1
|
Chen F, Cao LH, Ma FY, Zeng LL, He JR. Development and validation of a predictive model for severe white matter hyperintensity with obesity. Front Aging Neurosci 2024; 16:1404756. [PMID: 38887608 PMCID: PMC11180876 DOI: 10.3389/fnagi.2024.1404756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose The purpose of the present study was to identify predictors of severe white matter hyperintensity (WMH) with obesity (SWO), and to build a prediction model for screening obese people with severe WMH without Nuclear Magnetic Resonance Imaging (MRI) examination. Patients subjects and methods From September 2020 to October 2021, 650 patients with WMH were recruited consecutively. The subjects were divided into two groups, SWO group and non-SWO group. Univariate and Logistic regression analysis were was applied to explore the potential predictors of SWO. The Youden index method was adopted to determine the best cut-off value in the establishment of the prediction model of SWO. Each parameter had two options, low and high. The score table of the prediction model and nomogram based on the logistic regression were constructed. Of the 650 subjects, 487 subjects (75%) were randomly assigned to the training group and 163 subjects (25%) to the validation group. By resampling the area under the curve (AUC) of the subject's operating characteristics and calibration curves 1,000 times, nomogram performance was verified. A decision curve analysis (DCA) was used to evaluate the nomogram's clinical usefulness. By resampling the area under the curve (AUC) of the subject's operating characteristics and calibration curves 1,000 times, nomogram performance was verified. A decision curve analysis (DCA) was used to evaluate the nomogram's clinical usefulness. Results Logistic regression demonstrated that hypertension, uric acid (UA), complement 3 (C3) and Interleukin 8 (IL-8) were independent risk factors for SWO. Hypertension, UA, C3, IL-8, folic acid (FA), fasting C-peptide (FCP) and eosinophil could be used to predict the occurrence of SWO in the prediction models, with a good diagnostic performance, Areas Under Curves (AUC) of Total score was 0.823 (95% CI: 0.760-0.885, p < 0.001), sensitivity of 60.0%, specificity of 91.4%. In the development group, the nomogram's AUC (C statistic) was 0.829 (95% CI: 0.760-0.899), while in the validation group, it was 0.835 (95% CI: 0.696, 0.975). In both the development and validation groups, the calibration curves following 1,000 bootstraps showed a satisfactory fit between the observed and predicted probabilities. DCA showed that the nomogram had great clinical utility. Conclusion Hypertension, UA, C3, IL-8, FA, FCP and eosinophil models had the potential to predict the incidence of SWO. When the total score of the model exceeded 9 points, the risk of SWO would increase significantly, and the nomogram enabled visualization of the patient's WMH risk. The application prospect of our models mainly lied in the convenient screening of SWO without MRI examination in order to detect SWO and control the WMH hazards early.
Collapse
Affiliation(s)
- Fu Chen
- Department of Neurology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Medicine, Yinhang Community Health Centre, Shanghai, China
| | - Lin-Hao Cao
- Department of Neurology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Yue Ma
- Department of Neurology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Zeng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Rong He
- Department of Neurology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Islam R, Choudhary H, Rajan R, Vrionis F, Hanafy KA. An overview on microglial origin, distribution, and phenotype in Alzheimer's disease. J Cell Physiol 2024; 239:e30829. [PMID: 35822939 PMCID: PMC9837313 DOI: 10.1002/jcp.30829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that is responsible for about one-third of dementia cases worldwide. It is believed that AD is initiated with the deposition of Ab plaques in the brain. Genetic studies have shown that a high number of AD risk genes are expressed by microglia, the resident macrophages of brain. Common mode of action by microglia cells is neuroinflammation and phagocytosis. Moreover, it has been discovered that inflammatory marker levels are increased in AD patients. Recent studies advocate that neuroinflammation plays a major role in AD progression. Microglia have different activation profiles depending on the region of brain and stimuli. In different activation, profile microglia can generate either pro-inflammatory or anti-inflammatory responses. Microglia defend brain cells from pathogens and respond to injuries; also, microglia can lead to neuronal death along the way. In this review, we will bring the different roles played by microglia and microglia-related genes in the progression of AD.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Hadi Choudhary
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Robin Rajan
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Frank Vrionis
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Khalid A. Hanafy
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| |
Collapse
|
3
|
DeVries SA, Conner B, Dimovasili C, Moore TL, Medalla M, Mortazavi F, Rosene DL. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment. GeroScience 2024; 46:2503-2519. [PMID: 37989825 PMCID: PMC10828237 DOI: 10.1007/s11357-023-01014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.
Collapse
Affiliation(s)
- Sarah A DeVries
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA.
| | - Bryce Conner
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Maria Medalla
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Healy D, Murray C, McAdams C, Power R, Hollier PL, Lambe J, Tortorelli L, Lopez-Rodriguez AB, Cunningham C. Susceptibility to acute cognitive dysfunction in aged mice is underpinned by reduced white matter integrity and microgliosis. Commun Biol 2024; 7:105. [PMID: 38228820 PMCID: PMC10791665 DOI: 10.1038/s42003-023-05662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/02/2023] [Indexed: 01/18/2024] Open
Abstract
Age is a significant but heterogeneous risk factor for acute neuropsychiatric disturbances such as delirium. Neuroinflammation increases with aging but the determinants of underlying risk for acute dysfunction upon systemic inflammation are not clear. We hypothesised that, with advancing age, mice would become progressively more vulnerable to acute cognitive dysfunction and that neuroinflammation and neuronal integrity might predict heterogeneity in such vulnerability. Here we show region-dependent differential expression of microglial transcripts, but a ubiquitously observed primed signature: chronic Clec7a expression and exaggerated Il1b responses to systemic bacterial LPS. Cognitive frailty (vulnerability to acute disruption under acute stressors LPS and double stranded RNA; poly I:C) was increased in aged animals but showed heterogeneity and was significantly correlated with reduced myelin density, synaptic loss and severity of white matter microgliosis. The data indicate that white matter disruption and neuroinflammation may be key substrates of the progressive but heterogeneous risk for delirium in aged individuals.
Collapse
Affiliation(s)
- Dáire Healy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Carol Murray
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Ciara McAdams
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Ruth Power
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Pierre-Louis Hollier
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Jessica Lambe
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Lucas Tortorelli
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 152-160, Pearse St. Dublin 2, Dublin, Republic of Ireland.
| |
Collapse
|
5
|
Zhang X, An H, Chen Y, Shu N. Neurobiological Mechanisms of Cognitive Decline Correlated with Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:127-146. [PMID: 37418211 DOI: 10.1007/978-981-99-1627-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline has emerged as one of the greatest health threats of old age. Meanwhile, aging is the primary risk factor for Alzheimer's disease (AD) and other prevalent neurodegenerative disorders. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain aging. Despite playing an important role in the pathogenesis and incidence of disease, brain aging has not been well understood at a molecular level. Recent advances in the biology of aging in model organisms, together with molecular- and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. This chapter seeks to integrate the knowledge about the neurological mechanisms of age-related cognitive changes that underlie aging.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Haiting An
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
Kiss T, Nyúl-Tóth Á, DelFavero J, Balasubramanian P, Tarantini S, Faakye J, Gulej R, Ahire C, Ungvari A, Yabluchanskiy A, Wiley G, Garman L, Ungvari Z, Csiszar A. Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience 2022; 44:661-681. [PMID: 35098444 PMCID: PMC9135953 DOI: 10.1007/s11357-022-00521-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence that aging is associated with an increased presence of senescent cells in the brain. The finding that treatment with senolytic drugs improves cognitive performance of aged laboratory mice suggests that increased cellular senescence is causally linked to age-related cognitive decline. The relationship between senescent cells and their relative locations within the brain is critical to understanding the pathology of age-related cognitive decline and dementia. To assess spatial distribution of cellular senescence in the aged mouse brain, spatially resolved whole transcriptome mRNA expression was analyzed in sections of brains derived from young (3 months old) and aged (28 months old) C57BL/6 mice while capturing histological information in the same tissue section. Using this spatial transcriptomics (ST)-based method, microdomains containing senescent cells were identified on the basis of their senescence-related gene expression profiles (i.e., expression of the senescence marker cyclin-dependent kinase inhibitor p16INK4A encoded by the Cdkn2a gene) and were mapped to different anatomical brain regions. We confirmed that brain aging is associated with increased cellular senescence in the white matter, the hippocampi and the cortical grey matter. Transcriptional analysis of the senescent cell-containing ST spots shows that presence of senescent cells is associated with a gene expression signature suggestive of neuroinflammation. GO enrichment analysis of differentially expressed genes in the outer region of senescent cell-containing ST spots ("neighboring ST spots") also identified functions related to microglia activation and neuroinflammation. In conclusion, senescent cells accumulate with age in the white matter, the hippocampi and cortical grey matter and likely contribute to the genesis of inflammatory foci in a paracrine manner.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- First Department of Pediatrics, Semmelweis University, HU, 1083, Budapest, Hungary.
