1
|
Todorov P, Georgieva S, Peneva P, Nikolov S, Rangelov M, Todorova N, Pechlivanova D, Tchekalarova J. Synthesis, molecular docking, electrochemical and fluorimetric analysis of new caffeic and cinnamic acid-conjugated hemorphin derivatives designed as potential anticonvulsant and antinociceptive agents. Bioorg Chem 2024; 143:107063. [PMID: 38150935 DOI: 10.1016/j.bioorg.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Based on the pharmacophore model of opioid receptors, our team recently synthesized a series of short-chain hemorphin peptide analogs containing non-natural amino acids. They demonstrated anticonvulsant and antinociceptive activity with low neurotoxicity. In the present study, a series of novel bioconjugates of N-modified hemorphin analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetric analysis, in vivo anticonvulsant and antinociceptive activity in mice were conducted on the compounds. The three CA acid- (H4-CA, H5-CA, and H7-CA) and three KA acid- (H4-KA, H5-KA, and H7-KA) conjugated hemorphin derivatives exhibited potency at the highest doses of 2 µg/5 µl, administered by intracerebroventricular (icv) mode, against seizure spread in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate, at the lowest dose, was the only compound that suppressed clonic seizures in the subcutaneous pentylenetetrazol (scPTZ) test. Except for the H5-CA, all tested CA acid- and KA acid-conjugated peptide derivates had the potency to increase the latency for clonic seizures in a dose-dependent mode. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. All investigated peptides showed a more pronounced antinociceptive effect in the "intraplantar formalin" test compared to the "hot plate" test. Shorter chain analogs showed a better antinociceptive profile against tonic pain. The data suggest a DOR and KOR-mediated mechanism of action. According to the docking analysis, H7-CA showed a different antinociceptive profile than other investigated peptides. The novel peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA morphine peptides can be used to develop novel morphine-related analogs with anticonvulsant and antinociceptive activity.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Spas Nikolov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria; Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Pechlivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria; Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Jobe A, Antony P, Altabbal S, Al Dhaheri Y, Vijayan R. Interaction of hemorphins with ACE homologs. Sci Rep 2023; 13:3743. [PMID: 36878973 PMCID: PMC9987361 DOI: 10.1038/s41598-023-30771-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hemorphins, short bioactive peptides produced by enzymatic cleavage of β-hemoglobin, exhibit antihypertensive properties by inhibiting angiotensin-1 converting enzyme (ACE1). ACE1 is a key player in the renin-angiotensin system (RAS) and regulates blood pressure. ACE1 and its homolog, ACE2, which exhibit opposing activities in the RAS, share considerable similarity in their catalytic domains. The primary objective of this study was to identify and contrast the molecular mechanisms underlying the interaction of hemorphins of camels and that of other mammals with the two ACE homologs. In silico docking and molecular dynamics simulations were performed for ACE1 and ACE2, along with in vitro confirmatory assays for ACE1. The C-domain of ACE1, primarily involved in regulating blood pressure, was used along with the N-terminal peptidase domain of ACE2. The findings revealed conserved hemorphin interactions with equivalent regions of the two ACE homologs and differential residue-level interactions reflecting the substrate preferences of ACE1 and ACE2 considering their opposing functions. Therefore, conserved residue-level associations and implications of poorly conserved regions between the two ACE receptors may potentially guide the discovery of selective domain-specific inhibitors. The findings of this study can provide a basis for the treatment of related disorders in the future.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Suhib Altabbal
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
- The Big Data Analytics Center, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Hemorphins Targeting G Protein-Coupled Receptors. Pharmaceuticals (Basel) 2021; 14:ph14030225. [PMID: 33799973 PMCID: PMC7998264 DOI: 10.3390/ph14030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hemorphins are short peptides produced by the proteolysis of the beta subunit of hemoglobin. These peptides have diverse physiological effects especially in the nervous and the renin-angiotensin systems. Such effects occur through the modulation of a diverse range of proteins including enzymes and receptors. In this review, we focus on pharmacological and functional targeting of G protein-coupled receptors (GPCRs) by hemorphins and their implication in physiology and pathophysiology. Among GPCRs, the opioid receptors constitute the first set of targets of hemorphins with implication in analgesia. Subsequently, several other GPCRs have been reported to be directly or indirectly involved in hemorphins’ action. This includes the receptors for angiotensin II, oxytocin, bombesin, and bradykinin, as well as the human MAS-related G protein-coupled receptor X1. Interestingly, both orthosteric activation and allosteric modulation of GPCRs by hemorphins have been reported. This review links hemorphins with GPCR pharmacology and signaling, supporting the implication of GPCRs in hemorphins’ effects. Thus, this aids a better understanding of the molecular basis of the action of hemorphins and further demonstrates that hemorphin-GPCR axis constitutes a valid target for therapeutic intervention in different systems.
Collapse
|
4
|
Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor. Int J Mol Sci 2020; 22:ijms22010209. [PMID: 33379211 PMCID: PMC7795518 DOI: 10.3390/ijms22010209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII’s kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.
Collapse
|
5
|
Hallberg M, Larhed M. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Front Pharmacol 2020; 11:590855. [PMID: 33178027 PMCID: PMC7593869 DOI: 10.3389/fphar.2020.590855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.
