1
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
3
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
4
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
5
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Zoratti C, Moretti R, Rebuzzi L, Albergati IV, Di Somma A, Decorti G, Di Bella S, Crocè LS, Giuffrè M. Antibiotics and Liver Cirrhosis: What the Physicians Need to Know. Antibiotics (Basel) 2021; 11:31. [PMID: 35052907 PMCID: PMC8772826 DOI: 10.3390/antibiotics11010031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The liver is the primary site of drug metabolism, which can be altered by a variety of diseases affecting the liver parenchyma, especially in patients with liver cirrhosis. The use of antibiotics in patients with cirrhosis is usually a matter of concern for physicians, given the lack of practical knowledge for drug choice and eventual dose adjustments in several clinical scenarios. The aim of the current narrative review is to report, as broadly as possible, basic, and practical knowledge that any physician should have when approaching a patient with liver cirrhosis and an ongoing infection to efficiently choose the best antibiotic therapy.
Collapse
Affiliation(s)
- Caterina Zoratti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
| | - Lisa Rebuzzi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
| | - Irma Valeria Albergati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
| | - Antonietta Di Somma
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
| | - Giuliana Decorti
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
- Italian Liver Foundation, 34149 Trieste, Italy
| | - Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (C.Z.); (R.M.); (L.R.); (I.V.A.); (A.D.S.); (S.D.B.); (L.S.C.)
- Italian Liver Foundation, 34149 Trieste, Italy
| |
Collapse
|
7
|
Häussinger D, Butz M, Schnitzler A, Görg B. Pathomechanisms in hepatic encephalopathy. Biol Chem 2021; 402:1087-1102. [PMID: 34049427 DOI: 10.1515/hsz-2021-0168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Markus Butz
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology/Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis 2020; 35:559-578. [PMID: 32146658 DOI: 10.1007/s11011-020-00549-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) may occur in patients with liver failure. The most critical pathophysiologic mechanism of HE is cerebral edema following systemic hyperammonemia. The dysfunctional liver cannot eliminate circulatory ammonia, so its plasma and brain levels rise sharply. Astrocytes, the only cells that are responsible for ammonia detoxification in the brain, are dynamic cells with unique phenotypic properties that enable them to respond to small changes in their environment. Any pathological changes in astrocytes may cause neurological disturbances such as HE. Astrocyte swelling is the leading cause of cerebral edema, which may cause brain herniation and death by increasing intracranial pressure. Various factors may have a role in astrocyte swelling. However, the exact molecular mechanism of astrocyte swelling is not fully understood. This article discusses the possible mechanisms of astrocyte swelling which related to hyperammonia, including the possible roles of molecules like glutamine, lactate, aquaporin-4 water channel, 18 KDa translocator protein, glial fibrillary acidic protein, alanine, glutathione, toll-like receptor 4, epidermal growth factor receptor, glutamate, and manganese, as well as inflammation, oxidative stress, mitochondrial permeability transition, ATP depletion, and astrocyte senescence. All these agents and factors may be targeted in therapeutic approaches to HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asadollah Zarifkar
- Shiraz Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Gholamreza Namvar
- Department of Neuroscience and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roger Williams
- The Institute of Hepatology London and Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT, UK.
- Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
9
|
Cittolin-Santos G, Guazzelli P, Nonose Y, Almeida R, Fontella F, Pasquetti M, Ferreira-Lima F, Lazzaroto G, Berlezi R, Osvaldt A, Calcagnotto M, de Assis A, Souza D. Behavioral, Neurochemical and Brain Oscillation Abnormalities in an Experimental Model of Acute Liver Failure. Neuroscience 2019; 401:117-129. [DOI: 10.1016/j.neuroscience.2018.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
|
10
|
Cabrera-Pastor A, Arenas YM, Taoro-Gonzalez L, Montoliu C, Felipo V. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Neuropharmacology 2019; 161:107496. [PMID: 30641078 DOI: 10.1016/j.neuropharm.2019.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine transporter SNAT3 and reduced membrane expression of the neuronal transporter SNAT1; b) reduced membrane expression of the neuronal GABA transporter GAT1 and increased membrane expression of the astrocytic GAT3 transporter; c) reduced membrane expression of the astrocytic glutamate transporters GLAST and GLT-1 and of the neuronal transporter EAAC1. Increasing extracellular cGMP normalizes membrane expression of SNAT3, GAT3, GAT1 and GLAST and extracellular glutamate, glutamine, GABA and citrulline hyperammonemic rats. Extracellular cGMP also modulates membrane expression of most transporters in control rats, reducing membrane expression of SNAT1, GLT-1 and EAAC1 and increasing that of GAT1 and GAT3. Modulation of SNAT3, SNAT1, GLT-1 and EAAC1 by extracellular cGMP would be mediated by inhibition of glycine receptors. These data suggest that, in pathological situations such as hyperammonemia, hepatic encephalopathy or Alzheimer's disease, reduced levels of extracellular cGMP contribute to alterations in membrane expression of glutamine, glutamate and GABA transporters, in the extracellular levels of glutamine, glutamate and GABA and in neurotransmission. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain; Fundacion Investigacion Hospital Clinico Valencia, Instituto de Investigacion Sanitaria INCLIVA, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, Instituto de Investigacion Sanitaria INCLIVA, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
11
|
Zielonka M, Breuer M, Okun JG, Carl M, Hoffmann GF, Kölker S. Pharmacologic rescue of hyperammonemia-induced toxicity in zebrafish by inhibition of ornithine aminotransferase. PLoS One 2018; 13:e0203707. [PMID: 30199544 PMCID: PMC6130883 DOI: 10.1371/journal.pone.0203707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is the common biochemical hallmark of urea cycle disorders, activating neurotoxic pathways. If untreated, affected individuals have a high risk of irreversible brain damage and mortality. Here we show that acute hyperammonemia strongly enhances transamination-dependent formation of osmolytic glutamine and excitatory glutamate, thereby inducing neurotoxicity and death in ammoniotelic zebrafish larvae via synergistically acting overactivation of NMDA receptors and bioenergetic impairment induced by depletion of 2-oxoglutarate. Intriguingly, specific and irreversible inhibition of ornithine aminotransferase (OAT) by 5-fluoromethylornithine rescues zebrafish from lethal concentrations of ammonium acetate and corrects hyperammonemia-induced biochemical alterations. Thus, OAT inhibition is a promising and effective therapeutic approach for preventing neurotoxicity and mortality in acute hyperammonemia.
