1
|
Abstract
DNA vaccination with antigen expression plasmids has been introduced as a simple method of inducing immunity to the antigens of infectious agents or tumors. Although DNA vaccination is generally immunostimulatory, it is possible to design suppressive vaccines that protect against autoimmune diseases such as Type 1 diabetes. In mice prone to diabetes, investigators have delivered a plasmid encoding an islet-cell antigen such as insulin B chain, glutamic acid decarboxylase, or antigen/immunoglobulin G-Fc fusion constructs, with or without co-delivery of another gene encoding a cytokine or other immunoregulatory molecule. This approach has led to protection against disease, related to the generation of regulatory T-cells and increased production of regulatory cytokines. DNA vaccination is a promising approach to autoimmune disease prevention.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, St. Michael's Hospital, 30 Bond Street, Room 2013CC, Toronto, Ontario M5B 1W8, Canada.
| |
Collapse
|
2
|
Mushroom lectin enhanced immunogenicity of HBV DNA vaccine in C57BL/6 and HBsAg-transgenic mice. Vaccine 2013; 31:2273-80. [DOI: 10.1016/j.vaccine.2013.02.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022]
|
3
|
Niu X, Yang Y, Wang J. Synergistic and Additive Effects of Cimetidine and Levamisole on Cellular Immune Responses to Hepatitis B virus DNA Vaccine in Mice. Scand J Immunol 2013; 77:84-91. [DOI: 10.1111/sji.12018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Affiliation(s)
- X. Niu
- College of Life Science, Henan University; Kaifeng; China
| | - Y. Yang
- Institute of Molecular Medicine College of Medicine, Henan University; Kaifeng; China
| | | |
Collapse
|
4
|
Yu X, Jia R, Huang J, Shu B, Zhu D, Liu Q, Gao X, Lin M, Yin Z, Wang M, Chen S, Wang Y, Chen X, Cheng A. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res 2012; 43:56. [PMID: 22770566 PMCID: PMC3412168 DOI: 10.1186/1297-9716-43-56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022] Open
Abstract
Orally delivered DNA vaccines against duck enteritis virus (DEV) were developed using live attenuated Salmonella typhimurium (SL7207) as a carrier and Escherichia coli heat labile enterotoxin B subunit (LTB) as a mucosal adjuvant. DNA vaccine plasmids pVAX-UL24 and pVAX-LTB-UL24 were constructed and transformed into attenuated Salmonella typhimurium SL7207 resulting SL7207 (pVAX-UL24) and SL7207 (pVAX-LTB-UL24) respectively. After ducklings were orally inoculated with SL7207 (pVAX-UL24) or SL7207 (pVAX-LTB-UL24), the anti-DEV mucosal and systemic immune responses were recorded. To identify the optimum dose that confers maximum protection, we used different doses of the candidate vaccine SL7207 (pVAX-LTB-UL24) during oral immunization. The strongest mucosal and systemic immune responses developed in the SL7207 (pVAX-LTB-UL24) (1011 CFU) immunized group. Accordingly, oral immunization of ducklings with SL7207 (pVAX-LTB-UL24) showed superior efficacy of protection (60-80%) against a lethal DEV challenge (1000 LD50), compared with the limited survival rate (40%) of ducklings immunized with SL7207 (pVAX-UL24). Our study suggests that the SL7207 (pVAX-LTB-UL24) can be a candidate DEV vaccine.
Collapse
Affiliation(s)
- Xia Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kosinska AD, Zhang E, Lu M, Roggendorf M. Therapeutic vaccination in chronic hepatitis B: preclinical studies in the woodchuck. HEPATITIS RESEARCH AND TREATMENT 2010; 2010:817580. [PMID: 21188201 PMCID: PMC3003998 DOI: 10.1155/2010/817580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/29/2010] [Indexed: 02/07/2023]
Abstract
Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to a satisfactory result. Induction of HBV-specific T cells by therapeutic vaccination or immunotherapies may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients did not result in effective control of HBV infection, suggesting that new formulations of therapeutic vaccines are needed. The woodchuck (Marmota monax) is a useful preclinical model for developing the new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments with nucleos(t)ide analogues, DNA vaccines, and protein vaccines were tested in the woodchuck model. In this paper we summarize the available data concerning therapeutic immunization and gene therapy using recombinant viral vectors approaches in woodchucks, which show encouraging results. In addition, we present potential innovations in immunomodulatory strategies to be evaluated in this animal model.
Collapse
Affiliation(s)
- Anna D. Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Ejuan Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| |
Collapse
|
6
|
Hepatitis B surface antigen fusions delivered by DNA vaccination elicit CTL responses to human papillomavirus oncoproteins associated with tumor protection. Cancer Gene Ther 2010; 17:708-20. [DOI: 10.1038/cgt.2010.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Cervantes Gonzalez M, Kostrzak A, Guetard D, Pniewski T, Sala M. HIV-1 derived peptides fused to HBsAg affect its immunogenicity. Virus Res 2009; 146:107-14. [DOI: 10.1016/j.virusres.2009.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 02/05/2023]
|
8
|
Kostrzak A, Cervantes Gonzalez M, Guetard D, Nagaraju DB, Wain-Hobson S, Tepfer D, Pniewski T, Sala M. Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 2009; 27:4798-807. [PMID: 19539581 DOI: 10.1016/j.vaccine.2009.05.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Plant-based oral vaccines run the risk of activating regulatory T cells (Tregs) and suppressing the antigen-specific immune response via oral tolerance. Mice humanized for two HLA alleles (HLA-A2.1 and HLA-DR1) were used to measure changes in Tregs and antigen-specific immune responses induced by the oral administration of tobacco (Nicotiana tabacum), expressing the hepatitis B surface antigen (HBsAg). Antigen-specific CD8+ T cell activation was not detected, but the plant-based oral immunization, without adjuvant, resulted in humoral responses comparable to those obtained by adjuvanted DNA immunization. Treg titers did not increase with DNA immunization. In contrast, with plant immunization, Tregs increased linearly to reach a plateau at high antigen doses. The highest humoral IgA and IgG responses correlated with the lowest plant antigen dose (0.5 ng), while for DNA immunization the best antibody responses were obtained at higher antigen doses. These experiments suggest that plant-based oral vaccines could be adjusted to minimize tolerance, while still inducing an immune response. Oral tolerance and adjuvant engineering in plants are discussed.
