1
|
Denisova SA, Shchenkov SV, Lebedenkov VV. Microanatomy and ultrastructure of the nervous system of adult Renicola parvicaudatus (Digenea: Renicolidae). J Morphol 2024; 285:e21672. [PMID: 38361267 DOI: 10.1002/jmor.21672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
The digenean complex life cycle includes various morphological forms with different locomotory and behavioral activities, and the functional specialization of their nervous system is of importance for the transmission of these parasites. Adult digeneans acquire many adaptive features associated with the final settlement in a vertebrate host. Our study describes the general morphology and ultrastructure of the nervous system of the adult renicolid digenean Renicola parvicaudatus parasitizing the renal tubules of herring gulls. Using immunocytochemical and electron microscopic methods, we identified the distinctive characteristics of ganglia and synapses in the studied species. A comparative analysis of the organization of the nervous system of adult individuals and their continuously-swimming stylet cercariae revealed a number of stage-related differences in the composition of ganglia, the distribution of serotonin- and FMRFamide-immunoreactive neurons, the cytomorphology of neuron somata and free sensory endings. Thus, in adults, the presence of FMRFamide-positive neuron somata, accessory muscle bundles in the ganglionic cortex, and eight types of neuronal vesicles was detected, but no glia-like elements were identified. Their neurons are characterized by a larger volume of cytoplasm and also show greater ultrastructural diversity. Although the sensory papillae of adults do not vary in their external morphology as much as those of larvae, their sensory bulbs are more diverse in cytomorphology. Following our previous data on the "support" cell processes related to various tissues of the larvae and considered as glia-like structures, we also briefly present the identified features of the parenchyma, attachment organs and excretory system of adult individuals. The excretory system of adult R. parvicaudatus is characterized by the presence of unique terminal cells with several flame tufts, which are not typical either for the larvae of this species or for other digeneans studied so far. We also used molecular phylogenetic analysis to clarify species identification.
Collapse
Affiliation(s)
- Sofia A Denisova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sergei V Shchenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir V Lebedenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Kreshchenko ND. A Study of the Mechanisms of Action of FMRF-Like Peptides in Inducing Muscle Contraction in Planarians (Platyhelminthes). Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092103009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Thiangtrongjit T, Simanon N, Adisakwattana P, Limpanont Y, Chusongsang P, Chusongsang Y, Reamtong O. Identification of Low Molecular Weight Proteins and Peptides from Schistosoma mekongi Worm, Egg and Infected Mouse Sera. Biomolecules 2021; 11:biom11040559. [PMID: 33920436 PMCID: PMC8070599 DOI: 10.3390/biom11040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development.
Collapse
Affiliation(s)
- Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Nattapon Simanon
- National Omics Center (NOC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.L.); (P.C.); (Y.C.)
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.L.); (P.C.); (Y.C.)
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (Y.L.); (P.C.); (Y.C.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Correspondence: ; Tel.: +66-(0)-2306-9138; Fax: +66-(0)-2306-9139
| |
Collapse
|
4
|
Kreshchenko N, Terenina N, Nefedova D, Mochalova N, Voropaeva E, Movsesyan S. The neuroactive substances and associated muscle system in Rhipidocotyle campanula (Digenea, Bucephalidae) from the intestine of the pike Esox lucius. J Morphol 2020; 281:1047-1058. [PMID: 32574422 DOI: 10.1002/jmor.21230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
We report about the muscular system and the serotonergic and FMRFamidergic components of the nervous system of the Bucephalidae trematode, Rhipidocotyle campanula, an intestinal parasite of the pike. We use immunocytochemical methods and confocal scanning laser microscopy (CLSM). The musculature is identified by histochemical staining with fluorescently labeled phalloidin. The body wall musculature of R. campanula contains three layers of muscle fibres - the outer thin circular, intermediate longitudinal and inner diagonal muscle fibres running in two opposite directions. The digestive system of R. campanula possess of a well-developed musculature: radial, longitudinal and circular muscle elements are detected in the pharynx, circular and longitudinal muscle filaments seen in the oesophagus, and longitudinal and the circular muscle fibres were found in the intestinal wall. Specific staining indicating the presence of actin muscle filaments occurs in the cirrus sac localized in the posterior body region. The frontal region of anterior attachment organ, the rhynchus, in R. campanula is represented by radial muscle fibres. The posterior part of the rhynchus comprise of radial muscles forming the organ's wall, and several strong longitudinal muscle bundles. Serotonergic and FMRFamidergic structures are detected in the central and peripheral compartments of the nervous system of R. campanula, that is, in the paired brain ganglia, the brain commissure, the longitudinal nerve cords, and connective nerve commissures. The innervations of the rhynchus, pharynx, oesophagus and distal regions of the reproductive system by the serotonergic and FMRFamidergic nervous elements are revealed. We compare our findings obtained on R. campanula with related data for other trematodes.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nadezhda Terenina
