pathophysiology of GI inflammation has been suggested, but due to the lack of selective NOP agonists, it never fully elucidated. Our aim was to characterize the anti-inflammatory and antinociceptive effect of the NOP agonist, SCH 221510 [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo [3.2.1]octan-3-ol], as a potential therapeutic strategy in the treatment of inflammatory bowel diseases (IBD). The anti-inflammatory action of SCH 221510 was determined after intraperitoneal, oral, and intracolonic administration of SCH 221510 (0.1-3.0 mg/kg once or twice daily) in mice treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS). Antinociceptive action of SCH 221510 was evaluated in the mouse model of mustard oil (MO)-induced abdominal pain. Relative NOP mRNA expression was assessed in patients with IBD using real-time reverse transcriptase-polymerase chain reaction. We found that the expression of NOP mRNA was significantly decreased in patients with IBD. The administration (0.1 and 1.0 mg/kg i.p. twice daily and 3 mg/kg p.o. twice daily) of SCH 221510 attenuated TNBS colitis in mice. This effect was blocked by a selective NOP antagonist [J-113397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one]]. The intracolonic injections of SCH 221510 did not improve colitis in mice. The antinociceptive effect of SCH 221510 was observed after oral administration of SCH 221510 in MO-induced pain tests in mice with acute colitis. In conclusion, our results show a potent anti-inflammatory and antinociceptive effect upon selective activation of NOP receptors and suggest that the NOP agonist SCH 221510 is a promising drug candidate for future treatment of IBD.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biomolecular Chemistry (M.So., M.Sa., J.F.), Department of Digestive Tract Diseases (A.M., E.M.-P.), and Department of Pathology (R.K.), Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland (A.I.C., P.K.Z., W.M.K.); and Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (M.St.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mallimo EM, Kusnecov AW. The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 2013; 7:173. [PMID: 24155687 PMCID: PMC3792366 DOI: 10.3389/fncel.2013.00173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/14/2013] [Indexed: 01/23/2023] Open
Abstract
The neuropeptide, orphanin FQ/nociceptin (OFQ/N or simply, nociceptin), is expressed in both neuronal and non-neuronal tissue, including the immune system. In the brain, OFQ/N has been investigated in relation to stress, anxiety, learning and memory, and addiction. More recently, it has also been found that OFQ/N influences glial cell functions, including oligodendrocytes, astrocytes, and microglial cells. However, this latter research is relatively small, but potentially important, when observations regarding the relationship of OFQ/N to stress and emotional functions is taken into consideration and integrated with the growing evidence for its involvement in cells that mediate inflammatory events. This review will first provide an overview and understanding of how OFQ/N has been implicated in the HPA axis response to stress, followed by an understanding of its influence on natural and learned anxiety-like behavior. What emerges from an examination of the literature is a neuropeptide that appears to counteract anxiogenic influences, but paradoxically, without attenuating HPA axis responses generated in response to stress. Studies utilized both central administration of OFQ/N, which was shown to activate the HPA axis, as well as antagonism of NOP-R, the OFQ/N receptor. In contrast, antagonist or transgenic OFQ/N or NOP-R knockout studies, showed augmentation of HPA axis responses to stress, suggesting that OFQ/N may be needed to control the magnitude of the HPA axis response to stress. Investigations of behavior in standard exploratory tests of anxiogenic behavior (eg., elevated plus maze) or learned fear responses have suggested that OFQ/N is needed to attenuate fear or anxiety-like behavior. However, some discrepant observations, in particular, those that involve appetitive behaviors, suggest a failure of NOP-R deletion to increase anxiety. However, it is also suggested that OFQ/N may operate in an anxiolytic manner when initial anxiogenic triggers (eg., the neuropeptide CRH) are initiated. Finally, the regulatory functions of OFQ/N in relation to emotion-related behaviors may serve to counteract potential neuroinflammatory events in the brain. This appears to be evident within the glial cell environment of the brain, since OFQ/N has been shown to reduce the production of proinflammatory cellular and cytokine events. Given that both OFQ/N and glial cells are activated in response to stress, it is possible that there is a possible convergence of these two systems that has important repercussions for behavior and neuroplasticity.
Collapse
Affiliation(s)
- Elyse M Mallimo
- Behavioral and Systems Neuroscience Program, Department of Psychology, Rutgers University New Brunswick, NJ, USA
| | | |
Collapse
|
10
|
Aujla H, Cannarsa R, Romualdi P, Ciccocioppo R, Martin-Fardon R, Weiss F. Modification of anxiety-like behaviors by nociceptin/orphanin FQ (N/OFQ) and time-dependent changes in N/OFQ-NOP gene expression following ethanol withdrawal. Addict Biol 2013; 18:467-79. [PMID: 22804785 PMCID: PMC3477306 DOI: 10.1111/j.1369-1600.2012.00466.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anxiety is a key consequence of ethanol withdrawal and important risk factor for relapse. The neuropeptide nociceptin/orphanin FQ (N/OFQ) or agonists at this peptide's receptor (NOP) exert anxiolytic-like and antistress actions. N/OFQ dysfunction has been linked to both a high-anxiety behavioral phenotype and excessive ethanol intake. Recent studies suggest a possible link between genetic polymorphisms of the NOP transcript and alcoholism. Thus, in the present study, the effects of intracerebroventricularly administered N/OFQ were tested for modification of anxiety-like behaviors, using the shock-probe defensive burying and elevated plus-maze tests, in ethanol-dependent versus non-dependent rats, 1 and 3 weeks following termination of ethanol exposure. Additionally, prepro-N/OFQ (ppN/OFQ) and NOP receptor gene expression was measured in the central nucleus of the amygdala, in the bed nucleus of the stria terminalis and in the lateral hypothalamus at the same timepoints in separate subjects. One week post-ethanol, N/OFQ dose-dependently attenuated elevated anxiety-like behavior in ethanol-dependent rats and produced anxiolytic-like effects in non-dependent controls in both behavioral tests. However, 3 weeks post-ethanol, N/OFQ altered behavior consistent with anxiogenic-like actions in ethanol-dependent rats but continued to exert anxiolytic-like actions in non-dependent controls. These findings were paralleled by ethanol history-dependent changes of ppN/OFQ and NOP gene expression that showed a distinctive time course in the examined brain structures. The results demonstrate that ethanol dependence and withdrawal are associated with neuroadaptive changes in the N/OFQ-NOP system, suggesting a role of this neuropeptidergic pathway as a therapeutic target for the treatment of alcohol abuse.