Collapse
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Vijayan R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res 2020; 158:104855. [PMID: 32438036 DOI: 10.1016/j.phrs.2020.104855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Hemorphins are endogenous peptides, 4-10 amino acids long, belonging to the family of atypical opioid peptides released during the sequential cleavage of hemoglobin protein. Hemorphins have been shown to exhibit diverse therapeutic effects in both human and animal models. However, the precise cellular and molecular mechanisms involved in such effects remain elusive. In this review, we summarize and propose potential mechanisms based on studies that investigated the biological activity of hemorphins of different lengths on multiple therapeutic targets. Special emphasis is given to molecular events related to renin-angiotensin system (RAS), opioid receptors and insulin-regulated aminopeptidase receptor (IRAP). This review provides a comprehensive coverage of the molecular mechanisms that underpin the therapeutic potential of hemorphins. Furthermore, it highlights the role of various hemorphin residues in pathological conditions, which could be explored further for therapeutic purposes.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | | | - Shamma Abdulla Almutawa
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Alya Nasir Alnajjar
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Potential anticonvulsant activity of novel VV-hemorphin-7 analogues containing unnatural amino acids: synthesis and characterization. Amino Acids 2020; 52:567-585. [PMID: 32206933 DOI: 10.1007/s00726-020-02836-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Herein, some new analogues of VV-hemorphin-7, modified at position 4 and 7 by the unnatural amino acids followed the structure Val-Val-Tyr-Xxx-Trp-Thr-Yyy-Arg-Phe-NH2, where Xxx is Ac5c (1-aminocyclopentanecarboxylic acid) or Ac6c (1-aminocyclohexane carboxylic acid) and Yyy is Dap (diaminopropanoic acid) or Dab (diaminobutanoic acid), were synthesized, characterized and investigated for anticonvulsant activity. The new synthetic peptide analogues were prepared by standard solid-phase peptide synthesis-Fmoc chemistry. A single intracerebroventricular (i.c.v.) injection at doses of 5, 10, and 20 µg/10 µl, respectively, was given before evaluation with timed intravenous pentylenetetrazole (ivPTZ) infusion test and 6-Hz psychomotor seizure test in mice. The acute neurological toxicity was determined using the rotarod test. To explain the structure-active properties of the modified peptides, some physicochemical characteristic was obtained. The FT-IR spectra and their second derivatives of the amide I, II, and III bands of the peptides show ß-sheet structure conformation. The calculation of isoelectric points, by potentiometric determination of dissociated constants, is in the range from 9.79 to 10.84. This study, for the first time, also reported on the reduction-oxidative potentials of the guanidine at Arg-moiety on such kind of peptides containing arginine and tyrosine residues in different medium and electrode surface. The VV-hemorphin-7 analogues 4 and 5 were the most active against the ivPTZ test, with the effect comparable to that of peptide 1 used as a positive control. Except compound 8, all other tested peptide analogues were ineffective to raise the threshold for the clonic seizures. The peptide analogue 5 showed 100% protection in the 6-Hz test, while the other seven VV-hemorphin-7 analogues have dose-dependent activity against psychomotor seizures comparable to 1. The novel peptides did not show neurotoxicity in the rotarod test.
Collapse
|
8
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Al Dhaheri Y, Vijayan R. Camel Hemorphins Exhibit a More Potent Angiotensin-I Converting Enzyme Inhibitory Activity than Other Mammalian Hemorphins: An In Silico and In Vitro Study. Biomolecules 2020; 10:E486. [PMID: 32210030 PMCID: PMC7175181 DOI: 10.3390/biom10030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Angiotensin-I converting enzyme (ACE) is a zinc metallopeptidase that has an important role in regulating the renin-angiotensin-aldosterone system (RAAS). It is also an important drug target for the management of cardiovascular diseases. Hemorphins are endogenous peptides that are produced by proteolytic cleavage of beta hemoglobin. A number of studies have reported various therapeutic activities of hemorphins. Previous reports have shown antihypertensive action of hemorphins via the inhibition of ACE. The sequence of hemorphins is highly conserved among mammals, except in camels, which harbors a unique Q>R variation in the peptide. Here, we studied the ACE inhibitory activity of camel hemorphins (LVVYPWTRRF and YPWTRRF) and non-camel hemorphins (LVVYPWTQRF and YPWTQRF). Computational methods were used to determine the most likely binding pose and binding affinity of both camel and non-camel hemorphins within the active site of ACE. Molecular dynamics simulations showed that the peptides interacted with critical residues in the active site of ACE. Notably, camel hemorphins showed higher binding affinity and sustained interactions with all three subsites of the ACE active site. An in vitro ACE inhibition assay showed that the IC50 of camel hemorphins were significantly lower than the IC50 of non-camel hemorphins.
Collapse
Affiliation(s)
| | | | | | | | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551 Al Ain, Abu Dhabi, UAE
| |
Collapse
|
9
|
Rodríguez B, Nani JV, Almeida PGC, Brietzke E, Lee RS, Hayashi MAF. Neuropeptides and oligopeptidases in schizophrenia. Neurosci Biobehav Rev 2019; 108:679-693. [PMID: 31794779 DOI: 10.1016/j.neubiorev.2019.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disorder with severe impact on patient's livelihood. In the last years, the importance of neuropeptides in SCZ and other CNS disorders has been recognized, mainly due to their ability to modulate the signaling of classical monoaminergic neurotransmitters as dopamine. In addition, a class of enzymes coined as oligopeptidases are able to cleave several of these neuropeptides, and their potential implication in SCZ was also demonstrated. Interestingly, these enzymes are able to play roles as modulators of neuropeptidergic systems, and they were also implicated in neurogenesis, neurite outgrowth, neuron migration, and therefore, in neurodevelopment and brain formation. Altered activity of oligopeptidases in SCZ was described only more recently, suggesting their possible utility as biomarkers for mental disorders diagnosis or treatment response. We provide here an updated and comprehensive review on neuropeptides and oligopeptidases involved in mental disorders, aiming to attract the attention of physicians to the potential of targeting this system for improving the therapy and for understanding the neurobiology underlying mental disorders as SCZ.