Collapse
Affiliation(s)
- Anna Kostrzak
- Institut Pasteur (IP), Unité de Rétrovirologie Moléculaire, CNRS URA 3015, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Feng TT, Zhao G, Yao HP, Wang QP, Wu NP. Expression and identification of immunological activities of the HIV-gp120N-human interferon gamma fusion protein. Anat Rec (Hoboken) 2009; 292:381-6. [PMID: 19248157 DOI: 10.1002/ar.20853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that has been studied extensively. To enhance the immune response of cells against HIV-1 gp120, we tested the coexpression of gp120N with interferon-gamma (IFN-gamma) as an immune adjuvant. Two recombinant prokaryotic plasmids were constructed: the pET44b-HIV-1-gp120N plasmid construct carried the HIV-1 gp120N gene (pET44-gp120N), whereas the pET44b-HIV-1-gp120N-IFN-gamma plasmid construct carried a fusion gp120N-IFN-gamma gene (pET44b-gp120N-IFN-gamma). Target protein expression was achieved in E. coli BL21 (DE3) cells by chemical induction. To test the immunological activity of the proteins, mice were injected with a control, gp120N, or the fusion gp120N-IFN-gamma protein. The serum and spleen cells of the mice were collected for immunological detection. Results showed that specific T lymphocyte proliferation and the expression of the Th1-type cytokines (IL-2 and IFN-gamma) were higher in the gp120N-IFN-gamma group than the other two groups (P < 0.05). No difference was observed in the expression levels of the Th2-type cytokines (IL-4 and IL-10; P > 0.05). These results suggest that IFN-gamma plays a prominent role as an immune adjuvant when coexpressed with HIV-1 gp120N. IFN-gamma enhances the specific cell immune response of mice against HIV-1 gp120.
Collapse
Affiliation(s)
- Ting-Ting Feng
- State Key Laboratory for Infectious Disease Diagnosis and Treatment, The First Affiliated Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
10
|
Su J, Willert C, Comanita L, Peters A, Gilbert PA, Strathdee C, O'Connell PJ, McFadden GD, Dekaban GA. Inclusion of the viral anti-apoptotic molecule M11L in DNA vaccine vectors enhances HIV Env-specific T cell-mediated immunity. Virology 2008; 375:48-58. [DOI: 10.1016/j.virol.2008.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/30/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
|
11
|
Xing Y, Huang Z, Lin Y, Li J, Chou TH, Lu S, Wang S. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell-mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen. Vaccine 2008; 26:5145-52. [PMID: 18462847 DOI: 10.1016/j.vaccine.2008.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hepatitis B Virus (HBV) infection remains a major worldwide infectious disease with serious long-term morbidity and mortality. The limited selections of drug treatment are not able to control the progress of disease in people with active and persistent HBV infection. Immunotherapy to control the degree of viral infection is one possible alternative solution to this challenge. HBV DNA vaccines, with their strong ability to induce cell-mediated immune responses, offer an attractive option. HBV surface protein is important in viral immunity. Re-establishing anti-S immunity in chronic HBV infected patients will bring significant benefit to the patients. Previous studies have shown that HBV S DNA vaccines are immunogenic in a number of animal studies. In the current study, we further investigated the effect of glycosylation to the expression and immunogenicity of S DNA vaccines. Our results demonstrate that deglycosylation at the two potential N-linked glycosylation sites in S protein resulted in a significant decrease of S-specific cell-mediated immune responses, but did not affect anti-S antibody responses. This finding provides important direction to the development of S DNA vaccines to elicit the optimal and balanced antibody and cell-mediated immune responses to treat people with HBV chronic infections.
