1
|
Brunetti G, Padovani F, De Pastina A, Rotella C, Monahan A, Hoffman SL, Jongo SA, Abdulla S, Corradin G, Pluschke G, Daubenberger C, Hegner M. Nanotechnological immunoassay for rapid label-free analysis of candidate malaria vaccines. NANOSCALE 2021; 13:2338-2349. [PMID: 33438712 DOI: 10.1039/d0nr08083g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Malaria is a life-threatening epidemic disease with half of the world's population at risk. Although its incidence rate has fallen since 2010, this ratio dramatically stalled between 2014 and 2018. New fast and optimized tools in vaccine analysis and seroconversion testing are critically needed. We developed a clinical diagnostic device based on piezo-actuated nanoresonators that perform as quantitative in situ calibrated nano-bio sensors for specific detection of multiple target molecules in serum samples. The immunoassay successfully diagnoses humoral immune responses induced by malaria vaccine candidates and reveals the timeline and stage of the infection. We applied the newly developed strategy to a variety of different samples, from pure antibody/vaccine solutions, to blood samples from clinical trials on both naïve and pre-exposed malaria volunteers from sub-Saharan countries. Our nanomechanical assay provides a direct one-step label-free quantitative immunoassay that is on par with the gold-standard, multi-step enzyme-linked immunosorbent assay (ELISA). We achieve a limit of detection of few pg ml-1, or sub-pM concentrations. The 6 μl sample volume allows more than 50 experiments from one finger prick. Furthermore, we simultaneously detected multiple analytes by differential functionalization of multiple sensors in parallel. The inherent differential read-out with in situ controls reduces false positive results. Due to the faster turnaround time, the minimal volume required and the automatized handling system, this technique has great potential for miniaturization and routine diagnostics in pandemic emergencies.
Collapse
Affiliation(s)
- Giulio Brunetti
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland.
| | - Francesco Padovani
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland. and Institute of Functional Epigenetics, Helmholtz Zentrum München (HMGU), Neuherberg 85764, Germany
| | - Annalisa De Pastina
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland.
| | - Chiara Rotella
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland.
| | - Amy Monahan
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland.
| | | | - Said A Jongo
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Salim Abdulla
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Gerd Pluschke
- Medical Parasitology and Infection Biology Department, Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland and University of Basel, Switzerland
| | - Claudia Daubenberger
- University of Basel, Switzerland and Medical Parasitology and Infection Biology Department, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Martin Hegner
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
New Technologies for Vaccine Development: Harnessing the Power of Human Immunology. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Khan IU, Huang J, Liu R, Wang J, Xie J, Zhu N. Phage Display-Derived Ligand for Mucosal Transcytotic Receptor GP-2 Promotes Antigen Delivery to M Cells and Induces Antigen-Specific Immune Response. SLAS DISCOVERY 2017; 22:879-886. [PMID: 28346102 DOI: 10.1177/2472555217690483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Successful oral immunization depends on efficient delivery of antigens (Ags) to the mucosal immune induction site. Glycoprotein-2 (GP-2) is an integral membrane protein that is expressed specifically on M cells within follicle-associated epithelium (FAE) and serves as transcytotic receptor for luminal Ags. In this study, we selected peptide ligands against recombinant human GP-2 by screening a phage display library and evaluated their interaction with GP-2 in vitro and ex vivo. Selected peptides were conjugated to the C-terminal of enhanced green fluorescence protein (EGFP) and evaluated for their ability to induce an immune response in mice. One of our selected peptides, Gb-1, showed high binding affinity to GP-2 and, when fused to EGFP, significantly increased the uptake of EGFP by M cells compared to EGFP alone. After oral administration, the Gb1-EGFP fusion induced efficient mucosal and systemic immune responses in mice measured at the level of antigen-specific serum and fecal antibodies, cytokine secretion, and lymphocyte proliferation. Furthermore, the IgG subclasses and cytokine secretion showed that ligand Gb-1 induced a Th2-type immune response. Collectively, our findings suggest that the ligand we selected through phage library screening is capable of targeting Ags to GP-2 on M cells and can be used as an oral vaccine adjuvant.