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Darya Nefedova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Mochalova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Voropaeva
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.,Tobolsk complex scientific station, Ural Department of Russian Academy of Sciences (Ural Department of RAS), Tobolsk, Russia
| | - Sergey Movsesyan
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Li S, Song JH, Kim TI, Yoo WG, Won MH, Dai F, Hong SJ. Chemotactic migration of newly excysted juvenile Clonorchis sinensis is suppressed by neuro-antagonists. PLoS Negl Trop Dis 2019; 13:e0007573. [PMID: 31408466 PMCID: PMC6691982 DOI: 10.1371/journal.pntd.0007573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022] Open
Abstract
The metacercariae of the Clonorchis sinensis liver fluke excyst in the duodenum of mammalian hosts, and the newly excysted juveniles (CsNEJs) migrate along the bile duct via bile chemotaxis. Cholic acid is a major component of bile that induces this migration. We investigated the neuronal control of chemotactic behavior of CsNEJs toward cholic acid. The migration of CsNEJs was strongly inhibited at sub-micromolar concentration by dopamine D1 (LE-300 and SKF-83566), D2 (spiramide, nemonapride, and sulpiride), and D3 (GR-103691 and NGB-2904) receptor antagonists, as well as a dopamine reuptake inhibitor (BTCP). Neuropeptides, FMRFamide, peptide YY, and neuropeptide Y were also potent inhibitors of chemotaxis. Meanwhile, serotonergic, glutamatergic, and cholinergic inhibitors did not affect chemotaxis, with the exception of fluoxetine and CNQX. Confocal immunofluorescence analysis indicated that dopaminergic and cholinergic neurons were colocalized in the somatic muscle tissues of adult C. sinensis. Our findings suggest that dopaminergic neurons and neuropeptides play a major role in the chemotactic migration of CsNEJs to bile, and their inhibitors or modulators could be utilized to prevent their migration from the bile duct.
Collapse
Affiliation(s)
- Shunyu Li
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae Im Kim
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Division of Planning and Management, Nakdong-gang National Institute of Biological Resources, Sangju, Gyeongsangbuk-do, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, Medical College of Soochow University, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Go HJ, Kim CH, Oh HY, Park NG. Novel pentapeptide, PALAL, derived from a bony fish elicits contraction of the muscle in starfish Patiria pectinifera. J Pept Sci 2016; 22:628-635. [PMID: 27506561 DOI: 10.1002/psc.2911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 07/18/2016] [Indexed: 11/07/2022]
Abstract
A bioactive peptide mimicking peptide-signaling molecules has been isolated from the skin extract of fish Channa argus which caused contraction of the apical muscle of a starfish Patiria pectinifera, a deuterostomian invertebrate. The primary structure of the isolated pentapeptide comprises amino acid sequence of H-Pro-Ala-Leu-Ala-Leu-OH (PALAL) with a molecular mass of 483.7 Da. Pharmacological activity of PALAL, dosage ranging from 10-9 to 10-5 M, revealed concentration-dependent contraction of the apical muscles of P. pectinifera and Asterias amurensis. However, PALAL was not active on the intestinal smooth muscle of the goldfish Carassius auratus and has presumably other physiological roles in fish skin. Investigation of structure-activity relationship using truncated and substituted analogs of PALAL demonstrated that H-Ala-Leu-Ala-Leu-OH was necessary and should be sufficient to constrict apical muscle of P. pectinifera. Furthermore, the second alanine residue was required to display the activity, and the fifth leucine residue was responsible for its potency. Comparison with PALAL's primary structure with those of other known bioactive peptides from fish and starfish revealed that PALAL does not have any significant homology. Consequently, PALAL is a bioactive peptide that elicits a muscle contraction in starfish, and the isolation of PALAL may lead to develop other bioactive peptides sharing its similar sequence and/or activity. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Korea
| | - Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Korea
| | - Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Korea.