Collapse
Affiliation(s)
- Yiping Xing
- Department of Infectious Diseases, Nanjing Medical University, and China-US Vaccine Research Center, Jiangsu Province Hospital, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Haigh O, Guo H, Edgtton K, Mather M, Herd KA, Tindle RW. Multiple copies of a tumor epitope in a recombinant hepatitis B surface antigen (HBsAg) vaccine enhance CTL responses, but not tumor protection. Virology 2007; 368:363-75. [PMID: 17689584 DOI: 10.1016/j.virol.2007.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/24/2007] [Accepted: 06/04/2007] [Indexed: 01/12/2023]
Abstract
We propose the replacement of endogenous epitopes with foreign epitopes to exploit the highly immunogenic hepatitis B surface antigen (HBsAg) as a vaccine vector to elicit disease-protective cytotoxic T-lymphocyte (CTL) responses. Locations were defined within the HBsAg gene where replacements of DNA encoding HBsAg epitopes may be made to generate functional recombinant (r) HBsAg DNA vaccines. We demonstrate that rHBsAg DNA vaccines encoding multiple copies of a model tumor epitope from human papillomavirus (HPV) elicit enhanced CTL responses compared to rHBsAg DNA vaccines encoding a single copy. We show that rHBsAg DNA vaccines elicit a marked prophylactic and long-lived therapeutic protection against epitope expressing tumor, although protective efficacy was not improved by increasing the number of copies of the tumor epitope DNA. These results demonstrate the efficacy of HBsAg as a vector for the delivery of foreign CTL epitopes using the epitope replacement strategy, and have implications for rHBsAg vaccine design. The results also have implications for the derivation of a therapeutic vaccine for HPV-associated squamous carcinoma.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/prevention & control
- Cell Line
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Dosage
- Genetic Vectors
- Hepatitis B Surface Antigens/genetics
- Humans
- Immunization
- Mice
- Mice, Inbred C57BL
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins
- T-Lymphocytes, Cytotoxic/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/prevention & control
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Oscar Haigh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital Herston Road, Herston, QLD 4029, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Wu T, Chen M, Ou SH, Cheng T, Zhang J, Xia NS. Immune response induced by a different combined immunization of HBsAg vaccine. Intervirology 2007; 50:336-40. [PMID: 17700028 DOI: 10.1159/000107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 06/14/2007] [Indexed: 11/19/2022] Open
Abstract
AIMS To evaluate the immune responses induced by different combined immunizations of HBsAg protein vaccine (P), recombinant vaccinia virus vaccine (V) and DNA vaccine (D). METHODS Balb/c mice were primed by one of the three HBsAg vaccines P, V or D and boosted by the same or another, thus nine immune combinations were constructed. Titers of anti-HBsAg IgG and their sub-isotypes were determined by ELISA. Specific cellular immune responses were determined by calcein-release assay. RESULTS V could induce the quickest humoral immune response with the geometrical mean titer of 1:10(1.6) at week 2 after prime immunization. The antibody titer primed by P (including PP, PV, PD) mounted up to the highest after the first boost. Antibody induced by PP was more polarized to Th2 while the other groups induced balanced Th1/Th2 response. Among all the groups, VD and DV induced the strongest CTL response. After the fourth boost, the specific lysis ratio was 64 and 71% separately at an E:T ratio of 1:1. CONCLUSIONS P was the most potent for inducing humoral immune response while the weakest for CTL response. D was a poor immunogen to induce specific antibody production. Among all the immune combinations, DV and VD induced the strongest CTL response in Balb/c mice.
Collapse
MESH Headings
- Animals
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- DNA, Viral/genetics
- Enzyme-Linked Immunosorbent Assay
- Female
- Genome, Viral/genetics
- Hepatitis B Antibodies/blood
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Vaccines/immunology
- Hepatitis B virus/genetics
- Immunization/methods
- Immunization, Secondary
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Sequence Analysis, DNA
- Vaccines, DNA/immunology
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
Collapse
Affiliation(s)
- Ting Wu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | | | | | | | | | | |
Collapse
|
14
|
Xiong Y, Yuan Y, Jia M, Yu B, Huang H. Stable expression of Hantavirus H8205 strain G1/IL-2 gene and immune protection of the fusion gene. ACTA ACUST UNITED AC 2007; 27:124-7. [PMID: 17497275 DOI: 10.1007/s11596-007-0203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Indexed: 11/24/2022]
Abstract
To explore the feasibility of stable expression of Hantavirus H8205 strain G1 segment and human IL-2 fusion gene in Vero cells, and to examine the immune protection effects on mice vaccinated with this recombinant eukaryotic expression vector containing Hantavirus G1 gene and IL-2 gene. With the help of lipofectamine, the Vero cells were transfected with pcDNA3.1/HisB-IL-2-G1 and the positive cells were selected by G418. IFAT and SDS-PAGE electrophoresis were used to determine the stable transfection and expression of recombinant protein. Each mouse was inoculated with plasmids intramuscularly (i.m.) three times, 2 boosts were given at 2-week intervals, serum anti-hantavirus antibodies were detected by ELISA and neutralizing antibodies (NAb) were detected by Plaque Reduction Neutralization Test. The fusion protein expressed in Vero cells was 78 kD, corresponding to the estimated molecular size. The neutralizing antibody titers of mice with pcDNA3.1/HisB-IL-2-G1 were 1:20-1:80. IL-2/G1 fusion gene could be transferred in Vero cells and stably express the fusion protein. Specific humeral immune responses in mice can be induced with the recombinant eukaryotic expression vector containing the fusion gene, which lays the foundation for further development of therapeutic HTNV vaccine.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Pathogenetic Biology, School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
15
|
Bagis H, Arat S, Mercan HO, Aktoprakligil D, Caner M, Turanli ET, Baysal K, Turgut G, Sekmen S, Cirakoglu B. Stable transmission and expression of the hepatitis B virus total genome in hybrid transgenic mice until F10 generation. ACTA ACUST UNITED AC 2006; 305:420-7. [PMID: 16489557 DOI: 10.1002/jez.a.277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present study was the generation of transgenic mice carrying the complete Hepatitis B Virus (HBV) genome and investigation of the presence of Hepatitis B surface antigen (HBsAg) expression through successive generations. Transgenic mice were generated by microinjecting HBV genome into fertilized eggs. Integration and expression of HBsAg in transgenic mice were analyzed by genomic DNA PCR, Southern and slot blots and enzyme-linked immunosorbent assay (ELISA). Expression was also confirmed by Western blotting and RT-PCR. Histological changes in liver tissue of transgenic mice were examined by HE staining. The HBV genome was transmitted to the F10 generation and the presence of HBV X gene transcripts was confirmed by RT-PCR analysis using liver cDNAs from the F10 generation mice. During an observation period of 2.5 years, mice were sacrificed and their organs subjected to histopathological examination. In the liver, slight histopathologic alterations were observed but none of these lineages had any hepatocellular carcinoma (HCC). HBV DNA can be stably transmitted and expressed in the transgenic mice until F10 generation. However, although we showed the presence of X gene transcripts in liver tissues of F10 generation mice by RT-PCR in these animals, long-term expression of the HBV complete genome and expression of X protein in hepatocytes did not cause neoplasia during the life span and HCC. These transgenic mice should be useful for detailed studies of the replication and expression of HBV and for physiological studies of HBV genome.