Collapse
Affiliation(s)
- Benjamín Rodríguez
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Priscila G C Almeida
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Richard S Lee
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
10
|
Ali A, Palakkott A, Ashraf A, Al Zamel I, Baby B, Vijayan R, Ayoub MA. Positive Modulation of Angiotensin II Type 1 Receptor-Mediated Signaling by LVV-Hemorphin-7. Front Pharmacol 2019; 10:1258. [PMID: 31708782 PMCID: PMC6823245 DOI: 10.3389/fphar.2019.01258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Hemorphins are hemoglobin β-chain–derived peptides initially known for their analgesic effects via binding to the opioid receptors belonging to the family of G protein–coupled receptor (GPCR), as well as their physiological action on blood pressure. However, their molecular mechanisms in the regulation of blood pressure are not fully understood. Studies have reported an antihypertensive action via the inhibition of the angiotensin-converting enzyme, a key enzyme in the renin–angiotensin system. In this study, we hypothesized that hemorphins may also target angiotensin II (AngII) type 1 receptor (AT1R) as a key GPCR in the renin–angiotensin system. To investigate this, we examined the effects of LVV–hemorphin-7 on AT1R transiently expressed in human embryonic kidney (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology for the assessment of AT1R/Gαq coupling and β-arrestin 2 recruitment. Interestingly, while LVV–hemorphin-7 alone had no significant effect on BRET signals between AT1R and Gαq or β-arrestin 2, it nicely potentiated AngII-induced BRET signals and significantly increased AngII potency. The BRET data were also correlated with AT1R downstream signaling with LVV–hemorphin-7 potentiating the canonical AngII-mediated Gq-dependent inositol phosphate pathway as well as the activation of the extracellular signal–regulated kinases (ERK1/2). Both AngII and LVV–hemorphin-7–mediated responses were fully abolished by AT1R antagonist demonstrating the targeting of the active conformation of AT1R. Our data report for the first time the targeting and the positive modulation of AT1R signaling by hemorphins, which may explain their role in the physiology and pathophysiology of both vascular and renal systems. This finding further consolidates the pharmacological targeting of GPCRs by hemorphins as previously shown for the opioid receptors in analgesia opening a new era for investigating the role of hemorphins in physiology and pathophysiology via the targeting of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Isra Al Zamel
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Seyer B, Diwakarla S, Burns P, Hallberg A, Grӧnbladh A, Hallberg M, Chai SY. Insulin-regulated aminopeptidase inhibitor-mediated increases in dendritic spine density are facilitated by glucose uptake. J Neurochem 2019; 153:485-494. [PMID: 31556456 DOI: 10.1111/jnc.14880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density. We aimed to identify the potential mechanism by which HFI-419 enhances memory by utilizing rat primary cultures of hippocampal cells. Alterations to dendritic spine density were assessed in the presence of varying concentrations of HFI-419 at different stages of hippocampal cell development. In addition, glucose uptake and changes to spine density were assessed in the presence of indinavir, an inhibitor of the glucose transporter 4 (GLUT4 ), or the matrix metalloprotease inhibitor CAS 204140-01-2. We confirmed that inhibition of IRAP activity with HFI-419 enhanced spatial working memory in rats, and determined that this enhancement may be driven by GLUT4 -mediated changes to dendritic spine density. We observed that IRAP inhibition increased dendritic spine density prior to peak dendritic growth in hippocampal neurons, and that spine formation was inhibited when GLUT4 -mediated glucose uptake was blocked. In addition, during the peak phase of dendritic spine growth, the effect of IRAP inhibition on enhancement of dendritic spine density resulted specifically in an increase in the proportion of mushroom/stubby-like spines, a morphology associated with memory and learning. Moreover, these spines were deemed to be functional based on their expression of the pre-synaptic markers vesicular glutamate transporter 1 and synapsin. Overall, or findings suggest that IRAP inhibitors may facilitate memory by increasing hippocampal dendritic spine density via a GLUT4 -mediated mechanism. Cover Image for this issue: doi: 10.1111/jnc.14745.
Collapse
Affiliation(s)
- Benjamin Seyer
- Faculty of Biomedical and Psychological Sciences, Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shanti Diwakarla
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Uppsala, Sweden
| | - Peta Burns
- Faculty of Biomedical and Psychological Sciences, Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Anders Hallberg
- Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Alfhild Grӧnbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Uppsala, Sweden
| | - Siew Yeen Chai
- Faculty of Biomedical and Psychological Sciences, Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
12
|
Molecular insights into the interaction of hemorphin and its targets. Sci Rep 2019; 9:14747. [PMID: 31611567 PMCID: PMC6791854 DOI: 10.1038/s41598-019-50619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hemorphins are atypical endogenous opioid peptides produced by the cleavage of hemoglobin beta chain. Several studies have reported the therapeutic potential of hemorphin in memory enhancement, blood regulation, and analgesia. However, the mode of interaction of hemorphin with its target remains largely elusive. The decapeptide LVV-hemorphin-7 is the most stable form of hemorphin. It binds with high affinity to mu-opioid receptors (MOR), angiotensin-converting enzyme (ACE) and insulin-regulated aminopeptidase (IRAP). In this study, computational methods were used extensively to elucidate the most likely binding pose of mammalian LVV-hemorphin-7 with the aforementioned proteins and to calculate the binding affinity. Additionally, alignment of mammalian hemorphin sequences showed that the hemorphin sequence of the camel harbors a variation - a Q > R substitution at position 8. This study also investigated the binding affinity and the interaction mechanism of camel LVV-hemorphin-7 with these proteins. To gain a better understanding of the dynamics of the molecular interactions between the selected targets and hemorphin peptides, 100 ns molecular dynamics simulations of the best-ranked poses were performed. Simulations highlighted major interactions between the peptides and key residues in the binding site of the proteins. Interestingly, camel hemorphin had a higher binding affinity and showed more interactions with all three proteins when compared to the canonical mammalian LVV-hemorphin-7. Thus, camel LVV-hemorphin-7 could be explored as a potent therapeutic agent for memory loss, hypertension, and analgesia.