| |
Collapse
|
7
|
Parker-Manuel SJ, Hahnel S, Grevelding CG. Inhibition of Schistosoma mansoni ether-a-go-go related gene-encoded potassium channels leads to hypermotility and impaired egg production. Exp Parasitol 2015; 158:48-54. [PMID: 26188142 DOI: 10.1016/j.exppara.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 11/19/2022]
Abstract
The purpose of this work was to investigate the effect of ether-a-go-go related gene (ERG) potassium channel inhibition on Schistosoma mansoni. Use of dofetilide to block the schistosome ERGs resulted in a striking 'corkscrew' effect. The worms were unable to control their motility; they were hypermotile. The treated worms produced abnormal eggs, some of which consisted of little more than a spine. One of the S. mansoni ERGs (SmERGs), Smp_161140, was chosen for further study by RNAi. The transcript was knocked down to 50% compared to the controls. These RNAi-treated worms demonstrated seizure-like movements. In S. mansoni, as in other organisms, ERG channels seem to play a role in regulating muscle excitability. This work shows that egg production can be greatly reduced by effectively targeting muscle coordination in these important parasites.
Collapse
Affiliation(s)
- S J Parker-Manuel
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany.
| | - S Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - C G Grevelding
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
8
|
Quiroga SY, Carolina Bonilla E, Marcela Bolaños D, Carbayo F, Litvaitis MK, Brown FD. Evolution of flatworm central nervous systems: Insights from polyclads. Genet Mol Biol 2015; 38:233-48. [PMID: 26500427 PMCID: PMC4612602 DOI: 10.1590/s1415-475738320150013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/19/2015] [Indexed: 01/15/2023] Open
Abstract
The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.
Collapse
Affiliation(s)
- Sigmer Y. Quiroga
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
| | - E. Carolina Bonilla
- Laboratorio de Biología del Desarrollo, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - D. Marcela Bolaños
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Laboratorio de Biología del Desarrollo, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brazil
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marian K. Litvaitis
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Federico D. Brown
- Laboratorio de Biología del Desarrollo, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| |
Collapse
|
9
|
Ul-Hasan S, Burgess DM, Gajewiak J, Li Q, Hu H, Yandell M, Olivera BM, Bandyopadhyay PK. Characterization of the peptidylglycine α-amidating monooxygenase (PAM) from the venom ducts of neogastropods, Conus bullatus and Conus geographus. Toxicon 2013; 74:215-24. [PMID: 23994590 DOI: 10.1016/j.toxicon.2013.08.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Cone snails, genus Conus, are predatory marine snails that use venom to capture their prey. This venom contains a diverse array of peptide toxins, known as conotoxins, which undergo a diverse set of posttranslational modifications. Amidating enzymes modify peptides and proteins containing a C-terminal glycine residue, resulting in loss of the glycine residue and amidation of the preceding residue. A significant fraction of peptides present in the venom of cone snails contain C-terminal amidated residues, which are important for optimizing biological activity. This study describes the characterization of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), present in the venom duct of cone snails, Conus bullatus and Conus geographus. PAM is known to carry out two functions, peptidyl α-hydroxylating monooxygenase (PHM) and peptidylamido-glycolate lyase (PAL). In some animals, such as Drosophila melanogaster, these two functions are present in separate polypeptides, working as individual enzymes. In other animals, such as mammals and in Aplysia californica, PAM activity resides in a single, bifunctional polypeptide. Using specific oligonucleotide primers and reverse transcription-polymerase chain reaction we have identified and cloned from the venom duct cDNA library, a cDNA with 49% homology to PAM from A. californica. We have determined that both the PHM and PAL activities are encoded in one mRNA polynucleotide in both C. bullatus and C. geographus. We have directly demonstrated enzymatic activity catalyzing the conversion of dansyl-YVG-COOH to dansyl-YV-NH2 in cloned cDNA expressed in Drosophila S2 cells.
Collapse
Affiliation(s)
- Sabah Ul-Hasan
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
11
|
McVeigh P, Mair GR, Novozhilova E, Day A, Zamanian M, Marks NJ, Kimber MJ, Day TA, Maule AG. Schistosome I/Lamides--a new family of bioactive helminth neuropeptides. Int J Parasitol 2011; 41:905-13. [PMID: 21554884 PMCID: PMC3118037 DOI: 10.1016/j.ijpara.2011.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
Here we report the identification of a new family of helminth neuropeptides with members in both nematodes and flatworms, and include preliminary cell biological and functional characterisation of one of the peptides from the trematode parasite of humans, Schistosoma mansoni. Bioinformatics and Rapid Amplification of cDNA Ends (RACE)-PCR were used to identify the complete S. mansoni neuropeptide precursor gene Sm-npp-1, which encodes three pentapeptides bearing the motif (A/G)FVR(I/L).NH(2). Similar peptides were identified in three other flatworm species and in 15 nematode species. Quantitative PCR (qPCR) and immunocytochemical (ICC) analyses showed that Sm-npp-1 is constitutively expressed in larval and adult worms. ICC and confocal microscopy were employed to localise one of the schistosome NPP-1 peptides (GFVRIamide) in adult worms and schistosomules; antibodies labelled a pair of neurones in the cerebral ganglia that extend posteriorly along the main nerve cords. GFVRIamide displayed no detectable co-localisation with FMRFamide-like peptides (FLPs), nor was it detectable in muscle innervation. Exogenously applied peptide had a significant inhibitory effect on the mobility of whole adult worm pairs at 10(-5)M (n = 9). Finally, we explored Sm-npp-1 function in schistosomules using RNA interference (RNAi); we successfully achieved specific knockdown of the Sm-npp-1 transcript (54.46 ± 10.41% knockdown, n = 3), but did not detect any clear, aberrant mobility or morphological phenotypes. NPP-1-like peptides are a new family of helminth peptides with a cell-specific expression pattern distinct from FLPs and a modulatory effect on schistosome muscular activity.