Collapse
Affiliation(s)
- Matthias Zielonka
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
- * E-mail:
| | - Maximilian Breuer
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Jürgen Günther Okun
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
- University of Trento, Center for Integrative Biology (CIBIO), Laboratory of Translational Neurogenetics, Trento, Italy
| | - Georg Friedrich Hoffmann
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- University Hospital Heidelberg, Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
12
|
Glutamine triggers long-lasting increase in striatal network activity in vitro. Exp Neurol 2017; 290:41-52. [DOI: 10.1016/j.expneurol.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
13
|
Adlimoghaddam A, Sabbir MG, Albensi BC. Ammonia as a Potential Neurotoxic Factor in Alzheimer's Disease. Front Mol Neurosci 2016; 9:57. [PMID: 27551259 PMCID: PMC4976099 DOI: 10.3389/fnmol.2016.00057] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Ammonia is known to be a potent neurotoxin that causes severe negative effects on the central nervous system. Excessive ammonia levels have been detected in the brain of patients with neurological disorders such as Alzheimer disease (AD). Therefore, ammonia could be a factor contributing to the progression of AD. In this review, we provide an introduction to the toxicity of ammonia and putative ammonia transport proteins. We also hypothesize how ammonia may be linked to AD. Additionally, we discuss the evidence that support the hypothesis that ammonia is a key factor contributing to AD progression. Lastly, we summarize the old and new experimental evidence that focuses on energy metabolism, mitochondrial function, inflammatory responses, excitatory glutamatergic, and GABAergic neurotransmission, and memory in support of our ammonia-related hypotheses of AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Mohammad G Sabbir
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
14
|
Natesan V, Mani R, Arumugam R. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia. Biomed Pharmacother 2016; 81:192-202. [PMID: 27261594 DOI: 10.1016/j.biopha.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| | - Renuka Mani
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Ramakrishnan Arumugam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| |
Collapse
|
15
|
Lidbury JA, Cook AK, Steiner JM. Hepatic encephalopathy in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2016; 26:471-87. [PMID: 27060899 DOI: 10.1111/vec.12473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To comparatively review the pathogenesis, clinical presentation, diagnosis, and management of hepatic encephalopathy (HE) in dogs and cats. DATA SOURCES The Medline database was searched for articles related to HE in people, dogs, and cats. Articles published within the last 5 years were given special importance. HUMAN DATA SYNTHESIS The pathogenesis of HE is complex and incompletely understood, but ammonia appears to play a central role. Hyperammonemia leads to accumulation of glutamine in astrocytes, with subsequent astrocyte swelling and neurological dysfunction. The development of HE in patients with hepatic cirrhosis is a poor prognostic indicator. The fermentable disaccharide lactulose and the antimicrobial rifaximin are US Food and Drug Administration approved treatments for human HE. Severe protein restriction is no longer recommended for patients with this condition. VETERINARY DATA SYNTHESIS HE is often associated with portosystemic shunting in dogs and cats. Ammonia plays a central role in the pathogenesis of HE in dogs and cats, but other factors such as manganese and endogenous benzodiazepines may also contribute. Recently, a soy protein-based diet was found to be beneficial in treating canine HE. Severe dietary protein restriction is likely to be detrimental in affected animals. There have been no clinical trials of drugs routinely used in the management HE in veterinary medicine, but lactulose and antimicrobials such as metronidazole are well-established treatments. CONCLUSIONS HE is a potentially life-threatening condition that is probably underdiagnosed in companion animals. Although various treatment recommendations have been proposed, there is a lack of evidence in the veterinary literature regarding optimal strategies for the management of this condition. As our understanding of the pathogenesis of HE in dogs and cats evolves, novel diagnostic tests and therapeutic agents may become available.
Collapse
Affiliation(s)
- Jonathan A Lidbury
- Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Audrey K Cook
- Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| | - Jörg M Steiner
- Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
16
|
Adlimoghaddam A, Boeckstaens M, Marini AM, Treberg JR, Brassinga AKC, Weihrauch D. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. ACTA ACUST UNITED AC 2015; 218:675-83. [PMID: 25740900 DOI: 10.1242/jeb.111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW(-1) day(-1)) and very little urea (0.21±0.004 µmol gFW(-1) day(-1)). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H(+)-ATPase, carbonic anhydrase, Na(+)/K(+)-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l(-1) NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na(+)/K(+)-ATPase also increased significantly in response to 1 mmol l(-1) NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Anna-Maria Marini
- Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, Gosselies 6041, Belgium
| | - Jason R Treberg
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2 Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| | | | - Dirk Weihrauch
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T2N2
| |
Collapse
|
17
|
Kimoloi S, Rashid K. Potential role of Plasmodium falciparum-derived ammonia in the pathogenesis of cerebral malaria. Front Neurosci 2015; 9:234. [PMID: 26190968 PMCID: PMC4490226 DOI: 10.3389/fnins.2015.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) is the most severe complication associated with Plasmodium falciparum infection. The exact pathogenic mechanisms leading to the development of CM remains poorly understood while the mortality rates remain high. Several potential mechanisms including mechanical obstruction of brain microvasculature, inflammation, oxidative stress, cerebral energy defects, and hemostatic dysfunction have been suggested to play a role in CM pathogenesis. However, these proposed mechanisms, even when considered together, do not fully explain the pathogenesis and clinicopathological features of human CM. This necessitates consideration of alternative pathogenic mechanisms. P. falciparum generates substantial amounts of ammonia as a catabolic by-product, but lacks detoxification mechanisms. Whether this parasite-derived ammonia plays a pathogenic role in CM is presently unknown, despite its potential to cause localized brain ammonia elevation and subsequent neurotoxic effects. This article therefore, explores and proposes a potential role of parasite-derived ammonia in the pathogenesis and neuropathology of CM. A consideration of parasite-derived ammonia as a factor in CM pathogenesis provides plausible explanations of the various features observed in CM patients including how a largely intravascular parasite can cause neuronal dysfunction. It also provides a framework for rational development and testing of novel drugs targeting the parasite's ammonia handling.
Collapse
Affiliation(s)
- Sammy Kimoloi
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology Kakamega, Kenya
| | - Khalid Rashid
- Biochemistry and Molecular Biology Department, Egerton University Nakuru, Kenya
| |
Collapse
|
18
|
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9:69. [PMID: 25788874 PMCID: PMC4349189 DOI: 10.3389/fnins.2015.00069] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| |
Collapse
|
19
|
Chronotherapeutic effect of fisetin on expression of urea cycle enzymes and inflammatory markers in hyperammonaemic rats. Pharmacol Rep 2014; 66:1037-42. [DOI: 10.1016/j.pharep.2014.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 11/19/2022]
|
20
|
Albrecht J, Zielińska M. Deficit of astroglia-derived thrombospondin-1 and loss of synaptic proteins in hepatic encephalopathy: do ammonia-overexposed astrocytes derange the synaptic hardware? J Neurochem 2014; 131:265-7. [DOI: 10.1111/jnc.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
21
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Ammonia mediates methamphetamine-induced increases in glutamate and excitotoxicity. Neuropsychopharmacology 2014; 39:1031-8. [PMID: 24165886 PMCID: PMC3924538 DOI: 10.1038/npp.2013.306] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/04/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023]
Abstract
Ammonia has been identified to have a significant role in the long-term damage to dopamine and serotonin terminals produced by methamphetamine (METH), but how ammonia contributes to this damage is unknown. Experiments were conducted to identify whether increases in brain ammonia affect METH-induced increases in glutamate and subsequent excitotoxicity. Increases in striatal glutamate were measured using in vivo microdialysis. To examine the role of ammonia in mediating changes in extracellular glutamate after METH exposure, lactulose was used to decrease plasma and brain ammonia. Lactulose is a non-absorbable disaccharide, which alters the intestinal lumen through multiple mechanisms that lead to the increased peripheral excretion of ammonia. METH caused a significant increase in extracellular glutamate that was prevented by lactulose. Lactulose had no effect on METH-induced hyperthermia. To determine if ammonia contributed to excitotoxicity, the effect of METH and lactulose treatment on calpain-mediated spectrin proteolysis was measured. METH significantly increased calpain-specific spectrin breakdown products, and this increase was prevented with lactulose treatment. To examine if ammonia-induced increases in extracellular glutamate were mediated by excitatory amino-acid transporters, the reverse dialysis of ammonia, the glutamate transporter inhibitor, DL-threo-β-benzyloxyaspartic acid (TBOA), or the combination of the two directly into the striatum of awake, freely moving rats was conducted. TBOA blocked the increases in extracellular glutamate produced by the reverse dialysis of ammonia. These findings demonstrate that ammonia mediates METH-induced increases in extracellular glutamate through an excitatory amino-acid transporter to cause excitotoxicity.