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Janet Faakye
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Graham Wiley
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Theoretical Medicine Doctoral School, International Training Program in Geroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Ahn K, Lee SJ, Mook-Jung I. White matter-associated microglia: New players in brain aging and neurodegenerative diseases. Ageing Res Rev 2022; 75:101574. [PMID: 35093614 DOI: 10.1016/j.arr.2022.101574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
There has been growing interest in brain aging and rejuvenation. It is well known that brain aging is one of the leading causes of neurodegenerative diseases, such as Alzheimer's disease, but brain aging alone can cause cognitive decline. Microglia are thought to act as 'conductors' of white matter aging by modulating diverse glial cells and phagocytosing white matter-derived myelin debris. A recent study identified a specific subpopulation of microglia in the white matter of aged mice, termed white matter-associated microglia (WAM). Additionally, senescent microglia show impaired phagocytic function and altered lipid metabolism, which cause accumulation of lipid metabolites and eventually lead to myelin sheath degeneration. These results suggest that senescent WAM could be pivotal players in axonal loss during brain aging. The aim of this review is to assess the current state of knowledge on brain aging, with an emphasis on the roles of the white matter and microglia, and suggest potential approaches for rejuvenating the aged brain.
Collapse
Affiliation(s)
- Kyusik Ahn
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
8
|
Discovery of Active Ingredients Targeted TREM2 by SPR Biosensor-UPLC/MS Recognition System, and Investigating the Mechanism of Anti-Neuroinflammatory Activity on the Lignin-Amides from Datura metel Seeds. Molecules 2021; 26:molecules26195946. [PMID: 34641490 PMCID: PMC8512677 DOI: 10.3390/molecules26195946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
As a new target protein for Alzheimer’s disease (AD), the triggering receptor expressed on myeloid Cells 2 (TREM2) was expressed on the surface of microglia, which was shown to regulate neuroinflammation, be associated with a variety of neuropathologic, and regarded as a potential indicator for monitoring AD. In this study, a novel recognition system based on surface plasmon resonance (SPR) for the TREM2 target spot was established coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-MS), in order to screen the active ingredients targeting TREM2 from Datura metel seeds. The results showed that four lignan-amides were discovered as candidate compounds by SPR biosensor-UPLC/MS recognition analysis. According to the guidance of the active ingredients discovered by the system, the lignin-amides from Datura metel seeds (LDS) were preliminarily identified as containing 27 lignan-amides, which were enriched compositions by the HP-20 of Datura metel seeds. Meanwhile, the anti-inflammatory activity of LDS was evaluated in BV2 microglia induced by LPS. Our experimental results demonstrated that LDS could reduce NO release in LPS-treated BV2 microglia cells and significantly reduce the expression of the proteins of inducible Nitric Oxide Synthase (iNOS), cyclooxygenase 2 (COX-2), microtubule-associated protein tau (Tau), and ionized calcium-binding adapter molecule 1 (IBA-1). Accordingly, LDS might increase the expression of TREM2/DNAX-activating protein of 12 kDa (DAP12) and suppress the Toll-like receptor SX4 (TLR4) pathway and Recombinant NLR Family, Pyrin Domain Containing Protein 3 (NLRP3)/cysteinyl aspartate specific proteinase-1 (Caspase-1) inflammasome expression by LDS in LPS-induced BV2 microglial cells. Then, the inhibitory release of inflammatory factors Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6), and Tumor necrosis factor-alpha (TNFα) inflammatory cytokines were detected to inhibit neuroinflammatory responses. The present results propose that LDS has potential as an anti-neuroinflammatory agent against microglia-mediated neuroinflammatory disorders.
Collapse
|
9
|
Sanchez-Molina P, Almolda B, Benseny-Cases N, González B, Perálvarez-Marín A, Castellano B. Specific microglial phagocytic phenotype and decrease of lipid oxidation in white matter areas during aging: Implications of different microenvironments. Neurobiol Aging 2021; 105:280-295. [PMID: 34139605 DOI: 10.1016/j.neurobiolaging.2021.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Physiological aging is characterized by an imbalance of pro-inflammatory and anti-inflammatory mediators leading to neuroinflammation. Microglial cells, which are highly regulated by the local microenvironment, undergo specific changes depending upon the brain area during aging. The aim of this study was to evaluate the influence of age over microglial cells along different brain areas and microenvironments. For this purpose, transgenic mice with overproduction of either the anti-inflammatory IL-10 cytokine or the pro-inflammatory IL-6 cytokine were used. Our results show that, during aging, microglial cells located in white matter (WM) areas maintain their phagocytic capacity but present a specific phagocytic phenotype with receptors involved in myelin recognition, arguing for aging-derived myelin damage. Whereas IL-10 overproduction anticipates the age-related microglial phagocytic phenotype, maintaining it over time, IL-6 overproduction exacerbates this phenotype in aging. These modifications were linked with a higher efficiency of myelin engulfment by microglia in aged transgenic animals. Moreover, we show, in a novel way, lower lipid oxidation during aging in WM areas, regardless of the genotype. The novelty of the insights presented in this study open a window to deeply investigate myelin lipid oxidation and the role of microglial cells in its regulation during physiological aging.
Collapse
Affiliation(s)
- Paula Sanchez-Molina
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Beatriz Almolda
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Núria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Catalonia, Spain
| | - Berta González
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alex Perálvarez-Marín
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Biochemistry and Molecular Biology. Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Bernardo Castellano
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
12
|
Edler MK, Mhatre-Winters I, Richardson JR. Microglia in Aging and Alzheimer's Disease: A Comparative Species Review. Cells 2021; 10:1138. [PMID: 34066847 PMCID: PMC8150617 DOI: 10.3390/cells10051138] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the central nervous system that help nourish and support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment, microglia go through rapid changes in cell shape, gene expression, and functional behavior during states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia, leading to chronic inflammation and an increase in the brain's susceptibility to neurodegenerative processes that occur in Alzheimer's disease. Despite the scientific community's growing knowledge in the field of neuroinflammation, the overall success rate of drug treatment for age-related and neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from animal models to the clinic include the use of a single species model, an assumption of similarity in humans, and ignoring contradictory data or information from other species. To aid in the selection of validated and predictive animal models and to bridge the translational gap, this review evaluates similarities and differences among species in microglial activation and density, morphology and phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44240, USA;
| | - Isha Mhatre-Winters
- School of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH 44240, USA;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jason R. Richardson
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
13
|
Batterman KV, Cabrera PE, Moore TL, Rosene DL. T Cells Actively Infiltrate the White Matter of the Aging Monkey Brain in Relation to Increased Microglial Reactivity and Cognitive Decline. Front Immunol 2021; 12:607691. [PMID: 33664743 PMCID: PMC7920950 DOI: 10.3389/fimmu.2021.607691] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Normal aging is characterized by declines in processing speed, learning, memory, and executive function even in the absence of neurodegenerative diseases such as Alzheimer's Disease (AD). In normal aging monkeys and humans, neuronal loss does not account for cognitive impairment. Instead, loss of white matter volume and an accumulation of myelin sheath pathology begins in middle age and is associated with cognitive decline. It is unknown what causes this myelin pathology, but it likely involves increased neuroinflammation in white matter and failures in oligodendrocyte function (maturation and repair). In frontal white matter tracts vulnerable to myelin damage, microglia become chronically reactive and secrete harmful pro-inflammatory cytokines. Despite being in a phagocytic state, these microglia are ineffective at phagocytosing accruing myelin debris, which directly inhibits myelin sheath repair. Here, we asked whether reported age-related increases in pro-inflammatory markers were accompanied by an adaptive immune response involving T cells. We quantified T cells with immunohistochemistry in the brains of 34 cognitively characterized monkeys and found an age-related increase in perivascular T cells that surround CNS vasculature. We found a surprising age-related increase in T cells that infiltrate the white matter parenchyma. In the cingulum bundle the percentage of these parenchymal T cells increased with age relative to those in the perivascular space. In contrast, infiltrating T cells were rarely found in surrounding gray matter regions. We assessed whether T cell infiltration correlated with fibrinogen extravasation from the vasculature as a measure of BBB leakiness and found no correlation, suggesting that T cell infiltration is not a result of passive extravasation. Importantly, the density of T cells in the cingulum bundle correlated with microglial reactivity and with cognitive impairment. This is the first demonstration that T cell infiltration of white matter is associated with cognitive decline in the normal aging monkey.