Collapse
Affiliation(s)
- Paul McVeigh
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mousley A, Novozhilova E, Kimber MJ, Day TA. Neuropeptide physiology in helminths. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 692:78-97. [PMID: 21189675 DOI: 10.1007/978-1-4419-6902-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points to neuropeptidergic signaling as a very promising field from which to harvest future drug targets.
Collapse
Affiliation(s)
- Angela Mousley
- Department of Biomedical Sciences, 2008 Veterinary Medicine Building, Iowa State University, Ames, Iowa 50011-1250, USA
| | | | | | | |
Collapse
|
13
|
Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). INVERTEBRATE NEUROSCIENCE 2010; 10:77-91. [DOI: 10.1007/s10158-010-0109-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
14
|
FMRFamide-like peptides (FLPs) enhance voltage-gated calcium currents to elicit muscle contraction in the human parasite Schistosoma mansoni. PLoS Negl Trop Dis 2010; 4:e790. [PMID: 20706630 PMCID: PMC2919380 DOI: 10.1371/journal.pntd.0000790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022] Open
Abstract
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway. Schistosomiasis (bilharzia) is caused by infection with trematodes of the genus Schistosoma. The disease afflicts over 200 million people, with the bulk of the disease burden focused in some of the world's poorest countries. Schistosomiasis control rests largely on chemotherapy with a single drug, praziquantel, a precarious situation calling for the discovery and development of new antischistosomal agents. One hindrance to the discovery of new drugs is a deficiency of knowledge regarding some basic biological processes of these parasitic worms. Here, we take significant steps toward the elucidation of signaling and pathways involved in schistosome neuromuscular control, a central biological function with proven vulnerability to chemotherapeutic intervention. Neuropeptides are known to be important in flatworm muscle control and here we find that FMRFamide-like peptides act to contract schistosome muscle by enhancing calcium influx through voltage-operated calcium channels. We also found that the receptor for the myoexcitatory neuropeptides uses a protein kinase C pathway to stimulate the voltage-operated calcium channels. Understanding the molecules involved in the neuromuscular physiology of these worms helps to identify potentially useful targets for a new generation of antischistosomal drugs.
Collapse
|
15
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
16
|
Ribeiro P, Geary TG. Neuronal signaling in schistosomes: current status and prospects for postgenomicsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z09-126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parasitic platyhelminths of the genus Schistosoma Weinland, 1858 (Trematoda, Digenea) are the etiological agents of human schistosomiasis, one of the most prevalent and debilitating parasitic diseases worldwide. Praziquantel is the only drug treatment available in most parts of the world and the effectiveness of the drug is threatened by the prospect of drug resistance. There is a pressing need to learn more about the basic biology of this organism and to identify molecular targets for new therapeutic drugs. The nervous system of schistosomes coordinates many activities that are essential for parasite survival, and as such is an attractive target for chemotherapeutic intervention. Until recently, very little was known about the molecular mechanisms of neuronal signaling in these organisms, but this is rapidly changing following the completion of the genome sequence and several recent developments in schistosome transgenesis and gene silencing. Here we review the current status of schistosome neurobiology and discuss prospects for future research as the field moves into a postgenomics era. One of the themes that will emerge from this discussion is that schistosomes have a rich diversity of neurotransmitters and receptors, indicating a more sophisticated system of neuronal communication than might be expected of a parasitic flatworm. Moreover, many of these transmitter receptors share little sequence homology with those of the human host, making them ideally suited for selective drug targeting. Strategies for characterization of these important parasite proteins will be discussed.