Collapse
Affiliation(s)
- Inam Ullah Khan
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jiansheng Huang
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Rui Liu
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jingbo Wang
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jun Xie
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Naishuo Zhu
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
4
|
Vaccine Adjuvant Nanotechnologies. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7151801 DOI: 10.1016/b978-0-323-39981-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The increasing sophistication of vaccine adjuvant design has been driven by improved understanding of the importance of nanoscale features of adjuvants to their immunological function. Newly available advanced nanomanufacturing techniques now allow very precise control of adjuvant particle size, shape, texture, and surface chemistry. Novel adjuvant concepts include self-assembling particles and targeted immune delivery. These individual concepts can be combined to create a single integrated vaccine nanoparticle-combining antigen, adjuvants, and DC-targeting elements. In the process, the concept of an adjuvant has broadened to include not only immune-stimulatory substances but also any design features that enhance the immune response against the relevant vaccine antigen. The modern definition of an adjuvant includes not only classical immune stimulators but also any aspects of particle size, shape, and surface chemistry that enhance vaccine immunogenicity. It even includes purely physical processes such as texturing of particle surfaces to maximize immunogenicity. Looking forward, adjuvants will increasingly be seen not as separate add-on items but as wholly integrated elements of a complete vaccine delivery package. Hence, vaccine systems will increasingly approach the complexity and sophistication of pathogens themselves, incorporating highly specific particle properties, contents, and behaviors, all designed to maximize immune system recognition and drive the immune response in the specific direction that affords maximal protection.
Collapse
|
5
|
Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100:190-209. [PMID: 26275795 PMCID: PMC7129276 DOI: 10.1016/j.phrs.2015.08.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Luísa Eça Guimarães
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Britain Baker
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Incumbent of the Laura Schwarz-kipp chair for research of autoimmune diseases, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
6
|
Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles. APMIS 2015; 123:275-88. [PMID: 25630573 DOI: 10.1111/apm.12351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/05/2014] [Indexed: 12/25/2022]
Abstract
Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production.
Collapse
Affiliation(s)
- Atul Srivastava
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Mysore, India
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Dey AK, Srivastava IK. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines 2014; 10:227-51. [DOI: 10.1586/erv.10.142] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Deo VK, Yoshimatsu K, Otsuki T, Dong J, Kato T, Park EY. Display of Neospora caninum surface protein related sequence 2 on Rous sarcoma virus-derived gag protein virus-like particles. J Biotechnol 2013; 165:69-75. [DOI: 10.1016/j.jbiotec.2013.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
|
10
|
Correia-Pinto J, Csaba N, Alonso M. Vaccine delivery carriers: Insights and future perspectives. Int J Pharm 2013; 440:27-38. [DOI: 10.1016/j.ijpharm.2012.04.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 01/15/2023]
|
11
|
Eyles JE, Williamson ED, Alpar HO. Intranasal administration of influenza vaccines: current status. BioDrugs 2012; 13:35-59. [PMID: 18034512 DOI: 10.2165/00063030-200013010-00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThis review article focuses on intranasal immunisation against influenza,although it also encompasses antigen uptake and processing in the nasopharyngealpassages, host defence from influenza and current influenza vaccination practices.Improvement of current vaccination strategies is clearly required; current proceduresinvolve repeated annual injections that sometimes fail to protect the recipient. It isenvisaged that nonpercutaneous immunisation would be more attractive to potentialvaccinees, thus improving uptake and coverage. As well as satisfying noninvasivecriteria, intranasal influenza immunisation has a number of perceived immunologicaladvantages over current procedures. Perhaps one of the greatest attributes of thisapproach is its potential to evoke the secretion of haemagglutinin-specific IgAantibodies in the upper respiratory tract, the main site of viral infection. Inactivated influenza vaccines have the advantage that they have a long historyof good tolerability as injected immunogens, and in this respect are possibly morelikely to be licensed than attenuated viruses. Inert influenza vaccines are poormucosal immunogens, requiring several administrations, or prior immunologicalpriming, in order to engender significant antibody responses. The use of vaccinedelivery systems or mucosal adjuvants serves to appreciably improve theimmunogenicity of mucosally applied inactivated influenza vaccines. As is the casewhen they are introduced parenterally, inactivated influenza vaccines are relativelypoor stimulators of virus-specific cytotoxic T lymphocyte activity following nasalinoculation. Live attenuated intranasal influenza vaccines are at a far moreadvanced stage of clinical readiness (phase III versus phase I). With the use of liveattenuated vaccines, it is possible to stimulate mucosal and cell-mediatedimmunological responses of a similar kind to those elicited by natural influenzainfection. In children, recombinant live attenuated cold-adapted influenza viruses arewell tolerated. Moreover, cold-adapted influenza viruses usually stimulate protectiveimmunity following only a single nasal inoculation. Safety of recombinant liveattenuated cold-adapted influenza viruses has also been demonstrated in high riskindividuals with cystic fibrosis, asthma, cardiovascular disease and diabetes mellitus.They are not suitable for immunising immunocompromised patients, however, andare poorly efficacious in individuals with pre-existing immunity to strains closelyantigenically matched with the recombinant virus. According to the reviewedliterature, it is apparent that intranasal administration of vaccine as an aerosol issuperior to administration as nose drops. The information reviewed in this papersuggests that nasally administered influenza vaccines could make a substantialimpact on the human and economic cost of influenza.