Collapse
Affiliation(s)
- Haydar Bagis
- TUBITAK, Research Institute for Genetic Engineering and Biotechnology (RIGEB), Transgenic Core Facility, Kocaeli, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Henke A, Rohland N, Zell R, Wutzler P. Co-Expression of Interleukin-2 by a Bicistronic Plasmid Increases the Efficacy of DNA Immunization to Prevent Influenza Virus Infections. Intervirology 2006; 49:249-52. [PMID: 16601357 DOI: 10.1159/000092487] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 09/12/2005] [Indexed: 11/19/2022] Open
Abstract
A promising approach to protect susceptible individuals against severe diseases is the inoculation of plasmids. Such DNA vaccines against influenza virus infections were quite efficient in different animal models; but still this procedure is not in clinical use until today. The present study reports the generation and characterization of bicistronic plasmids which enables the expression of influenza A virus gene sequences together with immunostimulatory cytokines demonstrating that among these cytokines especially interleukin-2 (IL-2) was efficient to prevent a lethal influenza virus infection in mice.
Collapse
Affiliation(s)
- Andreas Henke
- Institute of Virology and Antiviral Therapy, Medical Center, Friedrich Schiller University, Jena, Germany.
| | | | | | | |
Collapse
|
17
|
Woo WP, Doan T, Herd KA, Netter HJ, Tindle RW. Hepatitis B surface antigen vector delivers protective cytotoxic T-lymphocyte responses to disease-relevant foreign epitopes. J Virol 2006; 80:3975-84. [PMID: 16571814 PMCID: PMC1440427 DOI: 10.1128/jvi.80.8.3975-3984.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.
Collapse
Affiliation(s)
- Wai-Ping Woo
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston Road, Herston, QLD 4029, Australia
| | | | | | | | | |
Collapse
|
18
|
Miller DS, Kotlarski I, Jilbert AR. DNA vaccines expressing the duck hepatitis B virus surface proteins lead to reduced numbers of infected hepatocytes and protect ducks against the development of chronic infection in a virus dose-dependent manner. Virology 2006; 351:159-69. [PMID: 16624364 DOI: 10.1016/j.virol.2006.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/01/2022]
Abstract
We tested the efficacy of DNA vaccines expressing the duck hepatitis B virus (DHBV) pre-surface (pre-S/S) and surface (S) proteins in modifying the outcome of infection in 14-day-old ducks. In two experiments, Pekin Aylesbury ducks were vaccinated on days 4 and 14 of age with plasmid DNA vaccines expressing either the DHBV pre-S/S or S proteins, or the control plasmid vector, pcDNA1.1Amp. All ducks were then challenged intravenously on day 14 of age with 5 x 10(7) or 5 x 10(8) DHBV genomes. Levels of initial DHBV infection were assessed using liver biopsy tissue collected at day 4 post-challenge (p.c.) followed and immunostained for DHBV surface antigen to determine the percentage of infected hepatocytes. All vector vaccinated ducks challenged with 5 x 10(7) and 5 x 10(8) DHBV genomes had an average of 3.21% and 20.1% of DHBV-positive hepatocytes respectively at day 4 p.c. and 16 out of 16 ducks developed chronic DHBV infection. In contrast, pre-S/S and S vaccinated ducks challenged with 5 x 10(7) DHBV genomes had reduced levels of initial infection with an average of 1.38% and 1.93% of DHBV-positive hepatocytes at day 4 p.c. respectively and 10 of 18 ducks were protected against chronic infection. The pre-S/S and the S DNA vaccinated ducks challenged with 5 x 10(8) DHBV genomes had an average of 31.5% and 9.2% of DHBV-positive hepatocytes on day 4 p.c. respectively and only 4 of the 18 vaccinated ducks were protected against chronic infection. There was no statistically significant difference in the efficacy of the DHBV pre-S/S or S DNA vaccines. In conclusion, vaccination of young ducks with DNA vaccines expressing the DHBV pre-S/S and S proteins induced rapid immune responses that reduced the extent of initial DHBV infection in the liver and prevented the development of chronic infection in a virus dose-dependent manner.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Ducks/immunology
- Ducks/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B, Chronic/prevention & control
- Hepatocytes/virology
- Humans
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Darren S Miller
- Hepatitis Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
19
|
Rajcáni J, Mosko T, Rezuchová I. Current developments in viral DNA vaccines: shall they solve the unsolved? Rev Med Virol 2005; 15:303-25. [PMID: 15906276 DOI: 10.1002/rmv.467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes the mechanisms of immune response following DNA vaccination. The efficacy of DNA vaccines in animal models is highlighted, especially in viral diseases against which no widely accepted vaccination is currently available. Emphasis is given to possible therapeutic vaccination in chronic infections due to persisting virus genomes, such as recurrent herpes (HSV-1 and HSV-2), pre-AIDS (HIV-1) and/or chronic hepatitis B (HBV). In these, the problem of introducing foreign viral DNA may not be of crucial importance, since the immunised subject is already a viral DNA (or provirus) carrier. The DNA-based immunisation strategies may overcome several problems of classical viral vaccines. Novel DNA vaccines could induce immunity against multiple viral epitopes including the conservative type common ones, which do not undergo antigenic drifts. Within the immunised host, they mimic the effect of live attenuated viral vaccines when continuously expressing the polypeptide in question. For this reason they directly stimulate the antigen-presenting cells, especially dendritic cells. The antigen encoded by plasmid elicits T helper cell activity (Th1 and Th2 type responses), primes the cytotoxic T cell memory and may induce a satisfactory humoral response. The efficacy of DNA vaccines can be improved by adding plasmids encoding immunomodulatory cytokines and/or their co-receptors.