Collapse
Affiliation(s)
- H Aujla
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California
| | - R Cannarsa
- Department of Pharmacology, University of Bologna, Bologna, Italy
| | - P Romualdi
- Department of Pharmacology, University of Bologna, Bologna, Italy
| | - R Ciccocioppo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - R Martin-Fardon
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California
| | - F Weiss
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
11
|
Tariq S, Nurulain SM, Tekes K, Adeghate E. Deciphering intracellular localization and physiological role of nociceptin and nocistatin. Peptides 2013; 43:174-83. [PMID: 23454174 DOI: 10.1016/j.peptides.2013.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin and nocistatin are endogenous ligands of G protein coupled receptor family. Numerous techniques have been used to study the diverse parameters including, localization, distribution and ultrastructure of these peptides. The majority of the study parameters are based on their physiological roles in different organ systems. The present study presents an overview of the different methods used for the study of nociceptin, nocistatin and their receptors. Nociceptin has been implicated in many physiological functions including, nociception, locomotion, stressed-induced analgesia, learning and memory, neurotransmitter and hormone release, renal function, neuronal differentiation, sexual and reproductive behavior, uterine contraction, feeding, anxiety, gastrointestinal motility, cardiovascular function, micturition, cough, hypoxic-ischemic brain injury, diuresis and sodium balance, temperature regulation, vestibular function, and mucosal transport. It has been noted that the use of light and electron microscopy was less frequent, though it may be one of the most promising tools to study the intracellular localization of these neuropeptides. In addition, more studies on the level of circulating nociceptin and nocistatin are also necessary for investigating their clinical roles in health and disease. A variety of modern tools including physiological, light and electron microscopy (EM) are needed to decipher the extent of intracellular localization, tissue distribution and function of these peptides. The intracellular localization of nociceptin and nocistatin will require a high resolution transmission EM capable of identifying these peptides and other supporting molecules that co-localize with them. A tracing technique could also elucidate a possible migratory ability of nociceptin and nocistatin from one cellular compartment to the other.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
12
|
|
13
|
Calo' G, Rizzi A, Cifani C, Micioni Di Bonaventura MV, Regoli D, Massi M, Salvadori S, Lambert DG, Guerrini R. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci Ther 2010; 17:178-98. [PMID: 20497197 DOI: 10.1111/j.1755-5949.2009.00107.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) controls several biological functions via selective activation of the N/OFQ peptide receptor (NOP). [(pF)Phe(4) Aib(7) Arg(14) Lys(15) ]N/OFQ-NH(2) (UFP-112) is an NOP receptor ligand designed using a combination of several chemical modifications in the same peptide sequence that increase NOP receptor affinity/potency and/or reduce susceptibility to enzymatic degradation. In the present review article, we summarize data from the literature and present original findings on the in vitro and in vivo pharmacological features of UFP-112. Moreover, important biological actions and possible therapeutic indications of NOP receptor agonists are discussed based on the results obtained with UFP-112 and compared with other peptide and nonpeptide NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo'
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, and National Institute of Neuroscience, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience 2010; 165:1420-8. [DOI: 10.1016/j.neuroscience.2009.11.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/28/2009] [Accepted: 11/18/2009] [Indexed: 11/22/2022]
|
15
|
Vitale G, Ruggieri V, Filaferro M, Frigeri C, Alboni S, Tascedda F, Brunello N, Guerrini R, Cifani C, Massi M. Chronic treatment with the selective NOP receptor antagonist [Nphe 1, Arg 14, Lys 15]N/OFQ-NH 2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacology (Berl) 2009; 207:173-89. [PMID: 19711054 DOI: 10.1007/s00213-009-1646-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 08/10/2009] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The present study was designed to assess the antidepressant effects of UFP-101, a selective nociceptin/orphanin FQ peptide (NOP) receptor antagonist, in a validated animal model of depression: the chronic mild stress (CMS). MATERIALS AND METHODS AND RESULTS UFP-101 (5, 10 and 20 nmol/rat; i.c.v., once a day for 21 days) dose- and time-dependently reinstated sucrose consumption in stressed animals without affecting the same parameter in non-stressed ones. In the forced swimming test, UFP-101 reduced immobility of stressed rats from day 8 of treatment. After a 3-week treatment, rats were killed for biochemical evaluations. UFP-101 abolished increase in serum corticosterone induced by CMS and reverted changes in central 5-HT/5-HIAA ratio. The behavioural and biochemical effects of UFP-101 mimicked those of imipramine, the reference antidepressant drug, administered at the dose of 15 mg/kg (i.p.). Co-administration of nociceptin/orphanin FQ (5 nmol/rat, from day 12 to 21) prevented the effects of UFP-101. Brain-derived neurotrophic factor mRNA and protein in hippocampus were not reduced by CMS nor did UFP-101 modify these parameters. DISCUSSION AND CONCLUSION This study demonstrated that chronic treatment with UFP-101 produces antidepressant-like effects in rats subjected to CMS supporting the proposal that NOP receptors represent a candidate target for the development of innovative antidepressant drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Biomedical Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, 41100, Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bungo T, Shiraishi JI, Yanagita K, Ohta Y, Fujita M. Effect of nociceptin/orphanin FQ on feeding behavior and hypothalamic neuropeptide expression in layer-type chicks. Gen Comp Endocrinol 2009; 163:47-51. [PMID: 19318106 DOI: 10.1016/j.ygcen.2009.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/01/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) was identified in 1995 as the endogenous ligand for the orphan G(i)/G(o)-coupled opioid receptor-like 1 receptor (NOP(1)). Exogenous N/OFQ increases food intake in mammals, but its effect and mode of action in chicks are not fully known. We report herein that N/OFQ (5.0 nmol) has a stimulatory effect on food intake in layer-type chicks over a 2-h period after intracerebroventricular (icv) injection. Thirty minutes after central injection of N/OFQ (5.0 nmol) the concentration of agouti-related protein (AGRP) mRNA in the diencephalon increased, while cocaine- and amphetamine-regulated transcript (CART) mRNA decreased. However, concentrations of neuropeptide Y, proopiomelanocortin and glutamate decarboxylase mRNAs, and of catecholamines and excitatory amino acids were not affected. Simultaneous administration of alpha-melanocyte stimulating hormone (alpha-MSH: 1.0 pmol), a competitor of AGRP, completely blocked the orexigenic effect of N/OFQ (5.0 nmol). These data suggest that N/OFQ functions in layer chicks as an orexigenic peptide in the central nervous system, and that the AGRP and the CART neurons may mediate this function, as in mammals.
Collapse
Affiliation(s)
- Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| | | | | | | | | |
Collapse
|
17
|
Prince-Zullig KL, Murphree E, Reinscheid RK, Janik J, Callahan P. Effect of Nociceptin/Orphanin FQ (N/OFQ) and isoflurane on the corticosterone secretory response in mice lacking the N/OFQ prepropeptide (ppN/OFQ-/-). Neuropeptides 2009; 43:201-5. [PMID: 19457551 DOI: 10.1016/j.npep.2009.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/13/2009] [Accepted: 04/14/2009] [Indexed: 11/21/2022]
Abstract
The effects of subcutaneous Nociceptin/Orphanin FQ (N/OFQ) administration on corticosterone (CORT) secretion were determined in male and female wild-type mice and mice lacking the N/OFQ prepropeptide. Additionally the effect of pretreating animals with isoflurane anesthesia to minimize the potential stress of injection was examined. Although N/OFQ itself did not specifically increase CORT levels in males or females of either genotype, injection alone (either vehicle or N/OFQ) or isoflurane exposure both increased CORT levels in all groups. These results demonstrate that N/OFQ does not elevate circulating CORT levels; however the injection process itself results in increased CORT secretion. Pretreatment with isoflurane did not significantly diminish the CORT response to injection, except in wild-type males. In fact, isoflurane exposure alone increased CORT levels above basal values. Additionally, a gender difference was evident; females displayed a greater change of plasma CORT levels than males. Finally, because even saline injection increased CORT levels, we closely investigated another possible non-specific stress effect, i.e. the effect of transporting animals from their home environment in the animal facility to the laboratory on the day of the experiment. Although basal CORT levels were similar to values reported in other studies, circulating CORT levels were elevated in animals transported to the laboratory, even after a 30 min acclimation period. These results indicate that the experimental protocol that is followed when conducting stress experiments needs to be carefully considered.