Collapse
|
23
|
Beardsley PM, Hauser KF. Glial modulators as potential treatments of psychostimulant abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:1-69. [PMID: 24484974 DOI: 10.1016/b978-0-12-420118-7.00001-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glia (including astrocytes, microglia, and oligodendrocytes), which constitute the majority of cells in the brain, have many of the same receptors as neurons, secrete neurotransmitters and neurotrophic and neuroinflammatory factors, control clearance of neurotransmitters from synaptic clefts, and are intimately involved in synaptic plasticity. Despite their prevalence and spectrum of functions, appreciation of their potential general importance has been elusive since their identification in the mid-1800s, and only relatively recently have they been gaining their due respect. This development of appreciation has been nurtured by the growing awareness that drugs of abuse, including the psychostimulants, affect glial activity, and glial activity, in turn, has been found to modulate the effects of the psychostimulants. This developing awareness has begun to illuminate novel pharmacotherapeutic targets for treating psychostimulant abuse, for which targeting more conventional neuronal targets has not yet resulted in a single, approved medication. In this chapter, we discuss the molecular pharmacology, physiology, and functional relationships that the glia have especially in the light in which they present themselves as targets for pharmacotherapeutics intended to treat psychostimulant abuse disorders. We then review a cross section of preclinical studies that have manipulated glial processes whose behavioral effects have been supportive of considering the glia as drug targets for psychostimulant-abuse medications. We then close with comments regarding the current clinical evaluation of relevant compounds for treating psychostimulant abuse, as well as the likelihood of future prospects.
Collapse
Affiliation(s)
| | - Kurt F Hauser
- Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
24
|
Cruz MJ, Sourial MM, Treberg JR, Fehsenfeld S, Adlimoghaddam A, Weihrauch D. Cutaneous nitrogen excretion in the African clawed frog Xenopus laevis: effects of high environmental ammonia (HEA). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:1-12. [PMID: 23624175 DOI: 10.1016/j.aquatox.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Ammonia is a highly toxic molecule and often introduced in considerable amounts into aquatic environments due to anthropogenic activities. Many aquatic and semi-aquatic amphibians utilize, in addition to their kidneys, the skin for osmoregulation and nitrogen excretion. In the present study the effects of prolonged (7-21 days) exposure to high environmental ammonia (HEA, 1 mmol l(-1) NH4Cl) on cutaneous nitrogen excretion and gene expression of key-transporters involved in nitrogen excretion and acid-base regulation were investigated in the fully aquatic African clawed frog, Xenopus laevis. The study revealed that X. laevis excretes predominately ammonia of which approximately 50% is excreted via the skin. Both the ventral and dorsal skin were capable to generate a net ammonia efflux, which was significantly activated by 10 mmol l(-1) of the phosphodiesterase blocker theophylline. The obtained data further suggest that the ammonia efflux was promoted by an acidification of the unstirred boundary layer, likely generated by an apical localized V-ATPase, with NH3 being transported via cutaneous expressed ammonia transporters, Rhbg and Rhcg. Prolonged HEA exposure did significantly reduce the net-flux rates over the ventral skin with Vmax changing from 256 nmol cm(-2) h(-1) in control frogs to 196 nmol cm(-2) h(-1) in HEA exposed animals. Further, prolonged HEA exposure caused a decrease in mRNA expression levels of the ammonia transporter Rhbg, Na(+)/K(+)-ATPase (α-subunit) and V-ATPase (subunit H) in the ventral and dorsal skin and the kidney. In contrast, Rhcg expression levels were unaffected by HEA in skin tissues.
Collapse
Affiliation(s)
- Melissa J Cruz
- Biology Faculty, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
26
|
Görg B, Schliess F, Häussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys 2013; 536:158-63. [PMID: 23567841 DOI: 10.1016/j.abb.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 02/06/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase. Since RNOS in turn promote astrocyte swelling, a self-amplifying signaling loop between osmotic- and oxidative stress ensues, which triggers a variety of downstream consequences. These include protein tyrosine nitration (PTN), oxidation of RNA, mobilization of zinc, alterations in intra- and intercellular signaling and multiple effects on gene transcription. Whereas PTN can affect the function of a variety of proteins, such as glutamine synthetase, oxidized RNA may affect local protein synthesis at synapses, thereby potentially interfering with protein synthesis-dependent memory formation. PTN and RNA oxidation are also found in post mortem human cerebral cortex of cirrhotic patients with HE but not in those without HE, thereby confirming a role for oxidative stress in the pathophysiology of HE. Evidence derived from animal experiments and human post mortem brain tissue also indicates an up-regulation of microglia activation markers in the absence of increased synthesis of pro-inflammatory cytokines. However, the role of activated microglia in the pathophysiology of HE needs to be worked out in more detail. Most recent observations made in whole genome micro-array analyses of post mortem human brain tissue point to a hitherto unrecognized activation of multiple anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Boris Görg
- Heinrich-Heine-University Düsseldorf, Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Germany
| | | | | |
Collapse
|
27
|
Abstract
Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long-term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466 [4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzamine hydrochloride], an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small-molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules.
Collapse
|
28
|
Henry RP, Lucu Č, Onken H, Weihrauch D. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 2012; 3:431. [PMID: 23162474 PMCID: PMC3498741 DOI: 10.3389/fphys.2012.00431] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail.