Collapse
Affiliation(s)
- J E Eyles
- School of Pharmacy, Aston University, Birmingham, England
| | | | | |
Collapse
|
12
|
Huston WM, Harvie M, Mittal A, Timms P, Beagley KW. Vaccination to protect against infection of the female reproductive tract. Expert Rev Clin Immunol 2012; 8:81-94. [PMID: 22149343 DOI: 10.1586/eci.11.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infection of the female genital tract can result in serious morbidities and mortalities from reproductive disability, pelvic inflammatory disease and cancer, to impacts on the fetus, such as infant blindness. While therapeutic agents are available, frequent testing and treatment is required to prevent the occurrence of the severe disease sequelae. Hence, sexually transmitted infections remain a major public health burden with ongoing social and economic barriers to prevention and treatment. Unfortunately, while there are two success stories in the development of vaccines to protect against HPV infection of the female reproductive tract, many serious infectious agents impacting on the female reproductive tract still have no vaccines available. Vaccination to prevent infection of the female reproductive tract is an inherently difficult target, with many impacting factors, such as appropriate vaccination strategies/mechanisms to induce a suitable protective response locally in the genital tract, variation in the local immune responses due to the hormonal cycle, selection of vaccine antigen(s) that confers effective protection against multiple variants of a single pathogen (e.g., the different serovars of Chlamydia trachomatis) and timing of the vaccine administration prior to infection exposure. Despite these difficulties, there are numerous ongoing efforts to develop effective vaccines against these infectious agents and it is likely that this important human health field will see further major developments in the next 5 years.
Collapse
Affiliation(s)
- Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, 60 Musk Avenue, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Influenza is responsible for the infection of approximately 20% of the population every season and for an annual death toll of approximately half a million people. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination by injection with an inactivated vaccine, or by intranasal administration of a live-attenuated vaccine. Protection is not always optimal and there is a need for the development of new vaccines with improved efficacy and for the expansion of enrollment into vaccination programs. An overview of old and new vaccines is presented. Methods of monitoring immune responses such as hemagglutination-inhibition, ELISA and neutralization tests are evaluated for their accuracy in the assessment of current and new-generation vaccines.
Collapse
Affiliation(s)
- Zichria Zakay-Rones
- Chanock Center of Virology, The Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada (IMRIC), Hebrew University Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
14
|
Liposome technology for industrial purposes. JOURNAL OF DRUG DELIVERY 2010; 2011:591325. [PMID: 21490754 PMCID: PMC3065896 DOI: 10.1155/2011/591325] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/20/2010] [Indexed: 12/18/2022]
Abstract
Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents.
Collapse
|
15
|
Pandey RS, Babbar AK, Kaul A, Mishra AK, Dixit VK. Evaluation of ISCOM matrices clearance from rabbit nasal cavity by γ scintigraphy. Int J Pharm 2010; 398:231-6. [PMID: 20688140 DOI: 10.1016/j.ijpharm.2010.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 11/25/2022]
Abstract
Immune stimulating complexes and/or ISCOM matrices (adjuvant nanoparticles without antigen as a structural component) found potential applications as nasal vaccine adjuvant/delivery system owing to virus like particulate structure and saponin as potent Th1 adjuvant. One of important limiting factor for nasal vaccine delivery is the limited time available for absorption within the nasal cavity due to mucociliary clearance. In this report the clearance rate of ISCOM matrices from nasal cavity of rabbit was determined by gamma scintigraphy. ISCOM matrices were radiolabelled with (99m)Tc by direct labelling method using stannous chloride as a reducing agent. (99m)Tc labelled ISCOM matrices were administered into the nostril of female New Zealand rabbits and 1 min static views were repeated each 15 min until 4h. Clearance rate of ISCOM matrices from nasal cavity was calculated after applying the physical decay corrections. The mean labelling efficiency for ISCOM matrices were calculated as approximately 58.4%. ISCOM matrices showed slower clearance rate compared to sodium pertechnetate control solution (p<0.005) from nasal cavity that may be due to particulate and hydrophobic characters of ISCOM particles even though it was also cleared within 4h from nasal cavity. Mucoadhesive ISCOM formulations that retain in nasal cavity for longer duration of time may reduce the dose/frequency of vaccine for nasal immunization.