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
20
|
Abstract
DNA vaccines have been used to generate protective immunity against tumors in a variety of experimental models. The favorite target antigens have been those that are frequently expressed by human tumors, such as carcinoembryonic antigen (CEA), ErbB2/neu, and melanoma-associated antigens. DNA vaccines have the advantage of being simple to construct, produce and deliver. They can activate all arms of the immune system, and allow substantial flexibility in modifying the type of immune response generated through codelivery of cytokine genes. DNA vaccines can be applied by intramuscular, dermal/epidermal, oral, respiratory and other routes, and pose relatively few safety concerns. Compared to other nucleic acid vectors, they are usually devoid of viral or bacterial antigens and can be designed to deliver only the target tumor antigen(s). This is likely to be important when priming a response against weak tumor antigens. DNA vaccines have been more effective in rodents than in larger mammals or humans. However, a large number of methods that might be applied clinically have been shown to ameliorate these vaccines. This includes in vivo electroporation, and/or inclusion of various immunostimulatory molecules, xenoantigens (or their epitopes), antigen-cytokine fusion genes, agents that improve antigen uptake or presentation, and molecules that activate innate immunity mechanisms. In addition, CpG motifs carried by plasmids can overcome the negative effects of regulatory T cells. There have been few studies in humans, but recent clinical trials suggest that plasmid/virus, or plasmid/antigen-adjuvant, prime-boost strategies generate strong immune responses, and confirm the usefulness of plasmid-based vaccination.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, St. Michael's Hospital and University of Toronto, Ontario M5B 1W8, Canada.
| |
Collapse
|
21
|
Singh M, Kumar V. Transgenic mouse models of hepatitis B virus-associated hepatocellular carcinoma. Rev Med Virol 2003; 13:243-53. [PMID: 12820186 DOI: 10.1002/rmv.392] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The multi-factorial and multi-step nature of cancer development makes analysis difficult in cell culture and non-genetic animal models. Recent progress in technology has allowed the development of several transgenic animal models addressing various aspects of liver diseases caused by hepatitis B virus in human patients. The experimental data from these studies in vivo highlight the importance of HBV gene products that alone or in conjunction with other host cellular protein(s) can deregulate the cell cycle control checkpoints in the hepatocytes of transgenic mice leading to the development of hepatocellular carcinoma. Moreover, these models are extremely useful in analysing and ascertaining the stages of malignant transformation linked to multiple genetic and non-genetic events of cancer development and in developing novel strategies of intervention.
Collapse
Affiliation(s)
- Mahavir Singh
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
22
|
Zhou FJ, Hu ZL, Dai JX, Chen RW, Shi K, Lin Y, Sun SH. Protection of tree shrews by pVAX-PS DNA vaccine against HBV infection. DNA Cell Biol 2003; 22:475-8. [PMID: 12932306 DOI: 10.1089/104454903322247352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunological protection of pVAX-PS, a DNA vaccine, was assessed in the tree shrews model. pVAX-PS was constructed by inserting the gene encoding the middle (pre-S2 plus S) envelope protein of HBV into a plasmid vector pVAX1. Tree shrews (Tupaia belangeri chinenesis) were experimentally infected with human HBV by inoculation with human serum positive for HBV markers. DNA vaccination-induced seroconversion and antibody to HBV surface antigen (anti-HBs) were analyzed by ELISA, and protective effects elicited by pVAX-PS vaccination against subsequent HBV challenge were evaluated by detection of HBV seromarkers and observation of hepatic lesions in HBV-infected tree shrews. The results shown that anti-HBs were detectable in serum at week 2 after pVAX-PS vaccination and peaked at week 4, and immunization with pVAX-PS decreased the positive conversion rate of HBV seromarkers and relieved hepatic lesions in tree shrews challenged with HBV. These results indicated that pVAX-PS immunization could induce remarkable humoral immune response and prevent the experimental tree shrews from infection of HBV.