Collapse
Affiliation(s)
- Raymond P. Henry
- Department of Biological Sciences, Auburn UniversityAuburn, AL, USA
| | - Čedomil Lucu
- Center for Marine Research Rovinj, Institute Ruđder Bošković ZagrebRovinj, Croatia
- Department of Aquaculture, University of DubrovnikDubrovnik, Croatia
| | - Horst Onken
- Department of Biological Sciences, Wagner CollegeStaten Island, NY, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
29
|
Butterworth RF. Reprint of: Neuroinflammation in acute liver failure: mechanisms and novel therapeutic targets. Neurochem Int 2012; 60:715-22. [PMID: 22504574 DOI: 10.1016/j.neuint.2012.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 01/31/2023]
Abstract
It is increasingly evident that neuroinflammatory mechanisms are implicated in the pathogenesis of the central nervous system (CNS) complications (intracranial hypertension, brain herniation) of acute liver failure (ALF). Neuroinflammation in ALF is characterized by microglial activation and arterio-venous difference studies as well as studies of gene expression confirm local brain production and release of proinflammatory cytokines including TNF-α and the interleukins IL-1β and IL-6. Although the precise nature of the glial cell responsible for brain cytokine synthesis is not yet established, evidence to date supports a role for both astrocytes and microglia. The neuroinflammatory response in ALF progresses in parallel with the progression of hepatic encephalopathy (HE) and with the severity of brain edema (astrocyte swelling). Mechanisms responsible for the relaying of signals from the failing liver to the brain include transduction of systemic proinflammatory signals as well as the effects of increased brain lactate leading to increased release of cytokines from both astrocytes and microglia. There is evidence in support of a synergistic effect of proinflammatory cytokines and ammonia in the pathogenesis of HE and brain edema in ALF. Therapeutic implications of the findings of a neuroinflammatory response in ALF are multiple. Removal of both ammonia and proinflammatory cytokines is possible using antibiotics or albumen dialysis. Mild hypothermia reduces brain ammonia transfer, brain lactate production, microglial activation and proinflammatory cytokine production resulting in reduced brain edema and intracranial pressure in ALF. N-Acetylcysteine acts as both an antioxidant and anti-inflammatory agent at both peripheral and central sites of action independently resulting in slowing of HE progression and prevention of brain edema. Novel treatments that directly target the neuroinflammatory response in ALF include the use of etanercept, a TNF-α neutralizing molecule and minocycline, an agent with potent inhibitory actions on microglial activation that are independent of its antimicrobial properties; both agents have been shown to be effective in reducing neuroinflammation and in preventing the CNS complications of ALF. Translation of these findings to the clinic has the potential to provide rational targeted approaches to the prevention and treatment of these complications in the near future.
Collapse
Affiliation(s)
- Roger F Butterworth
- Neuroscience Research Unit, Saint-Luc Hospital, CHUM, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Stephan J, Haack N, Kafitz KW, Durry S, Koch D, Hochstrate P, Seifert G, Steinhäuser C, Rose CR. Kir4.1 channels mediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ. Glia 2012; 60:965-78. [PMID: 22431254 DOI: 10.1002/glia.22328] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 12/25/2022]
Abstract
Increased ammonium (NH(4) (+) ) concentration in the brain is the prime candidate responsible for hepatic encephalopathy (HE), a serious neurological disorder caused by liver failure and characterized by disturbed glutamatergic neurotransmission and impaired glial function. We investigated the mechanisms of NH(4) (+) -induced depolarization of astrocytes in mouse hippocampal slices using whole-cell patch-clamp and potassium-selective microelectrodes. At postnatal days (P) 18-21, perfusion with 5 mM NH(4) (+) evoked a transient increase in the extracellular potassium concentration ([K(+) ](o) ) by about 1 mM. Astrocytes depolarized by on average 8 mV and then slowly repolarized to a plateau depolarization of 6 mV, which was maintained during NH(4) (+) perfusion. In voltage-clamped astrocytes, NH(4) (+) induced an inward current and a reduction in membrane resistance. Amplitudes of [K(+) ](o) transients and astrocyte depolarization/inward currents increased from P3-4 to P18-21. Perfusion with 100 μM Ba(2+) did not alter [K(+) ](o) transients but strongly reduced both astrocyte depolarization and inward currents. NH(4) (+) -induced depolarization and inward currents were also virtually absent in slices from Kir4.1 -/- mice, while [K(+) ](o) transients were unaltered. Blocking Na(+) /K(+) -ATPase with ouabain caused an immediate and complex increase in [K(+) ](o) . Taken together, our results are in agreement with the hypothesis that reduced uptake of K(+) by the Na(+) , K(+) -ATPase in the presence of NH(4) (+) disturbs the extracellular K(+) homeostasis. Furthermore, astrocytes depolarize in response to the increase in [K(+) ](o) and by influx of NH(4) (+) through Kir4.1 channels. The depolarization reduces the astrocytes' capacity for channel-mediated flux of K(+) and for uptake of glutamate and might hereby contribute to the pathology of HE.
Collapse
Affiliation(s)
- Jonathan Stephan
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Søgaard R, Novak I, MacAulay N. Elevated ammonium levels: differential acute effects on three glutamate transporter isoforms. Am J Physiol Cell Physiol 2012; 302:C880-91. [DOI: 10.1152/ajpcell.00238.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increased ammonium (NH4+/NH3) in the brain is a significant factor in the pathophysiology of hepatic encephalopathy, which involves altered glutamatergic neurotransmission. In glial cell cultures and brain slices, glutamate uptake either decreases or increases following acute ammonium exposure but the factors responsible for the opposing effects are unknown. Excitatory amino acid transporter isoforms EAAT1, EAAT2, and EAAT3 were expressed in Xenopus oocytes to study effects of ammonium exposure on their individual function. Ammonium increased EAAT1- and EAAT3-mediated [3H]glutamate uptake and glutamate transport currents but had no effect on EAAT2. The maximal EAAT3-mediated glutamate transport current was increased but the apparent affinities for glutamate and Na+ were unaltered. Ammonium did not affect EAAT3-mediated transient currents, indicating that EAAT3 surface expression was not enhanced. The ammonium-induced stimulation of EAAT3 increased with increasing extracellular pH, suggesting that the gaseous form NH3 mediates the effect. An ammonium-induced intracellular alkalinization was excluded as the cause of the enhanced EAAT3 activity because 1) ammonium acidified the oocyte cytoplasm, 2) intracellular pH buffering with MOPS did not reduce the stimulation, and 3) ammonium enhanced pH-independent cysteine transport. Our data suggest that the ammonium-elicited uptake stimulation is not caused by intracellular alkalinization or changes in the concentrations of cotransported ions but may be due to a direct effect on EAAT1/EAAT3. We predict that EAAT isoform-specific effects of ammonium combined with cell-specific differences in EAAT isoform expression may explain the conflicting reports on ammonium-induced changes in glial glutamate uptake.
Collapse
Affiliation(s)
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Weihrauch D, Chan AC, Meyer H, Döring C, Sourial MM, O'Donnell MJ. Ammonia excretion in the freshwater planarian Schmidtea mediterranea. J Exp Biol 2012; 215:3242-53. [DOI: 10.1242/jeb.067942] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Summary
In aquatic invertebrates metabolic nitrogenous waste is excreted predominately as ammonia. Very little is known, however, of the underlying mechanisms of ammonia excretion, particularly in freshwater species. Our results indicate that in the non-parasitic freshwater planarian Schmidtea mediterranea ammonia excretion depends on an acidification of the apical unstirred layer of the body surface and consequent ammonia trapping. Buffering of the environment to a pH of 7 or higher decreased excretion rate. Inhibitor experiments suggested further that the excretion mechanism involves the participation of the V-type H+-ATPase and carbonic anhydrase and possibly also the Na+/K+-ATPase and Na+/H+ exchangers (NHEs). Alkalinization (pH 8.5, 2 days) of the environment led to a 1.9-fold increase in body ammonia levels and to a down-regulation of V-ATPase (subunit A) and Rh-protein mRNA. Further, a two day exposure to non-lethal ammonia concentrations (1 mmol L-1) caused a doubling of body ammonia levels and led to an increase in Rh-protein and Na+/K+-ATPase (α-subunit) mRNA expression levels. In-situ hybridization studies indicated a strong mRNA expression of the Rh-protein in the epidermal epithelium. The ammonia excretion mechanism proposed for S. mediterranea reveals striking similarities to the current model suggested to function in gills of freshwater fish.