Collapse
Affiliation(s)
- Ravi S Pandey
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, M.P. 470003, India
| | | | | | | | | |
Collapse
|
16
|
Abstract
Many preclinical and clinical results indicate that liposomal systems can serve as effective adjuvants to subunit vaccines by enabling the formulation and delivery of vaccine antigens and immunopotentiators. The adjuvant effect of liposomes usually depends on both the composition of the lipid vesicles and their physical association with the vaccine antigen. This chapter describes methods for the preparation and characterization of sterile small, mostly unilamellar, lipid vesicles and for their association with vaccine antigens. It gives also some recommendations for the optimization of liposomal vaccines in preclinical testing. The most common immunopotentiators used in liposomal adjuvants are also described.
Collapse
|
17
|
Abstract
Some adjuvants may exert adverse effects upon injection or, on the other hand, may not trigger a full immunological reaction. The mechanisms underlying adjuvant adverse effects are under renewed scrutiny because of the enormous implications for vaccine development. In the search for new and safer adjuvants, several new adjuvants were developed by pharmaceutical companies utilizing new immunological and chemical innovations. The ability of the immune system to recognize molecules that are broadly shared by pathogens is, in part, due to the presence of special immune receptors called toll-like receptors (TLRs) that are expressed on leukocyte membranes. The very fact that TLR activation leads to adaptive immune responses to foreign entities explains why so many adjuvants used today in vaccinations are developed to mimic TLR ligands. Alongside their supportive role, adjuvants were found to inflict by themselves an illness of autoimmune nature, defined as ‘the adjuvant diseases’. The debatable question of silicone as an adjuvant and connective tissue diseases, as well as the Gulf War syndrome and macrophagic myofaciitis which followed multiple injections of aluminium-based vaccines, are presented here. Owing to the adverse effects exerted by adjuvants, there is no doubt that safer adjuvants need to be developed and incorporated into future vaccines. Other needs in light of new vaccine technologies are adjuvants suitable for use with mucosally delivered vaccines, DNA vaccines, cancer and autoimmunity vaccines. In particular, there is demand for safe and non-toxic adjuvants able to stimulate cellular (Th1) immunity. More adjuvants were approved to date besides alum for human vaccines, including MF59 in some viral vaccines, MPL, AS04, AS01B and AS02A against viral and parasitic infections, virosomes for HBV, HPV and HAV, and cholera toxin for cholera. Perhaps future adjuvants occupying other putative receptors will be employed to bypass the TLR signaling pathway completely in order to circumvent common side effects of adjuvant-activated TLRs such as local inflammation and the general malaise felt because of the costly whole-body immune response to antigen. Lupus (2009) 18, 1217—1225.