Collapse
Affiliation(s)
- Katelyn V Batterman
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Payton E Cabrera
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Laboratory of Interventions for Cortical Injury and Cognitive Decline, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
14
|
Edler MK, Munger EL, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA. Neuron loss associated with age but not Alzheimer's disease pathology in the chimpanzee brain. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190619. [PMID: 32951541 PMCID: PMC7540958 DOI: 10.1098/rstb.2019.0619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
In the absence of disease, ageing in the human brain is accompanied by mild cognitive dysfunction, gradual volumetric atrophy, a lack of significant cell loss, moderate neuroinflammation, and an increase in the amyloid beta (Aβ) and tau proteins. Conversely, pathologic age-related conditions, particularly Alzheimer's disease (AD), result in extensive neocortical and hippocampal atrophy, neuron death, substantial Aβ plaque and tau-associated neurofibrillary tangle pathologies, glial activation and severe cognitive decline. Humans are considered uniquely susceptible to neurodegenerative disorders, although recent studies have revealed Aβ and tau pathology in non-human primate brains. Here, we investigate the effect of age and AD-like pathology on cell density in a large sample of postmortem chimpanzee brains (n = 28, ages 12-62 years). Using a stereologic, unbiased design, we quantified neuron density, glia density and glia:neuron ratio in the dorsolateral prefrontal cortex, middle temporal gyrus, and CA1 and CA3 hippocampal subfields. Ageing was associated with decreased CA1 and CA3 neuron densities, while AD pathologies were not correlated with changes in neuron or glia densities. Differing from cerebral ageing and AD in humans, these data indicate that chimpanzees exhibit regional neuron loss with ageing but appear protected from the severe cell death found in AD. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Emily L. Munger
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Richard S. Meindl
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- New York Consortium for Evolutionary Primatology, New York, NY 10468, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Mary Ann Raghanti
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
15
|
Shwe T, Bo-Htay C, Leech T, Ongnok B, Jaiwongkum T, Kerdphoo S, Palee S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition. Exp Gerontol 2020; 138:111001. [DOI: 10.1016/j.exger.2020.111001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
|
16
|
Pergher V, Schoenmakers B, Demaerel P, Tournoy J, Van Hulle MM. Differential Impact of Cognitive Impairment in MCI Patients: A Case-Based Report. Case Rep Neurol 2020; 12:222-231. [PMID: 32774279 PMCID: PMC7383180 DOI: 10.1159/000507977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/19/2020] [Indexed: 11/19/2022] Open
Abstract
Mild cognitive impairment (MCI) traditionally refers to an intermediate stage between healthy individuals and early Alzheimer disease. Evidence shows grey and white matter volume changes and decrease in several executive functions, albeit the relation between cognitive performance and brain volume remains unclear. Here, we discuss 3 individual cases of MCI by investigating their MRI scans and cognitive test performance. We also recruited age-matched healthy older adults serving as gold standard for both grey and white matter volume and cognitive test outcomes. Our results show the impact of cognitive impairment on cognitive test performance and grey and white matter volumes, and the role played by cognitive and brain reserve on mitigating cognitive decline. Furthermore, we add evidence to previous studies by showing an increase in white matter volume compared to healthy controls, in all 3 patients. This pattern of increased white matter volume might help us to better understand the pathological mechanisms underlying MCI which in turn could contribute to future investigations.
Collapse
Affiliation(s)
- Valentina Pergher
- Department of Cognitive Neuropsychology, Harvard University, Cambridge, Massachusetts, USA.,Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Birgitte Schoenmakers
- Academic Centre of General Practice, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Demaerel
- Department of Neuroradiology, KU Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven - University Hospitals Leuven, Leuven, Belgium.,Department of Geriatric Medicine, KU Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Furlan JC, Liu Y, Dietrich WD, Norenberg MD, Fehlings MG. Age as a determinant of inflammatory response and survival of glia and axons after human traumatic spinal cord injury. Exp Neurol 2020; 332:113401. [PMID: 32673621 DOI: 10.1016/j.expneurol.2020.113401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Despite the shift in the demographics of traumatic spinal cord injury (SCI) with increased proportion of injuries in the elderly, little is known on the potential effects of old age on the pathobiology of SCI. Since there is an assumption that age adversely affects neural response to SCI, this study examines the clinically relevant question on whether age is a key determinant of inflammatory response, oligodendroglial apoptosis and axonal survival after traumatic SCI. This unique study includes post-mortem spinal cord tissue from 64 cases of SCI (at cervical or high-thoracic levels) and 38 control cases without CNS injury. Each group was subdivided into subgroups of younger and elderly individuals (65 years of age or older at the SCI onset). The results of this study indicate that age at the SCI onset does not adversely affect the cellular inflammatory response to, oligodendroglial apoptosis and axonal survival after SCI. These results support the conclusion that elderly individuals have similar neurobiological responses to SCI as younger people and, hence, treatment decisions should be based on an assessment of the individual patient and not an arbitrary assumption that "advanced age" should exclude patients with an acute SCI from access to advanced care and translational therapies.
Collapse
Affiliation(s)
- Julio C Furlan
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada; Lyndhurst Centre, KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Yang Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - W Dalton Dietrich
- Department of Neurological Surgery, Neurology, and Cell Biology & Anatomy, University of Miami, Miami, Florida, USA; Miami Project to Cure Paralysis, Miami, Florida, USA
| | - Michael D Norenberg
- Miami Project to Cure Paralysis, Miami, Florida, USA; Department of Neuropathology, University of Miami, Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Michael G Fehlings
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
The Inflammasome Adaptor Protein ASC in Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21134674. [PMID: 32630059 PMCID: PMC7370034 DOI: 10.3390/ijms21134674] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Mild cognitive impairment (MCI) is characterized by memory loss in the absence of dementia and is considered the translational stage between normal aging and early Alzheimer’s disease (AD). Patients with MCI have a greater risk of advancing to AD. Thus, identifying early markers of MCI has the potential to increase the therapeutic window to treat and manage the disease. Protein levels of the inflammasome signaling proteins apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and interleukin (IL)-18 were analyzed in the serum of patients with MCI, AD and healthy age-matched donors as possible biomarkers, as well as levels of soluble amyloid precursor proteins α/β (sAPP α/β) and neurofilament light (NfL). Cut-off points and positive and negative predictive values, as well as receiver operator characteristic (ROC) curves, likelihood ratios and accuracy were determined for these proteins. Although the levels of ASC were higher in MCI and AD than in age-matched controls, protein levels of ASC were higher in MCI than in AD cases. For control vs. MCI, the area under the curve (AUC) for ASC was 0.974, with a cut-off point of 264.9 pg/mL. These data were comparable to the AUC for sAPP α and β of 0.9687 and 0.9068, respectively, as well as 0.7734 for NfL. Moreover, similar results were obtained for control vs. AD and MCI vs. AD. These results indicate that ASC is a promising biomarker of MCI and AD.
Collapse
|
19
|
Joffre C, Dinel AL, Chataigner M, Pallet V, Layé S. n-3 Polyunsaturated Fatty Acids and Their Derivates Reduce Neuroinflammation during Aging. Nutrients 2020; 12:nu12030647. [PMID: 32121189 PMCID: PMC7146513 DOI: 10.3390/nu12030647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.