Collapse
Affiliation(s)
- Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
17
|
McVeigh P, Mair GR, Atkinson L, Ladurner P, Zamanian M, Novozhilova E, Marks NJ, Day TA, Maule AG. Discovery of multiple neuropeptide families in the phylum Platyhelminthes. Int J Parasitol 2009; 39:1243-52. [PMID: 19361512 DOI: 10.1016/j.ijpara.2009.03.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.
Collapse
Affiliation(s)
- Paul McVeigh
- Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Two distinct families of neuropeptides are known to endow platyhelminth nervous systems - the FMRFamide-like peptides (FLPs) and the neuropeptide Fs (NPFs). Flatworm FLPs are structurally simple, each 4-6 amino acids in length with a carboxy terminal aromatic-hydrophobic-Arg-Phe-amide motif. Thus far, four distinct flatworm FLPs have been characterized, with only one of these from a parasite. They have a widespread distribution within the central and peripheral nervous system of every flatworm examined, including neurones serving the attachment organs, the somatic musculature and the reproductive system. The only physiological role that has been identified for flatworm FLPs is myoexcitation. Flatworm NPFs are believed to be invertebrate homologues of the vertebrate neuropeptide Y (NPY) family of peptides. Flatworm NPFs are 36-39 amino acids in length and are characterized by a caboxy terminal GRPRFamide signature and conserved tyrosine residues at positions 10 and 17 from the carboxy terminal. Like FLPs, NPF occurs throughout flatworm nervous systems, although less is known about its biological role. While there is some evidence for a myoexcitatory action in cestodes and flukes, more compelling physiological data indicate that flatworm NPF inhibits cAMP levels in a manner that is characteristic of NPY action in vertebrates. The widespread expression of these neuropeptides in flatworm parasites highlights the potential of these signalling systems to yield new targets for novel anthelmintics. Although platyhelminth FLP and NPF receptors await identification, other molecules that play pivotal roles in neuropeptide signalling have been uncovered. These enzymes, involved in the biosynthesis and processing of flatworm neuropeptides, have recently been described and offer other distinct and attractive targets for therapeutic interference.
Collapse
Affiliation(s)
- P McVeigh
- Parasitology Research Group, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | |
Collapse
|
19
|
Omar HH, Humphries JE, Larsen MJ, Kubiak TM, Geary TG, Maule AG, Kimber MJ, Day TA. Identification of a platyhelminth neuropeptide receptor. Int J Parasitol 2007; 37:725-33. [PMID: 17362965 DOI: 10.1016/j.ijpara.2006.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/15/2006] [Accepted: 12/17/2006] [Indexed: 11/17/2022]
Abstract
We report the characterisation of the first neuropeptide receptor from the phylum Platyhelminthes, an early-diverging phylum which includes a number of important human and veterinary parasites. The G protein-coupled receptor (GPCR) was identified from the model flatworm Girardia tigrina (Tricladida: Dugesiidae) based on the presence of motifs widely conserved amongst GPCRs. In two different assays utilising heterologous expression in Chinese hamster ovary cells, the Girardia GPCR was most potently activated by neuropeptides from the FMRFamide-like peptide class. The most potent platyhelminth neuropeptide in both assays was GYIRFamide, a FMRFamide-like peptide known to be present in G. tigrina. There was no activation by neuropeptide Fs, another class of flatworm neuropeptides. Also active were FMRFamide-like peptides derived from other phyla but not known to be present in any platyhelminth. Most potent among these were nematode neuropeptides encoded by the Caenorhabditis elegans flp-1 gene which share a PNFLRFamide carboxy terminal motif. The ability of nematode peptides to stimulate a platyhelminth receptor demonstrates a degree of structural conservation between FMRFamide-like peptide receptors from these two distinct, distant phyla which contain parasitic worms.
Collapse
Affiliation(s)
- Hanan H Omar
- Department of Biomedical Sciences and Neuroscience Program, Iowa State University, Ames IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mair GR, Niciu MJ, Stewart MT, Brennan G, Omar H, Halton DW, Mains R, Eipper BA, Maule AG, Day TA. A functionally atypical amidating enzyme from the human parasite Schistosoma mansoni. FASEB J 2004; 18:114-21. [PMID: 14718392 DOI: 10.1096/fj.03-0429com] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.
Collapse
Affiliation(s)
- Gunnar R Mair
- Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Platyhelminthes occupy a unique position in nerve–muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neuro biology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuro peptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.