Collapse
|
33
|
Martin M, Fehsenfeld S, Sourial MM, Weihrauch D. Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:267-77. [DOI: 10.1016/j.cbpa.2011.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 02/02/2023]
|
34
|
Butterworth RF. Neuroinflammation in acute liver failure: mechanisms and novel therapeutic targets. Neurochem Int 2011; 59:830-6. [PMID: 21864609 DOI: 10.1016/j.neuint.2011.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 12/21/2022]
Abstract
It is increasingly evident that neuroinflammatory mechanisms are implicated in the pathogenesis of the central nervous system (CNS) complications (intracranial hypertension, brain herniation) of acute liver failure (ALF). Neuroinflammation in ALF is characterized by microglial activation and arterio-venous difference studies as well as studies of gene expression confirm local brain production and release of proinflammatory cytokines including TNF-α and the interleukins IL-1β and IL-6. Although the precise nature of the glial cell responsible for brain cytokine synthesis is not yet established, evidence to date supports a role for both astrocytes and microglia. The neuroinflammatory response in ALF progresses in parallel with the progression of hepatic encephalopathy (HE) and with the severity of brain edema (astrocyte swelling). Mechanisms responsible for the relaying of signals from the failing liver to the brain include transduction of systemic proinflammatory signals as well as the effects of increased brain lactate leading to increased release of cytokines from both astrocytes and microglia. There is evidence in support of a synergistic effect of proinflammatory cytokines and ammonia in the pathogenesis of HE and brain edema in ALF. Therapeutic implications of the findings of a neuroinflammatory response in ALF are multiple. Removal of both ammonia and proinflammatory cytokines is possible using antibiotics or albumen dialysis. Mild hypothermia reduces brain ammonia transfer, brain lactate production, microglial activation and proinflammatory cytokine production resulting in reduced brain edema and intracranial pressure in ALF. N-Acetylcysteine acts as both an antioxidant and anti-inflammatory agent at both peripheral and central sites of action independently resulting in slowing of HE progression and prevention of brain edema. Novel treatments that directly target the neuroinflammatory response in ALF include the use of etanercept, a TNF-α neutralizing molecule and minocycline, an agent with potent inhibitory actions on microglial activation that are independent of its antimicrobial properties; both agents have been shown to be effective in reducing neuroinflammation and in preventing the CNS complications of ALF. Translation of these findings to the clinic has the potential to provide rational targeted approaches to the prevention and treatment of these complications in the near future.
Collapse
Affiliation(s)
- Roger F Butterworth
- Neuroscience Research Unit, Saint-Luc Hospital (CHUM), University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Obara-Michlewska M, Pannicke T, Karl A, Bringmann A, Reichenbach A, Szeliga M, Hilgier W, Wrzosek A, Szewczyk A, Albrecht J. Down-regulation of Kir4.1 in the cerebral cortex of rats with liver failure and in cultured astrocytes treated with glutamine: Implications for astrocytic dysfunction in hepatic encephalopathy. J Neurosci Res 2011; 89:2018-27. [PMID: 21538466 DOI: 10.1002/jnr.22656] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 01/08/2023]
Abstract
Brain edema in acute hepatic encephalopathy (HE) is due mainly to swelling of astrocytes. Efflux of potassium is implicated in the prevention of glial swelling under hypoosmotic conditions. We investigated whether pathogenic factors of HE, glutamine (Gln) and/or ammonia, induce alterations in the expression of glial potassium channels (Kir4.1, Kir2.1) and Na(+) -K(+) -2Cl(-) cotransporter-1 (NKCC1) in rat cerebral cortex and cultured rat cortical astrocytes and whether these alterations have consequences for potassium efflux and astrocytic swelling. Thioacetamide-induced acute liver failure in rats resulted in significant decreases in the Kir4.1 mRNA and protein contents of cerebral cortex, whereas expression of Kir2.1 and NKCC1 remained unaltered. Incubation of primary cortical astrocytes for 72 hr in the presence of Gln (5 mM), but not of ammonia (5 mM or 10 mM), induced a decrease in the levels of Kir4.1 mRNA and protein. Similarly to incubation with Gln, reduction of Kir4.1 mRNA expression by RNA interference caused swelling of astrocytes as shown by confocal imaging followed by 3D computational analysis. Gln reduced the astrocytic uptake of D-[(3) H]aspartate, but, in contrast to the earlier reported effect of ammonia, this reduction was not accompanied by decreased expression of the astrocytic glutamate transporter GLT-1 mRNA. Both Gln and ammonia decreased hypoosmolarity-induced (86) Rb efflux from the cells, but the effect was more pronounced with Gln. The results indicate that down-regulation of Kir4.1 may mediate distinct aspects of Gln-induced astrocytic dysfunction in HE.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brück J, Görg B, Bidmon HJ, Zemtsova I, Qvartskhava N, Keitel V, Kircheis G, Häussinger D. Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J Hepatol 2011; 54:251-7. [PMID: 21084134 DOI: 10.1016/j.jhep.2010.06.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/08/2010] [Accepted: 06/28/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Oxidative/nitrosative stress plays an important role in the pathogenesis of hepatic encephalopathy and ammonia toxicity. The present study was undertaken in order to investigate the impact of portal vein ligation on cerebrocortical oxidative stress and its relation to locomotor activity. METHODS Cerebral protein tyrosine nitration, RNA oxidation, locomotor activity, and microglia activation were studied in rats that underwent portal vein ligation (PVL). RESULTS Two weeks after PVL, increased levels of protein tyrosine nitration and RNA oxidation were found in the brain. PVL rats exhibited hyperammonemia and reduced locomotor behaviour, but displayed no signs of microglia activation or upregulation of the mRNAs for interleukin-1ß and tumor necrosis factor-α. PVL also had no effect on astrocytic glutamate transporter or inducible nitric-oxide synthase expression. Only cerebral Il-6 mRNA levels were increased. Daily administration of indomethacin prevented PVL-induced protein tyrosine nitration, RNA oxidation, Il-6 mRNA increase, and the impairment of locomotor activity, but did not prevent PVL-induced hyperammonemia. CONCLUSIONS The data suggest that PVL triggers oxidative/nitrosative stress in the brain without activation of microglia and neuroinflammation. Prevention of protein tyrosine nitration and RNA oxidation by indomethacin also prevents the disturbances in locomotor activity pointing to a relevance of oxidative stress in the pathophysiology of HE.
Collapse
Affiliation(s)
- Jonathan Brück
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu Y, Chen XP, Yang JH, Zhang YZ, Xu ZY, Tang YM. Treatment with ammonia induces apoptosis and necrosis of rat astrocytes in vitro. Shijie Huaren Xiaohua Zazhi 2010; 18:3787-3790. [DOI: 10.11569/wcjd.v18.i35.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether treatment with ammonia induces apoptosis and necrosis of rat astrocytes in vitro and to analyze the pathogenesis of hepatic encephalopathy.