Collapse
Affiliation(s)
- Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Correspondence:
| | - Anne-Laure Dinel
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mathilde Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
- Abyss Ingredients, 56850 Caudan, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.C.); (V.P.); (S.L.)
| |
Collapse
|
20
|
Gefen T, Kim G, Bolbolan K, Geoly A, Ohm D, Oboudiyat C, Shahidehpour R, Rademaker A, Weintraub S, Bigio EH, Mesulam MM, Rogalski E, Geula C. Activated Microglia in Cortical White Matter Across Cognitive Aging Trajectories. Front Aging Neurosci 2019; 11:94. [PMID: 31139072 PMCID: PMC6527736 DOI: 10.3389/fnagi.2019.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
Abstract
Activation of microglia, the primary mediators of inflammation in the brain, is a major component of gliosis and neuronal loss in a number of age-related neurodegenerative disorders, such as Alzheimer’s disease (AD). The role of activated microglia in white matter, and its relationship with cognitive decline during aging are unknown. The current study evaluated microglia densities in the white matter of postmortem specimens from cognitively normal young adults, cognitively normal older adults, and cognitive “SuperAgers,” a unique group of individuals over age 80 whose memory test scores are at a level equal to or better than scores of 50-to-65-year-olds. Whole hemisphere sections from cognitively normal old, young, and “SuperAgers” were used to quantify densities of human leukocyte antigen-D related (HLA-DR)-positive activated microglia underlying five cortical regions. Statistical findings showed a significant main effect of group on differences in microglia density where cognitively normal old showed highest densities. No difference between SuperAgers and young specimens were detected. In two autopsied SuperAgers with MRI FLAIR scans available, prominent hyperintensities in periventricular regions were observed, and interestingly, examination of corresponding postmortem sections showed only sparse microglia densities. In conclusion, activated microglia appear to respond to age-related pathologic changes in cortical white matter, and this phenomenon is largely spared in SuperAgers. Findings offer insights into the relationship between white matter neuroinflammatory changes and cognitive integrity during aging.
Collapse
Affiliation(s)
- Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Garam Kim
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kabriya Bolbolan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Geoly
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel Ohm
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Carly Oboudiyat
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ryan Shahidehpour
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred Rademaker
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
21
|
Dietary Restriction and Neuroinflammation: A Potential Mechanistic Link. Int J Mol Sci 2019; 20:ijms20030464. [PMID: 30678217 PMCID: PMC6386998 DOI: 10.3390/ijms20030464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic neuroinflammation is a common feature of the aged brain, and its association with the major neurodegenerative changes involved in cognitive impairment and motor dysfunction is well established. One of the most potent antiaging interventions tested so far is dietary restriction (DR), which extends the lifespan in various organisms. Microglia and astrocytes are two major types of glial cells involved in the regulation of neuroinflammation. Accumulating evidence suggests that the age-related proinflammatory activation of astrocytes and microglia is attenuated under DR. However, the molecular mechanisms underlying DR-mediated regulation of neuroinflammation are not well understood. Here, we review the current understanding of the effects of DR on neuroinflammation and suggest an underlying mechanistic link between DR and neuroinflammation that may provide novel insights into the role of DR in aging and age-associated brain disorders.
Collapse
|
22
|
Edler MK, Sherwood CC, Meindl RS, Munger E, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Raghanti MA. Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees. J Comp Neurol 2018; 526:2921-2936. [PMID: 30069930 PMCID: PMC6283685 DOI: 10.1002/cne.24484] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
In Alzheimer's disease (AD), the brain's primary immune cells, microglia, become activated and are found in close apposition to amyloid beta (Aβ) protein plaques and neurofibrillary tangles (NFT). The present study evaluated microglia density and morphology in a large group of aged chimpanzees (n = 20, ages 37-62 years) with varying degrees of AD-like pathology. Using immunohistochemical and stereological techniques, we quantified the density of activated microglia and morphological variants (ramified, intermediate, and amoeboid) in postmortem chimpanzee brain samples from prefrontal cortex, middle temporal gyrus, and hippocampus, areas that show a high degree of AD pathology in humans. Microglia measurements were compared to pathological markers of AD in these cases. Activated microglia were consistently present across brain areas. In the hippocampus, CA3 displayed a higher density than CA1. Aβ42 plaque volume was positively correlated with higher microglial activation and with an intermediate morphology in the hippocampus. Aβ42-positive vessel volume was associated with increased hippocampal microglial activation. Activated microglia density and morphology were not associated with age, sex, pretangle density, NFT density, or tau neuritic cluster density. Aged chimpanzees displayed comparable patterns of activated microglia phenotypes as well as an association of increased microglial activation and morphological changes with Aβ deposition similar to AD patients. In contrast to human AD brains, activated microglia density was not significantly correlated with tau lesions. This evidence suggests that the chimpanzee brain may be relatively preserved during normal aging processes but not entirely protected from neurodegeneration as previously assumed.
Collapse
Affiliation(s)
- Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | | | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ 85013
| | - Patrick R. Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- New York Consortium for Evolutionary Primatology, New York, NY 10468
| | - Mary Ann Raghanti
- School of Biomedical Sciences, Kent State University, Kent, OH 44242
- Department of Anthropology, Kent State University, Kent, OH 44242
| |
Collapse
|
23
|
Metwally E, Farouk SM, Hossain MS, Raihan O. Expression of glial cells molecules in the optic nerve of adult dromedary camel (Camelus dromedarius): A histological and immunohistochemical analysis. Anat Histol Embryol 2018; 48:74-86. [DOI: 10.1111/ahe.12413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Development Biology, Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing China
- Department of Cytology & Histology, Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - Sameh M. Farouk
- Department of Cytology & Histology, Faculty of Veterinary Medicine; Suez Canal University; Ismailia Egypt
| | - Md Shafayat Hossain
- State Key Laboratory of Molecular Development Biology, Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing China
| | - Obayed Raihan
- Jessore University of Science and Technology; Jessore Bangladesh
| |
Collapse
|
24
|
Impact of Long-Term RF-EMF on Oxidative Stress and Neuroinflammation in Aging Brains of C57BL/6 Mice. Int J Mol Sci 2018; 19:ijms19072103. [PMID: 30029554 PMCID: PMC6073444 DOI: 10.3390/ijms19072103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
The expansion of mobile phone use has raised questions regarding the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on oxidative stress and brain inflammation. Despite accumulative exposure of humans to radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, their long-term effects on oxidative stress and neuroinflammation in the aging brain have not been studied. In the present study, middle-aged C57BL/6 mice (aged 14 months) were exposed to 1950 MHz electromagnetic fields for 8 months (specific absorption rate (SAR) 5 W/kg, 2 h/day, 5 d/week). Compared with those in the young group, levels of protein (3-nitro-tyrosine) and lipid (4-hydroxy-2-nonenal) oxidative damage markers were significantly increased in the brains of aged mice. In addition, levels of markers for DNA damage (8-hydroxy-2'-deoxyguanosine, p53, p21, γH2AX, and Bax), apoptosis (cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP-1)), astrocyte (GFAP), and microglia (Iba-1) were significantly elevated in the brains of aged mice. However, long-term RF-EMF exposure did not change the levels of oxidative stress, DNA damage, apoptosis, astrocyte, or microglia markers in the aged mouse brains. Moreover, long-term RF-EMF exposure did not alter locomotor activity in aged mice. Therefore, these findings indicate that long-term exposure to RF-EMF did not influence age-induced oxidative stress or neuroinflammation in C57BL/6 mice.
Collapse
|
25
|
Koo BB, Calderazzo S, Bowley BGE, Kolli A, Moss MB, Rosene DL, Moore TL. Long-term effects of curcumin in the non-human primate brain. Brain Res Bull 2018; 142:88-95. [PMID: 29981358 DOI: 10.1016/j.brainresbull.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023]
Abstract
Curcumin has recently been shown to be a potential treatment for slowing or ameloriating cognitive decline during aging in our nonhuman primate model of normal aging. In these same monkeys, we studied for the first time the neurological impacts of long-term curcumin treatments using longitudinal magnetic resonance imaging (MRI). Sixteen rhesus monkeys received curcumin or a vehicle control for 14-18 months. We applied a combination of structural and diffusion MRI to determine whether the curcumin resulted in structural or functional changes in focal regions of the brain. The longitudinal imaging revealed decreased microscale diffusivity (mD) measurements mainly in the hippocampus and basal forebrain structures of curcumin treated animals. Changes in generalized fractional anisotropy (GFA) and grey matter density (GMd) measurements indicated an increased grey matter density in cortical ROIs with improved white matter integrity in limbic, cerebellar, and brain stem regions. These findings suggest that noticeable changes in the neuronal environment could be induced from long-term curcumin treatments. Results may provide a neurological basis on the recent findings demonstrating improved spatial working memory and motor function in nonhuman primates.