Collapse
|
22
|
Hrckova G, Velebný S, Halton DW, Day TA, Maule AG. Pharmacological characterisation of neuropeptide F (NPF)-induced effects on the motility of Mesocestoides corti (syn. Mesocestoides vogae) larvae. Int J Parasitol 2004; 34:83-93. [PMID: 14711593 DOI: 10.1016/j.ijpara.2003.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropeptide F is the most abundant neuropeptide in parasitic flatworms and is analogous to vertebrate neuropeptide Y. This paper examines the effects of neuropeptide F on tetrathyridia of the cestode Mesocestoides vogae and provides preliminary data on the signalling mechanisms employed. Neuropeptide F (>/=10 microM) had profound excitatory effects on larval motility in vitro. The effects were insensitive to high concentrations (1 mM) of the anaesthetic procaine hydrochloride suggesting extraneuronal sites of action. Neuropeptide F activity was not significantly blocked by a FMRFamide-related peptide analog (GNFFRdFamide) that was found to inhibit GNFFRFamide-induced excitation indicating the occurrence of distinct neuropeptide F and FMRFamide-related peptide receptors. Larval treatment with guanosine 5'-O-(2-thiodiphosphate) trilithium salt prior to the addition of neuropeptide F completely abolished the excitatory effects indicating the involvement of G-proteins and a G-protein coupled receptor in neuropeptide F activity. Addition of guanosine 5'-O-(2-thiodiphosphate) following neuropeptide F had limited inhibitory effects consistent with the activation of a signalling cascade by the neuropeptide. With respect to Ca(2+) involvement in neuropeptide F-induced excitation of M. vogae larvae, the L-type Ca(2+)-channel blockers verapamil and nifedipine both abolished neuropeptide F activity as did high Mg(+) concentrations and drugs which blocked sarcoplasmic reticulum Ca(2+)-activated Ca(2+)-channels (ryanodine) and sarcoplasmic reticulum Ca(2+) pumps (cyclopiazonic acid). Therefore, both extracellular and intracellular Ca(2+) is important for neuropeptide F excitation in M. vogae. With respect to second messengers, the protein kinase C inhibitor chelerythrine chloride and the adenylate cyclase inhibitor MDL-2330A both abolished neuropeptide F-induced excitation. The involvement of a signalling pathway that involves protein kinase C was further supported by the fact that phorbol-12-myristate-13-acetate, known to directly activate protein kinase C, had direct excitatory effects on larval motility. Although neuropeptide F is structurally analogous to neuropeptide Y, its mode-of-action in flatworms appears quite distinct from the common signalling mechanism seen in vertebrates.
Collapse
Affiliation(s)
- Gabriela Hrckova
- Parasitological Institute of the Slovak Academy of Sciences, Hlinkova 3, 040 01 Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Phalloidin-fluorescein isothiocyanate staining of filamentous actin was used to identify muscle systems within the cercariae of Schistosoma mansoni. Examination of labeled cercariae by confocal scanning laser microscopy revealed distinct organizational levels of myofiber arrangements within the body wall, anterior cone, acetabulum, and esophagus. The body wall throughout showed a typical latticelike arrangement of outer circular and inner longitudinal myofibers, with an additional innermost layer of diagonal fibers in the anterior portion of the body. Circular and longitudinal fibers were also evident in the anterior organ and esophagus and, to some extent, the ventral acetabulum. Most striking was the striation of the cercarial tail musculature.
Collapse
Affiliation(s)
- G R Mair
- Parasitology Research Group, School of Biology and Biochemistry, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | | | | |
Collapse
|
24
|
Stewart MT, Mousley A, Koubková B, Sebelová S, Marks NJ, Halton DW. Development in vitro of the neuromusculature of two strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus. Int J Parasitol 2003; 33:413-24. [PMID: 12705934 DOI: 10.1016/s0020-7519(03)00011-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Confocal microscopy interfaced with cytochemical procedures has been used to monitor development of the major muscle systems and associated serotoninergic (5-HT, 5-hydroxytryptamine) and peptidergic (FaRP, FMRFamide-related peptide) innervation of the strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus during cultivation in vitro. Sexually undifferentiated metacercariae were successfully grown to ovigerous adults using tissue culture medium NCTC 135, chicken serum and egg albumen. Eggs were produced after 5 days in culture but had abnormal shells and failed to embryonate. 5-HT and FaRP (the flatworm FaRP, GYIRFamide) were localised immunocytochemically in both central and peripheral nervous systems of developing worms. During cultivation, the central serotoninergic and FaRPergic neuronal pathways of the forebody became more extensive, but retained the same basic orthogonal arrangement as found in the excysted metacercaria. Longitudinal extensor and flexor muscles of the hindbody provide support for the developing reproductive complex. The male reproductive tracts were established in advance (day 3) of those of the female system (day 4); completion of the latter was marked by the appearance of the ootype/egg chamber. The inner longitudinal muscle fibres of the female tract appeared prior to the outer and more densely arranged circular muscles. Circular fibres dominate the muscle complement of both alimentary and reproductive tracts. 5-HT- and GYIRFamide-immunoreactivities were demonstrable in the central nervous system (CNS) and subtegumental parasympathetic nervous system (PNS) throughout the culture period, but innervation of the developing reproductive structures was reactive just for 5-HT. Only at the onset of egg production was FaRP-IR observed in the reproductive system and was expressed only in the innervation of the ootype, a finding consistent with the view that FaRPs may regulate egg assembly in platyhelminths.