Collapse
|
13
|
Kosmachevskaya OV, Topunov AF. Alternate and Additional Functions of Erythrocyte Hemoglobin. BIOCHEMISTRY (MOSCOW) 2019; 83:1575-1593. [PMID: 30878032 DOI: 10.1134/s0006297918120155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The review discusses pleiotropic effects of erythrocytic hemoglobin (Hb) and their significance for human health. Hemoglobin is mostly known as an oxygen carrier, but its biochemical functions are not limited to this. The following aspects of Hb functioning are examined: (i) catalytic functions of the heme component (nitrite reductase, NO dioxygenase, monooxygenase, alkylhydroperoxidase) and of the apoprotein (esterase, lipoxygenase); (ii) participation in nitric oxide metabolism; (iii) formation of membrane-bound Hb and its role in the regulation of erythrocyte metabolism; (iv) physiological functions of Hb catabolic products (iron, CO, bilirubin, peptides). Special attention is given to Hb participation in signal transduction in erythrocytes. The relationships between various erythrocyte metabolic parameters, such as oxygen status, ATP formation, pH regulation, redox balance, and state of the cytoskeleton are discussed with regard to Hb. Hb polyfunctionality can be considered as a manifestation of the principle of biochemical economy.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
14
|
Effect of Endoplasmic Reticular Stress on Free Hemoglobin Metabolism and Liver Injury. Int J Mol Sci 2018; 19:ijms19071977. [PMID: 29986432 PMCID: PMC6073154 DOI: 10.3390/ijms19071977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Elevated soluble (s) CD163 and free hemoglobin (Hb) levels predict fatty liver progression; however, the molecular mechanisms underlying Hb metabolism and liver injury remain undefined. We investigated the effects of endoplasmic reticular (ER) stress on red blood cell (RBC) rheology and free Hb recycling pathways. ER stress was induced in Sprague-Dawley rats by an intraperitoneal injection of tunicamycin (TM) (50, 100, and 200 μg/100 g body weight (BW)) or an intravenous injection of Hb (5 mg/100 g BW). A TM injection increased sCD163 levels, attenuated free Hb uptake, and maintained RBC aggregability. An Hb injection increased serum LVV-hemorphin-7 and total bilirubin levels, but this effect was suppressed by TM. A Western blot analysis showed that ER stress suppressed Hb degradation in the liver through downregulation of globin degradation proteins cathepsin D and glyoxalase-1, as well as heme degradation protein heme oxyganase-1 and keap-1 expression. An ER stress activator also increased the translocation of nuclear factor (NF)-κB (p65) and nuclear factor-erythroid 2-related factor 2 (Nrf2) to nuclei. In conclusion, ER stress triggers ineffective Hb metabolism via altering globin and heme iron degradation pathways. Inability to recycle and metabolize free Hb may underlie the association between iron dysfunction and liver injury.
Collapse
|
15
|
Domenger D, Cudennec B, Kouach M, Touche V, Landry C, Lesage J, Gosselet F, Lestavel S, Goossens JF, Dhulster P, Ravallec R. Food-Derived Hemorphins Cross Intestinal and Blood-Brain Barriers In Vitro. Front Endocrinol (Lausanne) 2018; 9:159. [PMID: 29692758 PMCID: PMC5903475 DOI: 10.3389/fendo.2018.00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
A qualitative study is presented, where the main question was whether food-derived hemorphins, i.e., originating from digested alimentary hemoglobin, could pass the intestinal barrier and/or the blood-brain barrier (BBB). Once absorbed, hemorphins are opioid receptor (OR) ligands that may interact with peripheral and central OR and have effects on food intake and energy balance regulation. LLVV-YPWT (LLVV-H4), LVV-H4, VV-H4, VV-YPWTQRF (VV-H7), and VV-H7 hemorphins that were previously identified in the 120 min digest resulting from the simulated gastrointestinal digestion of hemoglobin have been synthesized to be tested in in vitro models of passage of IB and BBB. LC-MS/MS analyses yielded that all hemorphins, except the LLVV-H4 sequence, were able to cross intact the human intestinal epithelium model with Caco-2 cells within 5-60 min when applied at 5 mM. Moreover, all hemorphins crossed intact the human BBB model with brain-like endothelial cells (BLEC) within 30 min when applied at 100 µM. Fragments of these hemorphins were also detected, especially the YPWT common tetrapeptide that retains OR-binding capacity. A cAMP assay performed in Caco-2 cells indicates that tested hemorphins behave as OR agonists in these cells by reducing cAMP production. We further provide preliminary results regarding the effects of hemorphins on tight junction proteins, specifically here the claudin-4 that is involved in paracellular permeability. All hemorphins at 100 µM, except the LLVV-H4 peptide, significantly decreased claudin-4 mRNA levels in the Caco-2 intestinal model. This in vitro study is a first step toward demonstrating food-derived hemorphins bioavailability which is in line with the growing body of evidence supporting physiological functions for food-derived peptides.
Collapse
Affiliation(s)
- Dorothée Domenger
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Benoit Cudennec
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec, ; Rozenn Ravallec,
| | - Mostafa Kouach
- Plateau de Spectrométrie de Masse “PSM-GRITA”, EA 7365, Faculté de Pharmacie, Université de Lille, Lille, France
| | - Véronique Touche
- Université de Lille INSERM, CHU Lille, Institut Pasteur de Lille, U1011 – EGID, Lille, France
| | - Christophe Landry
- Université d’Artois EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Jean Lesage
- Université Lille Nord de France, Unité Environnement Périnatal et Croissance EA 4489, Équipe dénutritions maternelles périnatales, Université Lille 1, Villeneuve-d’Ascq, France
| | - Fabien Gosselet
- Université d’Artois EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Sophie Lestavel
- Université de Lille INSERM, CHU Lille, Institut Pasteur de Lille, U1011 – EGID, Lille, France
| | - Jean-François Goossens
- Plateau de Spectrométrie de Masse “PSM-GRITA”, EA 7365, Faculté de Pharmacie, Université de Lille, Lille, France
| | - Pascal Dhulster
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec, ; Rozenn Ravallec,
| |
Collapse
|
16
|
da Cruz KR, Turones LC, Camargo-Silva G, Gomes KP, Mendonça MM, Galdino P, Rodrigues-Silva C, Santos RAS, Costa EA, Ghedini PC, Ianzer D, Xavier CH. The hemoglobin derived peptide LVV-hemorphin-7 evokes behavioral effects mediated by oxytocin receptors. Neuropeptides 2017; 66:59-68. [PMID: 28985964 DOI: 10.1016/j.npep.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
LVV-hemorphin-7 (LVV-h7) is bioactive peptide resulting from degradation of hemoglobin β-globin chain. LVV-h7 is a specific agonist of angiotensin IV receptor. This receptor belongs to the class of insulin-regulated aminopeptidases (IRAP), which displays oxytocinase activity. Herein, our aims were to assess whether: i) LVV-h7 modifies centrally organized behavior and cardiovascular responses to stress and ii) mechanisms underlying LVV-h7 effects involve activation of oxytocin (OT) receptors, probably as result of reduction of IRAP proteolytic activity upon OT. Adult male Wistar rats (270-370g) received (i.p.) injections of LVV-h7 (153nmol/kg), or vehicle (0.1ml). Different protocols were used: i) open field (OP) test for locomotor/exploratory activities; ii) Elevated Plus Maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) test for depression-like behavior and iv) air jet for cardiovascular reactivity to acute stress exposure. Diazepam (2mg/kg) and imipramine (15mg/kg) were used as positive control for EPM and FST, respectively. The antagonist of OT receptors (OTr), atosiban (1 and 0,1mg/kg), was used to determine the involvement of oxytocinergic paths. We found that LVV-h7: i) increased the number of entries and the time spent in open arms of the maze, an indicative of anxiolysis; ii) provoked antidepressant effect in the FS test; and iii) increased the exploration and locomotion; iv) did not change the cardiovascular reactivity and neuroendocrine responses to acute stress. Also, increases in locomotion and the antidepressant effects evoked by LVV-h7 were reverted by OTr antagonist. We conclude that LVV-h7 modulates behavior, displays antidepressant and anxiolytic effects that are mediated in part by oxytocin receptors.