Collapse
Affiliation(s)
- Bang-Bon Koo
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA.
| | - Samantha Calderazzo
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA
| | - Bethany G E Bowley
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA
| | - Alekha Kolli
- BA/MD Program, Boston University, Boston, MA, USA
| | - Mark B Moss
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA; BA/MD Program, Boston University, Boston, MA, USA; Department of Neurology, School of Medicine, Boston University, Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA; Department of Neurology, School of Medicine, Boston University, Boston, MA, USA
| | - Tara L Moore
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA; BA/MD Program, Boston University, Boston, MA, USA
| |
Collapse
|
26
|
Moore TL, Bowley BGE, Shultz PL, Calderazzo SM, Shobin EJ, Uprety AR, Rosene DL, Moss MB. Oral curcumin supplementation improves fine motor function in the middle-aged rhesus monkey. Somatosens Mot Res 2018; 35:1-10. [PMID: 29447046 DOI: 10.1080/08990220.2018.1432481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aged individuals experience decreased fine motor function of the hand and digits, which could result, in part, from the chronic, systemic state of inflammation that occurs with aging. Recent research for treating age-related inflammation has focused on the effects of nutraceuticals that have anti-inflammatory properties. One particular dietary polyphenol, curcumin, the principal curcuminoid of the spice turmeric, has been shown to have significant anti-inflammatory effects and there is mounting evidence that curcumin may serve to reduce systemic inflammation. Therefore, it could be useful for alleviating age-related impairments in fine motor function. To test this hypothesis we assessed the efficacy of a dietary intervention with a commercially available optimized curcumin to ameliorate or delay the effects of aging on fine motor function of the hand of rhesus monkeys. We administered oral daily doses of curcumin or a control vehicle to 11 monkeys over a 14- to 18-month period in which they completed two rounds of fine motor function testing. The monkeys receiving curcumin were significantly faster at retrieving a food reward by round 2 of testing than monkeys receiving a control vehicle. Further, the monkeys receiving curcumin demonstrated a greater degree of improvement in performance on our fine motor task by round 2 of testing than monkeys receiving a control vehicle. These findings reveal that fine motor function of the hand and digits is improved in middle-aged monkeys receiving chronic daily administration of curcumin.
Collapse
Affiliation(s)
- Tara L Moore
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Department of Neurology , Boston University School of Medicine , Boston , MA , USA
| | - Bethany G E Bowley
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Penny L Shultz
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Samantha M Calderazzo
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Eli J Shobin
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,c Graduate Program in Neuroscience , Boston University School of Medicine , Boston , MA , USA
| | - Ajay R Uprety
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Douglas L Rosene
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,d Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| | - Mark B Moss
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Department of Neurology , Boston University School of Medicine , Boston , MA , USA.,d Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| |
Collapse
|
27
|
Robinson AA, Abraham CR, Rosene DL. Candidate molecular pathways of white matter vulnerability in the brain of normal aging rhesus monkeys. GeroScience 2018; 40:31-47. [PMID: 29357021 PMCID: PMC5832663 DOI: 10.1007/s11357-018-0006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Mammalian aging is associated with decline in cognitive functions. Studies searching for a cause of cognitive aging initially focused on neuronal loss but quantitative investigations of rat, monkey, and human brain using stereology demonstrated that in normal aging, unlike in neurodegenerative disease, neurons are not lost. Instead, electron microscopic and MRI studies in normal aging monkeys revealed age-related damage to myelin sheaths, loss of axons, and reduction in white matter volume which correlates with cognitive impairments. However, little is known about the cause of myelin defects or associated axon loss. The present study investigates the effect of age on signaling pathways between oligodendroglia and neurons using a custom PCR array to assess the expression of 87 genes of interest in cortical gray matter and white matter from the inferior parietal lobe (IPL) of normal rhesus monkeys ranging in age from 4.2 to 30.4 years old. From this array data, five target genes of interest were selected for further analysis to confirm gene expression and measure protein expression. The most interesting target gene identified is brain-derived neurotrophic factor (BDNF), which was the only gene that was altered at both mRNA and protein levels. In gray matter, BDNF mRNA was decreased. While the level of the mature form of the protein was unchanged, there was a specific decrease in the precursor form of BDNF. These alterations in the BDNF in gray matter could contribute to the vulnerability and loss of the axons with age.
Collapse
Affiliation(s)
- Amy A. Robinson
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA
| | - Carmela R. Abraham
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118 USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
28
|
Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131:2451-2468. [PMID: 28963120 DOI: 10.1042/cs20160727] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.
Collapse
|
29
|
Manso Y, Holland PR, Kitamura A, Szymkowiak S, Duncombe J, Hennessy E, Searcy JL, Marangoni M, Randall AD, Brown JT, McColl BW, Horsburgh K. Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease. Glia 2017; 66:34-46. [PMID: 28722234 DOI: 10.1002/glia.23190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Chronic cerebral hypoperfusion is a key mechanism associated with white matter disruption in cerebral vascular disease and dementia. In a mouse model relevant to studying cerebral vascular disease, we have previously shown that cerebral hypoperfusion disrupts axon-glial integrity and the distribution of key paranodal and internodal proteins in subcortical myelinated axons. This disruption of myelinated axons is accompanied by increased microglia and cognitive decline. The aim of the present study was to investigate whether hypoperfusion impairs the functional integrity of white matter, its relation with axon-glial integrity and microglial number, and whether by targeting microglia these effects can be improved. We show that in response to increasing durations of hypoperfusion, the conduction velocity of myelinated fibres in the corpus callosum is progressively reduced and that paranodal and internodal axon-glial integrity is disrupted. The number of microglial cells increases in response to hypoperfusion and correlates with disrupted paranodal and internodal integrity and reduced conduction velocities. Further minocycline, a proposed anti-inflammatory and microglia inhibitor, restores white matter function related to a reduction in the number of microglia. The study suggests that microglial activation contributes to the structural and functional alterations of myelinated axons induced by cerebral hypoperfusion and that dampening microglia numbers/proliferation should be further investigated as potential therapeutic benefit in cerebral vascular disease.
Collapse
Affiliation(s)
- Yasmina Manso
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Philip R Holland
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Akihiro Kitamura
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Stefan Szymkowiak
- University of Edinburgh, The Roslin Institute, Easter Bush, Edinburgh, EH25 9RG
| | - Jessica Duncombe
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Edel Hennessy
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - James L Searcy
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Martina Marangoni
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Andrew D Randall
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jon T Brown
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Barry W McColl
- University of Edinburgh, The Roslin Institute, Easter Bush, Edinburgh, EH25 9RG.,UK Dementia Research Institute, University of Edinburgh, Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
30
|
Raj D, Yin Z, Breur M, Doorduin J, Holtman IR, Olah M, Mantingh-Otter IJ, Van Dam D, De Deyn PP, den Dunnen W, Eggen BJL, Amor S, Boddeke E. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain. Front Mol Neurosci 2017; 10:206. [PMID: 28713239 PMCID: PMC5492660 DOI: 10.3389/fnmol.2017.00206] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Collapse
Affiliation(s)
- Divya Raj
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Zhuoran Yin
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Marjolein Breur
- Department of Pathology, VU University Medical CenterAmsterdam, Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Marta Olah
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Ietje J Mantingh-Otter
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of AntwerpWilrijk, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of AntwerpWilrijk, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of GroningenGroningen, Netherlands.,Biobank, Institute Born-BungeWilrijk, Belgium
| | - Wilfred den Dunnen
- Department of Pathology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Sandra Amor
- Department of Pathology, VU University Medical CenterAmsterdam, Netherlands.,Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and DentistryLondon, United Kingdom
| | - Erik Boddeke
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
31
|
Shobin E, Bowley MP, Estrada LI, Heyworth NC, Orczykowski ME, Eldridge SA, Calderazzo SM, Mortazavi F, Moore TL, Rosene DL. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. GeroScience 2017; 39:199-220. [PMID: 28238188 PMCID: PMC5411373 DOI: 10.1007/s11357-017-9965-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
While cognitive decline is observed in the normal aging monkey, neurons are not lost with age. Instead, frontal white matter is lost as myelin degenerates and both correlate with age-related cognitive decline. As age-related myelin damage increases, there should be an increase in clearance of damaged myelin by microglial phagocytosis. In this study, brains of behaviorally tested rhesus monkeys were assessed using unbiased stereology to quantify the density of activated microglia (LN3 antibody positive) and phagocytic microglia (galectin-3 (Gal-3) antibody positive) in three white matter regions: the corpus callosum, cingulum bundle (CGB), and frontal white matter (FWM). LN3 cell density was significantly increased in the CGB, whereas Gal-3 cell density was significantly increased in all regions. Increases in Gal-3 cell density in the FWM were associated with cognitive impairment. In the FWM of old animals, Gal-3-positive microglia were classified by morphological subtype as ramified, hypertrophic, or amoeboid. The densities of hypertrophic and amoeboid microglia significantly correlated with cognitive impairment. Finally, microglia were double-labeled with LN3 and Gal-3 showing that 91% of Gal-3 cells were also LN3 positive, thus expressing an "activated" phenotype. Furthermore, 15% of all double-labeled cells formed phagocytic cups. Overall, these results suggest that microglia become activated in white matter with age where the majority express a phagocytic phenotype. We hypothesize that age-related phagocytic activation of microglia is a response to accumulating myelin pathology. The association of Gal-3 in the FWM with cognitive impairment may reflect regional differences in damage or dysfunction of normal clearance mechanisms.