Collapse
Affiliation(s)
- Kelly L Prince-Zullig
- Center for Neuroscience, Department of Zoology, 212 Pearson Hall, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | |
Collapse
|
18
|
Sonmez K, Zaveri NT, Kerman IA, Burke S, Neal CR, Xie X, Watson SJ, Toll L. Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 2009; 5:e1000258. [PMID: 19132080 PMCID: PMC2603333 DOI: 10.1371/journal.pcbi.1000258] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 11/21/2008] [Indexed: 01/05/2023] Open
Abstract
There are currently a large number of "orphan" G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development.
Collapse
Affiliation(s)
- Kemal Sonmez
- SRI International, Menlo Park, California, United States of America
| | | | - Ilan A. Kerman
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharon Burke
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles R. Neal
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xinmin Xie
- AfaSci, Burlingame, California, United States of America
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lawrence Toll
- SRI International, Menlo Park, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Foradori CD, Amstalden M, Coolen LM, Singh SR, McManus CJ, Handa RJ, Goodman RL, Lehman MN. Orphanin FQ: evidence for a role in the control of the reproductive neuroendocrine system. Endocrinology 2007; 148:4993-5001. [PMID: 17615146 DOI: 10.1210/en.2007-0011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Orphanin FQ (OFQ), also known as nociceptin, is a member of the endogenous opioid peptide family that has been functionally implicated in the control of pain, anxiety, circadian rhythms, and neuroendocrine function. In the reproductive system, endogenous opioid peptides are involved in the steroid feedback control of GnRH pulses and the induction of the GnRH surge. The distribution of OFQ in the preoptic area and hypothalamus overlaps with GnRH, and in vitro evidence suggests that OFQ can inhibit GnRH secretion from hypothalamic fragments. Using the sheep as a model, we examined the potential anatomical colocalization between OFQ and GnRH using dual-label immunocytochemistry. Confocal microscopy revealed that approximately 93% of GnRH neurons, evenly distributed across brain regions, were also immunoreactive for OFQ. In addition, almost all GnRH fibers and terminals in the external zone of the median eminence, the site of neurosecretory release of GnRH, also colocalized OFQ. This high degree of colocalization suggested that OFQ might be functionally important in controlling reproductive endocrine events. We tested this possibility by examining the effects of intracerebroventricular administration of [Arg(14), Lys(15)] OFQ, an agonist to the OFQ receptor, on pulsatile LH secretion. The agonist inhibited LH pulse frequency in both luteal phase and ovariectomized ewes and suppressed pulse amplitude in the latter. The results provide in vivo evidence supporting a role for OFQ in the control of GnRH secretion and raise the possibility that it acts as part of an ultrashort, autocrine feedback loop controlling GnRH pulses.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Biomedical Sciences, Neuroscience Division, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zullig KL, Murphree E, Reinscheid RK, Janik J, Callahan P. Effect of orphanin FQ/nociceptin (OFQ/N) and isoflurane on the prolactin secretory response in OFQ/N knockout mice. Peptides 2007; 28:1611-4. [PMID: 17698246 PMCID: PMC2128045 DOI: 10.1016/j.peptides.2007.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
The prolactin secretory response to subcutaneous injection of orphanin FQ/nociceptin (OFQ/N) was measured in wild-type and OFQ/N knockout mice. These injections were given with and without isoflurane anesthesia, to determine if isoflurane would affect the prolactin secretory response. OFQ/N injection significantly increased prolactin levels in males and females, regardless of genotype, with a more robust response in females. Isoflurane pretreatment did not affect prolactin levels in controls or in animals injected with OFQ/N. This is the first report that exogenously administered OFQ/N stimulates prolactin secretion in mice and that brief isoflurane exposure does not significantly affect this response.
Collapse
Affiliation(s)
- Kelly L. Zullig
- Center for Neuroscience, Department of Zoology, 212 Pearson Hall, Miami University, Oxford, OH 45056 (, , )
| | - Emily Murphree
- Department of Mathematics and Statistics, 210 Bachelor Hall, Miami University, Oxford, OH 45056 ()
| | - Rainer K. Reinscheid
- Program in Pharmaceutical Sciences and Department of Pharmacology, 360 Med Surg II, University of California, Irvine, CA 92697 ()
| | - James Janik
- Center for Neuroscience, Department of Zoology, 212 Pearson Hall, Miami University, Oxford, OH 45056 (, , )
| | - Phyllis Callahan
- Center for Neuroscience, Department of Zoology, 212 Pearson Hall, Miami University, Oxford, OH 45056 (, , )
| |
Collapse
|
21
|
Chesterfield M, Janik J, Murphree E, Lynn C, Schmidt E, Callahan P. Orphanin FQ/nociceptin is a physiological regulator of prolactin secretion in female rats. Endocrinology 2006; 147:5087-93. [PMID: 16887913 DOI: 10.1210/en.2006-0707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Orphanin FQ/nociceptin (OFQ/N), the most recently identified endogenous opioid peptide, stimulates prolactin secretion in both male and female rats. OFQ/N, however, did not elicit this stimulatory effect through the mu-, delta-, or kappa-opiate receptor subtype. The role OFQ/N plays in prolactin regulation under physiological conditions and its mechanism of action are not known. The purpose of these studies was to determine the physiological significance and pharmacological specificity of the prolactin secretory response to OFQ/N. In addition, the role of the tuberoinfundibular dopaminergic (TIDA) neurons in mediating this response was examined. Opioid receptor-like-1 (ORL-1) receptors were blocked by pretreatment with compound B (Comp B), a purported OFQ/N antagonist, or receptor synthesis was disrupted by pretreatment with ORL-1 receptor antisense oligonucleotides. The prolactin secretory response to OFQ/N administration in diestrous females was measured. Furthermore, the suckling-induced prolactin response was also determined after Comp B pretreatment. TIDA neuronal activity was quantified in diestrous female rats to determine whether OFQ/N stimulates prolactin release by inhibiting TIDA neurons. OFQ/N significantly inhibited the TIDA neurons by 1 min, preceding the prolactin secretory response. Both Comp B and antisense pretreatment blocked the stimulatory effects of OFQ/N on prolactin release, and Comp B abolished the suckling-induced prolactin response. These studies indicate that OFQ/N is a potent stimulus for prolactin secretion in female rats and that it mediates this effect by rapid and transient inhibition of TIDA neuronal activity. Furthermore, OFQ/N plays a physiologically significant role in the regulation of prolactin secretion during lactation, and it mediates its effects via actions at the ORL-1 receptor subtype.
Collapse
Affiliation(s)
- Matthew Chesterfield
- Center for Neuroscience, Department of Zoology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | | | |
Collapse
|
22
|
Cifani C, Guerrini R, Massi M, Polidori C. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats. Peptides 2006; 27:2803-10. [PMID: 16730389 DOI: 10.1016/j.peptides.2006.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/17/2022]
Abstract
Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.