Collapse
Affiliation(s)
- Kellen Rosa da Cruz
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Camargo-Silva
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Karina Pereira Gomes
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Michelle Mendanha Mendonça
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Pablinny Galdino
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Christielly Rodrigues-Silva
- Laboratory of Pharmacology and Molecular Biochemistry, Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo Cesar Ghedini
- Laboratory of Pharmacology and Molecular Biochemistry, Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Ianzer
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos Henrique Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
17
|
Domenger D, Caron J, Belguesmia Y, Lesage J, Dhulster P, Ravallec R, Cudennec B. Bioactivities of hemorphins released from bovine haemoglobin gastrointestinal digestion: Dual effects on intestinal hormones and DPP-IV regulations. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Wu J, Yuan L, Aluko RE. Restriction of thein VitroFormation of Angiotensin II by Leucinyl-Arginyl-Tryptophan, a Novel Peptide with Potent Angiotensin I-Converting Enzyme Inhibitory Activity. Biosci Biotechnol Biochem 2014; 70:1277-80. [PMID: 16717437 DOI: 10.1271/bbb.70.1277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leucinyl-arginyl-tryptophan (LRW) is a new peptide inhibitor of the angiotensin converting enzyme (ACE) that was previously predicted through quantitative structure-activity relationship modeling. LRW inhibited ACE activity in a competitive manner with a higher K(m) value in the presence of the peptide, and the in vitro formation of angiotensin II by ACE was significantly reduced in the presence of LRW up to 60 min of incubation time.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Human Nutritional Sciences, University of Manitoba, Canada
| | | | | |
Collapse
|
19
|
Maraninchi M, Feron D, Fruitier-Arnaudin I, Bégu-Le Corroller A, Nogueira JP, Mancini J, Valéro R, Piot JM, Vialettes B. Serum hemorphin-7 levels are decreased in obesity. Obesity (Silver Spring) 2013; 21:378-81. [PMID: 23532992 DOI: 10.1002/oby.20280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/31/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Hemorphin peptides exhibit biological activities that interfere with the endorphin system, the inflammatory response, and blood-pressure control. VV-hemorphin-7 and LVV-hemorphin-7 peptides exert a hypotensive effect, in particular, by inhibiting the renin-angiotensin system. Furthermore, levels of circulating hemorphin-7 peptides have been found to be decreased in diseases such as type 1 and type 2 diabetes. DESIGN AND METHODS Because type 2 diabetes and obesity share common features, such as insulin resistance, microinflammation, high glomerular-filtration rate (GFR), and cardiovascular risk, we evaluated serum VV-hemorphin-7 like immunoreactivity (VVH7-i.r.) levels, using an enzyme-linked immunosorbent assay method, on a group of 54 obese subjects without diabetes or hypertension, compared with a group of 33 healthy normal-weight subjects. RESULTS Circulating VVH7-i.r. levels were significantly decreased in the obese group compared with the control group (1.98 ± 0.19 vs. 4.86 ± 0.54 µmol/l, respectively, P < 0.01), and a significant negative correlation between VVH7-i.r. and diastolic blood pressure (DBP) was found in obese patients (r = -0.35, P = 0.011). There was no significant correlation between VVH7-i.r. level and insulin resistance, metabolic syndrome, or GFR. CONCLUSIONS The decreased serum hemorphin-7 found in obese subjects, as in diabetes, may contribute to the development of hypertension and to the cardiovascular risk associated with these metabolic diseases.
Collapse
Affiliation(s)
- Marie Maraninchi
- Aix Marseille Université, Inserm, INRA, NORT UMR_1062, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li H, Prairie N, Udenigwe CC, Adebiyi AP, Tappia PS, Aukema HM, Jones PJH, Aluko RE. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9854-60. [PMID: 21854068 DOI: 10.1021/jf201911p] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The blood pressure lowering effect of a pea protein hydrolysate (PPH) that contained <3 kDa peptides, isolated by membrane ultrafiltration from the thermolysin digest of pea protein isolate (PPI), was examined using different rat models of hypertension as well as hypertensive human subjects. The PPH showed weak in vitro activities against renin and angiotensin converting enzyme (ACE) with inhibitory activities of 17 and 19%, respectively, at 1 mg/mL test concentration. Oral administration of the PPH to spontaneously hypertensive rats (SHR) at doses of 100 and 200 mg/kg body weight led to a lowering of hourly systolic blood pressure (SBP), with a maximum reduction of 19 mmHg at 4 h. In contrast, orally administered unhydrolyzed PPI had no blood pressure reducing effect in SHR, suggesting that thermolysin hydrolysis may have been responsible for releasing bioactive peptides from the native protein. Oral administration of the PPH to the Han:SPRD-cy rat (a model of chronic kidney disease) over an 8-week period led to 29 and 25 mmHg reductions in SBP and diastolic blood pressure, respectively. The PPH-fed rats had lower plasma levels of angiotensin II, the major vasopressor involved in development of hypertension, but there was no effect on plasma activity or renal mRNA levels of ACE. However, renal expression of renin mRNA levels was reduced by approximately 50% in the PPH-fed rats, suggesting that reduced renin may be responsible for the reduced levels of angiotensin II. In a 3-week randomized double blind placebo-controlled crossover human intervention trial (7 volunteers), significant (p<0.05) reductions (over placebo) in SBP of 5 and 6 mmHg were obtained in the second and third weeks, respectively, for the PPH group. Therefore, thermolysin derived bioactive peptides from PPH reduced blood pressure in hypertensive rats and human subjects, likely via effects on the renal angiotensin system.