Collapse
Affiliation(s)
- Feng-Juan Zhou
- Department of Medical Genetics, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zinckgraf JW, Silbart LK. Modulating gene expression using DNA vaccines with different 3'-UTRs influences antibody titer, seroconversion and cytokine profiles. Vaccine 2003; 21:1640-9. [PMID: 12639485 DOI: 10.1016/s0264-410x(02)00740-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine if modulating the amount of foreign antigen produced by a DNA vaccine can influence the overall intensity and cytokine polarization of the ensuing immune response, three different plasmids, each encoding the hepatitis B (HB) surface antigen, were constructed. In each construct, HBs gene expression was driven by the cytomegalovirus immediate early promoter, but differed in the 3'-untranslated regions (3'-UTR) containing the polyadenylation sequence. These 3'-UTR sequences were derived from either the hepatitis B virus (HBVpA), bovine growth hormone (BGHpA), or rabbit beta-globin (betapA). BALB/c mice were immunized intramuscularly with equimolar amounts of each plasmid and blood was collected bi-weekly. Following immunization, total IgG titers correlated with in vitro antigen production levels (from transfected CHO cells), as evidenced by the following response pattern: HBVpA>BGHpA>>betapA. All groups demonstrated a heavy bias toward a Th1 immune response, as evidenced by high serum IgG2a/IgG1 ratios and the predominance of IFN-gamma over IL-4 secretion from cultured splenocytes. In addition, the HBVpA construct resulted in a seroconversion rate of 100%, in comparison to 40-50% in the BGHpA, and 0% in the betapA group. Surprisingly, splenocytes isolated from mice immunized with the betapA construct secreted the highest levels of IFN-gamma. Taken together, these findings suggest that altering the level of gene expression not only affects the overall titer and seroconversion rates of vaccinated animals, but also may play a role in modulating cytokine profiles.
Collapse
Affiliation(s)
- John W Zinckgraf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
24
|
Zhou W, Cook RF, Cook SJ, Hammond SA, Rushlow K, Ghabrial NN, Berger SL, Montelaro RC, Issel CJ. Multiple RNA splicing and the presence of cryptic RNA splice donor and acceptor sites may contribute to low expression levels and poor immunogenicity of potential DNA vaccines containing the env gene of equine infectious anemia virus (EIAV). Vet Microbiol 2002; 88:127-51. [PMID: 12135633 DOI: 10.1016/s0378-1135(02)00099-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The env gene is an excellent candidate for inclusion in any DNA-based vaccine approach against equine infectious anemia virus (EIAV). Unfortunately, this gene is subjected to mutational pressure in E. coli resulting in the introduction of stop codons at the 5' terminus unless it is molecularly cloned using very-low-copy-number plasmid vectors. To overcome this problem, a mammalian expression vector was constructed based on the low-copy-number pLG338-30 plasmid. This permitted the production of full-length EIAV env gene clones (plcnCMVenv) from which low-level expression of the viral surface unit glycoprotein (gp90) was detected following transfection into COS-1 cells. Although this suggested the nuclear export of complete env mRNA moieties at least two additional polypeptides of 29 and 20kDa (probably Rev) were produced by alternative splicing events as demonstrated by the fact that their synthesis was prevented by mutational inactivation of EIAV env splice donor 3 (SD3) site. The plcnCMVenv did not stimulate immune responses in mice or in horses, whereas an env construct containing an inactivated SD3 site (plcnCMVDeltaSD3) did induce weak humoral responses against gp90 in mice. This poor immunogenicty in vivo was probably not related to the inherent antigenicity of the proteins encoded by these constructs but to some fundamental properties of EIAV env gene expression. Attempts to modify one of these properties by mutational inactivation of known viral RNA splice sites resulted in activation of previously unidentified cryptic SD and slice acceptor sites.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Cloning, Molecular/methods
- Codon, Terminator
- Equine Infectious Anemia/immunology
- Equine Infectious Anemia/prevention & control
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Genes, env
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/immunology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- RNA Splicing/genetics
- RNA, Viral/chemistry
- Transfection/veterinary
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- W Zhou
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zheng B, Woo PC, Ng M, Tsoi H, Wong L, Yuen K. A crucial role of macrophages in the immune responses to oral DNA vaccination against hepatitis B virus in a murine model. Vaccine 2001; 20:140-7. [PMID: 11567758 DOI: 10.1016/s0264-410x(01)00272-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the previous study, we had shown that live oral vaccination with Salmonella typhimurium delivering plasmid DNA-HBsAg (oral DNA vaccine) evoked a vigorous T cell response and a weak antibody response with predominant subclass IgG2a in mice, suggesting a significant involvement by professional antigen presenting cells (APC). In the present study, this possibility was further studied by infecting peritoneal macrophages (MPhi) with the oral DNA vaccine. Although, the infected cells could only express low level of the viral antigen, they nevertheless stimulated a vigorous lymphocyte proliferation of splenocytes from immune mice, induced these cells to elaborate interferon-gamma and stimulated development of HBV-specific cytotoxicity against target cells expressing the viral antigen. Infusion of the infected MPhi evoked a vigorous Th 1 and cytotoxic T lymphocyte (CTL) response and a weak IgG2a antibody response in mice, which was essentially the same as response to the oral DNA vaccine. In contrast, recombinant protein vaccine evoked a vigorous IgG1 antibody response and a weak T cell response. While, given intramuscularly, the same plasmid DNA vaccine as that contained in the oral DNA vaccine evoked a vigorous IgG1 antibody response and a moderate T cell response in these animals. It was concluded that professional APC may orchestrate the immune response to live oral DNA vaccine and it was of interest to note that different vaccine formulation and routes of administration evoke distinct immune response to HBV.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Animals
- Cell Line
- Cytotoxicity, Immunologic
- DNA, Recombinant/administration & dosage
- Female
- Hepatitis B Antibodies/biosynthesis
- Hepatitis B Antibodies/blood
- Hepatitis B Antibodies/immunology
- Hepatitis B Surface Antigens/biosynthesis
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Immune Tolerance
- Immunization Schedule
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Injections, Intraperitoneal
- Injections, Intravenous
- Interferon-gamma/metabolism
- Interleukin-4/metabolism
- Lymphocyte Activation
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/transplantation
- Macrophages, Peritoneal/virology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Salmonella typhimurium/genetics
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Cytotoxic/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- B Zheng
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital Compound, Pokfulam Road, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Kofta W, Wedrychowicz H. c-DNA vaccination against parasitic infections: advantages and disadvantages. Vet Parasitol 2001; 100:3-12. [PMID: 11522401 DOI: 10.1016/s0304-4017(01)00478-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently developed technology for DNA vaccination appears to offer the good prospect for the development of a multivalent vaccines that will effectively activate both the humoral and cell mediated mechanisms of the immune system. Currently, DNA vaccination against such important parasitic diseases like malaria, leishmaniosis, toxoplasmosis, cryptosporidiosis, schistosomosis, fasciolosis offers several new opportunities. However, the outcome of vaccination depends very much on vaccine formulations, dose and route of vaccine delivery, and the species and even strain of the vaccinated host. To overcome these problems much research is still needed, specifically focused on cloning and testing of new c-DNA sequences in the following: genome projects: different ways of delivery: design of vectors containing appropriate immunostimulatory sequences and very detailed studies on safety.