Collapse
Affiliation(s)
- Carlo Cifani
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 5, 62032 Camerino (MC), Italy
| | | | | | | |
Collapse
|
23
|
Horvath G, Kekesi G. Interaction of endogenous ligands mediating antinociception. ACTA ACUST UNITED AC 2006; 52:69-92. [PMID: 16488019 DOI: 10.1016/j.brainresrev.2006.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
It is well known that a multitude of transmitters and receptors are involved in the nociceptive system, some of them increasing and others inhibiting the pain sensation both peripherally and centrally. These substances, which include neurotransmitters, hormones, etc., can modify the activity of nerves involved in the pain pathways. Furthermore, the organism itself can express very effective antinociception under different circumstances (e.g. stress), and, during such situations, the levels of various endogenous ligands change. A very exciting field of pain research relates to the roles of endogenous ligands. Most of them have been suggested to influence pain transmission, but only a few studies have been performed on the interactions of different endogenous ligands. This review focuses on the results of antinociceptive interactions after the co-administration of endogenous ligands. The data based on 55 situations reveal that the interactions between the endogenous ligands are very different, depending on the substances, the pain tests, the species of animals and the route of administrations. It is also revealed that only a few of the possible interactions between endogenous ligands have been investigated to date, in spite of the fact that the type of antinociceptive interaction between different endogenous ligands could hardly be predicted. The results indicate that the combination of endogenous ligands should not be omitted from the pain therapy arsenal. Attention will hopefully be drawn to the complex interdependence of endogenous ligands and their potential use in clinical practice.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary.
| | | |
Collapse
|
24
|
Goldfarb Y, Reinscheid RK, Kusnecov AW. Orphanin FQ/nociceptin interactions with the immune system in vivo: gene expression changes in lymphoid organs and regulation of the cytokine response to staphylococcal enterotoxin A. J Neuroimmunol 2006; 176:76-85. [PMID: 16762423 DOI: 10.1016/j.jneuroim.2006.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/04/2006] [Accepted: 04/10/2006] [Indexed: 11/25/2022]
Abstract
Orphanin FQ/nociceptin (OFQ/N) is a neuropeptide implicated in immunomodulation. Here, we show that endogenous and exogenous OFQ/N modulated the cytokine response to the bacterial superantigen staphylococcal enterotoxin A (SEA). Specifically, OFQ/N enhanced TNFalpha and IFNgamma transcripts in the spleen when injected prior to SEA challenge. Moreover, mice lacking the OFQ/N precursor gene showed diminished TNFalpha and IFNgamma mRNA induction in the spleen following SEA challenge. In addition, mRNA levels of ppOFQ/N and the OFQ/N receptor, NOP, were altered in thymus and spleen after SEA challenge. Overall, this suggests that the OFQ/N system can influence immune function and is itself influenced by immune stimuli.
Collapse
Affiliation(s)
- Yael Goldfarb
- Department of Psychology, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
25
|
Economidou D, Policani F, Angellotti T, Massi M, Terada T, Ciccocioppo R. Effect of novel NOP receptor ligands on food intake in rats. Peptides 2006; 27:775-83. [PMID: 16483692 DOI: 10.1016/j.peptides.2005.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the NOP opioid receptor, stimulates feeding in rats. The present study evaluated the effect of three newly synthesized NOP receptor agonists and two NOP receptor antagonist on food intake. Freely feeding rats were tested with intracerebroventricular (ICV) injections of the NOP receptor agonists OS-500, OS-462 and OS-461. OS-500 and OS-462 evoked a hyperphagic effect more potent and far more pronounced than that of N/OFQ, while OS-461 was ineffective. OS-500 and OS-462 were also tested by intraperitoneal injection, but were unable to evoke hyperphagia following this route of administration. The NOP receptor antagonist NC-797 and UFP-101 did not modify feeding in freely feeding rats while fully antagonized the hyperphagic effect of N/OFQ. Pre-treatment with UFP-101 but not with NC-797 antagonized the hyperphagic effect of OS-462 and OS-500. The present findings indicate that OS-500, OS-462 may act as potent and long-lasting NOP receptor agonists, whereas UFP-101 and NC-797 show antagonistic properties. The higher efficacy of UFP-101 in blocking the hyperphagic effect of OS-462 and OS-500 may be linked to the better pharmacokinetic profile of this antagonist compared to NC-797. Overall, the results indicate that these compounds may represent valuable pharmacological tools to investigate the role of the brain N/OFQ system.
Collapse
Affiliation(s)
- Daina Economidou
- Department of Experimental Medicine and Public Health, University of Camerino, 62032 Camerino, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Calo G, Guerrini R, Rizzi A, Salvadori S, Burmeister M, Kapusta DR, Lambert DG, Regoli D. UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. CNS DRUG REVIEWS 2005; 11:97-112. [PMID: 16007234 PMCID: PMC6741746 DOI: 10.1111/j.1527-3458.2005.tb00264.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nociceptin/orphanin FQ modulates various biological functions at central and peripheral levels by selectively activating a G-protein coupled receptor named N/OFQ peptide (NOP) receptor. For extending our knowledge on the biological roles of the N/OFQ-NOP receptor system the identification of selective NOP ligands, especially antagonists, is mandatory. [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101) is a novel NOP ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modification which eliminates efficacy and the [Arg14, Lys15] substitution which increases ligand potency and duration of action in vivo. In the present article, we summarize the pharmacological features of UFP-101 as determined in a series of in vitro and in vivo assays. Moreover, some biological actions and possible therapeutic indications of NOP ligands are discussed on the basis of results obtained with UFP-101. Data obtained with this compound were compared with those generated using other NOP antagonists, especially J-113397 and [Nphe1]N/OFQ(1-13)-NH2, receptor or peptide knockout mice and other pharmacological tools useful for blocking N/OFQ - NOP receptor signaling. The analysis of the available data demonstrates that UFP-101 is a useful pharmacological tool for the investigation of the central and peripheral biological functions regulated by the N/OFQ-NOP receptor system and for defining the therapeutic potential of NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Centre, University of Ferrara, via Fossato di Mortara, 19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Serotonin (5-HT)(1B/1D) receptor agonists, which are also known as triptans, represent the most important advance in migraine therapeutics in the four millennia that the condition has been recognized. The vasoconstrictive activity of triptans produced a small clinical penalty in terms of coronary vasoconstriction but also raised an enormous intellectual question: to what extent is migraine a vascular problem? Functional neuroimaging and neurophysiological studies have consistently developed the theme of migraine as a brain disorder and, therefore, demanded that the search for neurally acting antimigraine drugs should be undertaken. The prospect of non-vasoconstrictor acute migraine therapies, potential targets for which are discussed here, offers a real opportunity to patients and provides a therapeutic rationale that places migraine firmly in the brain as a neurological problem, where it undoubtedly belongs.
Collapse
Affiliation(s)
- Peter J Goadsby
- Headache Group, Institute of Neurology, and The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
28
|
Kraska A, Bryant W, Murphree E, Callahan P, Janik J. Lack of involvement of dopamine and serotonin during the orphanin FQ/Nociceptin (OFQ/N)-induced prolactin secretory response. Life Sci 2005; 77:1465-79. [PMID: 15996688 DOI: 10.1016/j.lfs.2005.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 04/05/2005] [Indexed: 12/12/2022]
Abstract
The purpose of these studies was to examine possible mechanisms of Orphanin FQ/Nociceptin (OFQ/N)-induced prolactin release. We investigated the involvement of the dopaminergic neurons by quantifying DOPAC:DA levels in the median eminence and neurointermediate lobe following central administration of OFQ/N to female Sprague-Dawley rats. To specifically determine the involvement of the tuberoinfundibular dopaminergic neurons, immunocytochemical studies were conducted to visualize c-fos protein expression in the arcuate nucleus following central administration of OFQ/N. In addition, the role of serotonergic activation was examined in dose response studies using the selective serotonin antagonist ritansarin and the nonselective antagonist metergoline. Finally, the pharmacological specificity of the prolactin response was examined by pretreating animals with [Nphe1] NC (1-13)NH2, a drug reported to antagonize OFQ/N effects. The results of these studies indicate that the increase in prolactin release following central administration of OFQ/N does not inhibit tuberoinfundibular, tuberohypophyseal or periventricular hypophysial dopaminergic neuronal activity at 10 min after drug administration, a time when prolactin levels were significantly elevated. Furthermore, serotonergic activation is not involved since pharmacological blockade of serotonergic receptors did not alter the prolactin secretory response to OFQ/N. NC (1-13)NH2 did not antagonize the stimulatory effects of OFQ/N on prolactin secretion. The neural effects of OFQ/N on dopaminergic neuronal activity may occur following a different time course than that of the prolactin increase.