Collapse
Affiliation(s)
- Michael T Stewart
- Parasitology Research Group, School of Biology and Biochemistry, Medical Biology Centre, Queen's University Belfast, UK
| | | | | | | | | | | |
Collapse
|
25
|
Cobbett P, Day TA. Functional voltage-gated Ca2+ channels in muscle fibers of the platyhelminth Dugesia tigrina. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:593-605. [PMID: 12600668 DOI: 10.1016/s1095-6433(02)00350-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence and function of voltage-gated Ca(2+) channels were examined in individual muscle fibers freshly dispersed from the triclad turbellarian Dugesia tigrina. Individual muscle fibers contracted in response to elevated extracellular K(+) in a concentration-dependent fashion. These depolarization-induced contractions were blocked by extracellular Co(2+) (2.5 mM), suggesting that they were dependent on depolarization-induced Ca(2+) influx across the sarcolemma. A voltage-gated inward current was apparent in whole cell recordings when the outward K(+) current was abolished by replacement of intracellular K(+) by Cs(+). This inward current was amplified with increasing concentration (</=10 mM) of extracellular Ba(2+) and was independent of extracellular Na(+) concentration suggesting the current was mediated by voltage-gated Ca(2+) channels. Further, and supporting the hypothesis that the inward current was mediated by these Ca(2+) channels, the Ba(2+) current was blocked by extracellular Co(2+) (2.5 mM) but not by tetrodotoxin (5 microM). Action potentials were generated by the muscle fibers in the presence of, but not in the absence of, extracellular Ba(2+) (5 mM). These data are the first clear demonstration of a voltage-gated Ca(2+) channel current in platyhelminth muscle, and they demonstrate a role for Ca(2+) influx in depolarization-induced contractions of muscle in these organisms.
Collapse
Affiliation(s)
- Peter Cobbett
- Department of Pharmacology and Toxicology, and the Neuroscience Program, Michigan State University, East Lansing, MI 48824-1317, USA.
| | | |
Collapse
|
26
|
Abstract
The use of well-characterized antibodies raised to neuronal signal substances and their application through immunocytochemistry and confocal scanning laser microscopy has revolutionized studies of the flatworm nervous system (NS). Data about flatworm neuropeptides and the spatial relationship between neuropeptides and other neuronal signal substances and muscle fibers are presented. Neuropeptides form a large part of the flatworm NS. Neuropeptides are especially important as myoexcitatory transmitters or modulators, controlling the musculature of the attachment organs, the stomatogastric and the reproductive systems.
Collapse
Affiliation(s)
- M K S Gustafsson
- Department of Biology, Abo Akademi University, Artillerigatan 6, Finland.
| | | | | | | | | | | | | |
Collapse
|
27
|
Geary TG, Marks NJ, Maule AG, Bowman JW, Alexander-Bowman SJ, Day TA, Larsen MJ, Kubiak TM, Davis JP, Thompson DP. Pharmacology of FMRFamide-related peptides in helminths. Ann N Y Acad Sci 2000; 897:212-27. [PMID: 10676450 DOI: 10.1111/j.1749-6632.1999.tb07893.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nervous systems of helminths are highly peptidergic. Species in the phylum Nematoda (roundworms) possess at least 50 FMRFamide-related peptides (FaRPs), with more yet to be identified. To date, few non-FaRP neuropeptides have been identified in these organisms, though evidence suggests that other families are present. FaRPergic systems have important functions in nematode neuromuscular control. In contrast, species in the phylum Platyhelminthes (flatworms) apparently utilize fewer FaRPs than do nematodes; those species examined possess one or two FaRPs. Other neuropeptides, such as neuropeptide F (NPF), play key roles in flatworm physiology. Although progress has been made in the characterization of FaRP pharmacology in helminths, much remains to be learned. Most studies on nematodes have been done with Ascaris suum because of its large size. However, thanks to the Caenorhabditis elegans genome project, we know most about the FaRP complement of this free-living animal. That essentially all C. elegans FaRPs are active on at least one A. suum neuromuscular system argues for conservation of ligand-receptor recognition features among the Nematoda. Structure-activity studies on nematode FaRPs have revealed that structure-activity relationship (SAR) "rules" differ considerably among the FaRPs. Second messenger studies, along with experiments on ionic dependence and anatomical requirements for activity, reveal that FaRPs act through many different mechanisms. Platyhelminth FaRPs are myoexcitatory, and no evidence exists of multiple FaRP receptors in flatworms. Interestingly, there are examples of cross-phylum activity, with some nematode FaRPs being active on flatworm muscle. The extent to which other invertebrate FaRPs show cross-phylum activity remains to be determined. How FaRPergic nerves contribute to the control of behavior in helminths, and are integrated with non-neuropeptidergic systems, also remains to be elucidated.