Collapse
Affiliation(s)
- Eli Shobin
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA.
| | - Michael P Bowley
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02144, USA
| | - Larissa I Estrada
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02118, USA
| | - Nadine C Heyworth
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| | - Mary E Orczykowski
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| | - Sherri A Eldridge
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | | | - Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| | - Tara L Moore
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, 02118, USA
| |
Collapse
|
32
|
Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, Yoshikawa E, Futatsubashi M, Suzuki K, Mori N, Ouchi Y. Depiction of microglial activation in aging and dementia: Positron emission tomography with [ 11C]DPA713 versus [ 11C]( R)PK11195. J Cereb Blood Flow Metab 2017; 37:877-889. [PMID: 27117856 PMCID: PMC5363467 DOI: 10.1177/0271678x16646788] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The presence of activated microglia in the brains of healthy elderly people is a matter of debate. We aimed to clarify the degree of microglial activation in aging and dementia as revealed by different tracers by comparing the binding potential (BPND) in various brain regions using a first-generation translocator protein (TSPO) tracer [11C]( R)PK11195 and a second-generation tracer [11C]DPA713. The BPND levels, estimated using simplified reference tissue models, were compared among healthy young and elderly individuals and patients with Alzheimer's disease (AD) and were correlated with clinical scores. An analysis of variance showed category-dependent elevation in levels of [11C]DPA713 BPND in all brain regions and showed a significant increase in the AD group, whereas no significant changes among groups were found when [11C]( R)PK11195 BPND was used. Cognito-mnemonic scores were significantly correlated with [11C]DPA713 BPND levels in many brain regions, whereas [11C]( R)PK11195 BPND failed to correlate with the scores. As mentioned elsewhere, the present results confirmed that the second-generation TSPO tracer [11C]DPA713 has a greater sensitivity to TSPO in both aging and neuronal degeneration than [11C]( R)PK11195. Positron emission tomography with [11C]DPA713 is suitable for the delineation of in vivo microglial activation occurring globally over the cerebral cortex irrespective of aging and degeneration.
Collapse
Affiliation(s)
- Masamichi Yokokura
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- 2 Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Bunai
- 2 Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kyoko Nakaizumi
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyokazu Takebayashi
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuhide Iwata
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Etsuji Yoshikawa
- 3 Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | | | - Katsuaki Suzuki
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norio Mori
- 1 Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- 2 Department of Biofunctional Imaging, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
33
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
34
|
Zhu Y, Chai YL, Hilal S, Ikram MK, Venketasubramanian N, Wong BS, Chen CP, Lai MKP. Serum IL-8 is a marker of white-matter hyperintensities in patients with Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 7:41-47. [PMID: 28239640 PMCID: PMC5318538 DOI: 10.1016/j.dadm.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Neuroinflammation and cerebrovascular disease (CeVD) have been implicated in cognitive impairment and Alzheimer's disease (AD). The present study aimed to examine serum inflammatory markers in preclinical stages of dementia and in AD, as well as to investigate their associations with concomitant CeVD. METHODS We performed a cross-sectional case-control study including 96 AD, 140 cognitively impaired no dementia (CIND), and 79 noncognitively impaired participants. All subjects underwent neuropsychological and neuroimaging assessments, as well as collection of blood samples for measurements of serum samples interleukin (IL)-6, IL-8, and tumor necrosis factor α levels. Subjects were classified as CIND or dementia based on clinical criteria. Significant CeVD, including white-matter hyperintensities (WMHs), lacunes, and cortical infarcts, was assessed by magnetic resonance imaging. RESULTS After controlling for covariates, higher concentrations of IL-8, but not the other measured cytokines, were associated with both CIND and AD only in the presence of significant CeVD (CIND with CeVD: odds ratios [ORs] 4.53; 95% confidence interval [CI] 1.5-13.4 and AD with CeVD: OR 7.26; 95% CI 1.2-43.3). Subsequent multivariate analyses showed that among the types of CeVD assessed, only WMH was associated with higher IL-8 levels in CIND and AD (WMH: OR 2.81; 95% CI 1.4-5.6). DISCUSSION Serum IL-8 may have clinical utility as a biomarker for WMH in AD. Longitudinal follow-up studies would help validate these findings.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| |
Collapse
|
35
|
Robillard KN, Lee KM, Chiu KB, MacLean AG. Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav Immun 2016; 55:60-69. [PMID: 26851132 PMCID: PMC4899176 DOI: 10.1016/j.bbi.2016.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/18/2022] Open
Abstract
How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques.
Collapse
Affiliation(s)
- Katelyn N Robillard
- Tulane National Primate Research Center, Covington, LA, United States; Southeastern Louisiana University, Hammond, LA, United States
| | - Kim M Lee
- Tulane National Primate Research Center, Covington, LA, United States; Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kevin B Chiu
- Tulane National Primate Research Center, Covington, LA, United States
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, United States; Tulane Program in Biomedical Sciences, Tulane University School of Medicine, New Orleans, LA, United States; Tulane Program in Neuroscience, Tulane University, New Orleans, LA, United States; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
36
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
37
|
Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. VITAMINS AND HORMONES 2016; 101:215-38. [PMID: 27125744 DOI: 10.1016/bs.vh.2016.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we will describe what has been learned about Klotho and its potential functions in the brain. Klotho is localized in the choroid plexus and, to a lesser extent, in hippocampal neurons. Cognitive decline is a common issue in human aging affecting over 50% of the population. This cognitive decline can also be seen in animal models such as the Rhesus monkey. A long-term study undertaken by our lab demonstrated that normal brain aging in rhesus monkeys and other animal models is associated with a significant downregulation of Klotho expression. This observation substantiates data from other laboratories that have reported that loss of Klotho accelerates the development of aging-like phenotypes, including cognitive deficits, whereas Klotho overexpression extends life span and enhances cognition in mice and humans. Klotho is a type 1 transmembrane pleiotropic protein predominantly expressed in kidney and brain and shed by ADAM 10 and 17 into the blood and cerebral spinal fluid, respectively. While the renal functions of Klotho are well known, its roles in the brain remain to be fully elucidated. We recently demonstrated that Klotho protects hippocampal neurons from amyloid and glutamate toxicity via the activation of an antioxidant enzymatic system suggesting Klotho is a neuroprotective protein. Furthermore, Klotho is necessary for oligodendrocyte maturation and myelin integrity. Through its diverse roles in the brain, Klotho has become a new therapeutic target for neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases like multiple sclerosis. Discovery of small molecule Klotho enhancers may lead to novel treatments for these incurable disorders.
Collapse
Affiliation(s)
- C R Abraham
- Boston University School of Medicine, Boston, MA, United States.
| | - P C Mullen
- Boston University School of Medicine, Boston, MA, United States
| | - T Tucker-Zhou
- Boston University School of Medicine, Boston, MA, United States
| | - C D Chen
- Boston University School of Medicine, Boston, MA, United States
| | - E Zeldich
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
38
|
Payton A, Dawes P, Platt H, Morton CC, Moore DR, Massey J, Horan M, Ollier W, Munro KJ, Pendleton N. A role for HLA-DRB1*1101 and DRB1*0801 in cognitive ability and its decline with age. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:209-14. [PMID: 26473500 DOI: 10.1002/ajmg.b.32393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Cognitive abilities (memory, processing speed, vocabulary, and fluid intelligence) are correlated with educational attainment and occupational status, as well as physical and mental health. The variation in cognitive abilities observed within a population has a substantial genetic contribution (heritability ∼50%) and yet the identification of genetic polymorphisms from both genome-wide association and candidate studies have to date only uncovered a limited number of genetic variants that exert small genetic effects. Here we impute human leukocyte antigens (HLA) using existing genome-wide association data from 1,559 non-pathological elderly volunteers who have been followed for changes in cognitive functioning between a 12- and 18-year period. Specifically, we investigate DRB1*05 (*11/*12) and DRB1*01, which have previously been associated with cognitive ability. We also analyze DRB1*0801, which shares close sequence homology with DRB1*1101. Together with DRB1*1101, DRB1*0801 has been associated with several diseases including multiple sclerosis and primary biliary cirrhosis, which themselves are associated with cognitive impairment. We observed that both DRB1*0801 and DRB1*1101 were significantly associated with vocabulary ability (cross-sectional and longitudinal scores) and that the effects were in opposite directions with DRB1*0801 associated with lower score and faster decline. This opposing affect is similar to that reported by other groups in systemic lupus erythematosus, type 1 diabetes, and primary biliary cirrhosis. DRB1*0801 was also significantly associated with reduced memory ability. We observed no associations between cognitive abilities and DRB1*01 or DRB1*12.