METHODS: Primary astrocytes isolated from the cerebral cortex of newborn rats were cultured in vitro and identified by immunocytochemistry (positive for glial fibrillary acidic protein). Cells were then randomly assigned to low-concentration ammonia group (treated with 2.5 mmol/L NH4Cl), high-concentration ammonia group (treated with 5 mmol/L NH4Cl), and control group (untreated). After culture for 24, 48, and 72 h, cell apoptosis and necrosis were detected by flow cytometry.
RESULTS: Treatment with ammonia at a concentration of 2.5 mmol/L could induce astrocyte apoptosis and necrosis, and apoptosis- and necrosis-inducing activity of ammonia was concentration- and time-dependent. Compared with the control group, the apoptosis and necrosis rates of astrocytes in the high-concentration ammonia group were significantly higher (24 h: 12.5% ± 4.0% vs 7.7% ± 1.9%, 9.3% ± 1.6% vs 6.3% ± 0.7%; 48 h: 17.7% ± 4.2% vs 8.5% ± 1.3%, 10.5% ± 2.8% vs 7.2% ± 1.1%; 72 h: 23.9% ± 4.1% vs 9.6% ± 1.9%, 11.4% ± 2.5% vs 7.9% ± 1.5%, all P < 0.05).
CONCLUSION: Treatment with ammonia could induce astrocyte apoptosis and necrosis in vitro in a time- and concentration-dependent manner.
Collapse
|
38
|
Görg B, Qvartskhava N, Bidmon HJ, Palomero-Gallagher N, Kircheis G, Zilles K, Häussinger D. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 2010; 52:256-65. [PMID: 20583283 PMCID: PMC3395472 DOI: 10.1002/hep.23656] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Cell culture studies and animal models point to an important role of oxidative/nitrosative stress in the pathogenesis of cerebral ammonia toxicity. However, it is unknown whether oxidative/nitrosative stress in the brain is also characteristic of hepatic encephalopathy (HE) in humans. We therefore analyzed post mortem cortical brain tissue samples from patients with cirrhosis dying with or without HE in comparison with brains from patients without liver disease. Significantly elevated levels of protein tyrosine-nitrated proteins, heat shock protein-27, and 8-hydroxyguanosine as a marker for RNA oxidation were found in the cerebral cortex of HE patients, but not of patients with cirrhosis but without HE. Glutamine synthetase (GS) activity was significantly decreased, whereas GS protein expression was not significantly affected. Protein expression of the glutamate/aspartate cotransporter was up-regulated in HE, whereas protein expression of neuronal and inducible nitric oxide synthases, manganese-dependent and copper/zinc-dependent superoxide dismutase, and glial glutamate transporter-1 were not significantly increased. CONCLUSION These data indicate that HE in patients with cirrhosis is associated with oxidative/nitrosative stress, protein tyrosine nitration, and RNA oxidation, suggesting a role of oxidative stress in the pathogenesis of HE in patients with cirrhosis.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- C&O Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Gerald Kircheis
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Zilles
- C&O Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany,Institute of Neurosciences and Medicine (INM-2), Jülich Research Centre, Jülich, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
39
|
McPhail MJW, Bajaj JS, Thomas HC, Taylor-Robinson SD. Pathogenesis and diagnosis of hepatic encephalopathy. Expert Rev Gastroenterol Hepatol 2010; 4:365-78. [PMID: 20528123 DOI: 10.1586/egh.10.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy (HE) is a common and potentially devastating neuropsychiatric complication of acute liver failure and cirrhosis. Even in its mildest form, minimal HE (MHE), the syndrome significantly impacts daily living and heralds progression to overt HE. There is maturity in the scientific understanding of the cellular processes that lead to functional and structural abnormalities in astrocytes. Hyperammonemia and subsequent cell swelling is a key pathophysiological abnormality, but this aspect alone is insufficient to fully explain the complex neurotransmitter abnormalities that may be observable using sophisticated imaging techniques. Inflammatory cytokines, reactive oxygen species activation and the role of neurosteroids on neurotransmitter binding sites are emerging pathological lines of inquiry that have yielded important new information on the processes underlying HE and offer promise of future therapeutic targets. Overt HE remains a clinical diagnosis and the neurophysiological and imaging modalities used in research studies have not transferred successfully to the clinical situation. MHE is best characterized by psychometric evaluation, but these tests can be lengthy to perform and require specific expertise to interpret. Simpler computer-based tests are now available and perhaps offer an opportunity to screen, diagnose and monitor MHE in a clinical scenario, although large-scale studies comparing the different techniques have not been undertaken. There is a discrepancy between the depth of understanding of the pathophysiology of HE and the translation of this understanding to a simple, easily understood diagnostic and longitudinal marker of disease. This is a present area of focus for the management of HE.
Collapse
Affiliation(s)
- Mark J W McPhail
- Hepatology Section, Department of Medicine, 10th Floor QEQM Wing, St Mary's Hospital Campus, Imperial College London, South Wharf Street, London W2 1NY, UK
| | | | | | | |
Collapse
|
40
|
Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol 2010; 91:200-19. [PMID: 20138956 DOI: 10.1016/j.pneurobio.2010.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 12/15/2022]
Abstract
This review addresses the ammonia fatigue theory in light of new evidence from exercise and disease studies and aims to provide a view of the role of ammonia during exercise. Hyperammonemia is a condition common to pathological liver disorders and intense or exhausting exercise. In pathology, hyperammonemia is linked to impairment of normal brain function and the onset of the neurological condition, hepatic encephalopathy. Elevated blood ammonia concentrations arise due to a diminished capacity for removal via the liver and lead to increased exposure of organs, such as the brain, to the toxic effects of ammonia. High levels of brain ammonia can lead to deleterious alterations in astrocyte morphology, cerebral energy metabolism and neurotransmission, which may in turn impact on the functioning of important signalling pathways within the neuron. Such changes are believed to contribute to the disturbances in neuropsychological function, in particular the learning, memory, and motor control deficits observed in animal models of liver disease and also patients with cirrhosis. Hyperammonemia in exercise occurs as a result of an increased production by contracting muscle, through adenosine monophosphate (AMP) deamination (the purine nucleotide cycle) and branched chain amino acid (BCAA) deamination prior to oxidation. Plasma concentrations of ammonia during exercise often achieve or exceed those measured in liver disease patients, resulting in increased cerebral uptake. In this article we propose that exercise-induced hyperammonemia may lead to concomitant disturbances in brain function, potentially through similar mechanisms underpinning pathology, which may impact on performance as fatigue or reduced function, especially during extreme exercise.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- Department of Sport and Exercise Science, Chelsea School, University of Brighton, 30 Carlisle Road, Eastbourne, UK.
| | | | | |
Collapse
|
41
|
Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 2010; 100 Suppl 1:S3-S12. [PMID: 20227314 DOI: 10.1016/j.ymgme.2010.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/08/2010] [Indexed: 12/14/2022]
Abstract
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Lausanne, Switzerland.