Collapse
Affiliation(s)
- E. Israeli
- Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - N. Agmon-Levin
- Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel, Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
| | - M. Blank
- Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Y. Shoenfeld
- Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel, Sackler Faculty of Medicine, Incumbent of the Laura Schwarz-Kip Chair for Research of Autoimmune Diseases, Tel-Aviv University, Israel,
| |
Collapse
|
18
|
Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens. Biomaterials 2009; 30:5862-8. [DOI: 10.1016/j.biomaterials.2009.06.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/18/2009] [Indexed: 11/23/2022]
|
19
|
Sharma S, Mukkur T, Benson HA, Chen Y. Pharmaceutical Aspects of Intranasal Delivery of Vaccines Using Particulate Systems. J Pharm Sci 2009; 98:812-43. [DOI: 10.1002/jps.21493] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Abstract
Over the last few decades, different types of inactivated hepatitis A virus (HAV) vaccines have been developed: several aluminum-adjuvanted vaccines and an aluminum-free, virosome-formulated vaccine. Both types of vaccines are whole-virus preparations that are produced by growth of HAV strains in human diploid cell cultures and are subsequently inactivated with formaldehyde. This review summarizes all published papers on a virosome-formulated vaccine, Epaxal, based on formalin inactivated HAV (strain RG-SB) adsorbed to the surface of special liposomes (virosomes), that replace aluminum hydroxide as the adjuvant principle. A single injection of virosomal HAV vaccine is well tolerated and highly immunogenic, with 88-97% of seroprotection 2 weeks after a first dose. HAV virosomal vaccine can be administered concomitantly with other vaccines, without inducing antigenic competition. Direct comparison with aluminum-adsorbed vaccine has shown that the immunogenicity was similar, but fewer local reactions were reported with Epaxal. Recent studies in children have demonstrated that Epaxal Junior is also an excellent HAV vaccine for mass vaccination programs.
Collapse
Affiliation(s)
- Patrick A Bovier
- Department of Community and Primary Care Medicine, Geneva University Hospitals, Switzerland.
| |
Collapse
|
21
|
|
22
|
Hampson AW. Vaccines for Pandemic Influenza. The History of our Current Vaccines, their Limitations and the Requirements to Deal with a Pandemic Threat. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n6p510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fears of a potential pandemic due to A(H5N1) viruses have focussed new attention on our current vaccines, their shortcomings, and concerns regarding global vaccine supply in a pandemic. The bulk of current vaccines are inactivated split virus vaccines produced from egggrown virus and have only modest improvements compared with those first introduced over 60 years ago. Splitting, which was introduced some years ago to reduce reactogenicity, also reduces the immunogenicity of vaccines in immunologically naïve recipients. The A(H5N1) viruses have been found poorly immunogenic and present other challenges for vaccine producers which further exacerbate an already limited global production capacity. There have been some recent improvements in vaccine production methods and improvements to immunogenicity by the development of new adjuvants, however, these still fall short of providing timely supplies of vaccine for all in the face of a pandemic. New approaches to influenza vaccines which might fulfil the demands of a pandemic situation are under evaluation, however, these remain some distance from clinical reality and face significant regulatory hurdles.
Key words: Adjuvant, Antigen, Cell-culture, Immune response, Immunogenicity, Influenza A(H5N1), Split vaccine
Collapse
|
23
|
|
24
|
James S, Moehle K, Renard A, Mueller MS, Vogel D, Zurbriggen R, Pluschke G, Robinson JA. Synthesis, Solution Structure and Immune Recognition of an Epidermal Growth Factor-Like Domain from Plasmodium falciparum Merozoite Surface Protein-1. Chembiochem 2006; 7:1943-50. [PMID: 17068840 DOI: 10.1002/cbic.200600357] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Plasmodium falciparum merozoite surface protein-1 19 kDa fragment (MSP-1(19)) comprises two closely packed EGF-like domains (EGF=epidermal growth factor), each stabilized by three disulfide bonds. The native conformation of this protein is important for eliciting P. falciparum growth inhibitory antibodies. Here we show that the N-terminal EGF domain alone can be chemically synthesized and efficiently refolded to a native-like state, as shown by its solution structure as determined by NMR spectroscopy. In order to study its immunogenicity, the domain was coupled through its N terminus to a phospholipid and incorporated into reconstituted influenza virus-like particles (virosomes). When used to immunize mice, the peptide-loaded virosomes elicited potent humoral immune responses that were shown by Western blots and immunofluorescence assays to cross-react with native MSP-1 on the surfaces of P. falciparum blood stage parasites. This opens the way for a medicinal chemistry-oriented approach to the study and optimization of the antigenicity of the protein as a potential malaria vaccine candidate, whilst exploiting the immunopotentiating properties of influenza virosomes as a delivery vehicle.
Collapse
Affiliation(s)
- Sonya James
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Influenza is a potentially fatal respiratory infection resulting from several influenza virus strains. It causes annual epidemics of disease for which vaccination is the cornerstone of public health policy. The inadequacies of vaccine supply in the US during the 2004 influenza season revealed the deficiencies of current vaccine development and delivery. One outcome of this was the accelerated approval of an inactivated split-virus influenza vaccine, Fluarix. This paper reviews the immunogenicity and reactogenicity of this vaccine, and makes recommendations for the incorporation of Fluarix into the public health framework alongside other similar vaccines. Other directions to explore in an effort to secure future vaccine supply are considered.