Collapse
Affiliation(s)
- W Kofta
- Department of Parasitology, Warsaw Agricultural University, Ciszewskiego 8, 02-786, Warsaw, Poland
| | | |
Collapse
|
27
|
Oka Y, Akbar SM, Horiike N, Joko K, Onji M. Mechanism and therapeutic potential of DNA-based immunization against the envelope proteins of hepatitis B virus in normal and transgenic mice. Immunology 2001; 103:90-7. [PMID: 11380696 PMCID: PMC1783213 DOI: 10.1046/j.1365-2567.2001.01202.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Two plasmid DNA vectors, pCAGGS(S) encoding the genes of the major envelope protein of hepatitis B virus (HBV), and pCAGGS(S + preS2) encoding the genes of the middle envelope protein were used to study the mechanism and therapeutic potential of DNA-based immunization. Injection of these plasmids into the regenerating bilateral tibialis anterior muscle (TA) of normal C57BL/6 mice induced hepatitis B surface antigen (HBsAg)-specific humoral and cellular immune responses. Seventy-two hours after injection of pCAGGS(S), infiltrating cells including antigen-presenting dendritic cells (DC) were localized around the injection site and HBsAg was expressed by both muscle cells and infiltrating cells. Spleen DC from the mice were exposed to HBsAg for up to 32 weeks after a single injection of pCAGGS(S), because these DC induced the proliferation of HBsAg-specific memory lymphocytes in culture without exogenous HBsAg. A single injection of pCAGGS(S) or pCAGGS(S + preS2) resulted in the clearance of HBsAg in 28 out of 30 HBV-transgenic (Tg) mice. In contrast, more than 7 monthly injections of an HBsAg-based vaccine were required for the clearance of HBsAg in 6 out of 29 HBV-Tg mice. Infiltrating DC at the DNA vaccine injection site may have a role in initiating HBsAg-specific immune response, whereas the persistence of HBsAg exposed spleen DC may contribute to long-lasting immunity. This study also suggested that DNA-based vaccines may be a potent tool for treating chronic HBV carriers.
Collapse
Affiliation(s)
- Y Oka
- Third Department of Internal Medicine, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | |
Collapse
|
28
|
Fernandez-Alonso M, Rocha A, Coll JM. DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicaemia virus. Vaccine 2001; 19:3067-75. [PMID: 11312001 DOI: 10.1016/s0264-410x(01)00046-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This work reports preliminary data on the application of a novel method, ultrasound, for the DNA vaccination of rainbow trout. First, the best formulations were selected that increased the transfer by immersion of a plasmid coding for the green fluorescent protein (GFP) gene into trout fry. Quantification of GFP expression by fluorescence in the fin cells was used to study time course, DNA concentration dependence and comparison of different formulations. The best GFP expression results were obtained with short pulses of ultrasound, DOTAP liposomes and recombinant bacteria or bactofection. Other liposomes or microencapsulation formulations resulted in a GFP fluorescence similar to background values. Second, DNA immersion-vaccination of immunocompetent fingerling trout with the selected formulations was performed by using a plasmid coding for the glycoprotein G gene of the viral haemorrhagic septicaemia virus (VHSV). The immunization of fingerling trout was estimated by measuring humoral antibody, lymphoproliferation and VHSV challenge responses. Short pulses of low intensity ultrasound were the only method by which both humoral antibody responses and survival after VHSV challenge were obtained. Immersion DNA-vaccination using short pulses of ultrasound could eventually lead to a practical way to vaccinate small fish.
Collapse
|
29
|
Abstract
Immuno-gene therapy can be advantageously performed with nonviral approaches. Genes that encode regulatory cytokines or inflammatory cytokine inhibitors can be delivered intramuscularly and expressed for weeks or months. This type of gene transfer into muscle has been shown to ameliorate several autoimmune diseases and is relevant to the development of effective DNA vaccines in autoimmune diseases, infectious diseases and cancer.