| |
Collapse
|
42
|
Kelly T, Kafitz KW, Roderigo C, Rose CR. Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 2009; 57:921-34. [PMID: 19053055 DOI: 10.1002/glia.20817] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The clearance of extracellular glutamate is mainly mediated by pH- and sodium-dependent transport into astrocytes. During hepatic encephalopathy (HE), however, elevated extracellular glutamate concentrations are observed. The primary candidate responsible for the toxic effects observed during HE is ammonium (NH(4) (+)/NH(3)). Here, we examined the effects of NH(4) (+)/NH(3) on steady-state intracellular pH (pH(i)) and sodium concentration ([Na(+)](i)) in cultured astrocytes in two different age groups. Moreover, we assessed the influence of NH(4) (+)/NH(3) on glutamate transporter activity by measuring D-aspartate-induced pH(i) and [Na(+)](i) transients. In 20-34 days in vitro (DIV) astrocytes, NH(4) (+)/NH(3) decreased steady-state pH(i) by 0.19 pH units and increased [Na(+)](i) by 21 mM. D-Aspartate-induced pH(i) and [Na(+)](i) transients were reduced by 80-90% in the presence of NH(4) (+)/NH(3), indicating a dramatic reduction of glutamate uptake activity. In 9-16 DIV astrocytes, in contrast, pH(i) and [Na(+)](i) were minimally affected by NH(4) (+)/NH(3), and D-aspartate-induced pH(i) and [Na(+)](i) transients were reduced by only 30-40%. Next we determined the contribution of Na(+), K(+), Cl(-)-cotransport (NKCC). Immunocytochemical stainings indicated an increased expression of NKCC1 in 20-34 DIV astrocytes. Moreover, inhibition of NKCC with bumetanide prevented NH(4) (+)/NH(3)-evoked changes in steady-state pH(i) and [Na(+)](i) and attenuated the reduction of D-aspartate-induced pH(i) and [Na(+)](i) transients by NH(4) (+)/NH(3) to 30% in 20-34 DIV astrocytes. Our results suggest that NH(4) (+)/NH(3) decreases steady-state pH(i) and increases steady-state [Na(+)](i) in astrocytes by an age-dependent activation of NKCC. These NH(4) (+)/NH(3)-evoked changes in the transmembrane pH and sodium gradients directly reduce glutamate transport activity, and may, thus, contribute to elevated extracellular glutamate levels observed during HE.
Collapse
Affiliation(s)
- Tony Kelly
- Institut für Neurobiologie, Heinrich-Heine-Universität Düsseldorf, Universitätstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
43
|
Ohara K, Aoyama M, Fujita M, Sobue K, Asai K. Prolonged exposure to ammonia increases extracellular glutamate in cultured rat astrocytes. Neurosci Lett 2009; 462:109-12. [PMID: 19576960 DOI: 10.1016/j.neulet.2009.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/11/2009] [Accepted: 06/29/2009] [Indexed: 01/09/2023]
Abstract
Abnormal alteration of brain function is a characteristic complication of hepatic encephalopathy in both acute and chronic liver failure. Previous studies suggest that the pathogenesis of hepatic encephalopathy involves chronic glial edema with subsequent alteration of glioneuronal communication, N-methyl-d-aspartate (NMDA) receptor activation, and oxidative/nitrosative stress. In the present study, we investigated extracellular glutamate levels in cultured astrocytes under prolonged exposure to ammonia. Using an enzyme-linked high-performance liquid chromatography assay to detect glutamate, prolonged (48 h) exposure of cultured astrocytes to ammonia resulted in a concentration- and time-dependent increase in extracellular glutamate. Similar increases were observed when ammonia-containing medium (pH 7.8) was adjusted to the pH of control medium (pH 7.4), indicating that the effect is not due to pH. Treatment of astrocytes with an antioxidant (l-ascorbic acid), an NADPH oxidase inhibitor (apocynin), a Ca2+ chelator (BAPTA-AM), an NMDA receptor antagonist (NK801), or a mitochondrial permeability transition inhibitor (cyclosporine A) suppressed the increase of extracellular glutamate in response to prolonged ammonia exposure. Prolonged exposure to ammonia increased extracellular glutamate through the NMDA receptor, increased intracellular Ca2+ levels, and upregulation of excitatory amino acids. The addition of ATP further increased extracellular glutamate levels in astrocytes subjected to prolonged ammonia treatment (5mM, 48 h) in a dose-dependent manner. These results indicate that the deregulation of glutamate release from astrocytes may contribute to the dysfunction of glutamatergic neurons in patients with acute liver failure (ALF).
Collapse
Affiliation(s)
- Kentaro Ohara
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
44
|
Lichter-Konecki U. Profiling of astrocyte properties in the hyperammonaemic brain: shedding new light on the pathophysiology of the brain damage in hyperammonaemia. J Inherit Metab Dis 2008; 31:492-502. [PMID: 18683079 DOI: 10.1007/s10545-008-0834-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Acute hyperammonaemia (HA) causes cerebral oedema and severe brain damage in patients with urea cycle disorders (UCDs) or acute liver failure (ALF). Chronic HA is associated with developmental delay and intellectual disability in patients with UCDs and with neuropsychiatric symptoms in patients with chronic liver failure. Treatment often cannot prevent severe brain injury and neurological sequelae. The causes of the brain oedema in hyperammonaemic encephalopathy (HAE) have been subject of intense controversy among physicians and scientists working in this field. Currently favoured hypotheses are astrocyte swelling due to increased intracellular glutamine content and neuronal cell death due to excitotoxicity caused by elevated extracellular glutamate levels. While many researchers focus on these mechanisms of cytotoxicity, others emphasize vascular causes of brain oedema. New data gleaned from expression profiling of astrocytes acutely isolated from hyperammonaemic mouse brains point to disturbed water and potassium homeostasis as regulated by astrocytes at the brain microvasculature and in the perisynaptic space as a potential mechanism of brain oedema development in hyperammonaemia.
Collapse
Affiliation(s)
- U Lichter-Konecki
- Center for Neuroscience Research, and Division of Genetics & Metabolism, Children's National Medical Center, Washington, DC 20010-2970, USA.