Collapse
Affiliation(s)
- Huan Li
- Department of Human Nutritional Sciences and The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gomes I, Dale CS, Casten K, Geigner MA, Gozzo FC, Ferro ES, Heimann AS, Devi LA. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS JOURNAL 2010; 12:658-69. [PMID: 20811967 DOI: 10.1208/s12248-010-9217-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/22/2010] [Indexed: 01/08/2023]
Abstract
Most bioactive peptides are generated by proteolytic cleavage of large precursor proteins followed by storage in secretory vesicles from where they are released upon cell stimulation. Examples of such bioactive peptides include peptide neurotransmitters, classical neuropeptides, and peptide hormones. In the last decade, it has become apparent that the breakdown of cytosolic proteins can generate peptides that have biological activity. A case in point and the focus of this review are hemoglobin-derived peptides. In vertebrates, hemoglobin (Hb) consists of a tetramer of two α- and two β-globin chains each containing a prosthetic heme group, and is primarily involved in oxygen delivery to tissues and in redox reactions (Schechter Blood 112:3927-3938, 2008). The presence of α- and/or β-globin chain in tissues besides red blood cells including rodent and human brain and peripheral tissues (Liu et al. Proc Natl Acad Sci USA 96:6643-6647, 1999; Newton et al. J Biol Chem 281:5668-5676, 2006; Wride et al. Mol Vis 9:360-396, 2003; Setton-Avruj Exp Neurol 203:568-578, 2007; Ohyagi et al. Brain Res 635:323-327, 1994; Schelshorn et al. J Cereb Blood Flow Metab 29:585-595, 2009; Richter et al. J Comp Neurol 515:538-547, 2009) suggests that globins and/or derived peptidic fragments might play additional physiological functions in different tissues. In support of this hypothesis, a number of Hb-derived peptides have been identified and shown to have diverse functions (Ivanov et al. Biopoly 43:171-188, 1997; Karelin et al. Neurochem Res 24:1117-1124, 1999). Modern mass spectrometric analyses have helped in the identification of additional Hb peptides (Newton et al. J Biol Chem 281:5668-5676, 2006; Setton-Avruj Exp Neurol 203:568-578, 2007; Gomes et al. FASEB J 23:3020-3029, 2009); the molecular targets for these are only recently beginning to be revealed. Here, we review the status of the Hb peptide field and highlight recent reports on the identification of a molecular target for a novel set of Hb peptides, hemopressins, and the implication of these peptides to normal cell function and disease. The potential therapeutic applications for these Hb-derived hemopressin peptides will also be discussed.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Feron D, Piot JM, Fruitier-Arnaudin I. Proteolytic degradation by cathepsin D of glycated hemoglobin from diabetes patients gives rise to hemorphin-7 peptides. Peptides 2010; 31:956-61. [PMID: 20206221 DOI: 10.1016/j.peptides.2010.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/29/2022]
Abstract
Previous studies showed a significantly reduced level of hemorphins in the serum of diabetes patients. In order to elucidate the biochemical mechanisms responsible for this anomaly, the influence of hemoglobin glycation on hemorphin generation was studied. The glycation of hemoglobin occurs in the blood of diabetes patients and this could modify its enzymatic digestion and the resulting proteolytic products. Several samples of hemoglobin were obtained from the blood of type 1 diabetes patients (n=8) and normal healthy control subjects (n=2). The glycated hemoglobin samples were classified on the basis of their HbA1c values expressed as a percentage of total hemoglobin. Four solutions of glycated hemoglobin characterized by HbA1c values of 6%, 9.1%, 10.7% and 12.1% were treated with cathepsin D and the hemorphins obtained following the proteolysis were compared to controls. It was found that hemorphins were produced whatever the level of glycation of hemoglobin and also that the degree of glycation had no effect on the quantity of hemorphins released. Thus the alteration of hemoglobin does not seem to be the essential reason for the decrease in hemorphin concentrations in the sera of diabetic patients.
Collapse
Affiliation(s)
- Delphine Feron
- University of La Rochelle, UMR-CNRS 6250, LIENSS, Team MAB, La Rochelle F-17042, France
| | | | | |
Collapse
|
23
|
Feron D, Begu-Le Corroller A, Piot JM, Frelicot C, Vialettes B, Fruitier-Arnaudin I. Significant lower VVH7-like immunoreactivity serum level in diabetic patients: evidence for independence from metabolic control and three key enzymes in hemorphin metabolism, cathepsin D, ACE and DPP-IV. Peptides 2009; 30:256-61. [PMID: 19061927 DOI: 10.1016/j.peptides.2008.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 01/06/2023]
Abstract
Low circulating VVH7-like immunoreactivity (VVH7 i.r) level was amazingly observed in human diabetic sera. Here, we examined the impact of diabetes type, clinico-biological features and metabolic control on circulating VVH7 i.r level in this disease. ELISA test was used to measure VVH7 i.r in sera of 120 diabetic patients (type 1 diabetes in 64, type 2 diabetes in 56). Three enzymatic tests were also applied to determine serum cathepsin D (CD), dipeptidyl peptidase IV (DPP-IV) and angiotensin-converting enzyme (ACE) activities. A subgroup of 24 type 1 diabetic patients negative for microalbuminuria and hypertension were submitted to an ambulatory blood pressure monitoring to evaluate the relationship between VVH7 i.r level and blood pressure parameters. The mean serum concentration of VVH7 i.r was drastically reduced in diabetic patients (0.91+/-0.93 micromol/l versus 5.63+/-1.11 micromol/l in controls) (p<0.001). A negative correlation between VVH7 i.r level and daytime diastolic blood pressure existed in type 1 diabetic patients. There was no association of low VVH7 i.r with either type of diabetes or HbA1c level. An increase of cathepsin D activity was found in serum of diabetic patients compared to controls (0.47 U/ml versus 0.15 U/ml, respectively) whereas DPPIV activity was significantly decreased in diabetic sera (50.81 U/ml versus 282.10 U/l respectively). Diminution of VVH7 i.r in sera of diabetic patients was confirmed but still remained unexplained. Relationships between higher systolic blood pressure and decrease of VVH7 i.r reinforce the need to investigate this pathway in this disease to elucidate its role in macro- and micro-angiopathy.