Collapse
Affiliation(s)
- Amy Kraska
- Department of Zoology, Center for Neuroscience, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
29
|
Chitravanshi VC, Sapru HN. Mechanism of cardiovascular effects of nociceptin microinjected into the nucleus tractus solitarius of the rat. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1553-62. [PMID: 15661965 DOI: 10.1152/ajpregu.00762.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microinjections (100 nl) of 0.15, 0.31, 0.62, and 1.25 mmol/l of nociceptin into the medial nucleus tractus solitarius (mNTS) elicited decreases in mean arterial pressure (11 +/- 1.8, 20 +/- 2.1, 21.5 +/- 3.1, and 15.5 +/- 1.9 mmHg, respectively) and heart rate (14 +/- 2.7, 29 +/- 5.5, 39 +/- 5.2, and 17.5 +/- 3.1 beats/min, respectively). Because maximal responses were elicited by microinjections of 0.62 mmol/l nociceptin, this concentration was used for other experiments. Repeated microinjections of nociceptin (0.62 mmol/l) into the mNTS, at 20-min intervals, did not elicit tachyphylaxis. Bradycardia induced by microinjections of nociceptin into the mNTS was abolished by bilateral vagotomy. The decreases in mean arterial pressure and heart rate elicited by nociceptin into the mNTS were blocked by prior microinjections of the specific ORL1-receptor antagonist [N-Phe(1)]-nociceptin-(1-13)-NH(2) (9 mmol/l). Microinjections of the ORL1-receptor antagonist alone did not elicit a response. Prior combined microinjections of GABA(A) and GABA(B) receptor antagonists (2 mmol/l gabazine and 100 mmol/l 2-hydroxysaclofen, respectively) into the mNTS blocked the responses to microinjections of nociceptin at the same site. Prior microinjections of ionotropic glutamate receptor antagonists (2 mmol/l NBQX and 5 mmol/l d-AP7) also blocked responses to nociceptin microinjections into the mNTS. These results were confirmed by direct neuronal recordings. It was concluded that 1) nociceptin inhibits GABAergic neurons in the mNTS, 2) GABAergic neurons may normally inhibit the release of glutamate from the terminals of peripheral afferents in the mNTS, and 3) inhibition of GABAergic neurons by nociceptin results in an increase in the release of glutamate in the mNTS, which in turn elicits depressor and bradycardic responses via activation of ionotropic glutamate receptors on secondary mNTS neurons.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, USA
| | | |
Collapse
|
30
|
Abstract
It was demonstrated that both nociceptin, a novel opioid neuropeptide, and its receptor are present in trigeminovascular neurons. In an animal model nociceptin dose-dependently inhibited neurogenic dural vasodilatation. These results suggest that nociceptin may be involved in neurovascular headaches such as migraine. To test this hypothesis, we studied circulating nociceptin levels in 18 patients suffering from migraine without aura and in 24 controls. Headache-free migraineurs had significantly lower nociceptin levels than controls (5.79 +/- 1.82 vs. 9.74 +/- 2.43 pg/ml, P < 0.0001, Student's t-tests). Nociceptin levels were further reduced in six patients studied in the first 3 h of typical migraine attacks (1.04 +/- 0.17 pg/ml). Nociceptin levels correlated with the frequency of attacks in this group of migraineurs. Lower interictal nociceptin levels may contribute to a defective regulation of trigeminovascular neurons in migraineurs which might be important in the pain process of migraine.
Collapse
Affiliation(s)
- C Ertsey
- Department of Neurology, Semmelweis University, H-1083 Budapest, Hungary.
| | | | | | | |
Collapse
|
31
|
Abstract
There now is one realized and several attractive targets for the treatment of acute attacks of migraine that will follow and augment the use of serotonin 5-HT1B/1D receptor agonists, the triptans. Calcitonin gene-related peptide (CGRP) receptor blockade recently has been shown to be an effective acute antimigraine strategy; therefore, blockade of CGRP release by inhibition of trigeminal nerves would seem a logical approach. A number of targets are reviewed in this article including serotonin 5-HT1F and 5-HT1D receptors, adenosine A1 receptors, nociceptin, vanilloid TRPV1 receptors, and anandamide CB1 receptors. Development of one or more such compound offers the exciting prospect of new non-vasoconstrictor treatments for migraine and cluster headache.
Collapse
|
32
|
Gavioli EC, Vaughan CW, Marzola G, Guerrini R, Mitchell VA, Zucchini S, De Lima TCM, Rae GA, Salvadori S, Regoli D, Calo' G. Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2004; 369:547-53. [PMID: 15197534 DOI: 10.1007/s00210-004-0939-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
Receptor antagonist and knockout studies have demonstrated that blockade of signalling via nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) has antidepressant-like effects in mice submitted to the forced swimming test (FST). The aim of the present study was to explore further the antidepressant-like properties of the NOP antagonist UFP-101 in different species (mouse and rat) and using different assays [FST and tail suspension test (TST)], and to investigate the mechanism(s) involved in its actions.UFP-101 (10 nmol i.c.v.) reduced immobility time of Swiss mice in the TST (mean+/-SEM) from 179+/-11 to 111+/-10 s. N/OFQ (1 nmol i.c.v.) was without effect per se, but fully prevented the effect of UFP-101. The spontaneous immobility time of NOP(-/-) CD1-C57BL/6J-129 mice in the TST was much lower than that of wild-type (NOP(+/+)) littermates (75+/-11 vs. 144+/-17 s) or of Swiss mice. UFP-101 (10 nmol i.c.v.) decreased immobility time (-65%) and increased climbing time (71%) in rats submitted to the FST. In rat brain slices, N/OFQ (100 nM) triggered robust K(+)-dependent hyperpolarizing currents in locus coeruleus and dorsal raphe neurons. UFP-101 (3 microM) fully prevented N/OFQ-induced currents, but was inactive per se. Fluoxetine, desipramine (both 30 mg/kg i.p.) and UFP-101 (10 nmol i.c.v.) reduced immobility time of mice in the FST. The serotonin synthesis inhibitor p-chlorophenylalanine methylester (PCPA, 4 x 100 mg/kg per day i.p.) prevented the antidepressant-like effects of fluoxetine and UFP-101 (but not desipramine), whereas N-(2-chloroethyl)- N-ethyl-2-bromobenzylamine (DSP-4, neurotoxic for noradrenergic neurons; 50 mg/kg i.p., 7 days beforehand), suppressed only the effect of desipramine. Neither pretreatment affected spontaneous immobility time per se.Thus, UFP-101 exhibits pronounced antidepressant-like effects in different species and animal models, possibly by preventing the inhibitory effects of endogenous N/OFQ on brain monoaminergic (in particular serotonergic) neurotransmission. Participation of the N/OFQ-NOP receptor system in mood modulation sets new potential targets for antidepressant drug development.