Collapse
Affiliation(s)
- G W Rose
- Division of Infectious Diseases, The Ottawa Hospital, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
| | | |
Collapse
|
26
|
Amacker M, Engler O, Kammer AR, Vadrucci S, Oberholzer D, Cerny A, Zurbriggen R. Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells. Int Immunol 2005; 17:695-704. [PMID: 15843436 DOI: 10.1093/intimm/dxh249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Virus-specific CD8(+) T cells are thought to play an important role in resolving acute hepatitis C virus (HCV) infection as viral clearance has been associated with a strong and sustained CD8(+) T cell response. During the chronic state of HCV infection virus-specific T cells have a low frequency and a reduced responsiveness. Based on this, a therapeutic vaccine increasing the frequency of specific T cells is a promising alternative for the treatment of chronic HCV infection. We improved an existing vaccine platform based on immunopotentiating reconstituted influenza virosomes (IRIVs) for efficient delivery of peptide epitopes to the MHC class I antigen presentation pathway. IRIVs are proteoliposomes composed of phospholipids and influenza surface glycoproteins. Due to their fusogenic activity, IRIVs are able to deliver encapsulated macromolecules, e.g. peptides to immunocompetent cells. We developed a novel method based on chimeric virosomes [chimeric immunopotentiating reconstituted influenza virosomes (CIRIVs)] combining the high peptide-encapsulation capacity of liposomes and the fusion activity of virosomes. This new approach resulted in a 30-fold increase of the amount of incorporated soluble peptide compared with current preparation methods. To study the immunogenicity of chimeric virosomes HLA-A2.1 transgenic mice were immunized with CIRIVs containing the HCV Core132 peptide. Core132-CIRIVs efficiently induced specific cytotoxic and IFNgamma-producing T cells already with low peptide doses. Vaccine formulations, which include combinations of different HCV-derived CTL epitopes could be used to induce not only a strong but also a multi-specific CTL response, making them potential candidates for therapeutic and maybe prophylactic T cell vaccines in humans.
Collapse
Affiliation(s)
- Mario Amacker
- Pevion Biotech Ltd, Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Schöll I, Boltz-Nitulescu G, Jensen-Jarolim E. Review of novel particulate antigen delivery systems with special focus on treatment of type I allergy. J Control Release 2005; 104:1-27. [PMID: 15866331 DOI: 10.1016/j.jconrel.2004.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 12/20/2004] [Indexed: 12/13/2022]
Abstract
For the treatment of infectious diseases, cancer and allergy, the directed induction of an appropriate immune response is the ultimate goal. Therefore, with the development of pure, often very small proteins, peptides or DNA by molecular biology techniques, the research for suitable adjuvants or delivery systems became increasingly important. Particle formulations are made of a variety of materials, including lipids, proteins or amino acids, polysaccharides, polyacrylic substances or organic acids. Microparticles serve as vehicles and provide a depot for the entrapped or coupled antigen. The release occurs in a pulsatile or continuous manner, a feature, which is well controllable for many particulate systems. Particles attract antigen presenting cells to the administration site, thereby guaranteeing the efficient presentation of the antigen to the immune system. Importantly, particles also protect the entrapped substance. This is especially necessary after oral application to avoid gastric or tryptic breakdown. In this article, the design and construction of different antigen delivery systems and their immune effects, with special focus on the suitability for allergy treatment, are discussed.