Collapse
Affiliation(s)
- T G Geary
- Animal Health Discovery Research, Pharmacia & Upjohn, Kalamazoo, Michigan 49007-4940, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pivovarov AS, Sharma R, Walker RJ. Structure-activity relationships of the Helix neuropeptide, SEPYLRFamide, and its N-terminally modified analogues on identified Helix lucorum neurones. Brain Res 1999; 821:294-308. [PMID: 10064816 DOI: 10.1016/s0006-8993(99)01097-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabotropic and ionotropic effects evoked by the endogenous Helix heptapeptide, SEPYLRFamide, and four analogues, i.e., where the amino acid sequences at the N-terminal (EPYLRFamide, SEGYLRFamide, SRPYLRFamide and SKPYLRFamide) were modified, were compared on identified Helix lucorum LPa2, LPa3, RPa3, RPa2 neurones using two electrode voltage clamp and current clamp techniques. All peptides (bath application) reduce reversibly the inward current to local ionophoretic application of acetylcholine onto the neurone soma with an order of potency: EPYLRFamide=SEGYLRFamide=SRPYLRFamide>SEPYLRFamide+ ++>SKPYLRFamide. The reductions of the acetylcholine-induced inward current evoked by SEPYLRFamide and its analogues at concentrations of 0.01-10 microM are not accompanied by a change of amplitude of the leak inward current caused by constant negative shift of a holding potential. At concentration of 50 microM all peptides increase reversibly the resting membrane conductance to an equal degree. Local application under pressure of SEPYLRFamide and its analogues onto the soma of neurones evoke hyperpolarizations with similar values. These results indicate that the N-terminal three amino acids of the peptide molecule are not responsible for the degree of ionotropic effect on the neurones studied. In contrast the amino acid sequence at the N-terminal modifies the degree of the modulatory effects of the YLRFamide-related analogues. Changes at the SEPYLRFamide N-terminal (Ser1-Glu2-Pro3) intensify the inhibitory action of the analogues as compared with effect evoked by the endogenous peptide, that is, removal of Ser1 (Glu1-Pro2), replacement of Pro3 with Gly3 (Ser1-Glu2-Gly3), replacement of Glu2 with Arg2 (Ser1-Arg2-Pro3). Replacement of Glu2 with Lys2 (Ser1-Lys2-Pro3) reduces the modulatory potency. It is concluded that ionotropic and metabotropic effects of these YLRFamide-related peptides may occur at different membrane binding sites.
Collapse
Affiliation(s)
- A S Pivovarov
- Department of Higher Nervous Activity, Biological Faculty, Moscow Lomonosov State University, Moscow 119899, Russian Federation
| | | | | |
Collapse
|
29
|
Abstract
Parasitic worms come from two very different phyla-Platyhelminthes (flatworms) and Nematoda (roundworms). Although both phyla possess nervous systems with highly developed peptidergic components, there are key differences in the structure and action of native neuropeptides in the two groups. For example, the most abundant neuropeptide known in platyhelminths is the pancreatic polypeptide-like neuropeptide F, whereas the most prevalent neuropeptides in nematodes are FMRFamide-related peptides (FaRPs), which are also present in platyhelminths. With respect to neuropeptide diversity, platyhelminth species possess only one or two distinct FaRPs, whereas nematodes have upwards of 50 unique FaRPs. FaRP bioactivity in platyhelminths appears to be restricted to myoexcitation, whereas both excitatory and inhibitory effects have been reported in nematodes. Recently interest has focused on the peptidergic signaling systems of both phyla because elucidation of these systems will do much to clarify the basic biology of the worms and because the peptidergic systems hold the promise of yielding novel targets for a new generation of antiparasitic drugs.
Collapse
Affiliation(s)
- T A Day
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing 48824, USA.
| | | |
Collapse
|