Collapse
Affiliation(s)
- Antony Payton
- Centre for Integrated Genomic Medical Research, The University of Manchester, Manchester, UK.,Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Piers Dawes
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Hazel Platt
- Centre for Integrated Genomic Medical Research, The University of Manchester, Manchester, UK
| | - Cynthia C Morton
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK.,Departments of Obstetrics, Gynecology and Reproductive Biology and Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David R Moore
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Jonathan Massey
- Arthritis Research UK Centre for Genetics and Genomics, Musculoskeletal Research Group, The University of Manchester, Manchester, UK
| | - Michael Horan
- Centre for Clinical and Cognitive Neuroscience, Institute of Brain Behaviour and Mental Health, Salford Royal NHS Hospital, The University of Manchester, Manchester, UK
| | - William Ollier
- Centre for Integrated Genomic Medical Research, The University of Manchester, Manchester, UK
| | - Kevin J Munro
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Centre for Clinical and Cognitive Neuroscience, Institute of Brain Behaviour and Mental Health, Salford Royal NHS Hospital, The University of Manchester, Manchester, UK
| |
Collapse
|
39
|
White matter tract and glial-associated changes in 5-hydroxymethylcytosine following chronic cerebral hypoperfusion. Brain Res 2014; 1592:82-100. [DOI: 10.1016/j.brainres.2014.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
|
40
|
Li MD, Burns TC, Morgan AA, Khatri P. Integrated multi-cohort transcriptional meta-analysis of neurodegenerative diseases. Acta Neuropathol Commun 2014; 2:93. [PMID: 25187168 PMCID: PMC4167139 DOI: 10.1186/s40478-014-0093-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
Introduction Neurodegenerative diseases share common pathologic features including neuroinflammation, mitochondrial dysfunction and protein aggregation, suggesting common underlying mechanisms of neurodegeneration. We undertook a meta-analysis of public gene expression data for neurodegenerative diseases to identify a common transcriptional signature of neurodegeneration. Results Using 1,270 post-mortem central nervous system tissue samples from 13 patient cohorts covering four neurodegenerative diseases, we identified 243 differentially expressed genes, which were similarly dysregulated in 15 additional patient cohorts of 205 samples including seven neurodegenerative diseases. This gene signature correlated with histologic disease severity. Metallothioneins featured prominently among differentially expressed genes, and functional pathway analysis identified specific convergent themes of dysregulation. MetaCore network analyses revealed various novel candidate hub genes (e.g. STAU2). Genes associated with M1-polarized macrophages and reactive astrocytes were strongly enriched in the meta-analysis data. Evaluation of genes enriched in neurons revealed 70 down-regulated genes, over half not previously associated with neurodegeneration. Comparison with aging brain data (3 patient cohorts, 221 samples) revealed 53 of these to be unique to neurodegenerative disease, many of which are strong candidates to be important in neuropathogenesis (e.g. NDN, NAP1L2). ENCODE ChIP-seq analysis predicted common upstream transcriptional regulators not associated with normal aging (REST, RBBP5, SIN3A, SP2, YY1, ZNF143, IKZF1). Finally, we removed genes common to neurodegeneration from disease-specific gene signatures, revealing uniquely robust immune response and JAK-STAT signaling in amyotrophic lateral sclerosis. Conclusions Our results implicate pervasive bioenergetic deficits, M1-type microglial activation and gliosis as unifying themes of neurodegeneration, and identify numerous novel genes associated with neurodegenerative processes. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0093-y) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Suridjan I, Rusjan PM, Kenk M, Verhoeff NPLG, Voineskos AN, Rotenberg D, Wilson AA, Meyer JH, Houle S, Mizrahi R. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18F]-FEPPA. Synapse 2014; 68:536-47. [PMID: 25043159 DOI: 10.1002/syn.21765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022]
Abstract
The ability to quantify translocator protein 18 kDa (TSPO) in white matter (WM) is important to understand the role of neuroinflammation in neurological disorders with WM involvement. This article aims to extend the utility of TSPO imaging in WM using a second-generation radioligand, [18F]-FEPPA, and high-resolution research tomograph (HRRT) positron emission tomography (PET) camera system. Four WM regions of interests (WM-ROI), relevant to the study of aging and neuroinflammatory diseases, were examined. The corpus callosum, cingulum bundle, superior longitudinal fasciculus, and posterior limb of internal capsule were delineated automatically onto subject's T1 -weighted magnetic resonance image using a diffusion tensor imaging-based WM template. The TSPO polymorphism (rs6971) stratified individuals to three genetic groups: high-affinity binders (HAB), mixed-affinity binders (MAB), and low-affinity binders. [18F]-FEPPA PET scans were acquired on 32 healthy subjects and analyzed using a full kinetic compartment analysis. The two-tissue compartment model showed moderate identifiability (coefficient of variation 15-19%) for [18F]-FEPPA total volume distribution (VT ) in WM-ROIs. Noise affects VT variability, although its effect on bias was small (6%). In a worst-case scenario, ≤6% of simulated data did not fit reliably. A simulation of increased TSPO density exposed minimal effect on variability and identifiability of [18F]-FEPPA VT in WM-ROIs. We found no association between age and [18F]-FEPPA VT in WM-ROIs. The VT values were 15% higher in HAB than in MAB, although the difference was not statistically significant. This study provides evidence for the utility and limitations of [18F]-FEPPA PET to measure TSPO expression in WM.
Collapse
Affiliation(s)
- Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Frodl T, Amico F. Is there an association between peripheral immune markers and structural/functional neuroimaging findings? Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:295-303. [PMID: 23313563 DOI: 10.1016/j.pnpbp.2012.12.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/14/2012] [Accepted: 12/15/2012] [Indexed: 02/04/2023]
Abstract
OBJECTIVES There is mounting evidence that inflammatory processes play a key role in emotional as well as cognitive dysfunctions. In this context, research employing magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MR spectroscopy) suggests a possible link between structural/functional anomalies in the brain and an increase of circulating inflammation markers. The present paper reviews this research, with particular focus on major depressive disorder (MDD), cognitive impairment in older adults, Alzheimer's disease (AD) and schizophrenia. RESULTS In MDD, cognitive impairment and AD, inflammatory processes have been found to be associated with both structural and functional anomalies, perhaps under the influence of environmental stress. Not enough research can suggest similar considerations in schizophrenia, although studies in mice and non-human primates support the belief that inflammatory responses generated during pregnancy can affect brain development and contribute to the etiology of schizophrenia. CONCLUSIONS The present review suggests a link between inflammatory processes and MRI detected anomalies in the brain of individuals with MDD, older adults with cognitive impairment as well as of individuals with AD and schizophrenia.
Collapse
Affiliation(s)
- Thomas Frodl
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; Adelaide and Meath incorporating the National's Children Hospital, Dublin, Ireland; St. James's Hospital, Dublin, Ireland.
| | | |
Collapse
|
43
|
Rathi Y, Pasternak O, Savadjiev P, Michailovich O, Bouix S, Kubicki M, Westin CF, Makris N, Shenton ME. Gray matter alterations in early aging: a diffusion magnetic resonance imaging study. Hum Brain Mapp 2013; 35:3841-56. [PMID: 24382651 DOI: 10.1002/hbm.22441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/01/2013] [Accepted: 11/24/2013] [Indexed: 01/10/2023] Open
Abstract
Many studies have observed altered neurofunctional and structural organization in the aging brain. These observations from functional neuroimaging studies show a shift in brain activity from the posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI (dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based measure of gray matter "heterogeneity" that elucidates these functional and structural models (PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects (all males, ages 15-55 years), we show very high correlation between age and "heterogeneity" (a measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine gray matter alterations by grouping brain regions into anatomical lobes as well as functional zones. Our findings from dMRI data connects the functional and structural domains and confirms the "retrogenesis" hypothesis of gray matter alterations while lending support to the neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas during healthy aging.