Collapse
Affiliation(s)
- Isabella Schöll
- Institute of Pathophysiology, Center of Physiology and Pathophysiology, Medical University of Vienna, AKH-EB03.Q, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | |
Collapse
|
28
|
Schumacher R, Adamina M, Zurbriggen R, Bolli M, Padovan E, Zajac P, Heberer M, Spagnoli GC. Influenza virosomes enhance class I restricted CTL induction through CD4+ T cell activation. Vaccine 2004; 22:714-23. [PMID: 14741164 DOI: 10.1016/j.vaccine.2003.08.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunopotentiating reconstituted influenza virosomes (IRIV) are one of the few adjuvants currently licensed for human use. While their adjuvant capacity in the induction of humoral responses is clearly documented, few data exist on their effects on T cell immune response. Here we addressed IRIV adjuvance in the induction of HLA class I restricted cytotoxic T lymphocytes (CTL) in vitro. Lymphocyte stimulation with IM(58-66) and IRIV resulted in marked expansion of specific CTL as compared to cultures performed in the presence of either antigen alone or antigen and control liposomes (L). Studies addressing underlying adjuvant mechanisms demonstrated that IRIV activated CD4/CD45RO+ T cells, induced a cytokine profile consistent with T helper 1 (Th1) stimulation and increased the percentage of CD4+ T cells expressing CXCR3. Furthermore, supernatants from IRIV stimulated PBMC cultures promoted dendritic cell maturation. Most importantly, IRIV mediated CTL adjuvance required the presence of live CD4+ T cells. Powerful adjuvant effects of IRIV were also observed in the induction of CTL specific for the melanoma associated Melan-A/MART-1(27-35), HLA-A0201 restricted epitope. Taken together these findings indicate that IRIV are endowed with a high adjuvant capacity for HLA class I restricted CTL induction, largely attributable to their ability to antigenically stimulate CD4+ T cells.
Collapse
Affiliation(s)
- Reto Schumacher
- Department of Surgery, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mueller MS, Renard A, Boato F, Vogel D, Naegeli M, Zurbriggen R, Robinson JA, Pluschke G. Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infect Immun 2003; 71:4749-58. [PMID: 12874357 PMCID: PMC166038 DOI: 10.1128/iai.71.8.4749-4758.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA-1) of Plasmodium falciparum is a leading candidate antigen for inclusion in a malaria subunit vaccine. Its ectodomain can be divided into three subdomains, each with disulfide bond-stabilized structures. Since the majority of antibodies raised against the ectodomain appear to recognize strain-specific epitopes in domain I, we attempted to develop a vaccine formulation which directs the immune response to a region that contains more conserved epitopes. Here we demonstrate that a virosomal formulation of a peptide that mimics the semiconserved loop I of domain III elicits parasite growth-inhibitory antibodies. A synthetic peptide comprising residues 446 to 490 of AMA-1 (AMA-1(446-490)) was conjugated through the N terminus to a derivative of phosphatidylethanolamine and the phosphatidylethanolamine-peptide conjugate was incorporated into immunopotentiating reconstituted influenza virosomes as a human-compatible antigen delivery system. Both cyclized and linear versions of the peptide antigen elicited antibodies which specifically bound to parasite-expressed AMA-1 in Western blotting with parasite lysates as well as in immunofluorescence assays with blood stage parasites. All 11 peptidomimetic-specific monoclonal antibodies generated were cross-reactive with parasite-expressed AMA-1. Antigen binding assays with a library of overlapping cyclic peptides covering the target sequence revealed differences in the fine specificity of these monoclonal antibodies and provided evidence that at least some of them recognized discontinuous epitopes. The two immunodominant epitopes comprised the conserved linear sequences K(459)RIKLN(464) and D(467)DEGNKKII(475). A key feature of the synthetic vaccine formulation proposed here is the display of the peptide antigen in a native-like state on the surface of the virosome.