| |
Collapse
|
45
|
Görg B, Qvartskhava N, Keitel V, Bidmon HJ, Selbach O, Schliess F, Häussinger D. Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 2008; 48:567-79. [PMID: 18506841 DOI: 10.1002/hep.22345] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Oxidative stress plays a major role in cerebral ammonia toxicity and the pathogenesis of hepatic encephalopathy (HE). As shown in this study, ammonia induces a rapid RNA oxidation in cultured rat astrocytes, vital mouse brain slices, and rat brain in vivo. Ammonia-induced RNA oxidation in cultured astrocytes is reversible and sensitive to MK-801, 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, apocynin, epigallocatechin gallate, and polyphenon 60, suggesting the involvement of N-methyl-D-aspartic acid (NMDA) receptor activation, Ca(2+), nicotinamide adenine dinucleotide phosphate, and reduced form (NADPH) oxidase-dependent oxidative stress. Also, hypo-osmolarity, tumor necrosis factor alpha (TNF-alpha), and diazepam increase RNA oxidation in cultured astrocytes, suggesting that the action of different HE-precipitating factors converges at the level of RNA oxidation. Among the oxidized RNA species, 18S-rRNA and the messenger RNA (mRNA) coding for the glutamate/aspartate transporter (GLAST) were identified. Cerebral RNA oxidation in acutely ammonia-loaded rats in vivo is reversible and predominates in neuronal soma and perivascular astrocyte processes. In neuronal dendrites, oxidized RNA colocalizes with the RNA-binding splicing protein neurooncological ventral antigen (NOVA)-2 within putative RNA transport granules, which are also found in close vicinity to postsynaptic spines. This indicates that oxidized RNA species may participate in postsynaptic protein synthesis, which is a biochemical substrate for learning and memory consolidation. Neuronal and astroglial RNA oxidation increases also in vital mouse brain slices treated with ammonia and TNF-alpha, respectively. CONCLUSION Cerebral RNA oxidation is identified as a not yet recognized consequence of acute ammonia intoxication. RNA oxidation may affect gene expression and local protein synthesis and thereby provide another link between reactive oxygen species (ROS)/reactive nitrogen oxide species (RNOS) production and ammonia toxicity.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. ACTA ACUST UNITED AC 2007; 56:183-97. [PMID: 17881060 DOI: 10.1016/j.brainresrev.2007.06.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/12/2022]
Abstract
In pediatric patients, hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle deficiencies or organic acidemias. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood. Hyperammonemia can provoke irreversible damages to the developing central nervous system that lead to cortical atrophy, ventricular enlargement and demyelination, responsible for cognitive impairment, seizures and cerebral palsy. Until recently, the mechanisms leading to these irreversible cerebral damages were poorly understood. Using experimental models allowing the analysis of the neurotoxic effects of ammonium on the developing brain, these last years have seen the emergence of new clues showing that ammonium exposure alters several amino acid pathways and neurotransmitter systems, as well as cerebral energy metabolism, nitric oxide synthesis, oxidative stress, mitochondrial permeability transition and signal transduction pathways. Those alterations may explain neuronal loss and impairment of axonal and dendritic growth observed in the different models of congenital hyperammonemia. Some neuroprotective strategies such as the potential use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine have been suggested to counteract these toxic effects. Unraveling the molecular mechanisms involved in the chain of events leading to neuronal dysfunction under hyperammonemia may be useful to develop new potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Laurène Cagnon
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Avenue Pierre-Decker 2, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
47
|
Abstract
Hepatic encephalopathy (HE) is a major complication for acute and chronic liver failure. Despite several decades of intensive clinical and basic research, the pathogenesis of HE is still incompletely understood, and the precise mechanisms causing brain dysfunction in liver failure are still not fully established. Several theories concerning the pathogenesis of HE have been previously suggested, including the ammonia theory, which received the most attention. These theories are not mutually exclusive and the validity of none of them has been definitely proved experimentally. In this review article, an attractive theory concerning the pathogenesis of HE, the tumour necrosis factor-alpha (TNF) theory, is presented and comprehensively discussed after accumulation of sufficient data which indicate that the pro-inflammatory cytokine, TNF, is strongly involved in the pathogenesis of HE associated with both acute and chronic liver failure. This theory seems to be superior to all other previous theories in the pathogenesis of HE, and may induce development of other beneficial therapeutical modalities for HE directed towards inhibition of TNF production and/or action, and towards enhancement of its degradation.
Collapse
Affiliation(s)
- M Odeh
- Bnai Zion Medical Centre, and Faculty of Medicine, Technion, Haifa 31063, Israel.
| |
Collapse
|
48
|
Abstract
Glutamate is the principal excitatory neurotransmitter in the brain. Knowledge of the glutamatergic synapse has advanced enormously over the last 10 years, primarily through application of cellular electrophysiological and molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic glutamate receptors with intrinsic cation permeable channels. There are also three groups of metabotropic, G-protein-coupled glutamate receptors that can modify neuronal excitability. There are also two glial glutamate transporters and three neuronal transporters in the brain. Endogenous glutamate may contribute to the brain damage occurring acutely after traumatic brain injury as well as having a role in the excitatory imbalance present in epileptic conditions and contributing to the pathophysiology of hepatic encephalopathy in animals. Understanding the role of glutamate in these neurological diseases may highlight treatment potentials of antagonists to glutamatergic transmission. This paper presents a review of the literature of glutamate and its role in neurological function and disease.
Collapse
Affiliation(s)
- Simon R Platt
- The Animal Health Trust, Centre for Small Animal Studies, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
49
|
Walsh PJ, Veauvy CM, McDonald MD, Pamenter ME, Buck LT, Wilkie MP. Piscine insights into comparisons of anoxia tolerance, ammonia toxicity, stroke and hepatic encephalopathy. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:332-43. [PMID: 17046301 PMCID: PMC1931516 DOI: 10.1016/j.cbpa.2006.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Although the number of fish species that have been studied for both hypoxia/anoxia tolerance and ammonia tolerance are few, there appears to be a correlation between the ability to survive these two insults. After establishing this correlation with examples from the literature, and after examining the role Peter Lutz played in catalyzing this convergent interest in two variables, this article explores potential mechanisms underpinning this correlation. We draw especially on the larger body of information for two human diseases with the same effected organ (brain), namely stroke and hepatic encephalopathy. While several dissimilarities exist between the responses of vertebrates to anoxia and hyperammonemia, one consistent observation in both conditions is an overactivation of NMDA receptors or glutamate neurotoxicity. We propose a glutamate excitotoxicity hypothesis to explain the correlation between ammonia and hypoxia resistance in fish. Furthermore, we suggest several experimental paths to test this hypothesis.
Collapse
Affiliation(s)
- Patrick J Walsh
- NIEHS Marine and Freshwater Biomedical Sciences Center, Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL 33149, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Chepkova AN, Sergeeva OA, Haas HL. Taurine rescues hippocampal long-term potentiation from ammonia-induced impairment. Neurobiol Dis 2006; 23:512-21. [PMID: 16766203 DOI: 10.1016/j.nbd.2006.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022] Open
Abstract
Hyperammonemia, a major pathophysiological factor in hepatic encephalopathy, impairs long-term potentiation (LTP) of synaptic transmission, a cellular model of learning and memory, in the hippocampus. We have now studied the protective action of taurine on this paradigm by analyzing LTP characteristics in mouse hippocampal slices treated with ammonium chloride (1 mM) in the presence of taurine (1 mM), an ubiquitous osmolyte, antioxidant, and neuromodulator, as well as other substances with such properties. Ammonia-treated slices displayed a significant impairment of LTP maintenance. Taurine and the mitochondrial enhancer l-carnitine, but not the antioxidants (ascorbate, carnosine, and the novel compound GVS-111) or the osmolyte betaine prevented this impairment. The protective effect of taurine was preserved under the blockade of inhibitory GABA(A) and glycine receptors. It is suggested that taurine may rescue the mechanisms of hippocampal synaptic plasticity by improving mitochondrial function under hyperammonemic conditions.
Collapse
Affiliation(s)
- Aisa N Chepkova
- Department of Neurophysiology, Heinrich-Heine University, POB 101007, D-40001 Düsseldorf, Germany
| | | | | |
Collapse
|