Collapse
Affiliation(s)
- E C Gavioli
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Faulhammer D, Eschgfäller B, Stark S, Burgstaller P, Englberger W, Erfurth J, Kleinjung F, Rupp J, Dan Vulcu S, Schröder W, Vonhoff S, Nawrath H, Gillen C, Klussmann S. Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ. RNA (NEW YORK, N.Y.) 2004; 10:516-27. [PMID: 14970396 PMCID: PMC1370946 DOI: 10.1261/rna.5186504] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 11/07/2003] [Indexed: 05/24/2023]
Abstract
The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor, has been shown to play a prominent role in the regulation of several biological functions such as pain and stress. Here we describe the isolation and characterization of N/OFQ binding biostable RNA aptamers (Spiegelmers) using a mirror-image in vitro selection approach. Spiegelmers are L-enantiomeric oligonucleotide ligands that display high affinity and specificity to their targets and high resistance to enzymatic degradation compared to D-oligonucleotides. A representative Spiegelmer from the selections performed was size-minimized to two distinct sequences capable of high affinity binding to N/OFQ. The Spiegelmers were shown to antagonize binding of N/OFQ to the ORL1 receptor in a binding-competition assay. The calculated IC(50) values for the Spiegelmers NOX 2149 and NOX 2137a/b were 110 nM and 330 nM, respectively. The competitive antagonistic properties of these Spiegelmers were further demonstrated by their effective and specific inhibition of G-protein activation in two additional models. The Spiegelmers antagonized the N/OFQ-induced GTPgammaS incorporation into cell membranes of a CHO-K1 cell line expressing the human ORL1 receptor. In oocytes from Xenopus laevis, NOX 2149 showed an antagonistic effect to the N/OFQ-ORL 1 receptor system that was functionally coupled with G-protein-regulated inwardly rectifying K(+) channels.
Collapse
|
34
|
Szalay F, Hantos MB, Horvath A, Lakatos PL, Folhoffer A, Dunkel K, Hegedus D, Tekes K. Increased nociceptin/orphanin FQ plasma levels in hepatocellular carcinoma. World J Gastroenterol 2004; 10:42-5. [PMID: 14695766 PMCID: PMC4717075 DOI: 10.3748/wjg.v10.i1.42] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 10/30/2003] [Accepted: 11/16/2003] [Indexed: 12/15/2022] Open
Abstract
AIM The heptadecapeptide nociceptin alias orphanin FQ is the endogenous agonist of opioid receptor-like1 receptor. It is involved in modulation of pain and cognition. High blood level was reported in patients with acute and chronic pain, and in Wilson disease. An accidental observation led us to investigate nociceptin in hepatocellular carcinoma. METHODS Plasma nociceptin level was measured by radioimmunoassay, aprotinin was used as protease inhibitor. Hepatocellular carcinoma was diagnosed by laboratory, ultrasound, other imaging, and confirmed by fine needle biopsy. Results were compared to healthy controls and patients with other chronic liver diseases. RESULTS Although nociceptin levels were elevated in patients with Wilson disease (14.0+/-2.7 pg/mL, n=26), primary biliary cirrhosis (12.1+/-3.2 pg/mL, n=21) and liver cirrhosis (12.8+/-4.0 pg/mL, n=15) compared to the healthy controls (9.2+/-1.8 pg/mL, n=29, P<0.001 for each), in patients with hepatocellular carcinoma a ten-fold increase was found (105.9+/-14.4 pg/mL, n=29, P<0.0001). High plasma levels were found in each hepatocellular carcinoma patient including those with normal alpha fetoprotein and those with pain (104.9+/-14.9 pg/mL, n=12) and without (107.7+/-14.5 pg/mL, n=6). CONCLUSION A very high nociceptin plasma level seems to be an indicator for hepatocellular carcinoma. Further research is needed to clarify the mechanism and clinical significance of this novel finding.
Collapse
Affiliation(s)
- Ferenc Szalay
- Department of Medicine Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mika J, Li Y, Weihe E, Schafer MKH. Relationship of pronociceptin/orphanin FQ and the nociceptin receptor ORL1 with substance P and calcitonin gene-related peptide expression in dorsal root ganglion of the rat. Neurosci Lett 2003; 348:190-4. [PMID: 12932825 DOI: 10.1016/s0304-3940(03)00786-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent evidence suggests a role of prepronociceptin/orphanin FQ (preproN/OFQ) derived neuropeptides in nociceptive signaling. Here, we examined the expression of preproN/OFQ and the nociceptin receptor ORL1 (opioid receptor like receptor 1) in the dorsal root ganglion (DRG) of the rat in relation to that of substance P (SP) and calcitonin gene-related peptide (CGRP). Double labeling in situ hybridization revealed a constitutive expression of preproN/OFQ in a distinct minor subpopulation of very small DRG neurons with no evidence for coexpression with either SP or CGRP. However, a major subpopulation of the preproN/OFQ-positive neurons showed direct juxtaposition to SP and CGRP containing neurons. ORL1 was abundantly expressed with a high degree of coexpression with SP (72%) and CGRP (82%) suggesting that N/OFQ may presynaptically modulate primary sensory nociceptive signaling. The DRG cell line F11 was found to express preproN/OFQ, but not ORL1, and, therefore, is well suited to study the mechanisms of N/OFQ gene regulation in vitro.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University, 35033 Marburg, Germany
| | | | | | | |
Collapse
|
36
|
Környei JL, Vértes Z, Kovács KA, Göcze PM, Vértes M. Developmental changes in the inhibition of cultured rat uterine cell proliferation by opioid peptides. Cell Prolif 2003; 36:151-63. [PMID: 12814431 PMCID: PMC6495678 DOI: 10.1046/j.1365-2184.2003.00263.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Opioid peptides are negative regulators of cell proliferation in several organs including the uterus. In the present study, the ontogeny of the direct inhibitory action of opioid peptides on the proliferation of cultured rat uterine cells was investigated. Uteri of 7, 14, 21, 28, 35 and 60-day-old rats were removed in a sterile way. Tissue blocks were dispersed by limited digestions with trypsin and collagenase. Cells were cultured in enriched Dulbecco's modified Eagle's medium (DMEM). Treatments were present during the entire culture period. Cell densities of the monolayers were determined by counting the cells following trypsinization and trypan blue exclusion. Rat uterine mixed cell cultures grew to confluence within 10 days. The average population doubling time gradually increased with the age of animals. Epidermal growth factor (EGF) increased cell densities of cultures from all age groups. The oestradiol (E2)-responsiveness appeared at 21 days of age. The effect of [D-Met2-Pro5]-enkephalinamide (ENK) was biphasic. ENK and [Met5]-enkephalin (OGF) decreased cell densities of both unstimulated and EGF-stimulated cultures from 7-day-old rats to the same extent. ENK failed to act in 14-day-old animals. From 21 days of age on, the E2- or EGF-stimulated proliferation was inhibited only by ENK and DAMGO, while 30 nm DPDPE, Dynorhin-A, OGF, [Leu5]-enkephalin, beta-endorphin, and morphiceptin were ineffective. The half-inhibitory concentration of ENK was 0.3 nm. The effects of ENK were prevented by concomitant treatment with naloxone. Our novel data demonstrate two different phases of the inhibitory action of opioid peptides on rat uterine cell proliferation during ontogeny with an insensitive interval in between.