Collapse
Affiliation(s)
- D Feron
- UMR 6250 CNRS-ULR, LIENSS-LIttoral, Environnement, SociétéS, Equipe MAB-Pôle Sciences et Technologie, UFR Sciences et Technologie, Université de la Rochelle, France
| | | | | | | | | | | |
Collapse
|
24
|
Tsujimoto M, Goto Y, Maruyama M, Hattori A. Biochemical and enzymatic properties of the M1 family of aminopeptidases involved in the regulation of blood pressure. Heart Fail Rev 2007; 13:285-91. [DOI: 10.1007/s10741-007-9064-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
25
|
Ianzer D, Konno K, Xavier CH, Stöcklin R, Santos RAS, de Camargo ACM, Pimenta DC. Hemorphin and hemorphin-like peptides isolated from dog pancreas and sheep brain are able to potentiate bradykinin activity in vivo. Peptides 2006; 27:2957-66. [PMID: 16904236 DOI: 10.1016/j.peptides.2006.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Hemorphins are biologically active peptides, derived from hemoglobin, which presents a number of physiological activities. Proteolytic generation of these peptides is not fully understood; however, among their roles, is to provoke reduction on blood pressure. In this work, this particular biological effect was chosen as the monitor for the selection of mammalian vasoactive peptides. By combining high-performance liquid chromatography and mass spectrometry, including 'de novo' sequencing, several hemorphin-like peptides were identified presenting bradykinin potentiating activity. Moreover, taking LVV-hemorphin-7 as model compound, we evaluated its biological effect on blood pressure of anaesthetized rats. By summarizing all the results, it is possible to present the hemorphins as a family of proteolytically generated peptides that are able to potentiate bradykinin activity in vivo.
Collapse
Affiliation(s)
- Danielle Ianzer
- Center for Applied Toxinology, CAT-CEPID, Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brasil 1500, Sao Paulo, SP 05503-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Goto Y, Hattori A, Ishii Y, Mizutani S, Tsujimoto M. Enzymatic Properties of Human Aminopeptidase A. J Biol Chem 2006; 281:23503-13. [PMID: 16790432 DOI: 10.1074/jbc.m603191200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminopeptidase A (APA) is a type II membrane-bound protein implicated in the regulation of blood pressure in the brain renin-angiotensin system. In this study, a recombinant soluble form of APA was expressed in a baculovirus system, purified to homogeneity, and characterized. By using synthetic substrates, it was shown that although the enzyme has a rather broad substrate specificity in the absence of Ca2+, the preferential release of acidic amino acid residues was observed in the presence of Ca2+. Moreover, Ca2+ up- or down-regulated the enzymatic activity depending on the substrate. By searching for natural substrates of APA, we found that peptides having acidic amino acids at their N terminus (angiotensin II, neurokinin B, cholecystokinin-8, and chromogranin A) were cleaved by the enzyme efficiently in the presence but not in the absence of Ca2+. Moreover kallidin (Lys-bradykinin) was converted to bradykinin effectively only in the absence of Ca2+. These results suggest that Ca2+ increases the preference of the enzyme for the peptide substrates having N-terminal acidic amino acids. In addition, we found that angiotensin IV could bind to APA both in the presence and absence of Ca2+ and inhibited the enzymatic activity of APA competitively, suggesting that angiotensin IV acts as a negative regulator of the enzyme once generated from angiotensin II by the serial actions of aminopeptidases. Taken together, these results suggest that there exists a complex regulation of the enzymatic activity of APA, which may contribute to homeostasis such as regulation of blood pressure, maintenance of memory, and normal pregnancy by controlling the concentrations of peptide substrates.
Collapse
Affiliation(s)
- Yoshikuni Goto
- Laboratory of Cellular Biochemistry, RIKEN, Wako, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
27
|
Abstract
AbstractAngiotensin-converting enzyme (ACE, kininase II) is a plasma membrane zinc metallopeptidase that acts as a key enzyme for the extracellular conversion of vasoactive peptides. Recently, ACE outside-in signalling in endothelial cells has been described. The present study tested the hypothesis that ACE signalling is not restricted to endothelial cells and may act as an additional peptide receptor on human preadipocytes and adipocytes. ACE protein levels were not changed during adipose conversion of human primary preadipocytes. The enzyme was primarily localized to the non-detergent-resistant fraction of the membrane and phosphorylated in non-dividing cells. Antibody arrays of whole cell lysate detected putative ACE-interacting proteins, which all share important roles in cell cycle control and/or apoptosis. These findings suggest that ACE is a versatile molecule, involved both in the regulation of extracellular peptide concentrations and direct intracellular signalling. In human adipose cells ACE may potentially influence exit from the cell cycle, differentiation, and programmed cell death signalling.