Collapse
Affiliation(s)
- Y Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang L, Jiang Q, Chu J, Lin L, Li XG, Chai GS, Wang Q, Wang JZ, Tian Q. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One 2013; 8:e76057. [PMID: 24146816 PMCID: PMC3795725 DOI: 10.1371/journal.pone.0076057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau) into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qian Jiang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| | - Qing Tian
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| |
Collapse
|
45
|
Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, Wilson AA, Meyer JH, Houle S, Mizrahi R. Neuroinflammation in healthy aging: a PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [(18)F]-FEPPA. Neuroimage 2013; 84:868-75. [PMID: 24064066 DOI: 10.1016/j.neuroimage.2013.09.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
One of the cellular markers of neuroinflammation is increased microglia activation, characterized by overexpression of mitochondrial 18kDa Translocator Protein (TSPO). TSPO expression can be quantified in-vivo using the positron emission tomography (PET) radioligand [(18)F]-FEPPA. This study examined microglial activation as measured with [(18)F]-FEPPA PET across the adult lifespan in a group of healthy volunteers. We performed genotyping for the rs6971 TS.PO gene polymorphism to control for the known variability in binding affinity. Thirty-three healthy volunteers (age range: 19-82years; 22 high affinity binders (HAB), 11 mixed affinity binders (MAB)) underwent [(18)F]-FEPPA PET scans, acquired on the High Resolution Research Tomograph (HRRT) and analyzed using a 2-tissue compartment model. Regression analyses were performed to examine the effect of age adjusting for genetic status on [(18)F]-FEPPA total distribution volumes (VT) in the hippocampus, temporal, and prefrontal cortex. We found no significant effect of age on [(18)F]-FEPPA VT (F (1,30)=0.918; p=0.346), and a significant effect of genetic polymorphism (F (1,30)=8.767; p=0.006). This is the first in-vivo study to evaluate age-related changes in TSPO binding, using the new generation TSPO radioligands. Increased neuroinflammation, as measured with [(18)F]-FEPPA PET was not associated with normal aging, suggesting that healthy elderly individuals may serve as useful benchmark against patients with neurodegenerative disorders where neuroinflammation may be present.
Collapse
Affiliation(s)
- I Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xie F, Zhang JC, Fu H, Chen J. Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 2013; 32:1021-8. [PMID: 24026164 DOI: 10.3892/ijmm.2013.1486] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022] Open
Abstract
It has been shown that aging can greatly influence the integrity and ultrastructure of white matter and the myelin sheath; however, studies regarding the effects of aging on the expression of myelin proteins are still limited. In the present study, immunohistochemical mapping was used to investigate the overall expression of myelin basic protein (Mbp) and myelin oligodendrocyte glycoprotein (Mog) in the central nervous system (CNS) of rats in postnatal months 2, 5, 18 and 26. Astrocyte and microglia activation was also detected by glial fibrillary acidic protein (GFAP) or ionized calcium-binding adaptor molecule 1 (Iba1) staining and western blotting. A significant decline of Mbp and Mog was identified as a universal alteration in the CNS of aged rats. Aging also induced significant astrocyte and microglial activation. Correlation analysis indicated a negative correlation between the reduction of age‑related myelin proteins and glial activation in aging. This correlation of myelin breakdown and glial activation in aging may reveal new evidence in connecting the inflammation and myelin breakdown mechanism of age‑related neurodegenerative diseases.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | | | | | | |
Collapse
|
47
|
Noyan-Ashraf MH, Sadeghinejad Z, Juurlink BHJ. Dietary approach to decrease aging-related CNS inflammation. Nutr Neurosci 2013; 8:101-10. [PMID: 16053242 DOI: 10.1080/10284150500069470] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We demonstrate that the spontaneously hypertensive rat stroke-prone rat (SHRsp) undergoes premature aging of the CNS compared to the related normotensive Wistar Kyoto rat (WKY) as demonstrated by presence of activated microglia/macrophages, increased expression of inducible nitric oxide synthase and increased astrogliosis. We tested the hypothesis that dietary intake of phase 2 protein inducers would decrease these aging-associated degenerative changes. The source of dietary phase 2 protein inducers was dried broccoli sprouts of a cultivar containing high amounts of glucoraphanin that gives rise to phase 2 protein-inducing isothiocyanate sulforaphane. This diet significantly decreased the aging-related degenerative changes in the SHRsp CNS. We conclude that modest changes in diet may have profound effects on the aging CNS.
Collapse
Affiliation(s)
- M H Noyan-Ashraf
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | |
Collapse
|
48
|
Farso M, Ménard C, Colby-Milley J, Quirion R. Immune marker CD68 correlates with cognitive impairment in normally aged rats. Neurobiol Aging 2013; 34:1971-6. [PMID: 23523271 DOI: 10.1016/j.neurobiolaging.2013.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 11/16/2022]
Abstract
The relationship between heightened neuroinflammation and cognitive decline in the normally aged brain is still debatable, as most data are derived from insult-related models. Accordingly, the aim of the current study was to determine whether a link could be established for 2 immune markers at the post-transcriptional level; CD68 and MHC-II, in a normally aged (24-month-old) rat population discriminated for their learning abilities. Using the Morris Water Maze (MWM) task, aged rats were divided into aged learning-impaired (AI) or -unimpaired (AU) groups. Western immunoblots of hippocampal tissue revealed a significant increase of CD68 in AI rats compared to the AU group. Moreover, up-regulated CD68 expression correlated with increased latency times in the MWM task. Immunofluorescence for CD68 revealed intense staining in the white matter regions and CA3 subregion of the hippocampus in the AI group. Despite expression of MHC-II in the AI group, no correlation was found. Overall, these data suggest that CD68 could play a role associated with cognitive decline in a subgroup of the normally aged population.
Collapse
Affiliation(s)
- Mark Farso
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
49
|
McIntosh AR, Vakorin V, Kovacevic N, Wang H, Diaconescu A, Protzner AB. Spatiotemporal dependency of age-related changes in brain signal variability. ACTA ACUST UNITED AC 2013; 24:1806-17. [PMID: 23395850 PMCID: PMC4051893 DOI: 10.1093/cercor/bht030] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent theoretical and empirical work has focused on the variability of network dynamics in maturation. Such variability seems to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into healthy aging. Two different data sets, one EEG (total n = 48, ages 18–72) and one magnetoencephalography (n = 31, ages 20–75) were analyzed for such spatiotemporal dependency using multiscale entropy (MSE) from regional brain sources. In both data sets, the changes in MSE were timescale dependent, with higher entropy at fine scales and lower at more coarse scales with greater age. The signals were parsed further into local entropy, related to information processed within a regional source, and distributed entropy (information shared between two sources, i.e., functional connectivity). Local entropy increased for most regions, whereas the dominant change in distributed entropy was age-related reductions across hemispheres. These data further the understanding of changes in brain signal variability across the lifespan, suggesting an inverted U-shaped curve, but with an important qualifier. Unlike earlier in maturation, where the changes are more widespread, changes in adulthood show strong spatiotemporal dependence.
Collapse
Affiliation(s)
| | - V Vakorin
- Rotman Research Institute of Baycrest, Canada
| | - N Kovacevic
- Rotman Research Institute of Baycrest, Canada
| | - H Wang
- Rotman Research Institute of Baycrest, Canada
| | - A Diaconescu
- Institute for Empirical Research in Economics, University of Zurich, Switzerland
| | - A B Protzner
- Department of Psychology, University of Calgary, Canada
| |
Collapse
|
50
|
Abstract
The majority of neurodegenerative diseases have an important age component, and thus, understanding the molecular changes that occur during normal aging of the brain is of utmost relevance. In search for the basis of the age-related cognitive decline found in humans, monkeys and rodents, we study the rhesus monkey. Surprisingly, there is no loss of neurons in aged monkey brains. However, we reported white matter and myelin abnormalities in aged monkeys, similar to those observed in Alzheimer's disease and multiple sclerosis patients. In a microarray analysis comparing young and old monkey white matter, we discovered that Klotho is downregulated in the aged brain. We then asked whether there is a connection between the age-related cognitive decline, myelin abnormalities and Klotho downregulation. If such a connection is found, compounds that upregulate Klotho expression could become of therapeutic interest for the treatment of multiple sclerosis, and perhaps even Alzheimer's disease.
Collapse
|