Collapse
Affiliation(s)
- J L Környei
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
38
|
Abstract
A peptide termed nociceptin/orphanin FQ (N/OFQ) was recently identified as an endogenous agonist for the opioid receptor-like receptor currently specified as NOP receptor. Despite many structural homologies to the opioid system, the NOP receptor shows low-affinity binding to selective opioid agonists or antagonists. Vice versa, N/OFQ selectively activates the NOP receptor but not any opioid receptor subtype. This novel receptor/ligand system is widely expressed in the brain. At the cellular level, the actions of N/OFQ resemble those elicited by opioid peptides. The NOP receptor is coupled to G-proteins, whose activation results in inhibition of adenylate cyclase, modulation of calcium and potassium conductances, and regulation of transmitter systems. At the behavioral level, systemic application of N/OFQ elicits a unique range of responses, including a wide range of effects on pain processing such as hyperalgesia, analgesia, and allodynia, as well as anxiolytic actions, modulation of opioid-mediated processes, and influences on learning and memory.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
| |
Collapse
|
39
|
Bartsch T, Akerman S, Goadsby PJ. The ORL-1 (NOP1) receptor ligand nociceptin/orphanin FQ (N/OFQ) inhibits neurogenic dural vasodilatation in the rat. Neuropharmacology 2002; 43:991-8. [PMID: 12423668 DOI: 10.1016/s0028-3908(02)00148-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects of the ORL-1 (NOP(1)) receptor ligand nociceptin (N/OFQ) and the nociceptin antagonists [Nphe(1)]N/OFQ-(1-13)-NH(2) (Nphe) and nocistatin (NST) on neurogenic dural vasodilatation (NDV) in the rat dura mater evoked by electrical stimulation of a closed cranial window were studied. The middle meningeal artery was visualised using intravital microscopy, and the vessel diameter analysed using a video dimension analyser. N/OFQ (1, 10, 100 nmol kg(-1); i.v., n=10) significantly and dose-dependently suppressed NDV maximally by 65% (P<0.01). Neither Nphe (100 nmol kg(-1); n=5) nor NST (100 nmol kg(-1); n=4) alone had an effect on NDV (P>0.05). Baseline vessel diameter was not significantly affected by application of N/OFQ, NST or Nphe. Application of the selective N/OFQ antagonist Nphe (10, 100 nmol kg(-1) i.v., n=8) dose-dependently and significantly (P<0.01) reversed the inhibition of NDV induced by application of N/OFQ (10 nmol kg(-1)). NST (10, 100 nmol kg(-1); n=7) failed to reverse the effects elicited by N/OFQ. Application of N/OFQ elicited a dose-dependent transient decrease in arterial blood pressure (P<0.01). Nphe dose-dependently reversed the cardiovascular effects induced by application of N/OFQ (10 nmol kg(-1)) (P<0.01),while NST did not alter the blood pressure reaction elicited by N/OFQ. The results show that N/OFQ inhibits NDV, an effect which is antagonised by Nphe, but not by NST. ORL-1 (NOP(1)) receptors located on trigeminal sensory fibres may be involved in the regulation of dural vessel diameter and hence may play a role in migraine pathophysiology.
Collapse
Affiliation(s)
- T Bartsch
- Headache Group, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
40
|
Kawashima N, Fugate J, Kusnecov AW. Immunological challenge modulates brain orphanin FQ/nociceptin and nociceptive behavior. Brain Res 2002; 949:71-8. [PMID: 12213301 DOI: 10.1016/s0006-8993(02)02966-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Orphanin FQ/Nociceptin (OFQ/N), an endogenous peptide found throughout the central nervous system, has been attributed with a wide range of functions, including modulation of motivational and emotional behavior, but most prominently, facilitation of hyperalgesia. It has also been shown that brain OFQ/N is stimulated during locally-induced peripheral inflammation, a condition well known to increase pain sensitivity. However, few studies have addressed whether specific immunological challenge using T-cell dependent and independent stimuli alters OFQ/N gene activation in the brain. Consequently, male C57BL/6J mice were challenged with 5 microg of lipopolysaccharide (LPS) or a T-cell-activating bacterial superantigen, Staphyloccocal enterotoxin A (SEA), and levels of brain OFQ/N precursor, pNOC, mRNA were analyzed by semi-quantitative RT-PCR. In addition, nociceptive thresholds were examined in immunologically challenged mice using the hotplate test. Initial results on a combined region of the brain containing various limbic components, revealed increased levels of pNOC mRNA in response to SEA challenge, but not to LPS. Further analysis of more discrete brain regions revealed increased pNOC mRNA in the hypothalamus and amygdala in response to SEA. Interestingly, challenge with SEA, but not LPS, significantly reduced hindpaw-lick latency in the hot plate test, although this effect was observed only if the hotplate environment was unfamiliar, suggesting an interaction between immunological stimulation and novelty-induced stress. Since SEA induces various cytokines, including TNF-alpha, these results are consistent with a growing literature documenting the effects of cytokines on nociceptive functions, and a possible involvement of the OFQ/nociceptin system.
Collapse
Affiliation(s)
- Noriko Kawashima
- Biopsychology and Behavioral Neuroscience Program, Department of Psychology, Rutgers, The State University of New Jersey-New Brunswick, Piscataway, NJ, USA
| | | | | |
Collapse
|
41
|
Pettersson LME, Sundler F, Danielsen N. Expression of orphanin FQ/nociceptin and its receptor in rat peripheral ganglia and spinal cord. Brain Res 2002; 945:266-75. [PMID: 12126889 DOI: 10.1016/s0006-8993(02)02817-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of the neuropeptide orphanin FQ/nociceptin (OFQ/N) and its receptor, the opioid receptor-like receptor (ORL1), have been found to have a wide distribution in the central nervous system, and in brain areas involved in sensory perception in particular. The effects of OFQ/N on, e.g., sensory transmission are very complex, and a modulatory effect on pain perception has been suggested. We therefore wanted to investigate the distribution of OFQ/N and ORL1 in the spinal cord and DRG, and also in SCG and some other peripheral tissues. The methods used were in situ hybridization, immunohistochemistry and ligand binding. We found that OFQ/N and ORL1 mRNA are expressed in DRG; primarily in small and large neurons, respectively. In spinal cord, mRNA for OFQ/N and ORL1 is expressed in neurons in laminae I, II and X, and in ventral horn neurons. Further, immunoreactivity for OFQ/N is observed in fibers and neurons in the superficial laminae of the dorsal horn and around the central canal, and also in neurons in the ventral horn of the spinal cord. Receptor ligand binding to the spinal cord grey matter is demonstrated, primarily concentrated to the dorsal horn and around the central canal, and also to medium and large size DRG neurons. These findings on the morphological distribution pattern of OFQ/N and ORL1 at the cellular level may support the notion that OFQ/N is involved in modulating pain transmission. Further, expression of OFQ/N and ORL1 mRNA was also found in SCG, whereas expression was undetectable in skin.