Collapse
|
28
|
von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599-616. [PMID: 16555051 DOI: 10.1007/s00441-006-0190-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1-8) [Ang II], angiotensin-(3-8) [Ang IV], and angiotensin-(1-7) [Ang-(1-7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1-7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1-7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | |
Collapse
|
29
|
Newton DA, Rao KMK, Dluhy RA, Baatz JE. Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem 2006; 281:5668-76. [PMID: 16407281 DOI: 10.1074/jbc.m509314200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemoglobin gene expression in non-erythroid cells has been previously reported in activated macrophages from adult mice and lens cells, and recent studies indicate that alveolar epithelial cells can be derived from hematopoietic stem cells. Our laboratory has now produced strong evidence that hemoglobin is expressed by alveolar type II (ATII) cells and Clara cells, the primary producers of pulmonary surfactant. ATII cells are also closely involved in innate immunity within the lung and are stem cells that differentiate into alveolar type I cells. Reverse transcriptase-PCR was used to measure the expression of transcripts from the alpha- and beta-globin gene clusters in several human and rodent pulmonary epithelial cells. Surprisingly, the two major globin mRNAs characteristic of adult erythroid precursor cells were clearly expressed in human A549 and H441 cell lines, mouse MLE-15 cells, and primary ATII cells isolated from normal rat and mouse lungs. DNA sequencing verified that these PCR products were indeed the result of specific amplification of globin gene cDNAs. These alveolar epithelial cells also expressed the corresponding hemoglobin protein subunits as determined by Western blotting, and tandem mass spectrometry sequencing was used to verify the presence of both alpha- and beta-globin polypeptides in rat primary ATII cells. The function of hemoglobin expression by cells of the pulmonary epithelium will be determined by future studies, but this novel finding could potentially have important implications for the physiology and pathology of the lung.
Collapse
Affiliation(s)
- Danforth A Newton
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
30
|
Machado MFM, Cunha FM, Berti DA, Heimann AS, Klitzke CF, Rioli V, Oliveira V, Ferro ES. Substrate phosphorylation affects degradation and interaction to endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. Biochem Biophys Res Commun 2005; 339:520-5. [PMID: 16300734 DOI: 10.1016/j.bbrc.2005.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/05/2005] [Indexed: 11/16/2022]
Abstract
Recent findings from our laboratory suggest that intracellular peptides containing putative post-translational modification sites (i.e., phosphorylation) could regulate specific protein interactions. Here, we extend our previous observations showing that peptide phosphorylation changes the kinetic parameters of structurally related endopeptidase EP24.15 (EC 3.4.24.15), neurolysin (EC 3.4.24.16), and angiotensin-converting enzyme (EC 3.4.15.1). Phosphorylation of peptides that are degraded by these enzymes leads to reduced degradation, whereas phosphorylation of peptides that interacted as competitive inhibitors of these enzymes alters only the K(i)'s. These data suggest that substrate phosphorylation could be one of the mechanisms whereby some intracellular peptides would escape degradation and could be regulating protein interactions within cells.
Collapse
Affiliation(s)
- M F M Machado
- Laboratório de Neurociências, Universidade da Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
32
|
Heimann AS, Favarato MH, Gozzo FC, Rioli V, Carreño FR, Eberlin MN, Ferro ES, Krege JH, Krieger JE. ACE gene titration in mice uncovers a new mechanism for ACE on the control of body weight. Physiol Genomics 2004; 20:173-82. [PMID: 15522949 DOI: 10.1152/physiolgenomics.00145.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mice harboring 1, 2, or 3 copies of the angiotensin-converting enzyme (ACE) gene were used to evaluate the quantitative role of the ACE locus on obesity. Three-copy mice fed with a high-fat diet had lower body weight and peri-epididymal adipose tissue than did 1- and 2-copy mice (P < 0.05). On regular diet, 3-copy mice had to eat more to maintain the same body weight; on a high-fat diet, they ate the same but weighed less than 1- and 2-copy mice (P < 0.05), indicating a higher metabolic rate in 3-copy mice that was not affected by ANG II AT(1) blocker treatment. A catalytically inactive form of thimet oligopeptidase (EC 3.4.24.15; EP24.15) was used to isolate ACE substrates from adipose tissue. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified 162 peptide peaks; 16 peptides were present in both groups (1- and 3-copy mice fed with a high-fat diet), whereas 58 of the 72 unique peptides were found only in the 3-copy mice. Peptide size distribution was shifted to lower molecular weight in 3-copy mice. Two of the identified peptides, LVVYPWTQRY and VVYPWTQRY, which are ACE substrates, inhibited in vitro protein kinase C phosphorylation in a concentration-dependent manner. In addition, neurolysin (EC 3.4.24.16; EP24.16) activity was lower in fat tissue from 3- vs. 1-copy mice (P < 0.05). Taken together, these results provide evidence that ACE is associated with body weight and peri-epididymal fat accumulation. This response may involve the generation of oligopeptides that inhibit the activity of EP24.16 and other oligopeptidases within the adipose tissue.
Collapse
Affiliation(s)
- A S Heimann
- Heart Institute (InCor) and Department of Medicine-LIM13, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL. Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Circ Res 2004; 94:1451-7. [PMID: 15117826 DOI: 10.1161/01.res.0000130654.56599.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin IV (Ang IV) is a metabolite of the potent vasoconstrictor angiotensin II (Ang II). Because specific binding sites for this peptide have been reported in numerous tissues including the brain, it has been suggested that a specific Ang IV receptor (AT4) might exist. Bolus injection of Ang IV in brain ventricles has been implicated in learning, memory, and localized vasodilatation. However, the functions of Ang IV in a physiological context are still unknown. In this study, we generated a transgenic (TG) mouse model that chronically releases Ang IV peptide specifically in the brain. TG mice were found to be hypertensive by the tail-cuff method as compared with control littermates. Treatment with the angiotensin-converting enzyme inhibitor captopril had no effect on blood pressure, but surprisingly treatment with the Ang II AT1 receptor antagonist candesartan normalized the blood pressure despite the fact that the levels of Ang IV in the brains of TG mice were only 4-fold elevated over the normal endogenous level of Ang peptides. Calcium mobilization assays performed on cultured CHO cells chronically transfected with the AT1 receptor confirm that low-dose Ang IV can mobilize calcium via the AT1 receptor only in the presence of Ang II, consistent with an allosteric mechanism. These results suggest that chronic elevation of Ang IV in the brain can induce hypertension that can be treated with angiotensin II AT1 receptor antagonists.
Collapse
Affiliation(s)
- Nadheige Lochard
- Laboratories of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|