Collapse
Affiliation(s)
- Markus S Mueller
- Molecular Immunology, Swiss Tropical Institute, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Rao M, Rothwell SW, Alving CR. Trafficking of Liposomal Antigens to the Trans-Golgi Complex in Macrophages. Methods Enzymol 2003; 373:16-33. [PMID: 14714394 DOI: 10.1016/s0076-6879(03)73002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Mangala Rao
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Washington, D.C. 20307, USA
| | | | | |
Collapse
|
32
|
Zuccotti GV, Cucchi C, Sala D, Giovannini M. Immunogenicity and safety of a virosomal influenza vaccine in HIV-infected children. Acta Paediatr 2002; 91:486; author reply 487. [PMID: 12061369 DOI: 10.1111/j.1651-2227.2002.tb01676.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Greenbaum E, Furst A, Kiderman A, Stewart B, Levy R, Schlesinger M, Morag A, Zakay-Rones Z. Mucosal [SIgA] and serum [IgG] immunologic responses in the community after a single intra-nasal immunization with a new inactivated trivalent influenza vaccine. Vaccine 2002; 20:1232-9. [PMID: 11803086 DOI: 10.1016/s0264-410x(01)00396-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza morbidity affects entire populations, imposing an enormous burden in economic terms from working days lost. Protection afforded by current vaccines is often unsatisfactory and many individuals remain averse to injections. To counter these drawbacks, we tested an inactive intra-nasal trivalent influenza vaccine on 182 vaccinated and 92 placebo subjects in the community. On study completion 73 and 66% of the subjects were immune to the vaccine's two A strains, 40% (> or=1:40) and 65% (> or=1:20) to its B strain; 30-40% demonstrated a 4x hemagglutination inhibition (HAI) titer increase; GMT titers increased 2.2-2.5x. About 50% of those initially non-immune became immune. A local antibody response to the three vaccine strains was recorded in 31-44% of vaccinees in which 57, 68 and 54% exhibited a mucosal and/or serum antibody response to the A/Johannesburg, A/Nanchang and B/Harbin strains, respectively. A higher dose (40mg) of A/Johannesburg in the vaccine did not influence response. The new vaccine was safe, without side-effects, and offered reasonable protection after one dose. It could thus play an important role in increasing enrollment into immunization programs.
Collapse
Affiliation(s)
- Evgenia Greenbaum
- Department of Virology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Liposomes are the leading drug delivery systems for the systemic (iv.) administration of drugs. There are now liposomal formulations of conventional drugs that have received clinical approval and many others in clinical trials that bring benefits of reduced toxicity and enhanced efficacy for the treatment of cancer and other life-threatening diseases. The mechanisms giving rise to the therapeutic advantages of liposomes, such as the ability of long-circulating liposomes to preferentially accumulate at disease sites including tumours, sites of infection and sites of inflammation are increasingly well understood. Further, liposome-based formulations of genetic drugs such as antisense oligonucleotides and plasmids for gene therapy that have clear potential for systemic utility are increasingly available. This paper reviews the liposomal drug delivery field, summarises the success of liposomes for the delivery of small molecules and indicates how this success is being built on to design effective carriers for genetic drugs.
Collapse
Affiliation(s)
- N Maurer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
35
|
Abstract
The nasal route for vaccination offers some important opportunities, especially for the prophylaxis of respiratory diseases. Vaccination via the respiratory tract is reviewed and the deposition and clearance of antigens in the deep lung and nose are described and contrasted. Lymphoid structures in the respiratory tract differ according to species; the rat and mouse have a well developed nose-associated lymphoid tissue, while in man, the structure known as Waldeyer's ring (that includes the tonsils), is important as an induction site. The immune response following intranasal administration can provide protection at the administration site and at various effector sites as part of the common mucosal immune system. A number of formulation considerations are important when designing novel systems for nasal administration as are physiological factors such as mucociliary clearance.
Collapse
Affiliation(s)
- S S Davis
- Institute of Pharmaceutical Sciences, University of Nottingham, Boots Science Building, Science Road, University Park, NG7 2RD, Nottingham, UK.
| |
Collapse
|
36
|
Affiliation(s)
- D C Drummond
- Research Institute, California Pacific Medical Center, 94115, San Francisco, CA, USA
| | | | | |
Collapse
|
37
|
Medina E, Guzmán CA. Modulation of immune responses following antigen administration by mucosal route. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2000; 27:305-11. [PMID: 10727886 DOI: 10.1111/j.1574-695x.2000.tb01444.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most microbial infections are either restricted to the mucosal membranes or the etiologic agents needed to transit the mucosa. Thus, it is desirable to stimulate a mucosal response following vaccination, to block both infection and disease development. Attenuated vaccine carriers mimic natural infections, triggering also mucosal responses. Similar results can be achieved by administering antigens with appropriate adjuvants. However, the delivery of antigens per se is not sufficient to engender a protective response. A successful immunization requires the elicitation of an appropriate type of immune response (e.g. antibodies vs. cell-mediated immunity, Th1 vs. Th2 helper pattern). Therefore, a successful vaccination strategy demands the choice of adequate antigens, and their appropriate delivery and/or formulation to promote the required quality of immune response. Different strategies to optimize the immune responses elicited following vaccine administration by the mucosal route are discussed.
Collapse
Affiliation(s)
- E Medina
- Department of Microbial Pathogenesis and Vaccine Research, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany
| | | |
Collapse
|
38
|
|