Collapse
Affiliation(s)
- G J Prud'homme
- Department of Pathology, McGill University, 3775 University St, Rm B13, Montreal, H3A2B4., Quebec, Canada.
| | | | | | | |
Collapse
|
30
|
Huang ZH, Zhuang H, Lu S, Guo RH, Xu GM, Cai J, Zhu WF. Humoral and cellular immunogenecity of DNA vaccine based on hepatitis B core gene in rhesus monkeys. World J Gastroenterol 2001; 7:102-6. [PMID: 11819742 PMCID: PMC4688683 DOI: 10.3748/wjg.v7.i1.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Z H Huang
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
DNA vaccination is a novel approach for inducing immunity against target antigens. It provides a direct link between identification of genes encoding these antigens and incorporation of the gene sequences into a vaccine vehicle. Identification of candidate genes is proceeding very rapidly both for infectious organisms and for cancer cells. One advantage is that DNA appears to activate all pathways of immunity, especially cytotoxic T-cell responses, which have been difficult to induce with protein vaccines. For viruses, including those which have caused problems for blood transfusion, DNA vaccination could be used for prevention. However, for chronic infection, or for cancer, vaccination will be performed in a therapeutic setting. For this situation, it is probable that immune-activating sequences will have to be included in the vaccine. The ease of manipulation of gene sequences, together with the increasing knowledge of the operation of the immune system, means that we now have the tools to take vaccines into the next exciting stage of development.
Collapse
MESH Headings
- Animals
- Antibody Formation
- Antigen Presentation
- Antigens/genetics
- Antigens/immunology
- Biological Assay
- Blood Transfusion
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Genes, Synthetic
- Hepacivirus/immunology
- Hepatitis C/immunology
- Hepatitis C/prevention & control
- Hepatitis C/therapy
- Hepatitis C Antigens/genetics
- Hepatitis C Antigens/immunology
- Humans
- Immunotherapy, Active
- Infection Control/methods
- Infections/immunology
- Infections/therapy
- Mice
- Mice, Transgenic
- Models, Animal
- Models, Immunological
- Neoplasms/immunology
- Neoplasms/prevention & control
- Neoplasms/therapy
- Pan troglodytes
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Viral Hepatitis Vaccines/immunology
- Viral Hepatitis Vaccines/therapeutic use
Collapse
Affiliation(s)
- F K Stevenson
- Molecular Immunology Group, Tenovus Laboratory and Division of Cell and Molecular Medicine, Southampton University Hospitals Trust, Southampton SO16 6YD, UK.
| | | |
Collapse
|
32
|
Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.6.793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Devon J. Shedlock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
THERAPEUTIC VACCINES FOR CHRONIC HEPATITIS B INFECTION. Sex Transm Dis 2000. [DOI: 10.1016/b978-012663330-6/50015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Abstract
After an erratic history, there is at last a clear opportunity for mobilizing an immune attack against cancer cells. The new strategies are dependent on the techniques of molecular biology, which are able both to identify potential target tumor antigens at the gene level, and to help to unravel the complexities of immune mechanisms required. Vaccine delivery systems can also be genetic, with DNA vaccines able to act as viral mimics and enter several antigen processing pathways. Rational vaccine designs can be rapidly tested in models and selected for pilot clinical trials. One difficulty faced by tumor antigens is that they may be weak, and therefore fail to engage the immune system. Attaching genes encoding alert signals appears to solve this problem. We have focused initially on idiotypic determinants of B-cell tumors, where the encoding variable region genes can induce protective anti-idiotypic immunity if delivered as a fusion protein with a fragment of Tetanus toxin. This model may have relevance for alternative tumor antigens. A clinical trial of patients with lymphoma is in progress, and wider application may be limited only by the ability to bring patients into clinical remission prior to vaccination.
Collapse
Affiliation(s)
- F K Stevenson
- Tenovus Laboratory, Southampton University Hospitals Trust, UK
| |
Collapse
|
35
|
Alarcon JB, Waine GW, McManus DP. DNA vaccines: technology and application as anti-parasite and anti-microbial agents. ADVANCES IN PARASITOLOGY 1999; 42:343-410. [PMID: 10050276 DOI: 10.1016/s0065-308x(08)60152-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA vaccines have been termed The Third Generation of Vaccines. The recent successful immunization of experimental animals against a range of infectious agents and several tumour models of disease with plasmid DNA testifies to the powerful nature of this revolutionary approach in vaccinology. Among numerous advantages, a major attraction of DNA vaccines over conventional vaccines is that they are able to induce protective cytotoxic T-cell responses as well as helper T-cell and humoral immunity. Here we review the current state of nucleic acid vaccines and cover a wide range of topics including delivery mechanisms, uptake and expression of plasmid DNA, and the types of immune responses generated. Further, we discuss safety issues, and document the use of nucleic acid vaccines against viral, bacterial and parasitic diseases, and cancer. The early potential promise of DNA vaccination has been fully substantiated with recent, exciting developments including the movement from testing DNA vaccines in laboratory models to non-human primates and initial human clinical trials. These advances and the emerging voluminous literature on DNA vaccines highlight the rapid progress that has been made in the DNA immunization field. It will be of considerable interest to see whether the progress and optimism currently prevailing can be maintained, and whether the approach can indeed fulfil the medical and commerical promise anticipated.
Collapse
Affiliation(s)
- J B Alarcon
- Molecular Parasitology Unit, Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research, Bancroft Centre, Herston, Australia
| | | | | |
Collapse
|
36
|
Abstract
In a few short years, genetic vaccine technology has moved rapidly from a novel concept to an important strategy for the development of human and veterinary vaccines, for numerous indications. This article discusses current areas in which further refinements in technology will influence a variety of infectious disease treatments, including intramuscular and intradermal inoculation, gene gun inoculation, the mechanism of antigen presentation, and the use of genetic adjuvants.
Collapse
Affiliation(s)
- J R Haynes
- Vaccine Research Department, Heska Corporation, Fort Collins, Colorado, USA.
| |
Collapse
|