Collapse
Affiliation(s)
- Lina M E Pettersson
- Department of Physiological Sciences, Section for Neuroendocrine Cell Biology, BMC F10, Lund University, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
42
|
Gavioli EC, Rae GA, Calo' G, Guerrini R, De Lima TCM. Central injections of nocistatin or its C-terminal hexapeptide exert anxiogenic-like effect on behaviour of mice in the plus-maze test. Br J Pharmacol 2002; 136:764-72. [PMID: 12086986 PMCID: PMC1573391 DOI: 10.1038/sj.bjp.0704739] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2001] [Revised: 03/13/2002] [Accepted: 03/26/2002] [Indexed: 11/08/2022] Open
Abstract
. Nocistatin (NST) antagonizes several actions of nociceptin/orphanin FQ (N/OFQ), but acts on distinct receptors. As N/OFQ exerts anxiolytic-like actions in various tests, its behavioural actions in the elevated plus-maze (EPM) test were compared with those of bovine NST. 2. Five minutes after i.c.v. treatment, mice were placed on the EPM for 5 min and entries into and time spent on open and closed arms were recorded alongside other parameters. 3. NST (0.1 - 3 pmol) reduced percentages of entries into (control 39.6+/-3.1%, peak effect at 1 pmol NST 8.5+/-2.9%) and time spent on open arms (control 30.8+/-2.3%, NST 2.7+/-1.5%). The C-terminal hexapeptide of NST (NST-C6; 0.01 - 10 pmol) closely mimicked these actions of NST, with peak effects at 0.1 pmol. 4. N/OFQ (1 - 100 pmol) increased percentages of entries into (control 38.5+/-3.4%; peak effect at 10 pmol N/OFQ 67.9+/-4.9%) and time spent on open arms (control 32.0+/-3.8%; N/OFQ 74.9+/-5.8%). Closed arm entries, an index of locomotor activity, were unchanged by all peptides. 5. Effects of NST or NST-C6, but not N/OFQ, were still detectable 15 min after injection. Behaviour of animals co-injected with NST (1 pmol) or NST-C6 (0.1 pmol) plus N/OFQ (10 pmol) was indistinguishable from that of controls. 6. These results reveal potent anxiogenic-like actions of NST and NST-C6, and confirm the anxiolytic-like properties of N/OFQ. As NST and N/OFQ both derive from preproN/OF, anxiety may be modulated in opposing directions depending on how this precursor is processed.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, 88015-420, Florianópolis, Brazil
| | - Giles A Rae
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, 88015-420, Florianópolis, Brazil
| | - Girolamo Calo'
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, 44100 Ferrara, Italy
| | - Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, 44100 Ferrara, Italy
| | - Thereza C M De Lima
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, 88015-420, Florianópolis, Brazil
| |
Collapse
|
43
|
Bryant W, Callahan P, Murphree E, Janik J. [Phe(1)Psi(CH(2)-NH)Gly(2)]NC(1-13)NH(2) does not antagonize orphaninFQ/nociceptin-induced prolactin release. Brain Res Bull 2002; 57:695-703. [PMID: 11927375 DOI: 10.1016/s0361-9230(01)00786-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The specificity of the orphaninFQ (OFQ)/nociceptin (N)-induced prolactin increase was determined in male and female rats by pretreating animals with different doses of [Phe(1)Psi(CH(2)-NH)Gly(2)]NC(1-13)NH(2), a compound originally reported to be a specific OFQ/N antagonist. In addition, the effect of naloxone pretreatment on OFQ/N-induced prolactin release was examined to determine if OFQ/N's effects were mediated by opiate receptors. Furthermore, dose response studies using [Phe(1)Psi(CH(2)-NH)Gly(2)]NC(1-13)NH(2) only were performed to determine potential agonist activity of this drug. Finally, growth hormone (GH) levels were determined as an index of specificity of the prolactin response. Our results confirm previous findings that OFQ/N potently stimulates prolactin release and that a gender difference exists in the magnitude of the response, with females showing a much greater response than male rats. The endocrine response is specific because OFQ/N potently stimulated prolactin, but not GH secretion. The prolactin response is not mediated by actions at opiate receptors because naloxone did not inhibit OFQ/N's effects on prolactin release. However, [Phe(1)Psi(CH(2)-NH) Gly2]NC(1-13) NH(2) did not antagonize OFQ/N's effects on prolactin release. Indeed, this drug acted as a potent agonist. Demonstrating pharmacological specificity of OFQ/N's effects on prolactin release awaits the development of more selective, specific antagonists.
Collapse
Affiliation(s)
- Winnifred Bryant
- Department of Zoology, Center for Neuroscience, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
44
|
Ciccocioppo R, Polidori C, Antonelli L, Salvadori S, Guerrini R, Massi M. Pharmacological characterization of the nociceptin receptor which mediates reduction of alcohol drinking in rats. Peptides 2002; 23:117-25. [PMID: 11814626 DOI: 10.1016/s0196-9781(01)00587-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic intracerebroventricular (ICV) treatment with nociceptin/orphanin FQ (NC), the endogenous ligand for the opioid receptor-like 1 (ORL1) receptor, reduces ethanol intake in alcohol-preferring rats and abolishes the rewarding properties of ethanol in the place conditioning paradigm. To pharmacologically characterize the receptor involved, the present study evaluated the effect on ethanol drinking in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats of ICV injections for 8 days of NC or of the NC analogs NC(1-17)NH(2), NC(1-13)NH(2), NC(1-12)NH(2) and [Nphe(1)]NC(1-13)NH(2). In vitro studies indicate that NC, NC(1-17)NH(2), NC(1-13)NH(2) and NC(1-12)NH(2) are agonists, while [Nphe(1)]NC(1-13)NH(2) is a selective antagonist at the ORL1 receptor. Freely feeding and drinking rats were offered 10% ethanol 30 min/day at the beginning of the dark phase of the light cycle. NC significantly attenuated ethanol intake at 500 or 1000 ng/rat (210 or 420 pmol/rat). NC(1-17)NH(2), markedly reduced ethanol intake, but its effect was statistically significant at 1000 (420 pmol/rat), not at 500 ng/rat (210 pmol/rat). After the end of treatment ethanol drinking promptly came back to baseline level. Ethanol consumption was also reduced by NC(1-13)NH(2); however, its effect was less potent and pronounced. NC(1-12)NH(2) did not modify ethanol intake at doses up to 4000 ng/rat (2339 pmol/rat). Water and food consumption were not modified. Treatment with [Nphe(1)]NC(1-13)NH(2), 66 or 99 microg/rat, did not modify ethanol intake; however, [Nphe(1)]NC(1-13)NH(2), 66 microg/rat, given just before 1000 ng/rat of NC(1-17)NH(2), abolished the effect of the agonist. The present results show that the 13 amino acid N-terminal sequence of NC is essential for the effect on ethanol intake and indicate that [Nphe(1)]NC(1-13)NH(2) acts as an antagonist to block the effect of NC. These findings provide further evidence that selective agonists at the ORL-1 receptor attenuate ethanol intake in alcohol-preferring rats and suggest that the NC/ORL1 system may represent an interesting target for treatment of alcohol abuse.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032, Camerino, Italy. r.ciccocioppo@ca
| | | | | | | | | | | |
Collapse
|
45
|
The dopamine transporter in mesencephalic cultures is refractory to physiological changes in membrane voltage. J Neurosci 2001. [PMID: 11567046 DOI: 10.1523/jneurosci.21-19-07561.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine transporter (DAT) plays a crucial role in the clearance of extracellular dopamine in brain. Uptake of dopamine by the cloned human DAT has been shown to be electrogenic and voltage-dependent, with greater uptake observed at hyperpolarized potentials. Ventral mesencephalic dopaminergic neurons were used to assess the kinetics of dopamine uptake in relation to their electrical activity. Dopamine uptake in these cultures was saturable with a K(m) of approximately 560 +/- 60 nm and a DAT turnover rate of 0.74 +/- 0.07 dopamine molecules per second. The effects of physiological changes in membrane voltage on transporter function were assessed by the activation of G-protein-coupled receptors. Current-clamp recordings of dopamine neurons showed that dopamine, baclofen, and orphanin FQ (OFQ) cause varying degrees of hyperpolarization. However, dopamine uptake was not affected by the activation of D(2), GABA(B), or OFQ receptors. Dopamine neurons in culture fired spontaneous action potentials at an average frequency of 2.3 Hz. Thus, dopamine neurons fire approximately three action potentials in the time taken for DAT to go through one transport cycle. Application of tetrodotoxin (1 microm) blocked action potentials but did not alter the uptake of dopamine. These data demonstrate that DAT turnover is a relatively slow process and the rate-limiting step for transport cycle is insensitive to changes in membrane voltage in physiological range.
Collapse
|